1
|
Vasilev K, Canola S, Scheurer F, Boeglin A, Lotthammer F, Chérioux F, Neuman T, Schull G. Exploring the Role of Excited States' Degeneracy on Vibronic Coupling with Atomic-Scale Optics. ACS NANO 2024; 18:28052-28059. [PMID: 39363581 PMCID: PMC11483947 DOI: 10.1021/acsnano.4c07136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
Interactions between molecular electronic and vibrational states manifest themselves in a variety of forms and have a strong impact on molecular physics and chemistry. For example, the efficiency of energy transfer between organic molecules, ubiquitous in biological systems and in organic optoelectronics, is strongly influenced by vibronic coupling. Using an approach based on scanning tunneling microscope-induced luminescence (STML), we reveal vibronic interactions in optical spectra of a series of single phthalocyanine derivative molecules featuring degenerate or near-degenerate excited states. Based on detailed theoretical simulations, we disentangle spectroscopic signatures belonging to Franck-Condon and Herzberg-Teller vibronic progressions in tip-position-resolved STML spectra, and we directly map out the vibronic coupling between the close-lying excited states of the molecules.
Collapse
Affiliation(s)
- Kirill Vasilev
- Université
de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Sofia Canola
- Institute
of Physics, Czech Academy of Sciences, Cukrovarnická 10, 16200 Prague, Czech
Republic
| | - Fabrice Scheurer
- Université
de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Alex Boeglin
- Université
de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Fanny Lotthammer
- Université
de Franche-Comté, CNRS, FEMTO-ST, F-25000 Besançon, France
| | - Frédéric Chérioux
- Université
de Franche-Comté, CNRS, FEMTO-ST, F-25000 Besançon, France
| | - Tomáš Neuman
- Institute
of Physics, Czech Academy of Sciences, Cukrovarnická 10, 16200 Prague, Czech
Republic
| | - Guillaume Schull
- Université
de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| |
Collapse
|
2
|
Kaiser K, Jiang S, Romeo M, Scheurer F, Schull G, Rosławska A. Gating Single-Molecule Fluorescence with Electrons. PHYSICAL REVIEW LETTERS 2024; 133:156902. [PMID: 39454165 DOI: 10.1103/physrevlett.133.156902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/04/2024] [Accepted: 09/10/2024] [Indexed: 10/27/2024]
Abstract
Tip-enhanced photoluminescence (TEPL) measurements are performed with subnanometer spatial resolution on individual molecules decoupled from a metallic substrate by a thin NaCl layer. TEPL spectra reveal progressive fluorescence quenching with decreasing tip-molecule distance when electrons tunneling from the tip of a scanning tunneling microscope are injected at resonance with the molecular states. Rate equations based on a many-body model reveal that the luminescence quenching is due to a progressive population inversion between the ground neutral (S_{0}) and the ground charge (D_{0}^{-}) states of the molecule occurring when the current is raised. We demonstrate that the bias voltage and the lateral tip position can be used to gate the molecular emission. Our approach can be applied to any molecular system, providing unprecedented control over the fluorescence of a single molecule.
Collapse
|
3
|
Petrov E, Kapitanchuk O, Shevchenko Y, Gorbach V, Lyubchik A. Features of optoelectronic processes in a molecular junction based on a fluorophore with optically active Frontier π-orbitals: electrofluorochromism in a ZnPc-based junction. Phys Chem Chem Phys 2024; 26:22762-22774. [PMID: 39162092 DOI: 10.1039/d4cp01328j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
A model of the optoelectronic process in a molecular junction has been developed, in which electron transfer occurs through transmission channels associated with the filling of the π and π* orbitals of the fluorophore with transferred electrons. The contribution of each channel to the formation of current and electroluminescence (EL) is determined by the probability of the realization of those electronic states of the molecule that, at a given bias voltage, are involved in electron transfer. It is shown that in the vicinity of critical bias voltage, stepwise changes in current and EL occur, and the height of each step is controlled by kinetic processes associated with both electron transfer and intramolecular transitions. Using the obtained analytical expressions for the relative intensities of the emission lines X0 and X+ and comparing theoretical results with experimental data on STM-induced EL in a ZnPc-based junction, we showed that the method for analyzing the behavior of current and EL near critical voltages can serve as an effective tool for understanding the physical mechanisms responsible for optoelectronic processes at the single-molecule level. The method also made it possible to obtain real values of the energy of the Frontier orbitals of the ZnPc molecule embedded between the electrodes, as well as the energies of those electronic states of the neutral and charged molecules that participate in the optoelectronic process, including electrofluorochromism.
Collapse
Affiliation(s)
- Elmar Petrov
- Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Metrologichna str. 14-B, UA-03143 Kyiv, Ukraine.
| | - Oleksiy Kapitanchuk
- Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Metrologichna str. 14-B, UA-03143 Kyiv, Ukraine.
| | - Yevgen Shevchenko
- Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Metrologichna str. 14-B, UA-03143 Kyiv, Ukraine.
| | - Victor Gorbach
- Nanotechcenter LLC, Krzhizhanovsky str. 3, Kyiv, UA-03142, Ukraine
| | - Andriy Lyubchik
- DeepTechLab, Faculdade de Engenharia, Universidade Lusofona, Campo Grande, 376, Lisboa, 1749-024, Portugal
| |
Collapse
|
4
|
Wang Z, Kalathingal V, Trushin M, Liu J, Wang J, Guo Y, Özyilmaz B, Nijhuis CA, Eda G. Upconversion electroluminescence in 2D semiconductors integrated with plasmonic tunnel junctions. NATURE NANOTECHNOLOGY 2024; 19:993-999. [PMID: 38641642 DOI: 10.1038/s41565-024-01650-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/13/2024] [Indexed: 04/21/2024]
Abstract
Plasmonic tunnel junctions are a unique electroluminescent system in which light emission occurs via an interplay between tunnelling electrons and plasmonic fields instead of electron-hole recombination as in conventional light-emitting diodes. It was previously shown that placing luminescent molecules in the tunneling pathway of nanoscopic tunnel junctions results in peculiar upconversion electroluminescence where the energy of emitted photons exceeds that of excitation electrons. Here we report the observation of upconversion electroluminescence in macroscopic van der Waals plasmonic tunnel junctions comprising gold and few-layer graphene electrodes separated by a ~2-nm-thick hexagonal boron nitride tunnel barrier and a monolayer semiconductor. We find that the semiconductor ground exciton emission is triggered at excitation electron energies lower than the semiconductor optical gap. Interestingly, this upconversion is reached in devices operating at a low conductance (<10-6 S) and low power density regime (<102 W cm-2), defying explanation through existing proposed mechanisms. By examining the scaling relationship between plasmonic and excitonic emission intensities, we elucidate the role of inelastic electron tunnelling dipoles that induce optically forbidden transitions in the few-layer graphene electrode and ultrafast hot carrier transfer across the van der Waals interface.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Chemistry, National University of Singapore, Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Vijith Kalathingal
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- Department of Physics, Kannur University, Swami Anandatheertha Campus-Payyanur, Kannur, India
| | - Maxim Trushin
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore
- Department of Material Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Jiawei Liu
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore
- Department of Physics, National University of Singapore, Singapore, Singapore
| | - Junyong Wang
- CAS Key Laboratory of Nano-Bio Interface and Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Yongxin Guo
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Barbaros Özyilmaz
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore
- Department of Material Science and Engineering, National University of Singapore, Singapore, Singapore
- Department of Physics, National University of Singapore, Singapore, Singapore
| | - Christian A Nijhuis
- Hybrid Materials for Opto-Electronics Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands.
| | - Goki Eda
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore.
- Department of Physics, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
Duan S, Tian G, Luo Y. Theoretical and computational methods for tip- and surface-enhanced Raman scattering. Chem Soc Rev 2024; 53:5083-5117. [PMID: 38596836 DOI: 10.1039/d3cs01070h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Raman spectroscopy is a versatile tool for acquiring molecular structure information. The incorporation of plasmonic fields has significantly enhanced the sensitivity and resolution of surface-enhanced Raman scattering (SERS) and tip-enhanced Raman spectroscopy (TERS). The strong spatial confinement effect of plasmonic fields has challenged the conventional Raman theory, in which a plane wave approximation for the light has been adopted. In this review, we comprehensively survey the progress of a generalized theory for SERS and TERS in the framework of effective field Hamiltonian (EFH). With this approach, all characteristics of localized plasmonic fields can be well taken into account. By employing EFH, quantitative simulations at the first-principles level for state-of-the-art experimental observations have been achieved, revealing the underlying intrinsic physics in the measurements. The predictive power of EFH is demonstrated by several new phenomena generated from the intrinsic spatial, momentum, time, and energy structures of the localized plasmonic field. The corresponding experimental verifications are also carried out briefly. A comprehensive computational package for modeling of SERS and TERS at the first-principles level is introduced. Finally, we provide an outlook on the future developments of theory and experiments for SERS and TERS.
Collapse
Affiliation(s)
- Sai Duan
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Guangjun Tian
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Yi Luo
- Hefei National Research Center for Physical Science at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| |
Collapse
|
6
|
Zhang X, Li Z, Ji S, Xu W, Chen L, Xiao Z, Liu J, Hong W. Plasmon-Molecule Interactions in Single-Molecule Junctions. Chempluschem 2024; 89:e202300556. [PMID: 38050755 DOI: 10.1002/cplu.202300556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Single-molecule optoelectronics offers opportunities for advancing integrated photonics and electronics, which also serves as a tool to elucidate the underlying mechanism of light-matter interaction. Plasmonics, which plays pivotal role in the interaction of photons and matter, have became an emerging area. A comprehensive understanding of the plasmonic excitation and modulation mechanisms within single-molecule junctions (SMJs) lays the foundation for optoelectronic devices. Consequently, this review primarily concentrates on illuminating the fundamental principles of plasmonics within SMJs, delving into their research methods and modulation factors of plasmon-exciton. Moreover, we underscore the interaction phenomena within SMJs, including the enhancement of molecular fluorescence by plasmonics, Fano resonance and Rabi splitting caused by the interaction of plasmon-exciton. Finally, by emphasizing the potential applications of plasmonics within SMJs, such as their roles in optical tweezers, single-photon sources, super-resolution imaging, and chemical reactions, we elucidate the future prospects and current challenges in this domain.
