1
|
Bhattacharjee A, Jain P, Deshmukh J, Das S, Chand M, Patankar MP, Vijay R. Demonstration of two qubit entangling gates in a 2D ring resonator based coupler architecture. Sci Rep 2025; 15:4426. [PMID: 39910070 PMCID: PMC11799146 DOI: 10.1038/s41598-025-87410-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/20/2025] [Indexed: 02/07/2025] Open
Abstract
We report entangling two-qubit experiments implemented in a novel ring resonator architecture in 2D planar geometry. The ring resonator acts as a multi-path coupler between qubits and can provide beyond nearest neighbour interactions. We demonstrate pairwise coupling between three fixed-frequency transmon qubits connected to the ring resonator with measured coupling strengths (4.70 MHz, 2.80 MHz, and 2.65 MHz) in good agreement with those predicted from finite-element simulations. We implement an all-microwave controlled phase (CPHASE) gate between a pair of qubits with a gate time of 196 ns and demonstrate a two-qubit Bell state with a measured state fidelity of [Formula: see text]. Our results demonstrate the ability to entangle two qubits using the ring resonator and pave the way for creating highly connected multi-qubit networks in this architecture.
Collapse
Affiliation(s)
- Anirban Bhattacharjee
- Department of Condensed Matter Physics and Material Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India.
| | - Panya Jain
- Department of Condensed Matter Physics and Material Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Jay Deshmukh
- Department of Condensed Matter Physics and Material Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Srijita Das
- Department of Condensed Matter Physics and Material Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Madhavi Chand
- Department of Condensed Matter Physics and Material Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Meghan P Patankar
- Department of Condensed Matter Physics and Material Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - R Vijay
- Department of Condensed Matter Physics and Material Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India.
| |
Collapse
|
2
|
Hernández-Gómez S, Poggiali F, Cappellaro P, Cataliotti FS, Trombettoni A, Fabbri N, Gherardini S. Energy exchange statistics and fluctuation theorem for nonthermal asymptotic states. Phys Rev E 2025; 111:014139. [PMID: 39972759 DOI: 10.1103/physreve.111.014139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 12/03/2024] [Indexed: 02/21/2025]
Abstract
Energy exchange statistics between two bodies at different thermal equilibria obey the Jarzynski-Wójcik fluctuation theorem. The corresponding energy scale factor is the difference of the inverse temperatures associated to the bodies at equilibrium. In this work, we consider a dissipative quantum dynamics leading the quantum system towards a possibly nonthermal, asymptotic state. To generalize the Jarzynski-Wójcik theorem to nonthermal states, we identify a sufficient condition I for the existence of an energy scale factor η^{*} that is unique, finite, and time independent, such that the characteristic function of the energy exchange distribution becomes identically equal to 1 for any time. This η^{*} plays the role of the difference of inverse temperatures. We discuss the physical interpretation of the condition I, showing that it amounts to an almost complete memory loss of the initial state. The robustness of our results against quantifiable deviations from the validity of I is evaluated by experimental studies on a single nitrogen-vacancy center subjected to a sequence of laser pulses and dissipation.
Collapse
Affiliation(s)
- Santiago Hernández-Gómez
- CNR-INO, via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
- Massachusetts Institute of Technology, Research Laboratory of Electronics, Cambridge, Massachusetts 02139, USA
- European Laboratory for Non-linear Spectroscopy (LENS), Università di Firenze, I-50019 Sesto Fiorentino, Italy
| | - Francesco Poggiali
- CNR-INO, via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy (LENS), Università di Firenze, I-50019 Sesto Fiorentino, Italy
| | - Paola Cappellaro
- Massachusetts Institute of Technology, Research Laboratory of Electronics, Cambridge, Massachusetts 02139, USA
- Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, Department of Physics, Cambridge, Massachusetts 02139, USA
| | - Francesco S Cataliotti
- European Laboratory for Non-linear Spectroscopy (LENS), Università di Firenze, I-50019 Sesto Fiorentino, Italy
- CNR-INO, Largo Enrico Fermi 6, I-50125 Firenze, Italy
- Università di Firenze, Dipartimento di Fisica e Astronomia, via Sansone 1, I-50019 Sesto Fiorentino, Italy
| | - Andrea Trombettoni
- Università di Trieste, Dipartimento di Fisica, Strada Costiera 11, I-34151 Trieste, Italy
- SISSA, via Bonomea 265, I-34136 Trieste, Italy
- INFN, Sezione di Trieste, via Valerio 2, I-34127 Trieste, Italy
- CNR-IOM DEMOCRITOS Simulation Center, via Bonomea 265, I-34136 Trieste, Italy
| | - Nicole Fabbri
- CNR-INO, via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy (LENS), Università di Firenze, I-50019 Sesto Fiorentino, Italy
| | - Stefano Gherardini
- European Laboratory for Non-linear Spectroscopy (LENS), Università di Firenze, I-50019 Sesto Fiorentino, Italy
- CNR-INO, Largo Enrico Fermi 6, I-50125 Firenze, Italy
- SISSA, via Bonomea 265, I-34136 Trieste, Italy
| |
Collapse
|
3
|
Li Z, Roy T, Lu Y, Kapit E, Schuster DI. Autonomous stabilization with programmable stabilized state. Nat Commun 2024; 15:6978. [PMID: 39143062 PMCID: PMC11324797 DOI: 10.1038/s41467-024-51262-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
Reservoir engineering is a powerful technique to autonomously stabilize a quantum state. Traditional schemes involving multi-body states typically function for discrete entangled states. In this work, we enhance the stabilization capability to a continuous manifold of states with programmable stabilized state selection using multiple continuous tuning parameters. We experimentally achieve 84.6% and 82.5% stabilization fidelity for the odd and even-parity Bell states as two special points in the manifold. We also perform fast dissipative switching between these opposite parity states within 1.8 μs and 0.9 μs by sequentially applying different stabilization drives. Our result is a precursor for new reservoir engineering-based error correction schemes.
Collapse
Affiliation(s)
- Ziqian Li
- James Franck Institute, University of Chicago, Chicago, IL, USA.
- Department of Physics, University of Chicago, Chicago, IL, USA.
- Department of Applied Physics, Stanford University, Stanford, CA, USA.
| | - Tanay Roy
- James Franck Institute, University of Chicago, Chicago, IL, USA
- Department of Physics, University of Chicago, Chicago, IL, USA
- Superconducting Quantum Materials and Systems Center, Fermi National Accelerator Laboratory (FNAL), Batavia, IL, USA
| | - Yao Lu
- James Franck Institute, University of Chicago, Chicago, IL, USA
- Department of Physics, University of Chicago, Chicago, IL, USA
- Superconducting Quantum Materials and Systems Center, Fermi National Accelerator Laboratory (FNAL), Batavia, IL, USA
| | - Eliot Kapit
- Department of Physics, Colorado School of Mines, Golden, CO, USA
| | - David I Schuster
- James Franck Institute, University of Chicago, Chicago, IL, USA
- Department of Physics, University of Chicago, Chicago, IL, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| |
Collapse
|
4
|
Du B, Suresh R, López S, Cadiente J, Ma R. Probing Site-Resolved Current in Strongly Interacting Superconducting Circuit Lattices. PHYSICAL REVIEW LETTERS 2024; 133:060601. [PMID: 39178460 DOI: 10.1103/physrevlett.133.060601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/08/2024] [Indexed: 08/25/2024]
Abstract
Transport measurements are fundamental for understanding condensed matter phenomena, from superconductivity to the fractional quantum Hall effect. Analogously, they can be powerful tools for probing synthetic quantum matter in quantum simulators. Here we demonstrate the measurement of in situ particle current in a superconducting circuit lattice and apply it to study transport in both coherent and bath-coupled lattices. Our method utilizes controlled tunneling in a double-well potential to map current to on-site density, revealing site-resolved current and current statistics. We prepare a strongly interacting Bose-Hubbard lattice at different lattice fillings, and observe the change in current statistics as the many-body states transition from superfluid to Mott insulator. Furthermore, we explore nonequilibrium current dynamics by coupling the lattice to engineered driven-dissipative baths that serve as tunable particle source and drain. We observe steady-state current in discrete conduction channels and interaction-assisted transport. These results establish a versatile platform to investigate microscopic quantum transport in superconducting circuits.
