1
|
Hermann J, Stöhr M, Góger S, Chaudhuri S, Aradi B, Maurer RJ, Tkatchenko A. libMBD: A general-purpose package for scalable quantum many-body dispersion calculations. J Chem Phys 2023; 159:174802. [PMID: 37933783 DOI: 10.1063/5.0170972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023] Open
Abstract
Many-body dispersion (MBD) is a powerful framework to treat van der Waals (vdW) dispersion interactions in density-functional theory and related atomistic modeling methods. Several independent implementations of MBD with varying degree of functionality exist across a number of electronic structure codes, which both limits the current users of those codes and complicates dissemination of new variants of MBD. Here, we develop and document libMBD, a library implementation of MBD that is functionally complete, efficient, easy to integrate with any electronic structure code, and already integrated in FHI-aims, DFTB+, VASP, Q-Chem, CASTEP, and Quantum ESPRESSO. libMBD is written in modern Fortran with bindings to C and Python, uses MPI/ScaLAPACK for parallelization, and implements MBD for both finite and periodic systems, with analytical gradients with respect to all input parameters. The computational cost has asymptotic cubic scaling with system size, and evaluation of gradients only changes the prefactor of the scaling law, with libMBD exhibiting strong scaling up to 256 processor cores. Other MBD properties beyond energy and gradients can be calculated with libMBD, such as the charge-density polarization, first-order Coulomb correction, the dielectric function, or the order-by-order expansion of the energy in the dipole interaction. Calculations on supramolecular complexes with MBD-corrected electronic structure methods and a meta-review of previous applications of MBD demonstrate the broad applicability of the libMBD package to treat vdW interactions.
Collapse
Affiliation(s)
- Jan Hermann
- Department of Mathematics and Computer Science, FU Berlin, 14195 Berlin, Germany
| | - Martin Stöhr
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Szabolcs Góger
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Shayantan Chaudhuri
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Bálint Aradi
- Bremen Center for Computational Materials Science, University of Bremen, 28359 Bremen, Germany
| | - Reinhard J Maurer
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Alexandre Tkatchenko
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| |
Collapse
|
2
|
Bondarev IV, Pugh MD, Rodriguez-Lopez P, Woods LM, Antezza M. Confinement-induced nonlocality and casimir force in transdimensional systems. Phys Chem Chem Phys 2023; 25:29257-29265. [PMID: 37874297 DOI: 10.1039/d3cp03706a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
We study within the framework of the Lifshitz theory the long-range Casimir force for in-plane isotropic and anisotropic free-standing transdimensional material slabs. In the former case, we show that the confinement-induced nonlocality not only weakens the attraction of ultrathin slabs but also changes the distance dependence of the material-dependent correction to the Casimir force to go as contrary to the ∼1/l dependence of that of the local Lifshitz force. In the latter case, we use closely packed array of parallel aligned single-wall carbon nanotubes in a dielectric layer of finite thickness to demonstrate strong orientational anisotropy and crossover behavior for the inter-slab attractive force in addition to its reduction with decreasing slab thickness. We give physical insight as to why such a pair of ultrathin slabs prefers to stick together in the perpendicularly oriented manner, rather than in the parallel relative orientation as one would customarily expect.
Collapse
Affiliation(s)
- Igor V Bondarev
- Department of Mathematics & Physics, North Carolina Central University, Durham, NC 27707, USA.
| | - Michael D Pugh
- Department of Mathematics & Physics, North Carolina Central University, Durham, NC 27707, USA.