Collapse
Affiliation(s)
- Xiangui Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhengyu Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Shurui Ji
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Wei Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Lijue Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Zongyuan Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
7
|
Hung TC, Godinez-Loyola Y, Steinbrecher M, Kiraly B, Khajetoorians AA, Doltsinis NL, Strassert CA, Wegner D. Activating the Fluorescence of a Ni(II) Complex by Energy Transfer. J Am Chem Soc 2024; 146:8858-8864. [PMID: 38513215 PMCID: PMC10996004 DOI: 10.1021/jacs.3c07716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
Luminescence of open-shell 3d metal complexes is often quenched due to ultrafast intersystem crossing (ISC) and cooling into a dark metal-centered excited state. We demonstrate successful activation of fluorescence from individual nickel phthalocyanine (NiPc) molecules in the junction of a scanning tunneling microscope (STM) by resonant energy transfer from other metal phthalocyanines at low temperature. By combining STM, scanning tunneling spectroscopy, STM-induced luminescence, and photoluminescence experiments as well as time-dependent density functional theory, we provide evidence that there is an activation barrier for the ISC, which, in most experimental conditions, is overcome. We show that this is also the case in an electroluminescent tunnel junction where individual NiPc molecules adsorbed on an ultrathin NaCl decoupling film on a Ag(111) substrate are probed. However, when an MPc (M = Zn, Pd, Pt) molecule is placed close to NiPc by means of STM atomic manipulation, resonant energy transfer can excite NiPc without overcoming the ISC activation barrier, leading to Q-band fluorescence. This work demonstrates that the thermally activated population of dark metal-centered states can be avoided by a designed local environment at low temperatures paired with directed molecular excitation into vibrationally cold electronic states. Thus, we can envisage the use of luminophores based on more abundant transition metal complexes that do not rely on Pt or Ir by restricting vibration-induced ISC.
Collapse
Affiliation(s)
- Tzu-Chao Hung
- Institute
for Molecules and Materials, Radboud University, 6500 GL Nijmegen, The Netherlands
- Institute
for Experimental and Applied Physics, University of Regensburg, 93040 Regensburg, Germany
| | - Yokari Godinez-Loyola
- Institut
für Anorganische und Analytische Chemie, University of Münster, 48149 Münster, Germany
- Center
for Nanotechnology (CeNTech), University
of Münster, 48149 Münster, Germany
| | - Manuel Steinbrecher
- Institute
for Molecules and Materials, Radboud University, 6500 GL Nijmegen, The Netherlands
| | - Brian Kiraly
- Institute
for Molecules and Materials, Radboud University, 6500 GL Nijmegen, The Netherlands
| | | | - Nikos L. Doltsinis
- Institut
für Festkörpertheorie and Center for Multiscale Theory
and Computation, University of Münster, 48149 Münster, Germany
| | - Cristian A. Strassert
- Institut
für Anorganische und Analytische Chemie, University of Münster, 48149 Münster, Germany
- Center
for Nanotechnology (CeNTech), University
of Münster, 48149 Münster, Germany
- Cells in
Motion Interfaculty Centre (CiMIC) and Center for Soft Nanoscience
(SoN), University of Münster, 48149 Münster, Germany
| | - Daniel Wegner
- Institute
for Molecules and Materials, Radboud University, 6500 GL Nijmegen, The Netherlands
| |
Collapse
|
8
|
Doležal J, Sagwal A, de Campos Ferreira RC, Švec M. Single-Molecule Time-Resolved Spectroscopy in a Tunable STM Nanocavity. NANO LETTERS 2024; 24:1629-1634. [PMID: 38286028 PMCID: PMC10853955 DOI: 10.1021/acs.nanolett.3c04314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 01/31/2024]
Abstract
Spontaneous fluorescence rates of single-molecule emitters are typically on the order of nanoseconds. However, coupling them with plasmonic nanostructures can substantially increase their fluorescence yields. The confinement between a tip and sample in a scanning tunneling microscope creates a tunable nanocavity, an ideal platform for exploring the yields and excitation decay rates of single-molecule emitters, depending on their coupling strength to the nanocavity. With such a setup, we determine the excitation lifetimes from the direct time-resolved measurements of phthalocyanine fluorescence decays, decoupled from the metal substrates by ultrathin NaCl layers. We find that when the tip is approached to single molecules, their lifetimes are reduced to the picosecond range due to the effect of coupling with the tip-sample nanocavity. On the other hand, ensembles of the adsorbed molecules measured without the nanocavity manifest nanosecond-range lifetimes. This approach overcomes the drawbacks associated with the estimation of lifetimes for single molecules from their respective emission line widths.
Collapse
Affiliation(s)
- Jiří Doležal
- Institute of Physics, Czech Academy of Sciences; Cukrovarnická 10/112, CZ16200 Praha 6, Czech Republic
| | - Amandeep Sagwal
- Institute of Physics, Czech Academy of Sciences; Cukrovarnická 10/112, CZ16200 Praha 6, Czech Republic
- Faculty of Mathematics and Physics, Charles University; Ke Karlovu 3, CZ12116 Praha 2, Czech Republic
| | | | - Martin Švec
- Institute of Physics, Czech Academy of Sciences; Cukrovarnická 10/112, CZ16200 Praha 6, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542/2, CZ16000 Praha 6, Czech Republic
| |
Collapse
|
9
|
Yonemoto R, Ueda R, Otomo A, Noguchi Y. Light-Emitting Electrochemical Cells Based on Nanogap Electrodes. NANO LETTERS 2023; 23:7493-7499. [PMID: 37579029 DOI: 10.1021/acs.nanolett.3c02001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
In a light-emitting electrochemical cell (LEC), electrochemical doping caused by mobile ions facilitates bipolar charge injection and recombination emissions for a high electroluminescence (EL) intensity at low driving voltages. We present the development of a nanogap LEC (i.e., nano-LEC) comprising a light-emitting polymer (F8BT) and an ionic liquid deposited on a gold nanogap electrode. The device demonstrated a high EL intensity at a wavelength of 540 nm corresponding to the emission peak of F8BT and a threshold voltage of ∼2 V at 300 K. Upon application of a constant voltage, the device demonstrated a gradual increase in current intensity followed by light emission. Notably, the delayed components of the current and EL were strongly suppressed at low temperatures (<285 K). The results clearly indicate that the device functions as an LEC and that the nano-LEC is a promising approach to realizing molecular-scale current-induced light sources.
Collapse
Affiliation(s)
- Ryo Yonemoto
- Graduate School of Science and Technology, Meiji University, Kawasaki 214-8571, Japan
| | - Rieko Ueda
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Akira Otomo
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Yutaka Noguchi
- Graduate School of Science and Technology, Meiji University, Kawasaki 214-8571, Japan
- School of Science & Technology, Meiji University, Kawasaki 214-8571, Japan
| |
Collapse
|
10
|
Kaiser K, Lieske LA, Repp J, Gross L. Charge-state lifetimes of single molecules on few monolayers of NaCl. Nat Commun 2023; 14:4988. [PMID: 37591847 PMCID: PMC10435478 DOI: 10.1038/s41467-023-40692-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
In molecular tunnel junctions, where the molecule is decoupled from the electrodes by few-monolayers-thin insulating layers, resonant charge transport takes place by sequential charge transfer to and from the molecule which implies transient charging of the molecule. The corresponding charge state transitions, which involve tunneling through the insulating decoupling layers, are crucial for understanding electrically driven processes such as electroluminescence or photocurrent generation in such a geometry. Here, we use scanning tunneling microscopy to investigate the decharging of single ZnPc and H2Pc molecules through NaCl films of 3 to 5 monolayers thickness on Cu(111) and Au(111). To this end, we approach the tip to the molecule at resonant tunnel conditions up to a regime where charge transport is limited by tunneling through the NaCl film. The resulting saturation of the tunnel current is a direct measure of the lifetimes of the anionic and cationic states, i.e., the molecule's charge-state lifetime, and thus provides a means to study charge dynamics and, thereby, exciton dynamics. Comparison of anion and cation lifetimes on different substrates reveals the critical role of the level alignment with the insulator's conduction and valence band, and the metal-insulator interface state.
Collapse
Affiliation(s)
- Katharina Kaiser
- IBM Research Europe-Zurich, Säumerstrasse 4, 8803, Rüschlikon, Switzerland.
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000, Strasbourg, France.
| | | | - Jascha Repp
- Department of Physics, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Leo Gross
- IBM Research Europe-Zurich, Säumerstrasse 4, 8803, Rüschlikon, Switzerland.
| |
Collapse
|
11
|
Alves E, Péchou R, Coratger R, Mlayah A. Gap plasmon modes and plasmon-exciton coupling in a hybrid Au/MoSe 2/Au tunneling junction. OPTICS EXPRESS 2023; 31:12549-12561. [PMID: 37157412 DOI: 10.1364/oe.479620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The light-matter interaction between plasmonic nanocavity modes and excitons at the nanometer scale is here addressed in the scanning tunneling microscope configuration where an MoSe2 monolayer is located between the tip and the substrate. We investigate by optical excitation the electromagnetic modes of this hybrid Au/MoSe2/Au tunneling junction using numerical simulations where electron tunneling and the anisotropic character of the MoSe2 layer are taken into account. In particular, we pointed out gap plasmon modes and Fano-type plasmon-exciton coupling taking place at the MoSe2/Au substrate interface. The spectral properties and spatial localization of these modes are studied as a function of the tunneling parameters and incident polarization.
Collapse
|
12
|
López LEP, Rosławska A, Scheurer F, Berciaud S, Schull G. Tip-induced excitonic luminescence nanoscopy of an atomically resolved van der Waals heterostructure. NATURE MATERIALS 2023; 22:482-488. [PMID: 36928383 DOI: 10.1038/s41563-023-01494-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The electronic and optical properties of van der Waals heterostructures are strongly influenced by the structuration and homogeneity of their nano- and atomic-scale environments. Unravelling this intimate structure-property relationship is a key challenge that requires methods capable of addressing the light-matter interactions in van der Waals materials with ultimate spatial resolution. Here we use a low-temperature scanning tunnelling microscope to probe-with atomic-scale resolution-the excitonic luminescence of a van der Waals heterostructure, made of a transition metal dichalcogenide monolayer stacked onto a few-layer graphene flake supported by a Au(111) substrate. Sharp emission lines arising from neutral, charged and localized excitons are reported. Their intensities and emission energies vary as a function of the nanoscale topography of the van der Waals heterostructure, explaining the variability of the emission properties observed with diffraction-limited approaches. Our work paves the way towards understanding and controlling optoelectronic phenomena in moiré superlattices with atomic-scale resolution.
Collapse
Affiliation(s)
- Luis E Parra López
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Strasbourg, France
| | - Anna Rosławska
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Strasbourg, France
| | - Fabrice Scheurer
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Strasbourg, France
| | - Stéphane Berciaud
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Strasbourg, France.
| | - Guillaume Schull
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Strasbourg, France.
| |
Collapse
|
13
|
Jiang S, Neuman T, Bretel R, Boeglin A, Scheurer F, Le Moal E, Schull G. Many-Body Description of STM-Induced Fluorescence of Charged Molecules. PHYSICAL REVIEW LETTERS 2023; 130:126202. [PMID: 37027885 DOI: 10.1103/physrevlett.130.126202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/30/2023] [Indexed: 06/19/2023]
Abstract
A scanning tunneling microscope is used to study the fluorescence of a model charged molecule (quinacridone) adsorbed on a sodium chloride (NaCl)-covered metallic sample. Fluorescence from the neutral and positively charged species is reported and imaged using hyperresolved fluorescence microscopy. A many-body model is established based on a detailed analysis of voltage, current, and spatial dependences of the fluorescence and electron transport features. This model reveals that quinacridone adopts a palette of charge states, transient or not, depending on the voltage used and the nature of the underlying substrate. This model has a universal character and clarifies the transport and fluorescence mechanisms of molecules adsorbed on thin insulators.
