1
|
Wood AA, McCloskey DJ, Dontschuk N, Lozovoi A, Goldblatt RM, Delord T, Broadway DA, Tetienne JP, Johnson BC, Mitchell KT, Lew CTK, Meriles CA, Martin AM. 3D-Mapping and Manipulation of Photocurrent in an Optoelectronic Diamond Device. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405338. [PMID: 39177116 DOI: 10.1002/adma.202405338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/28/2024] [Indexed: 08/24/2024]
Abstract
Establishing connections between material impurities and charge transport properties in emerging electronic and quantum materials, such as wide-bandgap semiconductors, demands new diagnostic methods tailored to these unique systems. Many such materials host optically-active defect centers which offer a powerful in situ characterization system, but one that typically relies on the weak spin-electric field coupling to measure electronic phenomena. In this work, charge-state sensitive optical microscopy is combined with photoelectric detection of an array of nitrogen-vacancy (NV) centers to directly image the flow of charge carriers inside a diamond optoelectronic device, in 3D and with temporal resolution. Optical control is used to change the charge state of background impurities inside the diamond on-demand, resulting in drastically different current flow such as filamentary channels nucleating from specific, defective regions of the device. Conducting channels that control carrier flow, key steps toward optically reconfigurable, wide-bandgap optoelectronics are then engineered using light. This work might be extended to probe other wide-bandgap semiconductors (SiC, GaN) relevant to present and emerging electronic and quantum technologies.
Collapse
Affiliation(s)
- Alexander A Wood
- School of Physics, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Daniel J McCloskey
- School of Physics, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Nikolai Dontschuk
- School of Physics, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Artur Lozovoi
- CUNY-The City College of New York, New York, 10031, USA
| | - Russell M Goldblatt
- School of Physics, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Tom Delord
- CUNY-The City College of New York, New York, 10031, USA
| | - David A Broadway
- School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | | | - Brett C Johnson
- School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Kaih T Mitchell
- School of Physics, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Christopher T-K Lew
- School of Physics, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Carlos A Meriles
- CUNY-The City College of New York, New York, 10031, USA
- CUNY - The Graduate Center, New York, NY, 10016, USA
| | - Andy M Martin
- School of Physics, University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
2
|
Garcia‐Arellano G, López‐Morales GI, Manson NB, Flick J, Wood AA, Meriles CA. Photo-Induced Charge State Dynamics of the Neutral and Negatively Charged Silicon Vacancy Centers in Room-Temperature Diamond. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308814. [PMID: 38475912 PMCID: PMC11165459 DOI: 10.1002/advs.202308814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Indexed: 03/14/2024]
Abstract
The silicon vacancy (SiV) center in diamond is drawing much attention due to its optical and spin properties, attractive for quantum information processing and sensing. Comparatively little is known, however, about the dynamics governing SiV charge state interconversion mainly due to challenges associated with generating, stabilizing, and characterizing all possible charge states, particularly at room temperature. Here, multi-color confocal microscopy and density functional theory are used to examine photo-induced SiV recombination - from neutral, to single-, to double-negatively charged - over a broad spectral window in chemical-vapor-deposition (CVD) diamond under ambient conditions. For the SiV0 to SiV- transition, a linear growth of the photo-recombination rate with laser power at all observed wavelengths is found, a hallmark of single photon dynamics. Laser excitation of SiV‒, on the other hand, yields only fractional recombination into SiV2‒, a finding that is interpreted in terms of a photo-activated electron tunneling process from proximal nitrogen atoms.