| | - Pablo Rodriguez-Lopez
- Área de Electromagnetismo and Grupo Interdisciplinar de Sistemas Complejos (GISC), Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-University of Montpellier, F-34095 Montpellier, France
| | - Lilia M Woods
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Mauro Antezza
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-University of Montpellier, F-34095 Montpellier, France
- Institut Universitaire de France, 1 rue Descartes, F-75231 Paris Cedex 05, France
| |
Collapse
|
3
|
Góger S, Khabibrakhmanov A, Vaccarelli O, Fedorov DV, Tkatchenko A. Optimized Quantum Drude Oscillators for Atomic and Molecular Response Properties. J Phys Chem Lett 2023:6217-6223. [PMID: 37385598 DOI: 10.1021/acs.jpclett.3c01221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The quantum Drude oscillator (QDO) is an efficient yet accurate coarse-grained approach that has been widely used to model electronic and optical response properties of atoms and molecules as well as polarization and dispersion interactions between them. Three effective parameters (frequency, mass, and charge) fully characterize the QDO Hamiltonian and are adjusted to reproduce response properties. However, the soaring success of coupled QDOs for many-atom systems remains fundamentally unexplained, and the optimal mapping between atoms/molecules and oscillators has not been established. Here we present an optimized parametrization (OQDO) where the parameters are fixed by using only dipolar properties. For the periodic table of elements as well as small molecules, our model accurately reproduces atomic (spatial) polarization potentials and multipolar dispersion coefficients, elucidating the high promise of the presented model in the development of next-generation quantum-mechanical force fields for (bio)molecular simulations.
Collapse
Affiliation(s)
- Szabolcs Góger
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Almaz Khabibrakhmanov
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Ornella Vaccarelli
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Dmitry V Fedorov
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Alexandre Tkatchenko
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| |
Collapse
|
4
|
Sacchi M, Tamtögl A. Water adsorption and dynamics on graphene and other 2D materials: Computational and experimental advances. ADVANCES IN PHYSICS: X 2022; 8:2134051. [PMID: 36816858 PMCID: PMC7614201 DOI: 10.1080/23746149.2022.2134051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 06/18/2023] Open
Abstract
The interaction of water and surfaces, at molecular level, is of critical importance for understanding processes such as corrosion, friction, catalysis and mass transport. The significant literature on interactions with single crystal metal surfaces should not obscure unknowns in the unique behaviour of ice and the complex relationships between adsorption, diffusion and long-range inter-molecular interactions. Even less is known about the atomic-scale behaviour of water on novel, non-metallic interfaces, in particular on graphene and other 2D materials. In this manuscript, we review recent progress in the characterisation of water adsorption on 2D materials, with a focus on the nano-material graphene and graphitic nanostructures; materials which are of paramount importance for separation technologies, electrochemistry and catalysis, to name a few. The adsorption of water on graphene has also become one of the benchmark systems for modern computational methods, in particular dispersion-corrected density functional theory (DFT). We then review recent experimental and theoretical advances in studying the single-molecular motion of water at surfaces, with a special emphasis on scattering approaches as they allow an unparalleled window of observation to water surface motion, including diffusion, vibration and self-assembly.
Collapse
Affiliation(s)
- M. Sacchi
- Department of Chemistry, University of Surrey, Guildford GU2 7XH, UK
| | - A. Tamtögl
- Institute of Experimental Physics, Graz University of Technology, 8010 Graz, Austria
| |
Collapse
|
5
|
Karimpour M, Fedorov DV, Tkatchenko A. Molecular Interactions Induced by a Static Electric Field in Quantum Mechanics and Quantum Electrodynamics. J Phys Chem Lett 2022; 13:2197-2204. [PMID: 35231170 PMCID: PMC8919329 DOI: 10.1021/acs.jpclett.1c04222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
By means of quantum mechanics and quantum electrodynamics applied to coupled harmonic Drude oscillators, we study the interaction between two neutral atoms or molecules subject to a uniform static electric field. Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions, as considered within the employed Drude model for both non-retarded and retarded regimes. For the first case, we present an exact solution for two coupled oscillators obtained by diagonalizing the corresponding quantum-mechanical Hamiltonian and demonstrate that the external field can control the strength of different intermolecular interactions and relative orientations of the molecules. In the retarded regime described by quantum electrodynamics, our analysis shows that field-induced electrostatic and polarization energies remain unchanged (in isotropic and homogeneous vacuum) compared to the non-retarded case. For interacting species modeled by quantum Drude oscillators, the developed framework based on quantum mechanics and quantum electrodynamics yields the leading contributions to molecular interactions under the combined action of external and vacuum fields.