Collapse
Affiliation(s)
- Song Jiang
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Tomáš Neuman
- Institut des Sciences Moléculaires d'Orsay (ISMO), UMR 8214, CNRS, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Rémi Bretel
- Institut des Sciences Moléculaires d'Orsay (ISMO), UMR 8214, CNRS, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Alex Boeglin
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Fabrice Scheurer
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Eric Le Moal
- Institut des Sciences Moléculaires d'Orsay (ISMO), UMR 8214, CNRS, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Guillaume Schull
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| |
Collapse
|
14
|
Rai V, Gerhard L, Balzer N, Valášek M, Holzer C, Yang L, Wegener M, Rockstuhl C, Mayor M, Wulfhekel W. Activating Electroluminescence of Charged Naphthalene Diimide Complexes Directly Adsorbed on a Metal Substrate. PHYSICAL REVIEW LETTERS 2023; 130:036201. [PMID: 36763403 DOI: 10.1103/physrevlett.130.036201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/02/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
Electroluminescence from single molecules adsorbed on a conducting surface imposes conflicting demands for the molecule-electrode coupling. To conduct electrons, the molecular orbitals need to be hybridized with the electrodes. To emit light, they need to be decoupled from the electrodes to prevent fluorescence quenching. Here, we show that fully quenched 2,6-core-substituted naphthalene diimide derivative in a self-assembled monolayer directly deposited on a Au(111) surface can be activated with the tip of a scanning tunneling microscope to decouple the relevant frontier orbitals from the metallic substrate. In this way, individual molecules can be driven from a strongly hybridized state with quenched luminescence to a light-emitting state. The emission performance compares in terms of quantum efficiency, stability, and reproducibility to that of single molecules deposited on thin insulating layers. Quantum chemical calculations suggest that the emitted light originates from the singly charged cationic pair of the molecules.
Collapse
Affiliation(s)
- Vibhuti Rai
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
| | - Lukas Gerhard
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
| | - Nico Balzer
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
| | - Michal Valášek
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
| | - Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), D-76128 Karlsruhe, Germany
| | - Liang Yang
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), D-76128 Karlsruhe, Germany
| | - Martin Wegener
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), D-76128 Karlsruhe, Germany
| | - Carsten Rockstuhl
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), D-76128 Karlsruhe, Germany
| | - Marcel Mayor
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
- Department of Chemistry, University of Basel, St. Johannsring 19, CH-4056 Basel, Switzerland
- Lehn Institute of Functional Materials (LIFM), Sun Yat-Sen University (SYSU), Xingang West Road, Guangzhou, China
| | - Wulf Wulfhekel
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
- Physikalisches Institut, Karlsruhe Institute of Technology (KIT), D-76128 Karlsruhe, Germany
| |
Collapse
|
15
|
Doležal J, Canola S, Hapala P, de Campos Ferreira RC, Merino P, Švec M. Evidence of exciton-libron coupling in chirally adsorbed single molecules. Nat Commun 2022; 13:6008. [PMID: 36224183 PMCID: PMC9556530 DOI: 10.1038/s41467-022-33653-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/28/2022] [Indexed: 11/18/2022] Open
Abstract
Interplay between motion of nuclei and excitations has an important role in molecular photophysics of natural and artificial structures. Here we provide a detailed analysis of coupling between quantized librational modes (librons) and charged excited states (trions) on single phthalocyanine dyes adsorbed on a surface. By means of tip-induced electroluminescence performed with a scanning probe microscope, we identify libronic signatures in spectra of chirally adsorbed phthalocyanines and find that these signatures are absent from spectra of symmetrically adsorbed species. We create a model of the libronic coupling based on the Franck-Condon principle to simulate the spectral features. Experimentally measured librational spectra match very well the theoretically calculated librational eigenenergies and peak intensities (Franck-Condon factors). Moreover, the comparison reveals an unexpected depopulation channel for the zero libron of the excited state that can be effectively controlled by tuning the size of the nanocavity. Our results showcase the possibility of characterizing the dynamics of molecules by their low-energy molecular modes using µeV-resolved tip-enhanced spectroscopy. Vibronic coupling in molecules plays an essential role in photophysics. Here, the authors observe optical fingerprints of the coupling between librational states and charged excited states in a single phthalocyanine molecule chirally absorbed on a surface.
Collapse
Affiliation(s)
- Jiří Doležal
- Institute of Physics, Czech Academy of Sciences, CZ16200, Praha 6, Czech Republic. .,Faculty of Mathematics and Physics, Charles University, CZ12116, Praha 2, Czech Republic.
| | - Sofia Canola
- Institute of Physics, Czech Academy of Sciences, CZ16200, Praha 6, Czech Republic
| | - Prokop Hapala
- Institute of Physics, Czech Academy of Sciences, CZ16200, Praha 6, Czech Republic
| | | | - Pablo Merino
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, E08193, Barcelona, Spain.,Instituto de Ciencia de Materiales de Madrid; CSIC, E28049, Madrid, Spain
| | - Martin Švec
- Institute of Physics, Czech Academy of Sciences, CZ16200, Praha 6, Czech Republic. .,Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, CZ16000, Praha 6, Czech Republic.
| |
Collapse
|
16
|
Homberg J, Weismann A, Markussen T, Berndt R. Resonance-Enhanced Vibrational Spectroscopy of Molecules on a Superconductor. PHYSICAL REVIEW LETTERS 2022; 129:116801. [PMID: 36154405 DOI: 10.1103/physrevlett.129.116801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/13/2022] [Accepted: 07/13/2022] [Indexed: 06/16/2023]
Abstract
Molecular vibrational spectroscopy with the scanning tunneling microscope is feasible but usually detects few vibrational modes. We harness sharp Yu-Shiba-Rusinov states observed from molecules on a superconductor to significantly enhance the vibrational signal. From a lead phthalocyanine molecule 46 vibrational peaks are resolved enabling a comparison with calculated modes. The energy resolution is improved beyond the thermal broadening limit and shifts induced by neighbor molecules or the position of the microscope tip are determined. Vice versa, spectra of vibrational modes are used to measure the effect of an electrical field on the energy of Yu-Shiba-Rusinov states. The method may help to further probe the interaction of molecules with their environment and to better understand selection rules for vibrational excitations.
Collapse
Affiliation(s)
- Jan Homberg
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Alexander Weismann
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Troels Markussen
- Synopsys Denmark, Fruebjergvej 3, Postbox 4, DK-2100 Copenhagen, Denmark
| | - Richard Berndt
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| |
Collapse
|
17
|
Ma Y, Kalt RA, Stemmer A. Local strain and tunneling current modulate excitonic luminescence in MoS 2 monolayers. RSC Adv 2022; 12:24922-24929. [PMID: 36199876 PMCID: PMC9434384 DOI: 10.1039/d2ra05123k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Abstract
The excitonic luminescence of monolayer molybdenum disulfide (MoS2) on a gold substrate is studied by scanning tunneling microscopy (STM). STM-induced light emission (STM-LE) from MoS2 is assigned to the radiative decay of A and B excitons. The intensity ratio of A and B exciton emission is modulated by the tunneling current, since the A exciton emission intensity saturates at high tunneling currents. Moreover, the corrugated gold substrate introduces local strain to the monolayer MoS2, resulting in significant changes of electronic bandgap and valence band splitting. The modulation rate of strain on A exciton energy is estimated as -69 ± 5 meV/%. STM-LE provides a direct link between exciton energy and local strain in monolayer MoS2 on a length scale of 10 nm.
Collapse
Affiliation(s)
- Yalan Ma
- Nanotechnology Group, ETH Zürich Säumerstrasse 4 Rüschlikon 8803 Switzerland
| | - Romana Alice Kalt
- Nanotechnology Group, ETH Zürich Säumerstrasse 4 Rüschlikon 8803 Switzerland
| | - Andreas Stemmer
- Nanotechnology Group, ETH Zürich Säumerstrasse 4 Rüschlikon 8803 Switzerland
| |
Collapse
|
18
|
Wu X, Wang R, Zou H, Song B, Wen S, Frauenheim T, Yam C. First-Principles Nonequilibrium Green's Function Approach to Energy Conversion in Nanoscale Optoelectronics. J Chem Theory Comput 2022; 18:5502-5512. [PMID: 36005397 DOI: 10.1021/acs.jctc.2c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding photon-electron conversion on the nanoscale is essential for future innovations in nano-optoelectronics. In this article, based on nonequilibrium Green's function (NEGF) formalism, we develop a quantum-mechanical method for modeling energy conversion in nanoscale optoelectronic devices. The method allows us to study photoinduced charge transport and electroluminescence processes in realistic devices. First, we investigate the electroluminescence properties of a two-level model with two different treatments of inelastic scatterings. We show the regime where self-consistency between electron and photon is important for correct description of the inelastic scatterings. The method is then applied to model single-molecule junctions based on the density-functional tight-binding approach. The predicted emission spectra are found to be in very good agreement with experimental measurements. For nanostructured materials, the method is further applied to study the photoresponse of a two-dimensional graphene/graphite-C3N4 heterojunction photovoltaic device. The simulations demonstrate clearly the impact of atomistic details on the optoelectronic properties of nanodevices. This work provides a practical theoretical framework that can be applied to model and design realistic nanodevices.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Shenzhen JL Computational Science and Applied Research Institute, Longhua District, Shenzhen 518110, China
| | - Rulin Wang
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Hao Zou
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Bowen Song
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Shizheng Wen
- Jiangsu Province Key Laboratory of Modern Measurement Technology and Intelligent Systems, School of Physics and Electrical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Thomas Frauenheim
- Shenzhen JL Computational Science and Applied Research Institute, Longhua District, Shenzhen 518110, China
| | - ChiYung Yam
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518000, China.,Hong Kong Quantum AI Lab Limited, Unit 909-915 of 17W Building, Science Park, NT, Hong Kong, China
| |
Collapse
|
19
|
Li P, Zhou L, Zhao C, Ju H, Gao Q, Si W, Cheng L, Hao J, Li M, Chen Y, Jia C, Guo X. Single-molecule nano-optoelectronics: insights from physics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:086401. [PMID: 35623319 DOI: 10.1088/1361-6633/ac7401] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Single-molecule optoelectronic devices promise a potential solution for miniaturization and functionalization of silicon-based microelectronic circuits in the future. For decades of its fast development, this field has made significant progress in the synthesis of optoelectronic materials, the fabrication of single-molecule devices and the realization of optoelectronic functions. On the other hand, single-molecule optoelectronic devices offer a reliable platform to investigate the intrinsic physical phenomena and regulation rules of matters at the single-molecule level. To further realize and regulate the optoelectronic functions toward practical applications, it is necessary to clarify the intrinsic physical mechanisms of single-molecule optoelectronic nanodevices. Here, we provide a timely review to survey the physical phenomena and laws involved in single-molecule optoelectronic materials and devices, including charge effects, spin effects, exciton effects, vibronic effects, structural and orbital effects. In particular, we will systematically summarize the basics of molecular optoelectronic materials, and the physical effects and manipulations of single-molecule optoelectronic nanodevices. In addition, fundamentals of single-molecule electronics, which are basic of single-molecule optoelectronics, can also be found in this review. At last, we tend to focus the discussion on the opportunities and challenges arising in the field of single-molecule optoelectronics, and propose further potential breakthroughs.