Collapse
|
5
|
Li S, Ni Z, Zhang L, Cai Y, Mai J, Wen S, Zheng P, Deng X, Liu S, Xu Y, Yu D. Autonomous Stabilization of Fock States in an Oscillator against Multiphoton Losses. PHYSICAL REVIEW LETTERS 2024; 132:203602. [PMID: 38829095 DOI: 10.1103/physrevlett.132.203602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/23/2024] [Indexed: 06/05/2024]
Abstract
Fock states with a well-defined number of photons in an oscillator have shown a wide range of applications in quantum information science. Nonetheless, their usefulness has been marred by single and multiphoton losses due to unavoidable environment-induced dissipation. Though several dissipation engineering methods have been developed to counteract the leading single-photon-loss error, averting multiple-photon losses remains elusive. Here, we experimentally demonstrate a dissipation engineering method that autonomously stabilizes multiphoton Fock states against losses of multiple photons using a cascaded selective photon-addition operation in a superconducting quantum circuit. Through measuring the photon-number populations and Wigner tomography of the oscillator states, we observe a prolonged preservation of nonclassical Wigner negativities for the stabilized Fock states |N⟩ with N=1, 2, 3 for a duration of about 10 ms. Furthermore, the dissipation engineering method demonstrated here also facilitates the implementation of a nonunitary operation for resetting a binomially encoded logical qubit. These results highlight potential applications in error-correctable quantum information processing against multiple-photon-loss errors.
Collapse
Affiliation(s)
- Sai Li
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhongchu Ni
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Libo Zhang
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yanyan Cai
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiasheng Mai
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shengcheng Wen
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Pan Zheng
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaowei Deng
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Song Liu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Branch, Hefei National Laboratory, Shenzhen 518048, China
| | - Yuan Xu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Branch, Hefei National Laboratory, Shenzhen 518048, China
| | - Dapeng Yu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Branch, Hefei National Laboratory, Shenzhen 518048, China
| |
Collapse
|
6
|
Mi X, Michailidis AA, Shabani S, Miao KC, Klimov PV, Lloyd J, Rosenberg E, Acharya R, Aleiner I, Andersen TI, Ansmann M, Arute F, Arya K, Asfaw A, Atalaya J, Bardin JC, Bengtsson A, Bortoli G, Bourassa A, Bovaird J, Brill L, Broughton M, Buckley BB, Buell DA, Burger T, Burkett B, Bushnell N, Chen Z, Chiaro B, Chik D, Chou C, Cogan J, Collins R, Conner P, Courtney W, Crook AL, Curtin B, Dau AG, Debroy DM, Del Toro Barba A, Demura S, Di Paolo A, Drozdov IK, Dunsworth A, Erickson C, Faoro L, Farhi E, Fatemi R, Ferreira VS, Burgos LF, Forati E, Fowler AG, Foxen B, Genois É, Giang W, Gidney C, Gilboa D, Giustina M, Gosula R, Gross JA, Habegger S, Hamilton MC, Hansen M, Harrigan MP, Harrington SD, Heu P, Hoffmann MR, Hong S, Huang T, Huff A, Huggins WJ, Ioffe LB, Isakov SV, Iveland J, Jeffrey E, Jiang Z, Jones C, Juhas P, Kafri D, Kechedzhi K, Khattar T, Khezri M, Kieferová M, Kim S, Kitaev A, Klots AR, Korotkov AN, Kostritsa F, Kreikebaum JM, Landhuis D, Laptev P, Lau KM, Laws L, Lee J, Lee KW, Lensky YD, Lester BJ, Lill AT, Liu W, Locharla A, et alMi X, Michailidis AA, Shabani S, Miao KC, Klimov PV, Lloyd J, Rosenberg E, Acharya R, Aleiner I, Andersen TI, Ansmann M, Arute F, Arya K, Asfaw A, Atalaya J, Bardin JC, Bengtsson A, Bortoli G, Bourassa A, Bovaird J, Brill L, Broughton M, Buckley BB, Buell DA, Burger T, Burkett B, Bushnell N, Chen Z, Chiaro B, Chik D, Chou C, Cogan J, Collins R, Conner P, Courtney W, Crook AL, Curtin B, Dau AG, Debroy DM, Del Toro Barba A, Demura S, Di Paolo A, Drozdov IK, Dunsworth A, Erickson C, Faoro L, Farhi E, Fatemi R, Ferreira VS, Burgos LF, Forati E, Fowler AG, Foxen B, Genois É, Giang W, Gidney C, Gilboa D, Giustina M, Gosula R, Gross JA, Habegger S, Hamilton MC, Hansen M, Harrigan MP, Harrington SD, Heu P, Hoffmann MR, Hong S, Huang T, Huff A, Huggins WJ, Ioffe LB, Isakov SV, Iveland J, Jeffrey E, Jiang Z, Jones C, Juhas P, Kafri D, Kechedzhi K, Khattar T, Khezri M, Kieferová M, Kim S, Kitaev A, Klots AR, Korotkov AN, Kostritsa F, Kreikebaum JM, Landhuis D, Laptev P, Lau KM, Laws L, Lee J, Lee KW, Lensky YD, Lester BJ, Lill AT, Liu W, Locharla A, Malone FD, Martin O, McClean JR, McEwen M, Mieszala A, Montazeri S, Morvan A, Movassagh R, Mruczkiewicz W, Neeley M, Neill C, Nersisyan A, Newman M, Ng JH, Nguyen A, Nguyen M, Niu MY, O'Brien TE, Opremcak A, Petukhov A, Potter R, Pryadko LP, Quintana C, Rocque C, Rubin NC, Saei N, Sank D, Sankaragomathi K, Satzinger KJ, Schurkus HF, Schuster C, Shearn MJ, Shorter A, Shutty N, Shvarts V, Skruzny J, Smith WC, Somma R, Sterling G, Strain D, Szalay M, Torres A, Vidal G, Villalonga B, Heidweiller CV, White T, Woo BWK, Xing C, Yao ZJ, Yeh P, Yoo J, Young G, Zalcman A, Zhang Y, Zhu N, Zobrist N, Neven H, Babbush R, Bacon D, Boixo S, Hilton J, Lucero E, Megrant A, Kelly J, Chen Y, Roushan P, Smelyanskiy V, Abanin DA. Stable quantum-correlated many-body states through engineered dissipation. Science 2024; 383:1332-1337. [PMID: 38513021 DOI: 10.1126/science.adh9932] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 02/13/2024] [Indexed: 03/23/2024]
Abstract
Engineered dissipative reservoirs have the potential to steer many-body quantum systems toward correlated steady states useful for quantum simulation of high-temperature superconductivity or quantum magnetism. Using up to 49 superconducting qubits, we prepared low-energy states of the transverse-field Ising model through coupling to dissipative auxiliary qubits. In one dimension, we observed long-range quantum correlations and a ground-state fidelity of 0.86 for 18 qubits at the critical point. In two dimensions, we found mutual information that extends beyond nearest neighbors. Lastly, by coupling the system to auxiliaries emulating reservoirs with different chemical potentials, we explored transport in the quantum Heisenberg model. Our results establish engineered dissipation as a scalable alternative to unitary evolution for preparing entangled many-body states on noisy quantum processors.