Collapse
Affiliation(s)
- Mohammad
Reza Karimpour
- Department of Physics and Materials
Science, University of Luxembourg, L-1511 Luxembourg
City, Luxembourg
| | - Dmitry V. Fedorov
- Department of Physics and Materials
Science, University of Luxembourg, L-1511 Luxembourg
City, Luxembourg
| | - Alexandre Tkatchenko
- Department of Physics and Materials
Science, University of Luxembourg, L-1511 Luxembourg
City, Luxembourg
| |
Collapse
|
6
|
Unprecedently large 37Cl/ 35Cl equilibrium isotopic fractionation on nano-confinement of chloride anion. Sci Rep 2022; 12:1768. [PMID: 35110604 PMCID: PMC8811032 DOI: 10.1038/s41598-022-05629-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/14/2022] [Indexed: 11/09/2022] Open
Abstract
Confinement can result in unusual properties leading to new, exciting discoveries in the nano-realm. One such consequence of confinement at the nanoscale is extremally large isotopic fractionation, especially at sub-van der Waals distances. Herein, on the example of chlorine isotope effects, we show that at conditions of nanoencapsulation these effects may reach values by far larger than observed for the bulk environment, which in the case of nanotubes can lead to practical applications (e.g., in isotopic enrichment) and needs to be considered in analytical procedures that employ nanomaterials.
Collapse
|
7
|
Interactions between large molecules pose a puzzle for reference quantum mechanical methods. Nat Commun 2021; 12:3927. [PMID: 34168142 PMCID: PMC8225865 DOI: 10.1038/s41467-021-24119-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 06/02/2021] [Indexed: 02/05/2023] Open
Abstract
Quantum-mechanical methods are used for understanding molecular interactions throughout the natural sciences. Quantum diffusion Monte Carlo (DMC) and coupled cluster with single, double, and perturbative triple excitations [CCSD(T)] are state-of-the-art trusted wavefunction methods that have been shown to yield accurate interaction energies for small organic molecules. These methods provide valuable reference information for widely-used semi-empirical and machine learning potentials, especially where experimental information is scarce. However, agreement for systems beyond small molecules is a crucial remaining milestone for cementing the benchmark accuracy of these methods. We show that CCSD(T) and DMC interaction energies are not consistent for a set of polarizable supramolecules. Whilst there is agreement for some of the complexes, in a few key systems disagreements of up to 8 kcal mol-1 remain. These findings thus indicate that more caution is required when aiming at reproducible non-covalent interactions between extended molecules.
Collapse
|
8
|
Tamtögl A, Bahn E, Sacchi M, Zhu J, Ward DJ, Jardine AP, Jenkins SJ, Fouquet P, Ellis J, Allison W. Motion of water monomers reveals a kinetic barrier to ice nucleation on graphene. Nat Commun 2021; 12:3120. [PMID: 34035257 PMCID: PMC8149658 DOI: 10.1038/s41467-021-23226-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/16/2021] [Indexed: 02/04/2023] Open
Abstract
The interfacial behaviour of water remains a central question to fields as diverse as protein folding, friction and ice formation. While the properties of water at interfaces differ from those in the bulk, major gaps in our knowledge limit our understanding at the molecular level. Information concerning the microscopic motion of water comes mostly from computation and, on an atomic scale, is largely unexplored by experiment. Here, we provide a detailed insight into the behaviour of water monomers on a graphene surface. The motion displays remarkably strong signatures of cooperative behaviour due to repulsive forces between the monomers, enhancing the monomer lifetime ( ≈ 3 s at 125 K) in a free-gas phase that precedes the nucleation of ice islands and, in turn, provides the opportunity for our experiments to be performed. Our results give a molecular perspective on a kinetic barrier to ice nucleation, providing routes to understand and control the processes involved in ice formation.