Collapse
Affiliation(s)
- Peihui Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Li Zhou
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Cong Zhao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Hongyu Ju
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, People's Republic of China
| | - Qinghua Gao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Wei Si
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Li Cheng
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Jie Hao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Mengmeng Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Yijian Chen
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
| |
Collapse
|
20
|
Orbital-resolved visualization of single-molecule photocurrent channels. Nature 2022; 603:829-834. [PMID: 35354999 DOI: 10.1038/s41586-022-04401-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 01/03/2022] [Indexed: 11/08/2022]
Abstract
Given its central role in utilizing light energy, photoinduced electron transfer (PET) from an excited molecule has been widely studied1-6. However, even though microscopic photocurrent measurement methods7-11 have made it possible to correlate the efficiency of the process with local features, spatial resolution has been insufficient to resolve it at the molecular level. Recent work has, however, shown that single molecules can be efficiently excited and probed when combining a scanning tunnelling microscope (STM) with localized plasmon fields driven by a tunable laser12,13. Here we use that approach to directly visualize with atomic-scale resolution the photocurrent channels through the molecular orbitals of a single free-base phthalocyanine (FBPc) molecule, by detecting electrons from its first excited state tunnelling through the STM tip. We find that the direction and the spatial distribution of the photocurrent depend sensitively on the bias voltage, and detect counter-flowing photocurrent channels even at a voltage where the averaged photocurrent is near zero. Moreover, we see evidence of competition between PET and photoluminescence12, and find that we can control whether the excited molecule primarily relaxes through PET or photoluminescence by positioning the STM tip with three-dimensional, atomic precision. These observations suggest that specific photocurrent channels can be promoted or suppressed by tuning the coupling to excited-state molecular orbitals, and thus provide new perspectives for improving energy-conversion efficiencies by atomic-scale electronic and geometric engineering of molecular interfaces.
Collapse
|
21
|
Zirkelbach J, Mirzaei M, Deperasinska I, Kozankiewicz B, Gurlek B, Shkarin A, Utikal T, Götzinger S, Sandoghdar V. High-resolution vibronic spectroscopy of a single molecule embedded in a crystal. J Chem Phys 2022; 156:104301. [DOI: 10.1063/5.0081297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | | | | | - Boleslaw Kozankiewicz
- Radiation Physics and Spectroscopy, Institute of Physics Polish Academy of Sciences, Poland
| | - Burak Gurlek
- Sandoghdar Division, Max Planck Institute for the Science of Light, Germany
| | | | - Tobias Utikal
- Max Planck Institute for the Science of Light, Germany
| | | | - Vahid Sandoghdar
- Division Sandoghdar, Max Planck Institute for the Science of Light, Germany
| |
Collapse
|
22
|
Haupa KA, Krappel NP, Strelnikov D, Kappes MM. Vibrationally Resolved Absorption and Luminescence Spectra of Mass-Selected Free-Base and Zinc Phthalocyanine Radical Cations Isolated in Solid Ne. J Phys Chem A 2022; 126:593-599. [PMID: 35044185 DOI: 10.1021/acs.jpca.1c09916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We report the first vibrationally well-resolved absorption and laser-induced fluorescence spectra of the radical cations of free-base phthalocyanine (H2Pc+) and zinc phthalocyanine (ZnPc+) isolated in 5 K neon matrices and compare them to the spectral properties of the corresponding neutrals. The samples were generated by low-energy deposition of the mass-selected ions. The spectra are also discussed in terms of time-dependent density functional theory calculations and compared with recently reported scanning tunneling microscopy-induced single-molecule luminescence of the same species adsorbed on NaCl-covered Au(111) or Ag(111) single crystal supports.
Collapse
Affiliation(s)
- Karolina A Haupa
- Institute of Physical Chemistry II, KIT, Fritz-Haber-Weg 2, Karlsruhe 76131, Germany
| | - Niklas P Krappel
- Institute of Physical Chemistry II, KIT, Fritz-Haber-Weg 2, Karlsruhe 76131, Germany
| | - Dmitry Strelnikov
- Institute of Physical Chemistry II, KIT, Fritz-Haber-Weg 2, Karlsruhe 76131, Germany
| | - Manfred M Kappes
- Institute of Physical Chemistry II, KIT, Fritz-Haber-Weg 2, Karlsruhe 76131, Germany.,Institute of Nanotechnology, KIT, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| |
Collapse
|
23
|
Vasilev K, Doppagne B, Neuman T, Rosławska A, Bulou H, Boeglin A, Scheurer F, Schull G. Internal Stark effect of single-molecule fluorescence. Nat Commun 2022; 13:677. [PMID: 35115513 PMCID: PMC8813982 DOI: 10.1038/s41467-022-28241-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 01/07/2022] [Indexed: 12/04/2022] Open
Abstract
The optical properties of chromophores can be efficiently tuned by electrostatic fields generated in their close environment, a phenomenon that plays a central role for the optimization of complex functions within living organisms where it is known as internal Stark effect (ISE). Here, we realised an ISE experiment at the lowest possible scale, by monitoring the Stark shift generated by charges confined within a single chromophore on its emission energy. To this end, a scanning tunneling microscope (STM) functioning at cryogenic temperatures is used to sequentially remove the two central protons of a free-base phthalocyanine chromophore deposited on a NaCl-covered Ag(111) surface. STM-induced fluorescence measurements reveal spectral shifts that are associated to the electrostatic field generated by the internal charges remaining in the chromophores upon deprotonation. The internal Stark effect, a shift of the spectral lines of a chromophore induced by electrostatic fields in its close environment, plays an important role in nature. Here the authors observe a Stark shift in the fluorescence spectrum of a phthalocyanine molecule upon charge modifications within the molecule itself, achieved by sequential removal of the central protons with a STM tip.
Collapse
Affiliation(s)
- Kirill Vasilev
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000, Strasbourg, France
| | - Benjamin Doppagne
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000, Strasbourg, France
| | - Tomáš Neuman
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000, Strasbourg, France
| | - Anna Rosławska
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000, Strasbourg, France
| | - Hervé Bulou
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000, Strasbourg, France
| | - Alex Boeglin
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000, Strasbourg, France
| | - Fabrice Scheurer
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000, Strasbourg, France
| | - Guillaume Schull
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000, Strasbourg, France.
| |
Collapse
|
24
|
Doležal J, Canola S, Hapala P, de Campos Ferreira RC, Merino P, Švec M. Real Space Visualization of Entangled Excitonic States in Charged Molecular Assemblies. ACS NANO 2022; 16:1082-1088. [PMID: 34919384 DOI: 10.1021/acsnano.1c08816] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Entanglement of excitons holds great promise for the future of quantum computing, which would use individual molecular dyes as building blocks of their circuitry. Studying entangled excitonic eigenstates emerging in coupled molecular assemblies in the near-field with submolecular resolution has the potential to bring insight into the photophysics of these fascinating quantum phenomena. In contrast to far-field spectroscopies, near-field spectroscopic mapping permits direct identification of the individual eigenmodes, type of exciton coupling, including excited states otherwise inaccessible in the far field (dark states). Here we combine tip-enhanced spectromicroscopy with atomic force microscopy to inspect delocalized single-exciton states of charged molecular assemblies engineered from individual perylenetetracarboxylic dianhydride (PTCDA) molecules. Hyperspectral mapping of the eigenstates and comparison with calculated many-body optical transitions reveals a second low-lying excited state of the anion monomers and its role in the exciton entanglement within the assemblies. We demonstrate control over the exciton coupling by switching the assembly charge states. Our results reveal the possibility of tailoring excitonic properties of organic dye aggregates for advanced functionalities and establish the methodology to address them individually at the nanoscale.
Collapse
Affiliation(s)
- Jiří Doležal
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10/112, Praha 6 CZ16200, Czech Republic
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Praha 2 CZ12116, Czech Republic
| | - Sofia Canola
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10/112, Praha 6 CZ16200, Czech Republic
| | - Prokop Hapala
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10/112, Praha 6 CZ16200, Czech Republic
| | | | - Pablo Merino
- Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz 3, E28049 Madrid, Spain
- Instituto de Física Fundamental, CSIC, Serrano 121, E28006 Madrid, Spain
| | - Martin Švec
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10/112, Praha 6 CZ16200, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Šlechtitelů 27, CZ78371 Olomouc, Czech Republic
| |
Collapse
|
25
|
Qiu F, Gong ZY, Cao D, Song C, Tian G, Duan S, Luo Y. Optical Images of Molecular Vibronic Couplings from Tip-Enhanced Fluorescence Excitation Spectroscopy. JACS AU 2022; 2:150-158. [PMID: 35098231 PMCID: PMC8790811 DOI: 10.1021/jacsau.1c00442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Indexed: 06/14/2023]
Abstract
Tip-based photoemission spectroscopic techniques have now achieved subnanometer resolution that allows visualization of the chemical structure and even the ground-state vibrational modes of a single molecule. However, the ability to visualize the interplay between electronic and nuclear motions of excited states, i.e., vibronic couplings, is yet to be explored. Herein, we theoretically propose a new technique, namely, tip-enhanced fluorescence excitation (TEFE). TEFE takes advantage of the highly confined plasmonic field and thus can offer a possibility to directly visualize the vibronic effect of a single molecule in real space for arbitrary excited states in a given energy window. Numerical simulations for a single porphine molecule confirm that vibronic couplings originating from Herzberg-Teller (HT) active modes can be visually identified. TEFE further enables high-order vibrational transitions that are normally suppressed in the other plasmon-based processes. Images of the combination vibrational transitions have the same pattern as that of their parental HT active mode's fundamental transition, providing a direct protocol for measurements of the activity of Franck-Condon modes of selected excited states. These findings strongly suggest that TEFE is a powerful strategy to identify the involvement of molecular moieties in the complicated electron-nuclear interactions of the excited states at the single-molecule level.