Collapse
Affiliation(s)
- X Mi
- Google Research, Mountain View, CA, USA
| | - A A Michailidis
- Department of Theoretical Physics, University of Geneva, Geneva, Switzerland
| | - S Shabani
- Google Research, Mountain View, CA, USA
| | - K C Miao
- Google Research, Mountain View, CA, USA
| | | | - J Lloyd
- Department of Theoretical Physics, University of Geneva, Geneva, Switzerland
| | | | - R Acharya
- Google Research, Mountain View, CA, USA
| | - I Aleiner
- Google Research, Mountain View, CA, USA
| | | | - M Ansmann
- Google Research, Mountain View, CA, USA
| | - F Arute
- Google Research, Mountain View, CA, USA
| | - K Arya
- Google Research, Mountain View, CA, USA
| | - A Asfaw
- Google Research, Mountain View, CA, USA
| | - J Atalaya
- Google Research, Mountain View, CA, USA
| | - J C Bardin
- Google Research, Mountain View, CA, USA
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, USA
| | | | - G Bortoli
- Google Research, Mountain View, CA, USA
| | | | - J Bovaird
- Google Research, Mountain View, CA, USA
| | - L Brill
- Google Research, Mountain View, CA, USA
| | | | | | - D A Buell
- Google Research, Mountain View, CA, USA
| | - T Burger
- Google Research, Mountain View, CA, USA
| | - B Burkett
- Google Research, Mountain View, CA, USA
| | | | - Z Chen
- Google Research, Mountain View, CA, USA
| | - B Chiaro
- Google Research, Mountain View, CA, USA
| | - D Chik
- Google Research, Mountain View, CA, USA
| | - C Chou
- Google Research, Mountain View, CA, USA
| | - J Cogan
- Google Research, Mountain View, CA, USA
| | - R Collins
- Google Research, Mountain View, CA, USA
| | - P Conner
- Google Research, Mountain View, CA, USA
| | | | - A L Crook
- Google Research, Mountain View, CA, USA
| | - B Curtin
- Google Research, Mountain View, CA, USA
| | - A G Dau
- Google Research, Mountain View, CA, USA
| | | | | | - S Demura
- Google Research, Mountain View, CA, USA
| | | | | | | | | | - L Faoro
- Google Research, Mountain View, CA, USA
| | - E Farhi
- Google Research, Mountain View, CA, USA
| | - R Fatemi
- Google Research, Mountain View, CA, USA
| | | | | | - E Forati
- Google Research, Mountain View, CA, USA
| | | | - B Foxen
- Google Research, Mountain View, CA, USA
| | - É Genois
- Google Research, Mountain View, CA, USA
| | - W Giang
- Google Research, Mountain View, CA, USA
| | - C Gidney
- Google Research, Mountain View, CA, USA
| | - D Gilboa
- Google Research, Mountain View, CA, USA
| | | | - R Gosula
- Google Research, Mountain View, CA, USA
| | - J A Gross
- Google Research, Mountain View, CA, USA
| | | | - M C Hamilton
- Google Research, Mountain View, CA, USA
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
| | - M Hansen
- Google Research, Mountain View, CA, USA
| | | | | | - P Heu
- Google Research, Mountain View, CA, USA
| | | | - S Hong
- Google Research, Mountain View, CA, USA
| | - T Huang
- Google Research, Mountain View, CA, USA
| | - A Huff
- Google Research, Mountain View, CA, USA
| | | | - L B Ioffe
- Google Research, Mountain View, CA, USA
| | | | - J Iveland
- Google Research, Mountain View, CA, USA
| | - E Jeffrey
- Google Research, Mountain View, CA, USA
| | - Z Jiang
- Google Research, Mountain View, CA, USA
| | - C Jones
- Google Research, Mountain View, CA, USA
| | - P Juhas
- Google Research, Mountain View, CA, USA
| | - D Kafri
- Google Research, Mountain View, CA, USA
| | | | - T Khattar
- Google Research, Mountain View, CA, USA
| | - M Khezri
- Google Research, Mountain View, CA, USA
| | - M Kieferová
- Google Research, Mountain View, CA, USA
- Centre for Quantum Software and Information (QSI), Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
| | - S Kim
- Google Research, Mountain View, CA, USA
| | - A Kitaev
- Google Research, Mountain View, CA, USA
| | - A R Klots
- Google Research, Mountain View, CA, USA
| | - A N Korotkov
- Google Research, Mountain View, CA, USA
- Department of Electrical and Computer Engineering, University of California, Riverside, CA, USA
| | | | | | | | - P Laptev
- Google Research, Mountain View, CA, USA
| | - K-M Lau
- Google Research, Mountain View, CA, USA
| | - L Laws
- Google Research, Mountain View, CA, USA
| | - J Lee
- Google Research, Mountain View, CA, USA
- Department of Chemistry, Columbia University, New York, NY, USA
| | - K W Lee
- Google Research, Mountain View, CA, USA
| | | | | | - A T Lill
- Google Research, Mountain View, CA, USA
| | - W Liu
- Google Research, Mountain View, CA, USA
| | | | | | - O Martin
- Google Research, Mountain View, CA, USA
| | | | - M McEwen
- Google Research, Mountain View, CA, USA
| | | | | | - A Morvan
- Google Research, Mountain View, CA, USA
| | | | | | - M Neeley
- Google Research, Mountain View, CA, USA
| | - C Neill
- Google Research, Mountain View, CA, USA
| | | | - M Newman
- Google Research, Mountain View, CA, USA
| | - J H Ng
- Google Research, Mountain View, CA, USA
| | - A Nguyen
- Google Research, Mountain View, CA, USA
| | - M Nguyen
- Google Research, Mountain View, CA, USA
| | - M Y Niu
- Google Research, Mountain View, CA, USA
| | | | | | | | - R Potter
- Google Research, Mountain View, CA, USA
| | - L P Pryadko
- Google Research, Mountain View, CA, USA
- Department of Physics and Astronomy, University of California, Riverside, CA, USA
| | | | - C Rocque
- Google Research, Mountain View, CA, USA
| | - N C Rubin
- Google Research, Mountain View, CA, USA
| | - N Saei
- Google Research, Mountain View, CA, USA
| | - D Sank
- Google Research, Mountain View, CA, USA
| | | | | | | | | | | | - A Shorter
- Google Research, Mountain View, CA, USA
| | - N Shutty
- Google Research, Mountain View, CA, USA
| | - V Shvarts
- Google Research, Mountain View, CA, USA
| | - J Skruzny
- Google Research, Mountain View, CA, USA
| | - W C Smith
- Google Research, Mountain View, CA, USA
| | - R Somma
- Google Research, Mountain View, CA, USA
| | | | - D Strain
- Google Research, Mountain View, CA, USA
| | - M Szalay
- Google Research, Mountain View, CA, USA
| | - A Torres
- Google Research, Mountain View, CA, USA
| | - G Vidal
- Google Research, Mountain View, CA, USA
| | | | | | - T White
- Google Research, Mountain View, CA, USA
| | - B W K Woo
- Google Research, Mountain View, CA, USA
| | - C Xing
- Google Research, Mountain View, CA, USA
| | - Z J Yao
- Google Research, Mountain View, CA, USA
| | - P Yeh
- Google Research, Mountain View, CA, USA
| | - J Yoo
- Google Research, Mountain View, CA, USA
| | - G Young
- Google Research, Mountain View, CA, USA