Collapse
Affiliation(s)
- Anton Tamtögl
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
- Institute of Experimental Physics, Graz University of Technology, Graz, Austria.
| | - Emanuel Bahn
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marco Sacchi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- Department of Chemistry, University of Surrey, Guildford, UK.
| | - Jianding Zhu
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - David J Ward
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | | | - Stephen J Jenkins
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | - John Ellis
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - William Allison
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Stöhr M, Sadhukhan M, Al-Hamdani YS, Hermann J, Tkatchenko A. Coulomb interactions between dipolar quantum fluctuations in van der Waals bound molecules and materials. Nat Commun 2021; 12:137. [PMID: 33420079 PMCID: PMC7794295 DOI: 10.1038/s41467-020-20473-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/04/2020] [Indexed: 12/03/2022] Open
Abstract
Mutual Coulomb interactions between electrons lead to a plethora of interesting physical and chemical effects, especially if those interactions involve many fluctuating electrons over large spatial scales. Here, we identify and study in detail the Coulomb interaction between dipolar quantum fluctuations in the context of van der Waals complexes and materials. Up to now, the interaction arising from the modification of the electron density due to quantum van der Waals interactions was considered to be vanishingly small. We demonstrate that in supramolecular systems and for molecules embedded in nanostructures, such contributions can amount to up to 6 kJ/mol and can even lead to qualitative changes in the long-range van der Waals interaction. Taking into account these broad implications, we advocate for the systematic assessment of so-called Dipole-Correlated Coulomb Singles in large molecular systems and discuss their relevance for explaining several recent puzzling experimental observations of collective behavior in nanostructured materials.
Collapse
Affiliation(s)
- Martin Stöhr
- Department of Physics and Materials Science, University of Luxembourg, Luxembourg, L-1511, Luxembourg
| | - Mainak Sadhukhan
- Department of Physics and Materials Science, University of Luxembourg, Luxembourg, L-1511, Luxembourg
- Department of Chemistry, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, 208 016, India
| | - Yasmine S Al-Hamdani
- Department of Physics and Materials Science, University of Luxembourg, Luxembourg, L-1511, Luxembourg
- Department of Chemistry, University of Zürich, CH-8057, Zürich, Switzerland
| | - Jan Hermann
- Department of Physics and Materials Science, University of Luxembourg, Luxembourg, L-1511, Luxembourg
| | - Alexandre Tkatchenko
- Department of Physics and Materials Science, University of Luxembourg, Luxembourg, L-1511, Luxembourg.
| |
Collapse
|
10
|
Batista LN, Vasconcelos TL, Senna CA, Archanjo BS, Miguez E, A S San Gil R, Tavares MIB. Impact of nanoconfinement on acetylacetone Equilibria in Ordered Mesoporous Silicates. NANOTECHNOLOGY 2020; 31:355706. [PMID: 32434178 DOI: 10.1088/1361-6528/ab94db] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanoconfinement is one of the most intriguing nanoscale effects and affects several physical and chemical properties of molecules and materials, including viscosity, reaction kinetics, and glass transition temperature. In this work, liquid nuclear magnetic resonance (NMR) was used to analyze the behavior of 2,4-pentadienone in ordered mesoporous materials with a pore diameter of between 3 and 10 nm. The liquid NMR results showed meaningful changes in the hydrogen chemical shift and the keto-enol chemical equilibrium, which were associated with the pore diameter, allowing the authors to observe the effects of nanoconfinement. An interesting phenomenon was observed where the chemical equilibria of 2,4-pentadienone confined in a mesoporous material with a pore diameter of 3.5 nm was similar to that obtained with free (bulk) 2,4-pentadienone in larger pore materials. Another interesting result was observed for the enthalpy and entropy of the tautomeric equilibria of 2,4-pentadienone confined in mesoporous materials with a 5.5 nm pore diameter being -7.9 kJ mol-1 and -15.9 J mol-1.K. These values are similar to those obtained by dimethyl sulfoxide. This phenomenon indicates the possible use of ordered mesoporous materials as a reaction substitute in organic solvents. It was further observed that while the values of enthalpy (ΔH) and entropy (ΔS) had been modified by confinement, the Gibbs free energy (ΔG) value remained closer to that observed in free (bulk) 2,4-pentadienone. It is expected that this study will help in understanding the effects of nanoconfinement and provide a simple method to employ NMR techniques to analyze these phenomena.