Collapse
Affiliation(s)
- Feifei Qiu
- State
Key Laboratory of Metastable Materials Science & Technology and
Key Laboratory for Microstructural Material Physics of Hebei Province,
School of Science, Yanshan University, Qinhuangdao 066004, P.R. China
| | - Zu-Yong Gong
- Collaborative
Innovation Center of Chemistry for Energy Materials, Shanghai Key
Laboratory of Molecular Catalysis and Innovative Materials, MOE Key
Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, P.R. China
| | - Dongwei Cao
- State
Key Laboratory of Metastable Materials Science & Technology and
Key Laboratory for Microstructural Material Physics of Hebei Province,
School of Science, Yanshan University, Qinhuangdao 066004, P.R. China
| | - Ce Song
- Hefei
National Laboratory for Physical Sciences at the Microscale and Synergetic
Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026 Anhui, P.R. China
- Department
of Theoretical Chemistry and Biology, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | - Guangjun Tian
- State
Key Laboratory of Metastable Materials Science & Technology and
Key Laboratory for Microstructural Material Physics of Hebei Province,
School of Science, Yanshan University, Qinhuangdao 066004, P.R. China
| | - Sai Duan
- Collaborative
Innovation Center of Chemistry for Energy Materials, Shanghai Key
Laboratory of Molecular Catalysis and Innovative Materials, MOE Key
Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, P.R. China
| | - Yi Luo
- Hefei
National Laboratory for Physical Sciences at the Microscale and Synergetic
Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026 Anhui, P.R. China
| |
Collapse
|
26
|
Rosławska A, Merino P, Grewal A, Leon CC, Kuhnke K, Kern K. Atomic-Scale Structural Fluctuations of a Plasmonic Cavity. NANO LETTERS 2021; 21:7221-7227. [PMID: 34428071 PMCID: PMC8887667 DOI: 10.1021/acs.nanolett.1c02207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Optical spectromicroscopies, which can reach atomic resolution due to plasmonic enhancement, are perturbed by spontaneous intensity modifications. Here, we study such fluctuations in plasmonic electroluminescence at the single-atom limit profiting from the precision of a low-temperature scanning tunneling microscope. First, we investigate the influence of a controlled single-atom transfer from the tip to the sample on the plasmonic properties of the junction. Next, we form a well-defined atomic contact of several quanta of conductance. In contact, we observe changes of the electroluminescence intensity that can be assigned to spontaneous modifications of electronic conductance, plasmonic excitation, and optical antenna properties all originating from minute atomic rearrangements at or near the contact. Our observations are relevant for the understanding of processes leading to spontaneous intensity variations in plasmon-enhanced atomic-scale spectroscopies such as intensity blinking in picocavities.
Collapse
Affiliation(s)
- Anna Rosławska
- Max-Planck-Institut
für Festkörperforschung, D-70569 Stuttgart, Germany
- Université
de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Pablo Merino
- Max-Planck-Institut
für Festkörperforschung, D-70569 Stuttgart, Germany
- Instituto
de Ciencia de Materiales de Madrid, CSIC, E-28049 Madrid, Spain
- Instituto
de Física Fundamental, CSIC, E-28006 Madrid, Spain
| | - Abhishek Grewal
- Max-Planck-Institut
für Festkörperforschung, D-70569 Stuttgart, Germany
| | | | - Klaus Kuhnke
- Max-Planck-Institut
für Festkörperforschung, D-70569 Stuttgart, Germany
| | - Klaus Kern
- Max-Planck-Institut
für Festkörperforschung, D-70569 Stuttgart, Germany
- Institut
de Physique, École Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
27
|
Balzer N, Lukášek J, Valášek M, Rai V, Sun Q, Gerhard L, Wulfhekel W, Mayor M. Synthesis and Surface Behaviour of NDI Chromophores Mounted on a Tripodal Scaffold: Towards Self-Decoupled Chromophores for Single-Molecule Electroluminescence. Chemistry 2021; 27:12144-12155. [PMID: 34152041 PMCID: PMC8457086 DOI: 10.1002/chem.202101264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Indexed: 12/01/2022]
Abstract
This paper reports the efficient synthesis, absorption and emission spectra, and the electrochemical properties of a series of 2,6-disubstituted naphthalene-1,4,5,8-tetracarboxdiimide (NDI) tripodal molecules with thioacetate anchors for their surface investigations. Our studies showed that, in particular, the pyrrolidinyl group with its strong electron-donating properties enhanced the fluorescence of such core-substituted NDI chromophores and caused a significant bathochromic shift in the absorption spectrum with a correspondingly narrowed bandgap of 1.94 eV. Cyclic voltammetry showed the redox properties of NDIs to be influenced by core substituents. The strong electron-donating character of pyrrolidine substituents results in rather high HOMO and LUMO levels of -5.31 and -3.37 eV when compared with the parental unsubstituted NDI. UHV-STM measurements of a sub-monolayer of the rigid tripodal NDI chromophores spray deposited on Au(111) show that these molecules mainly tend to adsorb flat in a pairwise fashion on the surface and form unordered films. However, the STML experiments also revealed a few molecular clusters, which might consist of upright oriented molecules protruding from the molecular island and show electroluminescence photon spectra with high electroluminescence yields of up to 6×10-3 . These results demonstrate the promising potential of the NDI tripodal chromophores for the fabrication of molecular devices profiting from optical features of the molecular layer.
Collapse
Affiliation(s)
- Nico Balzer
- Institute of NanotechnologyKarlsruhe Institute of TechnologyP.O. Box 364076021KarlsruheGermany
| | - Jan Lukášek
- Institute of NanotechnologyKarlsruhe Institute of TechnologyP.O. Box 364076021KarlsruheGermany
| | - Michal Valášek
- Institute of NanotechnologyKarlsruhe Institute of TechnologyP.O. Box 364076021KarlsruheGermany
| | - Vibhuti Rai
- Institute of Quantum Materials and TechnologiesKarlsruhe Institute of Technology76021KarlsruheGermany
| | - Qing Sun
- Institute of Quantum Materials and TechnologiesKarlsruhe Institute of Technology76021KarlsruheGermany
| | - Lukas Gerhard
- Institute of Quantum Materials and TechnologiesKarlsruhe Institute of Technology76021KarlsruheGermany
| | - Wulf Wulfhekel
- Institute of Quantum Materials and TechnologiesKarlsruhe Institute of Technology76021KarlsruheGermany
- Physikalisches InstitutKarlsruhe Institute of TechnologyWolfgang-Gaede-Straße 176131KarlsruheGermany
| | - Marcel Mayor
- Institute of NanotechnologyKarlsruhe Institute of TechnologyP.O. Box 364076021KarlsruheGermany
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen UniversityGuangzhou, Guangdong510275P. R. China
| |
Collapse
|
28
|
Cao S, Rosławska A, Doppagne B, Romeo M, Féron M, Chérioux F, Bulou H, Scheurer F, Schull G. Energy funnelling within multichromophore architectures monitored with subnanometre resolution. Nat Chem 2021; 13:766-770. [PMID: 34031563 DOI: 10.1038/s41557-021-00697-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/08/2021] [Indexed: 02/04/2023]
Abstract
The funnelling of energy within multichromophoric assemblies is at the heart of the efficient conversion of solar energy by plants. The detailed mechanisms of this process are still actively debated as they rely on complex interactions between a large number of chromophores and their environment. Here we used luminescence induced by scanning tunnelling microscopy to probe model multichromophoric structures assembled on a surface. Mimicking strategies developed by photosynthetic systems, individual molecules were used as ancillary, passive or blocking elements to promote and direct resonant energy transfer between distant donor and acceptor units. As it relies on organic chromophores as the elementary components, this approach constitutes a powerful model to address fundamental physical processes at play in natural light-harvesting complexes.
Collapse
Affiliation(s)
- Shuiyan Cao
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, Strasbourg, France.,Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Anna Rosławska
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, Strasbourg, France.
| | | | | | - Michel Féron
- Université Bourgogne Franche-Comté, FEMTO-ST, UFC, CNRS, Besançon, France
| | - Frédéric Chérioux
- Université Bourgogne Franche-Comté, FEMTO-ST, UFC, CNRS, Besançon, France
| | - Hervé Bulou
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, Strasbourg, France
| | - Fabrice Scheurer
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, Strasbourg, France
| | - Guillaume Schull
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, Strasbourg, France.
| |
Collapse
|
29
|
Hung TC, Kiraly B, Strik JH, Khajetoorians AA, Wegner D. Plasmon-Driven Motion of an Individual Molecule. NANO LETTERS 2021; 21:5006-5012. [PMID: 34061553 PMCID: PMC8227484 DOI: 10.1021/acs.nanolett.1c00788] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/19/2021] [Indexed: 06/12/2023]
Abstract
We demonstrate that nanocavity plasmons generated a few nanometers away from a molecule can induce molecular motion. For this, we study the well-known rapid shuttling motion of zinc phthalocyanine molecules adsorbed on ultrathin NaCl films by combining scanning tunneling microscopy (STM) and spectroscopy (STS) with STM-induced light emission. Comparing spatially resolved single-molecule luminescence spectra from molecules anchored to a step edge with isolated molecules adsorbed on the free surface, we found that the azimuthal modulation of the Lamb shift is diminished in case of the latter. This is evidence that the rapid shuttling motion is remotely induced by plasmon-molecule coupling. Plasmon-induced molecular motion may open an interesting playground to bridge the nanoscopic and mesoscopic worlds by combining molecular machines with nanoplasmonics to control directed motion of single molecules without the need for local probes.
Collapse
|
30
|
Probing intramolecular vibronic coupling through vibronic-state imaging. Nat Commun 2021; 12:1280. [PMID: 33627671 PMCID: PMC7904785 DOI: 10.1038/s41467-021-21571-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/03/2021] [Indexed: 12/04/2022] Open
Abstract
Vibronic coupling is a central issue in molecular spectroscopy. Here we investigate vibronic coupling within a single pentacene molecule in real space by imaging the spatial distribution of single-molecule electroluminescence via highly localized excitation of tunneling electrons in a controlled plasmonic junction. The observed two-spot orientation for certain vibronic-state imaging is found to be evidently different from the purely electronic 0–0 transition, rotated by 90°, which reflects the change in the transition dipole orientation from along the molecular short axis to the long axis. Such a change reveals the occurrence of strong vibronic coupling associated with a large Herzberg–Teller contribution, going beyond the conventional Franck–Condon picture. The emergence of large vibration-induced transition charges oscillating along the long axis is found to originate from the strong dynamic perturbation of the anti-symmetric vibration on those carbon atoms with large transition density populations during electronic transitions. Vibronic coupling is a key feature of molecular electronic transitions, but its visualization in real space is an experimental challenge. Here the authors, using scanning tunneling microscopy induced luminescence, resolve the effect of vibronic coupling with different modes on the electron distributions in real space in a single pentacene molecule.