| | - A Zalcman
- Google Research, Mountain View, CA, USA
| | - Y Zhang
- Google Research, Mountain View, CA, USA
| | - N Zhu
- Google Research, Mountain View, CA, USA
| | - N Zobrist
- Google Research, Mountain View, CA, USA
| | - H Neven
- Google Research, Mountain View, CA, USA
| | - R Babbush
- Google Research, Mountain View, CA, USA
| | - D Bacon
- Google Research, Mountain View, CA, USA
| | - S Boixo
- Google Research, Mountain View, CA, USA
| | - J Hilton
- Google Research, Mountain View, CA, USA
| | - E Lucero
- Google Research, Mountain View, CA, USA
| | - A Megrant
- Google Research, Mountain View, CA, USA
| | - J Kelly
- Google Research, Mountain View, CA, USA
| | - Y Chen
- Google Research, Mountain View, CA, USA
| | - P Roushan
- Google Research, Mountain View, CA, USA
| | | | - D A Abanin
- Google Research, Mountain View, CA, USA
- Department of Theoretical Physics, University of Geneva, Geneva, Switzerland
- Department of Physics, Princeton University, Princeton, NJ, USA
| |
Collapse
|
7
|
Li Z, Roy T, Rodríguez Pérez D, Lee KH, Kapit E, Schuster DI. Autonomous error correction of a single logical qubit using two transmons. Nat Commun 2024; 15:1681. [PMID: 38395989 PMCID: PMC10891116 DOI: 10.1038/s41467-024-45858-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Large-scale quantum computers will inevitably need quantum error correction to protect information against decoherence. Traditional error correction typically requires many qubits, along with high-efficiency error syndrome measurement and real-time feedback. Autonomous quantum error correction instead uses steady-state bath engineering to perform the correction in a hardware-efficient manner. In this work, we develop a new autonomous quantum error correction scheme that actively corrects single-photon loss and passively suppresses low-frequency dephasing, and we demonstrate an important experimental step towards its full implementation with transmons. Compared to uncorrected encoding, improvements are experimentally witnessed for the logical zero, one, and superposition states. Our results show the potential of implementing hardware-efficient autonomous quantum error correction to enhance the reliability of a transmon-based quantum information processor.
Collapse
Affiliation(s)
- Ziqian Li
- James Franck Institute, University of Chicago, Chicago, IL, 60637, USA
- Department of Physics, University of Chicago, Chicago, IL, 60637, USA
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA
| | - Tanay Roy
- James Franck Institute, University of Chicago, Chicago, IL, 60637, USA
- Department of Physics, University of Chicago, Chicago, IL, 60637, USA
| | | | - Kan-Heng Lee
- James Franck Institute, University of Chicago, Chicago, IL, 60637, USA
- Department of Physics, University of Chicago, Chicago, IL, 60637, USA
| | - Eliot Kapit
- Department of Physics, Colorado School of Mines, Golden, CO, 80401, USA
| | - David I Schuster
- James Franck Institute, University of Chicago, Chicago, IL, 60637, USA.
- Department of Physics, University of Chicago, Chicago, IL, 60637, USA.
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA.
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
8
|
Lu Y, Maiti A, Garmon JWO, Ganjam S, Zhang Y, Claes J, Frunzio L, Girvin SM, Schoelkopf RJ. High-fidelity parametric beamsplitting with a parity-protected converter. Nat Commun 2023; 14:5767. [PMID: 37723141 PMCID: PMC10507116 DOI: 10.1038/s41467-023-41104-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/23/2023] [Indexed: 09/20/2023] Open
Abstract
Fast, high-fidelity operations between microwave resonators are an important tool for bosonic quantum computation and simulation with superconducting circuits. An attractive approach for implementing these operations is to couple these resonators via a nonlinear converter and actuate parametric processes with RF drives. It can be challenging to make these processes simultaneously fast and high fidelity, since this requires introducing strong drives without activating parasitic processes or introducing additional decoherence channels. We show that in addition to a careful management of drive frequencies and the spectrum of environmental noise, leveraging the inbuilt symmetries of the converter Hamiltonian can suppress unwanted nonlinear interactions, preventing converter-induced decoherence. We demonstrate these principles using a differentially-driven DC-SQUID as our converter, coupled to two high-Q microwave cavities. Using this architecture, we engineer a highly-coherent beamsplitter and fast (~100 ns) swaps between the cavities, limited primarily by their intrinsic single-photon loss. We characterize this beamsplitter in the cavities' joint single-photon subspace, and show that we can detect and post-select photon loss events to achieve a beamsplitter gate fidelity exceeding 99.98%, which to our knowledge far surpasses the current state of the art.
Collapse
Affiliation(s)
- Yao Lu
- Departments of Applied Physics and Physics, Yale University, New Haven, 06511, CT, USA.
- Yale Quantum Institute, Yale University, New Haven, 06511, CT, USA.
| | - Aniket Maiti
- Departments of Applied Physics and Physics, Yale University, New Haven, 06511, CT, USA.
- Yale Quantum Institute, Yale University, New Haven, 06511, CT, USA.
| | - John W O Garmon
- Departments of Applied Physics and Physics, Yale University, New Haven, 06511, CT, USA
- Yale Quantum Institute, Yale University, New Haven, 06511, CT, USA
| | - Suhas Ganjam
- Departments of Applied Physics and Physics, Yale University, New Haven, 06511, CT, USA
- Yale Quantum Institute, Yale University, New Haven, 06511, CT, USA
| | - Yaxing Zhang
- Departments of Applied Physics and Physics, Yale University, New Haven, 06511, CT, USA
- Yale Quantum Institute, Yale University, New Haven, 06511, CT, USA
| | - Jahan Claes
- Departments of Applied Physics and Physics, Yale University, New Haven, 06511, CT, USA
- Yale Quantum Institute, Yale University, New Haven, 06511, CT, USA
| | - Luigi Frunzio
- Departments of Applied Physics and Physics, Yale University, New Haven, 06511, CT, USA
- Yale Quantum Institute, Yale University, New Haven, 06511, CT, USA
| | - Steven M Girvin
- Departments of Applied Physics and Physics, Yale University, New Haven, 06511, CT, USA
- Yale Quantum Institute, Yale University, New Haven, 06511, CT, USA
| | - Robert J Schoelkopf
- Departments of Applied Physics and Physics, Yale University, New Haven, 06511, CT, USA.