Collapse
Affiliation(s)
- Luciano N Batista
- Instituto Nacional de Metrologia, Qualidade e Tecnologia, Avenida Nossa Senhora das Graças, 50, 25250020, Duque de Caxias, Rio de Janeiro, Brazil. Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro, Av. Horácio Macedo, 2030, 21941-598, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
11
|
Vasilyev OA, Labbé-Laurent M, Dietrich S, Kondrat S. Bridging transitions and capillary forces for colloids in a slit. J Chem Phys 2020; 153:014901. [PMID: 32640823 DOI: 10.1063/5.0005419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Capillary bridges can form between colloids immersed in a two-phase fluid, e.g., in a binary liquid mixture, if the surface of the colloids prefers the species other than the one favored in the bulk liquid. Here, we study the formation of liquid bridges induced by confining colloids to a slit, with the slit walls having a preference opposite to the one of the colloid surface. Using mean field theory, we show that there is a line of first-order phase transitions between the bridge and the no-bridge states, which ends at a critical point. By decreasing the slit width, this critical point is shifted toward smaller separations between the colloids. However, at very small separations and far from criticality, we observe only a minor influence of the slit width on the location of the transition. Monte Carlo simulations of the Ising model, which mimics incompressible binary liquid mixtures, confirm the occurrence of the bridging transitions, as manifested by the appearance of "spinodal" regions where both bridge and no-bridge configurations are stable or metastable. Interestingly, we find that there is no such spinodal region in the case of small colloids, but we observe a sharpening of the transition when the colloid size increases. In addition, we demonstrate that the capillary force acting between the colloids can depend sensitively on the slit width and varies drastically with temperature, thus achieving strengths orders of magnitude higher than at criticality of the fluid.
Collapse
Affiliation(s)
- Oleg A Vasilyev
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstraße 3, D-70569 Stuttgart, Germany
| | - Marcel Labbé-Laurent
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstraße 3, D-70569 Stuttgart, Germany
| | - S Dietrich
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstraße 3, D-70569 Stuttgart, Germany
| | - Svyatoslav Kondrat
- Department of Complex Systems, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
12
|
Tocci G, Bilichenko M, Joly L, Iannuzzi M. Ab initio nanofluidics: disentangling the role of the energy landscape and of density correlations on liquid/solid friction. NANOSCALE 2020; 12:10994-11000. [PMID: 32426791 DOI: 10.1039/d0nr02511a] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite relevance to water purification and renewable energy conversion membranes, the molecular mechanisms underlying water slip are poorly understood. We disentangle the static and dynamical origin of water slippage on graphene, hBN and MoS2 by means of large-scale ab initio molecular dynamics. Accounting for the role of the electronic structure of the interface is essential to determine that water slips five and eleven times faster on graphene compared to hBN and to MoS2, respectively. Intricate changes in the water energy landscape as well as in the density correlations of the fluid provide, respectively, the main static and dynamical origin of water slippage. Surprisingly, the timescales of the density correlations are the same on graphene and hBN, whereas they are longer on MoS2 and yield a 100% slowdown in the flow of water on this material. Our results pave the way for an in silico first principles design of materials with enhanced water slip, through the modification of properties connected not only to the structure, but also to the dynamics of the interface.
Collapse
Affiliation(s)
- Gabriele Tocci
- Department of Chemistry, Universität Zürich, 8057 Zürich, Switzerland.
| | - Maria Bilichenko
- Department of Chemistry, Universität Zürich, 8057 Zürich, Switzerland.
| | - Laurent Joly
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France and Institut Universitaire de France (IUF), France
| | - Marcella Iannuzzi
- Department of Chemistry, Universität Zürich, 8057 Zürich, Switzerland.