Collapse
|
31
|
Farrukh A, Tian XJ, Kong FF, Yu YJ, Jing SH, Chen G, Zhang Y, Liao Y, Zhang Y, Dong ZC. Bias-polarity dependent electroluminescence from a single platinum phthalocyanine molecule. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2007114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Aftab Farrukh
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-jun Tian
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Fan-fang Kong
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yun-jie Yu
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Shi-hao Jing
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Gong Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yuan Liao
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yang Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zhen-chao Dong
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
32
|
Di Russo E, Dalapati P, Houard J, Venturi L, Blum I, Moldovan S, Le Biavan N, Lefebvre D, Hugues M, Chauveau JM, Blavette DC, Deconihout B, Vella A, Vurpillot F, Rigutti L. Super-resolution Optical Spectroscopy of Nanoscale Emitters within a Photonic Atom Probe. NANO LETTERS 2020; 20:8733-8738. [PMID: 33236638 DOI: 10.1021/acs.nanolett.0c03584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Atom Probe Tomography (APT) is a microscopy technique allowing for the 3D reconstruction of the chemical composition of a nanoscale needle-shaped sample with a precision close to the atomic scale. The photonic atom probe (PAP) is an evolution of APT featuring in situ and operando detection of the photoluminescence signal. The optical signatures of the light-emitting centers can be correlated with the structural and chemical information obtained by the analysis of the evaporated ions. It becomes thus possible to discriminate and interpret the spectral signatures of different light emitters as close as 20 nm, well beyond the resolution limit set by the exciting laser wavelength. This technique opens up new perspectives for the study of the physics of low dimensional systems, defects and optoelectronic devices.
Collapse
Affiliation(s)
- Enrico Di Russo
- UNIROUEN, CNRS, Groupe de Physique des Matériaux, Normandie Université, 76000 Rouen, France
| | - Pradip Dalapati
- UNIROUEN, CNRS, Groupe de Physique des Matériaux, Normandie Université, 76000 Rouen, France
| | - Jonathan Houard
- UNIROUEN, CNRS, Groupe de Physique des Matériaux, Normandie Université, 76000 Rouen, France
| | - Linda Venturi
- UNIROUEN, CNRS, Groupe de Physique des Matériaux, Normandie Université, 76000 Rouen, France
| | - Ivan Blum
- UNIROUEN, CNRS, Groupe de Physique des Matériaux, Normandie Université, 76000 Rouen, France
| | - Simona Moldovan
- UNIROUEN, CNRS, Groupe de Physique des Matériaux, Normandie Université, 76000 Rouen, France
| | - Nolwenn Le Biavan
- Université Côte d'Azur, CNRS, CRHEA, 06 905 Sophia Antipolis CEDEX, France
| | - Denis Lefebvre
- Université Côte d'Azur, CNRS, CRHEA, 06 905 Sophia Antipolis CEDEX, France
| | - Maxime Hugues
- Université Côte d'Azur, CNRS, CRHEA, 06 905 Sophia Antipolis CEDEX, France
| | | | | | - Bernard Deconihout
- UNIROUEN, CNRS, Groupe de Physique des Matériaux, Normandie Université, 76000 Rouen, France
| | - Angela Vella
- UNIROUEN, CNRS, Groupe de Physique des Matériaux, Normandie Université, 76000 Rouen, France
| | - François Vurpillot
- UNIROUEN, CNRS, Groupe de Physique des Matériaux, Normandie Université, 76000 Rouen, France
| | - Lorenzo Rigutti
- UNIROUEN, CNRS, Groupe de Physique des Matériaux, Normandie Université, 76000 Rouen, France
| |
Collapse
|
33
|
Rai V, Gerhard L, Sun Q, Holzer C, Repän T, Krstić M, Yang L, Wegener M, Rockstuhl C, Wulfhekel W. Boosting Light Emission from Single Hydrogen Phthalocyanine Molecules by Charging. NANO LETTERS 2020; 20:7600-7605. [PMID: 32960069 DOI: 10.1021/acs.nanolett.0c03121] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Interest in electroluminescence of single molecules is stimulated by the prospect of possible applications in novel light emitting devices. Recent studies provide valuable insights into the mechanisms leading to single molecule electroluminescence. Concrete information on how to boost the intensity of the emitted light, however, is rare. By combining scanning tunnelling microscopy (STM) and quantum chemical calculations, we show that the light emission efficiencies of an individual hydrogen-phthalocyanine molecule can be increased by a factor of ≈19 upon charging. This boost in intensity can be explained by the development of a vertical dipole moment normal to the substrate facilitating out-coupling of the local excitation to the far field. As this effect is not related to the specific nature of hydrogen-phthalocyanine, it opens up a general way to increase light emission from molecular junctions.
Collapse
Affiliation(s)
- Vibhuti Rai
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
| | - Lukas Gerhard
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
| | - Qing Sun
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
| | - Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | - Taavi Repän
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
| | - Marjan Krstić
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | - Liang Yang
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | - Martin Wegener
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | - Carsten Rockstuhl
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
| | - Wulf Wulfhekel
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
34
|
Schuler B, Cochrane KA, Kastl C, Barnard ES, Wong E, Borys NJ, Schwartzberg AM, Ogletree DF, de Abajo FJG, Weber-Bargioni A. Electrically driven photon emission from individual atomic defects in monolayer WS 2. SCIENCE ADVANCES 2020; 6:eabb5988. [PMID: 32938664 PMCID: PMC7494346 DOI: 10.1126/sciadv.abb5988] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/31/2020] [Indexed: 05/22/2023]
Abstract
Quantum dot-like single-photon sources in transition metal dichalcogenides (TMDs) exhibit appealing quantum optical properties but lack a well-defined atomic structure and are subject to large spectral variability. Here, we demonstrate electrically stimulated photon emission from individual atomic defects in monolayer WS2 and directly correlate the emission with the local atomic and electronic structure. Radiative transitions are locally excited by sequential inelastic electron tunneling from a metallic tip into selected discrete defect states in the WS2 bandgap. Coupling to the optical far field is mediated by tip plasmons, which transduce the excess energy into a single photon. The applied tip-sample voltage determines the transition energy. Atomically resolved emission maps of individual point defects closely resemble electronic defect orbitals, the final states of the optical transitions. Inelastic charge carrier injection into localized defect states of two-dimensional materials provides a powerful platform for electrically driven, broadly tunable, atomic-scale single-photon sources.
Collapse
Affiliation(s)
- Bruno Schuler
- Molecular Foundry, Lawrence Berkeley National Laboratory, CA 94720, USA.
| | | | - Christoph Kastl
- Molecular Foundry, Lawrence Berkeley National Laboratory, CA 94720, USA
- Walter-Schottky-Institut and Physik-Department, Technical University of Munich, Garching 85748, Germany
| | - Edward S Barnard
- Molecular Foundry, Lawrence Berkeley National Laboratory, CA 94720, USA
| | - Edward Wong
- Molecular Foundry, Lawrence Berkeley National Laboratory, CA 94720, USA
| | - Nicholas J Borys
- Molecular Foundry, Lawrence Berkeley National Laboratory, CA 94720, USA
- Department of Physics, Montana State University, Bozeman, MT 59717, USA
| | | | - D Frank Ogletree
- Molecular Foundry, Lawrence Berkeley National Laboratory, CA 94720, USA
| | - F Javier García de Abajo
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain.
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | | |
Collapse
|
35
|
Schultz JF, Li S, Jiang S, Jiang N. Optical scanning tunneling microscopy based chemical imaging and spectroscopy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:463001. [PMID: 32702674 DOI: 10.1088/1361-648x/aba8c7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Through coupling optical processes with the scanning tunneling microscope (STM), single-molecule chemistry and physics have been investigated at the ultimate spatial and temporal limit. Electrons and photons can be used to drive interactions and reactions in chemical systems and simultaneously probe their characteristics and consequences. In this review we introduce and review methods to couple optical imaging and spectroscopy with scanning tunneling microscopy. The integration of the STM and optical spectroscopy provides new insights into individual molecular adsorbates, surface-supported molecular assemblies, and two-dimensional materials with subnanoscale resolution, enabling the fundamental study of chemistry at the spatial and temporal limit. The inelastic scattering of photons by molecules and materials, that results in unique and sensitive vibrational fingerprints, will be considered with tip-enhanced Raman spectroscopy. STM-induced luminescence examines the intrinsic luminescence of organic adsorbates and their energy transfer and charge transfer processes with their surroundings. We also provide a survey of recent efforts to probe the dynamics of optical excitation at the molecular level with scanning tunneling microscopy in the context of light-induced photophysical and photochemical transformations.
Collapse
Affiliation(s)
- Jeremy F Schultz
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States of America
| | - Shaowei Li
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, United States of America
- Kavli Energy NanoScience Institute, University of California, Berkeley, CA 94720, United States of America
| | - Song Jiang
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Nan Jiang
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States of America
| |
Collapse
|
36
|
Jakob R, Nilius N. A fiber scanning tunneling microscope for optical analysis at the nanoscale. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:073110. [PMID: 32752868 DOI: 10.1063/5.0009182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
A hybrid scanning tunneling/optical near-field microscope is presented, in which an optical fiber tip coated with 100 nm thick Ag/Cr films scans the surface. The tip metallization enables operating the instrument via a current-based distance control and guarantees sub-nanometer spatial resolution in the topographic channel. The fiber tip simultaneously serves as nanoscale light source, given the optical transparency of the metal coating. The emission response of the tip-sample junction is collected with two parabolic mirrors and probed with a far-field detector. To test the capabilities of the new setup, the evolution of the optical signal is monitored when the tip approaches a gold surface. The intensity rise and frequency shift of the emission provide evidence for the development of coupled plasmon modes in the tip-sample cavity. Photon mapping is employed to probe the optical inhomogeneity of Ru(0001) and TiO2(110) surfaces covered with silver deposits. While the 2D Ag flakes on Ru give rise to a near-field enhancement, the 3D particles on titania locally damp the gap plasmons and lower the emitted intensity. The lateral resolution in the optical channel has been estimated to be ∼1 nm, and optical and topographic signals are well correlated. Our fiber microscope thus appears to be suitable for probing optical surface properties at the nanoscale.
Collapse
Affiliation(s)
- René Jakob
- Carl von Ossietzky Universität, Institut für Physik, D-26111 Oldenburg, Germany
| | - Niklas Nilius
- Carl von Ossietzky Universität, Institut für Physik, D-26111 Oldenburg, Germany
| |
Collapse
|
37
|
Rosławska A, Leon CC, Grewal A, Merino P, Kuhnke K, Kern K. Atomic-Scale Dynamics Probed by Photon Correlations. ACS NANO 2020; 14:6366-6375. [PMID: 32479059 PMCID: PMC7315641 DOI: 10.1021/acsnano.0c03704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Light absorption and emission have their origins in fast atomic-scale phenomena. To characterize these basic steps (e.g., in photosynthesis, luminescence, and quantum optics), it is necessary to access picosecond temporal and picometer spatial scales simultaneously. In this Perspective, we describe how state-of-the-art picosecond photon correlation spectroscopy combined with luminescence induced at the atomic scale with a scanning tunneling microscope (STM) enables such studies. We outline recent STM-induced luminescence work on single-photon emitters and the dynamics of excitons, charges, molecules, and atoms as well as several prospective experiments concerning light-matter interactions at the nanoscale. We also describe future strategies for measuring and rationalizing ultrafast phenomena at the nanoscale.