- Yale Quantum Institute, Yale University, New Haven, 06511, CT, USA.
| |
Collapse
|
9
|
Zeng Y, Zhou ZY, Rinaldi E, Gneiting C, Nori F. Approximate Autonomous Quantum Error Correction with Reinforcement Learning. PHYSICAL REVIEW LETTERS 2023; 131:050601. [PMID: 37595216 DOI: 10.1103/physrevlett.131.050601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/22/2023] [Indexed: 08/20/2023]
Abstract
Autonomous quantum error correction (AQEC) protects logical qubits by engineered dissipation and thus circumvents the necessity of frequent, error-prone measurement-feedback loops. Bosonic code spaces, where single-photon loss represents the dominant source of error, are promising candidates for AQEC due to their flexibility and controllability. While existing proposals have demonstrated the in-principle feasibility of AQEC with bosonic code spaces, these schemes are typically based on the exact implementation of the Knill-Laflamme conditions and thus require the realization of Hamiltonian distances d≥2. Implementing such Hamiltonian distances requires multiple nonlinear interactions and control fields, rendering these schemes experimentally challenging. Here, we propose a bosonic code for approximate AQEC by relaxing the Knill-Laflamme conditions. Using reinforcement learning (RL), we identify the optimal bosonic set of code words (denoted here by RL code), which, surprisingly, is composed of the Fock states |2⟩ and |4⟩. As we show, the RL code, despite its approximate nature, successfully suppresses single-photon loss, reducing it to an effective dephasing process that well surpasses the break-even threshold. It may thus provide a valuable building block toward full error protection. The error-correcting Hamiltonian, which includes ancilla systems that emulate the engineered dissipation, is entirely based on the Hamiltonian distance d=1, significantly reducing model complexity. Single-qubit gates are implemented in the RL code with a maximum distance d_{g}=2.
Collapse
Affiliation(s)
- Yexiong Zeng
- Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wakoshi, Saitama 351-0198, Japan
- Quantum Computing Center, RIKEN, Wakoshi, Saitama 351-0198, Japan
| | - Zheng-Yang Zhou
- Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wakoshi, Saitama 351-0198, Japan
| | - Enrico Rinaldi
- Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wakoshi, Saitama 351-0198, Japan
- Quantum Computing Center, RIKEN, Wakoshi, Saitama 351-0198, Japan
- Quantinuum K.K., Otemachi Financial City Grand Cube 3F, 1-9-2 Otemachi, Chiyoda-ku, Tokyo, Japan
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
- Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN, Wakoshi, Saitama 351-0198, Japan
| | - Clemens Gneiting
- Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wakoshi, Saitama 351-0198, Japan
- Quantum Computing Center, RIKEN, Wakoshi, Saitama 351-0198, Japan
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wakoshi, Saitama 351-0198, Japan
- Quantum Computing Center, RIKEN, Wakoshi, Saitama 351-0198, Japan
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| |
Collapse
|
10
|
Behrle T, Nguyen TL, Reiter F, Baur D, de Neeve B, Stadler M, Marinelli M, Lancellotti F, Yelin SF, Home JP. Phonon Laser in the Quantum Regime. PHYSICAL REVIEW LETTERS 2023; 131:043605. [PMID: 37566845 DOI: 10.1103/physrevlett.131.043605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/30/2023] [Indexed: 08/13/2023]
Abstract
We demonstrate a trapped-ion system with two competing dissipation channels, implemented independently on two ion species cotrapped in a Paul trap. By controlling coherent spin-oscillator couplings and optical pumping rates we explore the phase diagram of this system, which exhibits a regime analogous to that of a (phonon) laser but operates close to the quantum ground state with an average phonon number of n[over ¯]<10. We demonstrate phase locking of the oscillator to an additional resonant drive, and also observe the phase diffusion of the resulting state under dissipation by reconstructing the quantum state from a measurement of the characteristic function.
Collapse
Affiliation(s)
- T Behrle
- Institute for Quantum Electronics, ETH Zürich, Otto-Stern-Weg 1, 8093 Zürich, Switzerland
| | - T L Nguyen
- Institute for Quantum Electronics, ETH Zürich, Otto-Stern-Weg 1, 8093 Zürich, Switzerland
| | - F Reiter
- Institute for Quantum Electronics, ETH Zürich, Otto-Stern-Weg 1, 8093 Zürich, Switzerland
- Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - D Baur
- Institute for Quantum Electronics, ETH Zürich, Otto-Stern-Weg 1, 8093 Zürich, Switzerland
| | - B de Neeve
- Institute for Quantum Electronics, ETH Zürich, Otto-Stern-Weg 1, 8093 Zürich, Switzerland
| | - M Stadler
- Institute for Quantum Electronics, ETH Zürich, Otto-Stern-Weg 1, 8093 Zürich, Switzerland
| | - M Marinelli
- Institute for Quantum Electronics, ETH Zürich, Otto-Stern-Weg 1, 8093 Zürich, Switzerland
| | - F Lancellotti
- Institute for Quantum Electronics, ETH Zürich, Otto-Stern-Weg 1, 8093 Zürich, Switzerland
| | - S F Yelin
- Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - J P Home
- Institute for Quantum Electronics, ETH Zürich, Otto-Stern-Weg 1, 8093 Zürich, Switzerland
- Quantum Center, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
11
|
Trade off-free entanglement stabilization in a superconducting qutrit-qubit system. Nat Commun 2022; 13:3994. [PMID: 35810169 PMCID: PMC9271051 DOI: 10.1038/s41467-022-31638-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/28/2022] [Indexed: 11/09/2022] Open
Abstract
Quantum reservoir engineering is a powerful framework for autonomous quantum state preparation and error correction. However, traditional approaches to reservoir engineering are hindered by unavoidable coherent leakage out of the target state, which imposes an inherent trade off between achievable steady-state state fidelity and stabilization rate. In this work we demonstrate a protocol that achieves trade off-free Bell state stabilization in a qutrit-qubit system realized on a circuit-QED platform. We accomplish this by creating a purely dissipative channel for population transfer into the target state, mediated by strong parametric interactions coupling the second-excited state of a superconducting transmon and the engineered bath resonator. Our scheme achieves a state preparation fidelity of 84% with a stabilization time constant of 339 ns, leading to a 54 ns error-time product in a solid-state quantum information platform.
Collapse
|
12
|
Zhou Y, Zhang Z, Yin Z, Huai S, Gu X, Xu X, Allcock J, Liu F, Xi G, Yu Q, Zhang H, Zhang M, Li H, Song X, Wang Z, Zheng D, An S, Zheng Y, Zhang S. Rapid and unconditional parametric reset protocol for tunable superconducting qubits. Nat Commun 2021; 12:5924. [PMID: 34635663 PMCID: PMC8505451 DOI: 10.1038/s41467-021-26205-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/13/2021] [Indexed: 11/09/2022] Open
Abstract
Qubit initialization is a critical task in quantum computation and communication. Extensive efforts have been made to achieve this with high speed, efficiency and scalability. However, previous approaches have either been measurement-based and required fast feedback, suffered from crosstalk or required sophisticated calibration. Here, we report a fast and high-fidelity reset scheme, avoiding the issues above without any additional chip architecture. By modulating the flux through a transmon qubit, we realize a swap between the qubit and its readout resonator that suppresses the excited state population to 0.08% ± 0.08% within 34 ns (284 ns if photon depletion of the resonator is required). Furthermore, our approach (i) can achieve effective second excited state depletion, (ii) has negligible effects on neighboring qubits, and (iii) offers a way to entangle the qubit with an itinerant single photon, useful in quantum communication applications.