| |
Collapse
|
13
|
Li LL, Feng S. Influence of neighboring layers on interfacial energy of adjacent layers. CHINESE J CHEM PHYS 2019. [DOI: 10.1063/1674-0068/cjcp1812291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Lei-lei Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Shuo Feng
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
14
|
Fang Y, Guo L. Experimental study on the influence of water adsorption effect on water fluidity under different electric field strength. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.136768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Al-Hamdani YS, Tkatchenko A. Understanding non-covalent interactions in larger molecular complexes from first principles. J Chem Phys 2019; 150:010901. [PMID: 30621423 PMCID: PMC6910608 DOI: 10.1063/1.5075487] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/05/2018] [Indexed: 01/02/2023] Open
Abstract
Non-covalent interactions pervade all matter and play a fundamental role in layered materials, biological systems, and large molecular complexes. Despite this, our accumulated understanding of non-covalent interactions to date has been mainly developed in the tens-of-atoms molecular regime. This falls considerably short of the scales at which we would like to understand energy trends, structural properties, and temperature dependencies in materials where non-covalent interactions have an appreciable role. However, as more reference information is obtained beyond moderately sized molecular systems, our understanding is improving and we stand to gain pertinent insights by tackling more complex systems, such as supramolecular complexes, molecular crystals, and other soft materials. In addition, accurate reference information is needed to provide the drive for extending the predictive power of more efficient workhorse methods, such as density functional approximations that also approximate van der Waals dispersion interactions. In this perspective, we discuss the first-principles approaches that have been used to obtain reference interaction energies for beyond modestly sized molecular complexes. The methods include quantum Monte Carlo, symmetry-adapted perturbation theory, non-canonical coupled cluster theory, and approaches based on the random-phase approximation. By considering the approximations that underpin each method, the most accurate theoretical references for supramolecular complexes and molecular crystals to date are ascertained. With these, we also assess a handful of widely used exchange-correlation functionals in density functional theory. The discussion culminates in a framework for putting into perspective the accuracy of high-level wavefunction-based methods and identifying future challenges.
Collapse
Affiliation(s)
- Yasmine S Al-Hamdani
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Alexandre Tkatchenko
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| |
Collapse
|
16
|
Stöhr M, Van Voorhis T, Tkatchenko A. Theory and practice of modeling van der Waals interactions in electronic-structure calculations. Chem Soc Rev 2019; 48:4118-4154. [PMID: 31190037 DOI: 10.1039/c9cs00060g] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The accurate description of long-range electron correlation, most prominently including van der Waals (vdW) dispersion interactions, represents a particularly challenging task in the modeling of molecules and materials. vdW forces arise from the interaction of quantum-mechanical fluctuations in the electronic charge density. Within (semi-)local density functional approximations or Hartree-Fock theory such interactions are neglected altogether. Non-covalent vdW interactions, however, are ubiquitous in nature and play a key role for the understanding and accurate description of the stability, dynamics, structure, and response properties in a plethora of systems. During the last decade, many promising methods have been developed for modeling vdW interactions in electronic-structure calculations. These methods include vdW-inclusive Density Functional Theory and correlated post-Hartree-Fock approaches. Here, we focus on the methods within the framework of Density Functional Theory, including non-local van der Waals density functionals, interatomic dispersion models within many-body and pairwise formulation, and random phase approximation-based approaches. This review aims to guide the reader through the theoretical foundations of these methods in a tutorial-style manner and, in particular, highlight practical aspects such as the applicability and the advantages and shortcomings of current vdW-inclusive approaches. In addition, we give an overview of complementary experimental approaches, and discuss tools for the qualitative understanding of non-covalent interactions as well as energy decomposition techniques. Besides representing a reference for the current state-of-the-art, this work is thus also designed as a concise and detailed introduction to vdW-inclusive electronic structure calculations for a general and broad audience.
Collapse
Affiliation(s)
- Martin Stöhr
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg.
| | | | | |
Collapse
|
17
|
Wang X, Shi G, Liang S, Liu J, Li D, Fang G, Liu R, Yan L, Fang H. Unexpectedly High Salt Accumulation inside Carbon Nanotubes Soaked in Dilute Salt Solutions. PHYSICAL REVIEW LETTERS 2018; 121:226102. [PMID: 30547604 DOI: 10.1103/physrevlett.121.226102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/01/2018] [Indexed: 06/09/2023]
Abstract
We experimentally demonstrate the formation of salt aggregations with unexpectedly high concentration inside multiwalled carbon nanotubes (CNTs) soaked only in dilute salt solution sand even in solutions containing only traces of salts. This finding suggests the blocking of fluid across CNTs by the salt aggregations when CNTs are soaked in a dilute salt solution with the concentration of seawater or even lower, which may open new avenues for the development of novel CNT-based desalination techniques. The high salt accumulation of CNTs also provides a new CNT-based strategy for the collection or extraction of noble metal salts in solutions containing traces of noble metal salts. Theoretical analyses reveal that this high salt accumulation inside CNTs can be mainly attributed to the strong hydrated cation-π interactions of hydrated cations and π electrons in the aromatic rings of CNTs.