Collapse
Affiliation(s)
- Anna Rosławska
- Max-Planck-Institut
für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Christopher C. Leon
- Max-Planck-Institut
für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Abhishek Grewal
- Max-Planck-Institut
für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Pablo Merino
- Max-Planck-Institut
für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
- Instituto
de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, E28049 Madrid, Spain
- Instituto
de Física Fundamental, CSIC, Serrano 121, E28006 Madrid, Spain
| | - Klaus Kuhnke
- Max-Planck-Institut
für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Klaus Kern
- Max-Planck-Institut
für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
- Institut
de Physique, École Polytechnique
Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
38
|
Wallum A, Nguyen HA, Gruebele M. Excited-State Imaging of Single Particles on the Subnanometer Scale. Annu Rev Phys Chem 2020; 71:415-433. [DOI: 10.1146/annurev-physchem-071119-040108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
At the intersection of spectroscopy and microscopy lie techniques that are capable of providing subnanometer imaging of excited states of individual molecules or nanoparticles. Such approaches are particularly important for imaging macromolecules or nanoparticles large enough to have a high probability of containing a defect. These inevitable defects often control properties and function despite an otherwise ideal structure. We discuss real-space imaging techniques such as using scanning tunneling microscopy tips to enhance optical measurements and electron energy-loss spectroscopy in a scanning transmission electron microscope, which is based on focused electron beams to obtain high-resolution spatial information on excited states. The outlook for these methods is bright, as they will provide critical information for the characterization and improvement of energy-switching, electron-switching, and energy-harvesting materials.
Collapse
Affiliation(s)
- Alison Wallum
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Huy A. Nguyen
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Martin Gruebele
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
39
|
Cohen G, Galperin M. Green’s function methods for single molecule junctions. J Chem Phys 2020; 152:090901. [DOI: 10.1063/1.5145210] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Guy Cohen
- The Raymond and Beverley Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
- School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michael Galperin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
40
|
Doppagne B, Neuman T, Soria-Martinez R, López LEP, Bulou H, Romeo M, Berciaud S, Scheurer F, Aizpurua J, Schull G. Single-molecule tautomerization tracking through space- and time-resolved fluorescence spectroscopy. NATURE NANOTECHNOLOGY 2020; 15:207-211. [PMID: 31959932 DOI: 10.1038/s41565-019-0620-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/09/2019] [Indexed: 05/21/2023]
Abstract
Tautomerization, the interconversion between two constitutional molecular isomers, is ubiquitous in nature1, plays a major role in chemistry2 and is perceived as an ideal switch function for emerging molecular-scale devices3. Within free-base porphyrin4, porphycene5 or phthalocyanine6, this process involves the concerted or sequential hopping of the two inner hydrogen atoms between equivalent nitrogen sites of the molecular cavity. Electronic and vibronic changes6 that result from this NH tautomerization, as well as details of the switching mechanism, were extensively studied with optical spectroscopies, even with single-molecule sensitivity7. The influence of atomic-scale variations of the molecular environment and submolecular spatial resolution of the tautomerization could only be investigated using scanning probe microscopes3,8-11, at the expense of detailed information provided by optical spectroscopies. Here, we combine these two approaches, scanning tunnelling microscopy (STM) and fluorescence spectroscopy12-15, to study the tautomerization within individual free-base phthalocyanine (H2Pc) molecules deposited on a NaCl-covered Ag(111) single-crystal surface. STM-induced fluorescence (STM-F) spectra exhibit duplicate features that we assign to the emission of the two molecular tautomers. We support this interpretation by comparing hyper-resolved fluorescence maps15-18(HRFMs) of the different spectral contributions with simulations that account for the interaction between molecular excitons and picocavity plasmons19. We identify the orientation of the molecular optical dipoles, determine the vibronic fingerprint of the tautomers and probe the influence of minute changes in their atomic-scale environment. Time-correlated fluorescence measurements allow us to monitor the tautomerization events and to associate the proton dynamics to a switching two-level system. Finally, optical spectra acquired with the tip located at a nanometre-scale distance from the molecule show that the tautomerization reaction occurs even when the tunnelling current does not pass through the molecule. Together with other observations, this remote excitation indicates that the excited state of the molecule is involved in the tautomerization reaction path.
Collapse
Affiliation(s)
| | - Tomáš Neuman
- Center for Materials Physics (CSIC-UPV/EHU) and DIPC, Donostia-San Sebastián, Spain
| | | | | | - Hervé Bulou
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, Strasbourg, France
| | | | | | - Fabrice Scheurer
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, Strasbourg, France
| | - Javier Aizpurua
- Center for Materials Physics (CSIC-UPV/EHU) and DIPC, Donostia-San Sebastián, Spain
| | - Guillaume Schull
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, Strasbourg, France.
| |
Collapse
|
41
|
Jaculbia RB, Imada H, Miwa K, Iwasa T, Takenaka M, Yang B, Kazuma E, Hayazawa N, Taketsugu T, Kim Y. Single-molecule resonance Raman effect in a plasmonic nanocavity. NATURE NANOTECHNOLOGY 2020; 15:105-110. [PMID: 31959928 DOI: 10.1038/s41565-019-0614-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/04/2019] [Indexed: 05/21/2023]
Abstract
Tip-enhanced Raman spectroscopy (TERS) is a versatile tool for chemical analysis at the nanoscale. In earlier TERS experiments, Raman modes with components parallel to the tip were studied based on the strong electric field enhancement along the tip. Perpendicular modes were usually neglected. Here, we investigate an isolated copper naphthalocyanine molecule adsorbed on a triple-layer NaCl on Ag(111) using scanning tunnelling microscope TERS imaging. For flat-lying molecules on NaCl, the Raman images present different patterns depending on the symmetry of the vibrational mode. Our results reveal that components of the electric field perpendicular to the tip should be considered aside from the parallel components. Moreover, under resonance excitation conditions, the perpendicular components can play a substantial role in the enhancement. This single-molecule study in a well-defined environment provides insights into the Raman process at the plasmonic nanocavity, which may be useful in the nanoscale metrology of various molecular systems.
Collapse
Affiliation(s)
- Rafael B Jaculbia
- Surface and Interface Science Laboratory, RIKEN, Wako, Saitama, Japan
| | - Hiroshi Imada
- Surface and Interface Science Laboratory, RIKEN, Wako, Saitama, Japan.
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan.
| | - Kuniyuki Miwa
- Surface and Interface Science Laboratory, RIKEN, Wako, Saitama, Japan
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Takeshi Iwasa
- Department of Chemistry, Faculty of Science and Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita-ku, Sapporo, Japan
| | - Masato Takenaka
- Department of Chemistry, Faculty of Science and Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita-ku, Sapporo, Japan
| | - Bo Yang
- Surface and Interface Science Laboratory, RIKEN, Wako, Saitama, Japan
- School of Science, Xijing University, Xi'an, China
| | - Emiko Kazuma
- Surface and Interface Science Laboratory, RIKEN, Wako, Saitama, Japan
| | - Norihiko Hayazawa
- Surface and Interface Science Laboratory, RIKEN, Wako, Saitama, Japan.
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science and Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita-ku, Sapporo, Japan
| | - Yousoo Kim
- Surface and Interface Science Laboratory, RIKEN, Wako, Saitama, Japan.
| |
Collapse
|
42
|
Doležal J, Merino P, Redondo J, Ondič L, Cahlík A, Švec M. Charge Carrier Injection Electroluminescence with CO-Functionalized Tips on Single Molecular Emitters. NANO LETTERS 2019; 19:8605-8611. [PMID: 31738569 PMCID: PMC7116301 DOI: 10.1021/acs.nanolett.9b03180] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We investigate electroluminescence of single molecular emitters on NaCl on Ag(111) and Au(111) with submolecular resolution in a low-temperature scanning probe microscope with tunneling current, atomic force, and light detection capabilities. The role of the tip state is studied in the photon maps of a prototypical emitter, zinc phthalocyanine (ZnPc), using metal and CO-metal tips. CO-functionalization is found to have an impact on the resolution and contrast of the photon maps due to the localized overlap of the p-orbitals on the tip with the molecular orbitals of the emitter. The possibility of using the same CO-functionalized tip for tip-enhanced photon detection and high resolution atomic force is demonstrated. We study the electroluminescence of ZnPc, induced by charge carrier injection at sufficiently high bias voltages. We propose that the distinct level alignment of the ZnPc frontier orbitals with the Au(111) and Ag(111) Fermi levels governs the primary excitation mechanisms as the injection of electrons and holes from the tip into the molecule, respectively. These findings put forward the importance of the tip status in the photon maps and contribute to a better understanding of the photophysics of organic molecules on surfaces.
Collapse
Affiliation(s)
- Jiří Doležal
- Institute of Physics, Czech Academy of Sciences, Praha, Czech Republic
| | - Pablo Merino
- Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz 3, E28049, Madrid, Spain
- Instituto de Física Fundamental, CSIC, Serrano 121, E28006, Madrid, Spain
| | - Jesus Redondo
- Institute of Physics, Czech Academy of Sciences, Praha, Czech Republic
| | - Lukáš Ondič
- Institute of Physics, Czech Academy of Sciences, Praha, Czech Republic
| | - Aleš Cahlík
- Institute of Physics, Czech Academy of Sciences, Praha, Czech Republic
- Regional Center for Advanced Materials and Technologies, Olomouc, Czech Republic
| | - Martin Švec
- Institute of Physics, Czech Academy of Sciences, Praha, Czech Republic
- Regional Center for Advanced Materials and Technologies, Olomouc, Czech Republic
| |
Collapse
|
43
|
Maji S, Shrestha LK, Ariga K. Nanoarchitectonics for Nanocarbon Assembly and Composite. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01294-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
44
|
Pommier D, Bretel R, López LEP, Fabre F, Mayne A, Boer-Duchemin E, Dujardin G, Schull G, Berciaud S, Le Moal E. Scanning Tunneling Microscope-Induced Excitonic Luminescence of a Two-Dimensional Semiconductor. PHYSICAL REVIEW LETTERS 2019; 123:027402. [PMID: 31386496 DOI: 10.1103/physrevlett.123.027402] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Indexed: 05/24/2023]
Abstract
The long sought-after goal of locally and spectroscopically probing the excitons of two-dimensional (2D) semiconductors is attained using a scanning tunneling microscope (STM). Excitonic luminescence from monolayer molybdenum diselenide (MoSe_{2}) on a transparent conducting substrate is electrically excited in the tunnel junction of an STM under ambient conditions. By comparing the results with photoluminescence measurements, the emission mechanism is identified as the radiative recombination of bright A excitons. STM-induced luminescence is observed at bias voltages as low as those that correspond to the energy of the optical band gap of MoSe_{2}. The proposed excitation mechanism is resonance energy transfer from the tunneling current to the excitons in the semiconductor, i.e., through virtual photon coupling. Additional mechanisms (e.g., charge injection) may come into play at bias voltages that are higher than the electronic band gap. Photon emission quantum efficiencies of up to 10^{-7} photons per electron are obtained, despite the lack of any participating plasmons. Our results demonstrate a new technique for investigating the excitonic and optoelectronic properties of 2D semiconductors and their heterostructures at the nanometer scale.