Collapse
Affiliation(s)
- Yu Zhou
- Tencent Quantum Laboratory, Tencent, Shenzhen, Guangdong, 518057, China
| | - Zhenxing Zhang
- Tencent Quantum Laboratory, Tencent, Shenzhen, Guangdong, 518057, China
| | - Zelong Yin
- Tencent Quantum Laboratory, Tencent, Shenzhen, Guangdong, 518057, China
| | - Sainan Huai
- Tencent Quantum Laboratory, Tencent, Shenzhen, Guangdong, 518057, China
| | - Xiu Gu
- Tencent Quantum Laboratory, Tencent, Shenzhen, Guangdong, 518057, China
| | - Xiong Xu
- Tencent Quantum Laboratory, Tencent, Shenzhen, Guangdong, 518057, China
| | - Jonathan Allcock
- Tencent Quantum Laboratory, Tencent, Shenzhen, Guangdong, 518057, China
| | - Fuming Liu
- Tencent Quantum Laboratory, Tencent, Shenzhen, Guangdong, 518057, China
| | - Guanglei Xi
- Tencent Quantum Laboratory, Tencent, Shenzhen, Guangdong, 518057, China
| | - Qiaonian Yu
- Tencent Quantum Laboratory, Tencent, Shenzhen, Guangdong, 518057, China
| | - Hualiang Zhang
- Tencent Quantum Laboratory, Tencent, Shenzhen, Guangdong, 518057, China
| | - Mengyu Zhang
- Tencent Quantum Laboratory, Tencent, Shenzhen, Guangdong, 518057, China
| | - Hekang Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohui Song
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhan Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongning Zheng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuoming An
- Tencent Quantum Laboratory, Tencent, Shenzhen, Guangdong, 518057, China.
| | - Yarui Zheng
- Tencent Quantum Laboratory, Tencent, Shenzhen, Guangdong, 518057, China
| | - Shengyu Zhang
- Tencent Quantum Laboratory, Tencent, Shenzhen, Guangdong, 518057, China
| |
Collapse
|
13
|
Cai W, Han J, Hu L, Ma Y, Mu X, Wang W, Xu Y, Hua Z, Wang H, Song YP, Zhang JN, Zou CL, Sun L. High-Efficiency Arbitrary Quantum Operation on a High-Dimensional Quantum System. PHYSICAL REVIEW LETTERS 2021; 127:090504. [PMID: 34506165 DOI: 10.1103/physrevlett.127.090504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
The ability to manipulate quantum systems lies at the heart of the development of quantum technology. The ultimate goal of quantum control is to realize arbitrary quantum operations (AQUOs) for all possible open quantum system dynamics. However, the demanding extra physical resources impose great obstacles. Here, we experimentally demonstrate a universal approach of AQUO on a photonic qudit with the minimum physical resource of a two-level ancilla and a log_{2}d-scale circuit depth for a d-dimensional system. The AQUO is then applied in a quantum trajectory simulation for quantum subspace stabilization and quantum Zeno dynamics, as well as incoherent manipulation and generalized measurements of the qudit. Therefore, the demonstrated AQUO for complete quantum control would play an indispensable role in quantum information science.
Collapse
Affiliation(s)
- W Cai
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - J Han
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - L Hu
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - Y Ma
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - X Mu
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - W Wang
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - Y Xu
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - Z Hua
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - H Wang
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - Y P Song
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - J-N Zhang
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - C-L Zou
- Key Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - L Sun
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Peng J, Zheng J, Yu J, Tang P, Barrios GA, Zhong J, Solano E, Albarrán-Arriagada F, Lamata L. One-Photon Solutions to the Multiqubit Multimode Quantum Rabi Model for Fast W-State Generation. PHYSICAL REVIEW LETTERS 2021; 127:043604. [PMID: 34355937 DOI: 10.1103/physrevlett.127.043604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
General solutions to the quantum Rabi model involve subspaces with an unbounded number of photons. However, for the multiqubit multimode case, we find special solutions with at most one photon for an arbitrary number of qubits and photon modes. Such solutions exist for arbitrary single qubit-photon coupling strength with constant eigenenergy, while still being qubit-photon entangled states. Taking advantage of their peculiarities and the reach of the ultrastrong coupling regime, we propose an adiabatic scheme for the fast and deterministic generation of a two-qubit Bell state and arbitrary single-photon multimode W states with nonadiabatic error less than 1%. Finally, we propose a superconducting circuit design to catch and release the W states, and shows the experimental feasibility of the multimode multiqubit quantum Rabi model.
Collapse
Affiliation(s)
- Jie Peng
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices and School of Physics and Optoelectronics, Xiangtan University, Hunan 411105, China
| | - Juncong Zheng
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices and School of Physics and Optoelectronics, Xiangtan University, Hunan 411105, China
| | - Jing Yu
- International Center of Quantum Artificial Intelligence for Science and Technology (QuArtist) and Physics Department, Shanghai University, 200444 Shanghai, China
| | - Pinghua Tang
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices and School of Physics and Optoelectronics, Xiangtan University, Hunan 411105, China
| | - G Alvarado Barrios
- International Center of Quantum Artificial Intelligence for Science and Technology (QuArtist) and Physics Department, Shanghai University, 200444 Shanghai, China
| | - Jianxin Zhong
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices and School of Physics and Optoelectronics, Xiangtan University, Hunan 411105, China
| | - Enrique Solano
- International Center of Quantum Artificial Intelligence for Science and Technology (QuArtist) and Physics Department, Shanghai University, 200444 Shanghai, China
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
- Kipu Quantum, Kurwenalstrasse 1, 80804 Munich, Germany
| | - F Albarrán-Arriagada
- International Center of Quantum Artificial Intelligence for Science and Technology (QuArtist) and Physics Department, Shanghai University, 200444 Shanghai, China
| | - Lucas Lamata
- Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, 41080 Sevilla, Spain
| |
Collapse
|
15
|
Makihara T, Hayashida K, Noe Ii GT, Li X, Marquez Peraca N, Ma X, Jin Z, Ren W, Ma G, Katayama I, Takeda J, Nojiri H, Turchinovich D, Cao S, Bamba M, Kono J. Ultrastrong magnon-magnon coupling dominated by antiresonant interactions. Nat Commun 2021; 12:3115. [PMID: 34035241 PMCID: PMC8149649 DOI: 10.1038/s41467-021-23159-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/13/2021] [Indexed: 11/09/2022] Open
Abstract
Exotic quantum vacuum phenomena are predicted in cavity quantum electrodynamics systems with ultrastrong light-matter interactions. Their ground states are predicted to be vacuum squeezed states with suppressed quantum fluctuations owing to antiresonant terms in the Hamiltonian. However, such predictions have not been realized because antiresonant interactions are typically negligible compared to resonant interactions in light-matter systems. Here we report an unusual, ultrastrongly coupled matter-matter system of magnons that is analytically described by a unique Hamiltonian in which the relative importance of resonant and antiresonant interactions can be easily tuned and the latter can be made vastly dominant. We found a regime where vacuum Bloch-Siegert shifts, the hallmark of antiresonant interactions, greatly exceed analogous frequency shifts from resonant interactions. Further, we theoretically explored the system’s ground state and calculated up to 5.9 dB of quantum fluctuation suppression. These observations demonstrate that magnonic systems provide an ideal platform for exploring exotic quantum vacuum phenomena predicted in ultrastrongly coupled light-matter systems. Ultrastrong light-matter interactions with dominant antiresonant terms are expected to give rise to interesting phenomena such as quantum fluctuation suppression. Here, the authors propose a system of ultrastrongly coupled magnon modes in a rare earth orthoferrite as a platform for exploring such phenomena.