Collapse
Affiliation(s)
- Xueliang Wang
- Center for Thorium Molten Salt Reactor System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guosheng Shi
- Division of Interfacial Water, Key Laboratory of Interfacial Physics and Technology and Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Shanghai Applied Radiation Institute and Department of Physics, Shanghai University, Shanghai 200444, China
| | - Shanshan Liang
- Division of Interfacial Water, Key Laboratory of Interfacial Physics and Technology and Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jian Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Deyuan Li
- Division of Interfacial Water, Key Laboratory of Interfacial Physics and Technology and Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Shanghai Applied Radiation Institute and Department of Physics, Shanghai University, Shanghai 200444, China
| | - Gang Fang
- Division of Interfacial Water, Key Laboratory of Interfacial Physics and Technology and Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renduo Liu
- Center for Thorium Molten Salt Reactor System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Long Yan
- Center for Thorium Molten Salt Reactor System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Haiping Fang
- Division of Interfacial Water, Key Laboratory of Interfacial Physics and Technology and Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
18
|
Fedorov DV, Sadhukhan M, Stöhr M, Tkatchenko A. Quantum-Mechanical Relation between Atomic Dipole Polarizability and the van der Waals Radius. PHYSICAL REVIEW LETTERS 2018; 121:183401. [PMID: 30444421 DOI: 10.1103/physrevlett.121.183401] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Indexed: 06/09/2023]
Abstract
The atomic dipole polarizability α and the van der Waals (vdW) radius R_{vdW} are two key quantities to describe vdW interactions between atoms in molecules and materials. Until now, they have been determined independently and separately from each other. Here, we derive the quantum-mechanical relation R_{vdW}=const×α^{1/7}, which is markedly different from the common assumption R_{vdW}∝α^{1/3} based on a classical picture of hard-sphere atoms. As shown for 72 chemical elements between hydrogen and uranium, the obtained formula can be used as a unified definition of the vdW radius solely in terms of the atomic polarizability. For vdW-bonded heteronuclear dimers consisting of atoms A and B, the combination rule α=(α_{A}+α_{B})/2 provides a remarkably accurate way to calculate their equilibrium interatomic distance. The revealed scaling law allows us to reduce the empiricism and improve the accuracy of interatomic vdW potentials, at the same time suggesting the existence of a nontrivial relation between length and volume in quantum systems.
Collapse
Affiliation(s)
- Dmitry V Fedorov
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg
| | - Mainak Sadhukhan
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg
| | - Martin Stöhr
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg
| | - Alexandre Tkatchenko
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg
| |
Collapse
|
19
|
Kondrat S, Vasilyev OA, Dietrich S. Probing interface localization-delocalization transitions by colloids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:414002. [PMID: 30178756 DOI: 10.1088/1361-648x/aadead] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Interface localization-delocalization transitions (ILDT) occur in two-phase fluids confined in a slit with competing preferences of the walls for the two fluid phases. At low temperatures the interface between the two phases is localized at one of the walls. Upon increasing temperature it unbinds. Although intensively studied theoretically and computationally, such transitions have not yet been observed experimentally due to severe challenges in resolving fine details of the fluid structure. Here, using mean field theory and Monte Carlo simulations of the Ising model, we propose to detect these ILDT by using colloids. We show that the finite-size and fluctuation induced force acting on a colloid confined in such a system experiences a vivid change if, upon lowering the temperature, the interface localizes at one of the walls. This change can serve as a more easily accessible experimental indicator of the transition.