Collapse
Affiliation(s)
- Delphine Pommier
- Institut des Sciences Moléculaires d'Orsay, CNRS, Université Paris Sud, Université Paris-Saclay, F-91405 Orsay, France
| | - Rémi Bretel
- Institut des Sciences Moléculaires d'Orsay, CNRS, Université Paris Sud, Université Paris-Saclay, F-91405 Orsay, France
| | - Luis E Parra López
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Florentin Fabre
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Andrew Mayne
- Institut des Sciences Moléculaires d'Orsay, CNRS, Université Paris Sud, Université Paris-Saclay, F-91405 Orsay, France
| | - Elizabeth Boer-Duchemin
- Institut des Sciences Moléculaires d'Orsay, CNRS, Université Paris Sud, Université Paris-Saclay, F-91405 Orsay, France
| | - Gérald Dujardin
- Institut des Sciences Moléculaires d'Orsay, CNRS, Université Paris Sud, Université Paris-Saclay, F-91405 Orsay, France
| | - Guillaume Schull
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Stéphane Berciaud
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Eric Le Moal
- Institut des Sciences Moléculaires d'Orsay, CNRS, Université Paris Sud, Université Paris-Saclay, F-91405 Orsay, France
| |
Collapse
|
45
|
Kaiser K, Gross L, Schulz F. A Single-Molecule Chemical Reaction Studied by High-Resolution Atomic Force Microscopy and Scanning Tunneling Microscopy Induced Light Emission. ACS NANO 2019; 13:6947-6954. [PMID: 31184117 PMCID: PMC6595658 DOI: 10.1021/acsnano.9b01852] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Atomic force microscopy (AFM) as well as scanning tunneling microscopy induced light emission (STM-LE) are, each on their own, powerful tools used to investigate a large variety of properties of single molecules adsorbed on a surface. However, accessing both structural information by AFM as well as optical information by STM-LE on the same molecule so far remains elusive. We present a combined high-resolution AFM and STM-LE study on single metal-oxide phthalocyanines. Using atomic manipulation, the molecules can be deliberately reduced. We demonstrate structure elucidation and adsorption geometry determination of single molecules with atomic resolution combined with optical characterization by STM-LE and the possibility of investigating the change in a molecule's exciton emission intensity by a chemical reaction.
Collapse
|
46
|
Luo Y, Chen G, Zhang Y, Zhang L, Yu Y, Kong F, Tian X, Zhang Y, Shan C, Luo Y, Yang J, Sandoghdar V, Dong Z, Hou JG. Electrically Driven Single-Photon Superradiance from Molecular Chains in a Plasmonic Nanocavity. PHYSICAL REVIEW LETTERS 2019; 122:233901. [PMID: 31298910 DOI: 10.1103/physrevlett.122.233901] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Indexed: 05/21/2023]
Abstract
We demonstrate single-photon superradiance from artificially constructed nonbonded zinc-phthalocyanine molecular chains of up to 12 molecules. We excite the system via electron tunneling in a plasmonic nanocavity and quantitatively investigate the interaction of the localized plasmon with single-exciton superradiant states resulting from dipole-dipole coupling. Dumbbell-like patterns obtained by subnanometer resolved spectroscopic imaging disclose the coherent nature of the coupling associated with superradiant states while second-order photon correlation measurements demonstrate single-photon emission. The combination of spatially resolved spectral measurements with theoretical considerations reveals that nanocavity plasmons dramatically modify the linewidth and intensity of emission from the molecular chains, but they do not dictate the intrinsic coherence of the superradiant states. Our studies shed light on the optical properties of molecular collective states and their interaction with nanoscopically localized plasmons.
Collapse
Affiliation(s)
- Yang Luo
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Gong Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052, China
| | - Yang Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Li Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yunjie Yu
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fanfang Kong
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaojun Tian
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chongxin Shan
- School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052, China
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Vahid Sandoghdar
- Max Planck Institute for the Science of Light, Erlangen 91058, Germany
| | - Zhenchao Dong
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - J G Hou
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
47
|
Böckmann H, Liu S, Müller M, Hammud A, Wolf M, Kumagai T. Near-Field Manipulation in a Scanning Tunneling Microscope Junction with Plasmonic Fabry-Pérot Tips. NANO LETTERS 2019; 19:3597-3602. [PMID: 31070928 PMCID: PMC6750903 DOI: 10.1021/acs.nanolett.9b00558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/26/2019] [Indexed: 05/10/2023]
Abstract
Near-field manipulation in plasmonic nanocavities can provide various applications in nanoscale science and technology. In particular, a gap plasmon in a scanning tunneling microscope (STM) junction is of key interest to nanoscale imaging and spectroscopy. Here we show that spectral features of a plasmonic STM junction can be manipulated by nanofabrication of Au tips using focused ion beam. An exemplary Fabry-Pérot type resonator of surface plasmons is demonstrated by producing the tip with a single groove on its shaft. Scanning tunneling luminescence spectra of the Fabry-Pérot tips exhibit spectral modulation resulting from interference between localized and propagating surface plasmon modes. In addition, the quality factor of the plasmonic Fabry-Pérot interference can be improved by optimizing the overall tip shape. Our approach paves the way for near-field imaging and spectroscopy with a high degree of accuracy.
Collapse
Affiliation(s)
- Hannes Böckmann
- Department of Physical Chemistry and Department of Inorganic Chemistry, Fritz-Haber Institute of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Shuyi Liu
- Department of Physical Chemistry and Department of Inorganic Chemistry, Fritz-Haber Institute of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Melanie Müller
- Department of Physical Chemistry and Department of Inorganic Chemistry, Fritz-Haber Institute of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Adnan Hammud
- Department of Physical Chemistry and Department of Inorganic Chemistry, Fritz-Haber Institute of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Martin Wolf
- Department of Physical Chemistry and Department of Inorganic Chemistry, Fritz-Haber Institute of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Takashi Kumagai
- Department of Physical Chemistry and Department of Inorganic Chemistry, Fritz-Haber Institute of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
- JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
48
|
Selective triplet exciton formation in a single molecule. Nature 2019; 570:210-213. [DOI: 10.1038/s41586-019-1284-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 04/02/2019] [Indexed: 11/08/2022]
|
49
|
Miwa K, Imada H, Imai-Imada M, Kimura K, Galperin M, Kim Y. Many-Body State Description of Single-Molecule Electroluminescence Driven by a Scanning Tunneling Microscope. NANO LETTERS 2019; 19:2803-2811. [PMID: 30694065 DOI: 10.1021/acs.nanolett.8b04484] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Electron transport and optical properties of a single molecule in contact with conductive materials have attracted considerable attention because of their scientific importance and potential applications. With the recent progress in experimental techniques, especially by virtue of scanning tunneling microscope (STM)-induced light emission, where the tunneling current of the STM is used as an atomic-scale source for induction of light emission from a single molecule, it has become possible to investigate single-molecule properties at subnanometer spatial resolution. Despite extensive experimental studies, the microscopic mechanism of electronic excitation of a single molecule in STM-induced light emission has yet to be clarified. Here we present a formulation of single-molecule electroluminescence driven by electron transfer between a molecule and metal electrodes based on a many-body state representation of the molecule. The effects of intramolecular Coulomb interaction on conductance and luminescence spectra are investigated using the nonequilibrium Hubbard Green's function technique combined with first-principles calculations. We compare simulation results with experimental data and find that the intramolecular Coulomb interaction is crucial for reproducing recent experiments for a single phthalocyanine molecule. The developed theory provides a unified description of the electron transport and optical properties of a single molecule in contact with metal electrodes driven out of equilibrium, and thereby, it contributes to a microscopic understanding of optoelectronic conversion in single molecules on solid surfaces and in nanometer-scale junctions.
Collapse
Affiliation(s)
- Kuniyuki Miwa
- Surface and Interface Science Laboratory , RIKEN , Wako , Saitama 351-0198 , Japan
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Hiroshi Imada
- Surface and Interface Science Laboratory , RIKEN , Wako , Saitama 351-0198 , Japan
| | - Miyabi Imai-Imada
- Surface and Interface Science Laboratory , RIKEN , Wako , Saitama 351-0198 , Japan
- Department of Advanced Materials Science, Graduate School of Frontier Science , The University of Tokyo , Kashiwa , Chiba 277-8651 , Japan
| | - Kensuke Kimura
- Surface and Interface Science Laboratory , RIKEN , Wako , Saitama 351-0198 , Japan
- Department of Advanced Materials Science, Graduate School of Frontier Science , The University of Tokyo , Kashiwa , Chiba 277-8651 , Japan
| | - Michael Galperin
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Yousoo Kim
- Surface and Interface Science Laboratory , RIKEN , Wako , Saitama 351-0198 , Japan
| |
Collapse
|
50
|
Chen G, Luo Y, Gao H, Jiang J, Yu Y, Zhang L, Zhang Y, Li X, Zhang Z, Dong Z. Spin-Triplet-Mediated Up-Conversion and Crossover Behavior in Single-Molecule Electroluminescence. PHYSICAL REVIEW LETTERS 2019; 122:177401. [PMID: 31107062 DOI: 10.1103/physrevlett.122.177401] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/22/2019] [Indexed: 05/24/2023]
Abstract
Scanning-tunneling-microscope-induced light emission serves as a powerful approach in revealing and manipulating the optical properties of molecular species, intermolecular energy transfer, and plasmon-molecule coupling. Earlier studies have established the existence of molecular up-conversion electroluminescence in diverse situations, but the underlying microscopic mechanisms are still under active debate, dominated by intermolecular triplet-triplet annihilation and plasmonic pumping. Here we report on the experimental realization of up-conversion electroluminescence from a prototypical single phthalocyanine molecule, allowing us to unambiguously rule out mechanisms based on intermolecular coupling and also offering unprecedented opportunities to elucidate much richer characteristics unforeseen in previous studies. In particular, the bias-dependent emission intensity displays three distinct regions with different nonlinear current dependences, which can be attributed to crossover behavior caused by the interplay between inelastic electron scattering and carrier-injection processes. We also develop a microscopic description to capture the essential physics involved in up-conversion electroluminescence mediated by a proper intermediate spin-triplet state.
Collapse
Affiliation(s)
- Gong Chen
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Physics and Engineering, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yang Luo
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hongying Gao
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jun Jiang
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yunjie Yu
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Li Zhang
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yang Zhang
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoguang Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Zhenyu Zhang
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhenchao Dong
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|