Collapse
Affiliation(s)
- Takuma Makihara
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
| | - Kenji Hayashida
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA.,Division of Applied Physics, Graduate School of Engineering, Hokkaido University, Sapporo, Japan
| | - G Timothy Noe Ii
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Xinwei Li
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | | | - Xiaoxuan Ma
- Department of Physics, International Center of Quantum and Molecular Structures and Materials Genome Institute, Shanghai University, Shanghai, China
| | - Zuanming Jin
- Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China
| | - Wei Ren
- Department of Physics, International Center of Quantum and Molecular Structures and Materials Genome Institute, Shanghai University, Shanghai, China
| | - Guohong Ma
- Department of Physics, International Center of Quantum and Molecular Structures and Materials Genome Institute, Shanghai University, Shanghai, China
| | - Ikufumi Katayama
- Department of Physics, Graduate School of Engineering Science, Yokohama National University, Yokohama, Japan
| | - Jun Takeda
- Department of Physics, Graduate School of Engineering Science, Yokohama National University, Yokohama, Japan
| | - Hiroyuki Nojiri
- Institute for Materials Research, Tohoku University, Sendai, Japan
| | | | - Shixun Cao
- Department of Physics, International Center of Quantum and Molecular Structures and Materials Genome Institute, Shanghai University, Shanghai, China.
| | - Motoaki Bamba
- Department of Physics I, Kyoto University, Kyoto, Japan. .,PRESTO, Japan Science and Technology Agency, Saitama, Japan. .,The Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan.
| | - Junichiro Kono
- Department of Physics and Astronomy, Rice University, Houston, TX, USA. .,Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA. .,Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA.
| |
Collapse
|
16
|
Bresque L, Camati PA, Rogers S, Murch K, Jordan AN, Auffèves A. Two-Qubit Engine Fueled by Entanglement and Local Measurements. PHYSICAL REVIEW LETTERS 2021; 126:120605. [PMID: 33834814 DOI: 10.1103/physrevlett.126.120605] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/19/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
We introduce a two-qubit engine that is powered by entanglement and local measurements. Energy is extracted from the detuned qubits coherently exchanging a single excitation. Generalizing to an N-qubit chain, we show that the low energy of the first qubit can be up-converted to an arbitrarily high energy at the last qubit by successive neighbor swap operations and local measurements. We finally model the local measurement as the entanglement of a qubit with a meter, and we identify the fuel as the energetic cost to erase the correlations between the qubits. Our findings extend measurement-powered engines to composite working substances and provide a microscopic interpretation of the fueling mechanism.
Collapse
Affiliation(s)
- Léa Bresque
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Patrice A Camati
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Spencer Rogers
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - Kater Murch
- Department of Physics, Washington University, St. Louis, Missouri 63130, USA
| | - Andrew N Jordan
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
- Institute for Quantum Studies, Chapman University, Orange, California 92866, USA
| | - Alexia Auffèves
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| |
Collapse
|
17
|
Gau M, Egger R, Zazunov A, Gefen Y. Driven Dissipative Majorana Dark Spaces. PHYSICAL REVIEW LETTERS 2020; 125:147701. [PMID: 33064546 DOI: 10.1103/physrevlett.125.147701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Pure quantum states can be stabilized in open quantum systems subject to external driving forces and dissipation by environmental modes. We show that driven dissipative (DD) Majorana devices offer key advantages for stabilizing degenerate state manifolds ("dark spaces") and for manipulating states in dark spaces, both with respect to native (non-DD) Majorana devices and to DD platforms with topologically trivial building blocks. For two tunnel-coupled Majorana boxes, using otherwise only standard hardware elements (e.g., a noisy electromagnetic environment and quantum dots with driven tunnel links), we propose a dark qubit encoding. We anticipate exceptionally high fault tolerance levels due to a conspiracy of DD-based autonomous error correction and topology.
Collapse
Affiliation(s)
- Matthias Gau
- Institut für Theoretische Physik, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany
- Department of Condensed Matter Physics, Weizmann Institute, Rehovot, Israel
| | - Reinhold Egger
- Institut für Theoretische Physik, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany
| | - Alex Zazunov
- Institut für Theoretische Physik, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany
| | - Yuval Gefen
- Department of Condensed Matter Physics, Weizmann Institute, Rehovot, Israel
| |
Collapse
|
18
|
Xu Y, Hua Z, Chen T, Pan X, Li X, Han J, Cai W, Ma Y, Wang H, Song YP, Xue ZY, Sun L. Experimental Implementation of Universal Nonadiabatic Geometric Quantum Gates in a Superconducting Circuit. PHYSICAL REVIEW LETTERS 2020; 124:230503. [PMID: 32603172 DOI: 10.1103/physrevlett.124.230503] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Using geometric phases to realize noise-resilient quantum computing is an important method to enhance the control fidelity. In this work, we experimentally realize a universal nonadiabatic geometric quantum gate set in a superconducting qubit chain. We characterize the realized single- and two-qubit geometric gates with both quantum process tomography and randomized benchmarking methods. The measured average fidelities for the single-qubit rotation gates and two-qubit controlled-Z gate are 0.9977(1) and 0.977(9), respectively. Besides, we also experimentally demonstrate the noise-resilient feature of the realized single-qubit geometric gates by comparing their performance with the conventional dynamical gates with different types of errors in the control field. Thus, our experiment proves a way to achieve high-fidelity geometric quantum gates for robust quantum computation.
Collapse
Affiliation(s)
- Y Xu
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - Z Hua
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - Tao Chen
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, GPETR Center for Quantum Precision Measurement, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| | - X Pan
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - X Li
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - J Han
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - W Cai
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - Y Ma
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - H Wang
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - Y P Song
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - Zheng-Yuan Xue
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, GPETR Center for Quantum Precision Measurement, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| | - L Sun
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
19
|
Collodo MC, Potočnik A, Gasparinetti S, Besse JC, Pechal M, Sameti M, Hartmann MJ, Wallraff A, Eichler C. Observation of the Crossover from Photon Ordering to Delocalization in Tunably Coupled Resonators. PHYSICAL REVIEW LETTERS 2019; 122:183601. [PMID: 31144878 DOI: 10.1103/physrevlett.122.183601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/24/2019] [Indexed: 06/09/2023]
Abstract
Networks of nonlinear resonators offer intriguing perspectives as quantum simulators for nonequilibrium many-body phases of driven-dissipative systems. Here, we employ photon correlation measurements to study the radiation fields emitted from a system of two superconducting resonators in a driven-dissipative regime, coupled nonlinearly by a superconducting quantum interference device, with cross-Kerr interactions dominating over on-site Kerr interactions. We apply a parametrically modulated magnetic flux to control the linear photon hopping rate between the two resonators and its ratio with the cross-Kerr rate. When increasing the hopping rate, we observe a crossover from an ordered to a delocalized state of photons. The presented coupling scheme is intrinsically robust to frequency disorder and may therefore prove useful for realizing larger-scale resonator arrays.