Collapse
Affiliation(s)
- Svyatoslav Kondrat
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | | | | |
Collapse
|
20
|
Kleshchonok A, Tkatchenko A. Tailoring van der Waals dispersion interactions with external electric charges. Nat Commun 2018; 9:3017. [PMID: 30069005 PMCID: PMC6070553 DOI: 10.1038/s41467-018-05407-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/05/2018] [Indexed: 11/09/2022] Open
Abstract
van der Waals (vdW) dispersion interactions strongly impact the properties of molecules and materials. Often, the description of vdW interactions should account for the coupling with pervasive electric fields, stemming from membranes, ionic channels, liquids, or nearby charged functional groups. However, this quantum-mechanical effect has been omitted in atomistic simulations, even in widely employed electronic-structure methods. Here, we develop a model and study the effects of an external charge on long-range vdW correlations. We show that a positive external charge stabilizes dispersion interactions, whereas a negative charge has an opposite effect. Our analytical results are benchmarked on a series of (bio)molecular dimers and supported by calculations with high-level correlated quantum-chemical methods, which estimate the induced dispersion to reach up to 35% of intermolecular binding energy (4 kT for amino-acid dimers at room temperature). Our analysis bridges electrostatic and electrodynamic descriptions of intermolecular interactions and may have implications for non-covalent reactions, exfoliation, dissolution, and permeation through biological membranes.
Collapse
Affiliation(s)
- Andrii Kleshchonok
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Alexandre Tkatchenko
- Physics and Materials Science Research Unit, University of Luxembourg, Luxembourg City, L-1511, Luxembourg.
| |
Collapse
|
21
|
Podeszwa R, Jansen G. Comment on "Long-Range Repulsion Between Spatially Confined van der Waals Dimers". PHYSICAL REVIEW LETTERS 2018; 120:258901. [PMID: 29979057 DOI: 10.1103/physrevlett.120.258901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Indexed: 06/08/2023]
Affiliation(s)
- Rafał Podeszwa
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Georg Jansen
- Theoretical Organic Chemistry, Department of Chemistry, University Duisburg-Essen, Universitätsstraße 5, D-45117 Essen, Germany
| |
Collapse
|
22
|
Sadhukhan M, Tkatchenko A. Sadhukhan and Tkatchenko Reply. PHYSICAL REVIEW LETTERS 2018; 120:258902. [PMID: 29979067 DOI: 10.1103/physrevlett.120.258902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Indexed: 06/08/2023]
Affiliation(s)
- Mainak Sadhukhan
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Alexandre Tkatchenko
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| |
Collapse
|
23
|
Maaß F, Jiang Y, Liu W, Tkatchenko A, Tegeder P. Binding energies of benzene on coinage metal surfaces: Equal stability on different metals. J Chem Phys 2018; 148:214703. [DOI: 10.1063/1.5030094] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Friedrich Maaß
- Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Yingda Jiang
- Nano Structural Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Wei Liu
- Nano Structural Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Alexandre Tkatchenko
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Petra Tegeder
- Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| |
Collapse
|
24
|
Vasilyev OA, Dietrich S, Kondrat S. Nonadditive interactions and phase transitions in strongly confined colloidal systems. SOFT MATTER 2018; 14:586-596. [PMID: 29264614 DOI: 10.1039/c7sm01363a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The behaviour of colloids can be controlled effectively by tuning the solvent-mediated interactions among them. An extensively studied example is the temperature-induced aggregation of suspended colloids close to the consolute point of their binary solvent. Here, using mean field theory and Monte Carlo simulations, we study the behaviour of colloids confined to a narrow slit containing a nearly-critical binary liquid mixture. We found that the effective interactions in this system are highly non-additive. In particular, the effective interactions among the colloids can be a few times stronger than the corresponding sum of the effective pair potentials. Inter alia, this non-additivity manifests itself in the phase behaviour of confined colloids, which depends sensitively on the slit width and temperature. In addition, we demonstrate the possibility of a first-order bridging transition between colloids confined to a slit and suspended in a phase-separated fluid well below the critical point of the solvent and at its critical composition in the bulk. This transition is accompanied by a remarkably large hysteresis loop, in which the force between the colloids varies by two orders of magnitude.
Collapse
Affiliation(s)
- Oleg A Vasilyev
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstraße 3, D-70569 Stuttgart, Germany.
| | | | | |
Collapse
|