Collapse
Affiliation(s)
| | - Anton Potočnik
- Department of Physics, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | | - Marek Pechal
- Department of Physics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Mahdi Sameti
- Institute of Photonics and Quantum Sciences, Heriot-Watt University Edinburgh EH14 4AS, United Kingdom
| | - Michael J Hartmann
- Institute of Photonics and Quantum Sciences, Heriot-Watt University Edinburgh EH14 4AS, United Kingdom
| | | | | |
Collapse
|
20
|
Ma R, Saxberg B, Owens C, Leung N, Lu Y, Simon J, Schuster DI. A dissipatively stabilized Mott insulator of photons. Nature 2019; 566:51-57. [DOI: 10.1038/s41586-019-0897-9] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/07/2018] [Indexed: 11/09/2022]
|
21
|
Earnest N, Chakram S, Lu Y, Irons N, Naik RK, Leung N, Ocola L, Czaplewski DA, Baker B, Lawrence J, Koch J, Schuster DI. Realization of a Λ System with Metastable States of a Capacitively Shunted Fluxonium. PHYSICAL REVIEW LETTERS 2018; 120:150504. [PMID: 29756860 DOI: 10.1103/physrevlett.120.150504] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Indexed: 06/08/2023]
Abstract
We realize a Λ system in a superconducting circuit, with metastable states exhibiting lifetimes up to 8 ms. We exponentially suppress the tunneling matrix elements involved in spontaneous energy relaxation by creating a "heavy" fluxonium, realized by adding a capacitive shunt to the original circuit design. The device allows for both cavity-assisted and direct fluorescent readouts, as well as state preparation schemes akin to optical pumping. Since direct transitions between the metastable states are strongly suppressed, we utilize Raman transitions for coherent manipulation of the states.
Collapse
Affiliation(s)
- N Earnest
- The James Franck Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| | - S Chakram
- The James Franck Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| | - Y Lu
- The James Franck Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| | - N Irons
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
| | - R K Naik
- The James Franck Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| | - N Leung
- The James Franck Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| | - L Ocola
- Argonne National Laboratories, Center for Nanoscale Materials, Argonne, Illinois 60439, USA
| | - D A Czaplewski
- Argonne National Laboratories, Center for Nanoscale Materials, Argonne, Illinois 60439, USA
| | - B Baker
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
| | - Jay Lawrence
- Department of Physics, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Jens Koch
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
| | - D I Schuster
- The James Franck Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
22
|
Kapit E. Error-Transparent Quantum Gates for Small Logical Qubit Architectures. PHYSICAL REVIEW LETTERS 2018; 120:050503. [PMID: 29481172 DOI: 10.1103/physrevlett.120.050503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Indexed: 06/08/2023]
Abstract
One of the largest obstacles to building a quantum computer is gate error, where the physical evolution of the state of a qubit or group of qubits during a gate operation does not match the intended unitary transformation. Gate error stems from a combination of control errors and random single qubit errors from interaction with the environment. While great strides have been made in mitigating control errors, intrinsic qubit error remains a serious problem that limits gate fidelity in modern qubit architectures. Simultaneously, recent developments of small error-corrected logical qubit devices promise significant increases in logical state lifetime, but translating those improvements into increases in gate fidelity is a complex challenge. In this Letter, we construct protocols for gates on and between small logical qubit devices which inherit the parent device's tolerance to single qubit errors which occur at any time before or during the gate. We consider two such devices, a passive implementation of the three-qubit bit flip code, and the author's own [E. Kapit, Phys. Rev. Lett. 116, 150501 (2016)PRLTAO0031-900710.1103/PhysRevLett.116.150501] very small logical qubit (VSLQ) design, and propose error-tolerant gate sets for both. The effective logical gate error rate in these models displays superlinear error reduction with linear increases in single qubit lifetime, proving that passive error correction is capable of increasing gate fidelity. Using a standard phenomenological noise model for superconducting qubits, we demonstrate a realistic, universal one- and two-qubit gate set for the VSLQ, with error rates an order of magnitude lower than those for same-duration operations on single qubits or pairs of qubits. These developments further suggest that incorporating small logical qubits into a measurement based code could substantially improve code performance.
Collapse
Affiliation(s)
- Eliot Kapit
- Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, USA
| |
Collapse
|
23
|
Naik RK, Leung N, Chakram S, Groszkowski P, Lu Y, Earnest N, McKay DC, Koch J, Schuster DI. Random access quantum information processors using multimode circuit quantum electrodynamics. Nat Commun 2017; 8:1904. [PMID: 29199271 PMCID: PMC5712528 DOI: 10.1038/s41467-017-02046-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/03/2017] [Indexed: 11/13/2022] Open
Abstract
Qubit connectivity is an important property of a quantum processor, with an ideal processor having random access—the ability of arbitrary qubit pairs to interact directly. This a challenge with superconducting circuits, as state-of-the-art architectures rely on only nearest-neighbor coupling. Here, we implement a random access superconducting quantum information processor, demonstrating universal operations on a nine-qubit memory, with a Josephson junction transmon circuit serving as the central processor. The quantum memory uses the eigenmodes of a linear array of coupled superconducting resonators. We selectively stimulate vacuum Rabi oscillations between the transmon and individual eigenmodes through parametric flux modulation of the transmon frequency. Utilizing these oscillations, we perform a universal set of quantum gates on 38 arbitrary pairs of modes and prepare multimode entangled states, all using only two control lines. We thus achieve hardware-efficient random access multi-qubit control in an architecture compatible with long-lived microwave cavity-based quantum memories. Despite their versatility, superconducting qubits such as transmons still have limited coherence times compared to resonators. Here, the authors show how to use a single transmon to implement universal one-qubit and two-qubit operations among nine qubits encoded in superconducting resonators’ eigenmodes.
Collapse
Affiliation(s)
- R K Naik
- The James Franck Institute and Department of Physics, University of Chicago, Chicago, IL, 60637, USA.
| | - N Leung
- The James Franck Institute and Department of Physics, University of Chicago, Chicago, IL, 60637, USA
| | - S Chakram
- The James Franck Institute and Department of Physics, University of Chicago, Chicago, IL, 60637, USA
| | - Peter Groszkowski
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, 60208, USA
| | - Y Lu
- The James Franck Institute and Department of Physics, University of Chicago, Chicago, IL, 60637, USA
| | - N Earnest
- The James Franck Institute and Department of Physics, University of Chicago, Chicago, IL, 60637, USA
| | - D C McKay
- IBM T.J. Watson Research Center, Yorktown Heights, NY, 10598, USA
| | - Jens Koch
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, 60208, USA
| | - D I Schuster
- The James Franck Institute and Department of Physics, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|