Collapse
Affiliation(s)
| | | | - N. B. Manson
- Department of Quantum Science and TechnologyResearch School of PhysicsAustralian National UniversityCanberraACT2601Australia
| | - J. Flick
- Department of PhysicsCUNY‐City College of New YorkNew YorkNY10031USA
- CUNY‐Graduate CenterNew YorkNY10016USA
- Center for Computational Quantum PhysicsFlatiron InstituteNew YorkNY10010USA
| | - A. A. Wood
- School of PhysicsThe University of MelbourneParkvilleVIC3010Australia
| | - C. A. Meriles
- Department of PhysicsCUNY‐City College of New YorkNew YorkNY10031USA
- CUNY‐Graduate CenterNew YorkNY10016USA
| |
Collapse
|
3
|
Hyder A, Ali A, Buledi JA, Memon AA, Iqbal M, Bangalni TH, Solangi AR, Thebo KH, Akhtar J. Nanodiamonds: A Cutting-Edge Approach to Enhancing Biomedical Therapies and Diagnostics in Biosensing. CHEM REC 2024; 24:e202400006. [PMID: 38530037 DOI: 10.1002/tcr.202400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/25/2024] [Indexed: 03/27/2024]
Abstract
Nanodiamonds (NDs) have garnered attention in the field of nanomedicine due to their unique properties. This review offers a comprehensive overview of NDs synthesis methods, properties, and their uses in biomedical applications. Various synthesis techniques, such as detonation, high-pressure, high-temperature, and chemical vapor deposition, offer distinct advantages in tailoring NDs' size, shape, and surface properties. Surface modification methods further enhance NDs' biocompatibility and enable the attachment of bioactive molecules, expanding their applicability in biological systems. NDs serve as promising nanocarriers for drug delivery, showcasing biocompatibility and the ability to encapsulate therapeutic agents for targeted delivery. Additionally, NDs demonstrate potential in cancer treatment through hyperthermic therapy and vaccine enhancement for improved immune responses. Functionalization of NDs facilitates their utilization in biosensors for sensitive biomolecule detection, aiding in precise diagnostics and rapid detection of infectious diseases. This review underscores the multifaceted role of NDs in advancing biomedical applications. By synthesizing NDs through various methods and modifying their surfaces, researchers can tailor their properties for specific biomedical needs. The ability of NDs to serve as efficient drug delivery vehicles holds promise for targeted therapy, while their applications in hyperthermic therapy and vaccine enhancement offer innovative approaches to cancer treatment and immunization. Furthermore, the integration of NDs into biosensors enhances diagnostic capabilities, enabling rapid and sensitive detection of biomolecules and infectious diseases. Overall, the diverse functionalities of NDs underscore their potential as valuable tools in nanomedicine, paving the way for advancements in healthcare and biotechnology.
Collapse
Affiliation(s)
- Ali Hyder
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Akbar Ali
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering (IPE), Chinese Academy of Sciences, Beijing, 100F190, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China
| | - Jamil A Buledi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Ayaz Ali Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Muzaffar Iqbal
- Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur KPK, Haripur, 22620, Pakistan
| | - Talib Hussain Bangalni
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Khalid Hussain Thebo
- Institute of Metal Research (IMR), Chinese Academy of Science, 2 Wenhua Rood, Shenyang, China
- Department of Chemistry Mirpur, University of Science and Technology (MUST), 10250 (AJK), Mirpur, Pakistan
| | - Javeed Akhtar
- Department of Chemistry Mirpur, University of Science and Technology (MUST), 10250 (AJK), Mirpur, Pakistan
| |
Collapse
|
4
|
Rieger M, Villafañe V, Todenhagen LM, Matthies S, Appel S, Brandt MS, Müller K, Finley JJ. Fast optoelectronic charge state conversion of silicon vacancies in diamond. SCIENCE ADVANCES 2024; 10:eadl4265. [PMID: 38381816 PMCID: PMC10881026 DOI: 10.1126/sciadv.adl4265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
Group IV vacancy color centers in diamond are promising spin-photon interfaces with strong potential for applications in photonic quantum technologies. Reliable methods for controlling and stabilizing their charge state are urgently needed for scaling to multiqubit devices. Here, we manipulate the charge state of silicon vacancy (SiV) ensembles by combining luminescence and photocurrent spectroscopy. We controllably convert the charge state between the optically active SiV- and dark SiV2- with megahertz rates and >90% contrast by judiciously choosing the local potential applied to in-plane surface electrodes and the laser excitation wavelength. We observe intense SiV- photoluminescence under hole capture, measure the intrinsic conversion time from the dark SiV2- to the bright SiV- to be 36.4(67) ms, and demonstrate how it can be enhanced by a factor of 105 via optical pumping. Moreover, we obtain previously unknown information on the defects that contribute to photoconductivity, indicating the presence of substitutional nitrogen and divacancies.
Collapse
Affiliation(s)
- Manuel Rieger
- Walter Schottky Institute, School of Natural Sciences and MCQST, Technical University of Munich, 85748 Garching, Germany
| | - Viviana Villafañe
- Walter Schottky Institute, School of Natural Sciences and MCQST, Technical University of Munich, 85748 Garching, Germany
- Walter Schottky Institute, School of Computation, Information and Technology and MCQST, Technical University of Munich, 85748 Garching, Germany
| | - Lina M. Todenhagen
- Walter Schottky Institute, School of Natural Sciences and MCQST, Technical University of Munich, 85748 Garching, Germany
| | - Stephan Matthies
- Walter Schottky Institute, School of Computation, Information and Technology and MCQST, Technical University of Munich, 85748 Garching, Germany
| | - Stefan Appel
- Walter Schottky Institute, School of Computation, Information and Technology and MCQST, Technical University of Munich, 85748 Garching, Germany
| | - Martin S. Brandt
- Walter Schottky Institute, School of Natural Sciences and MCQST, Technical University of Munich, 85748 Garching, Germany
| | - Kai Müller
- Walter Schottky Institute, School of Computation, Information and Technology and MCQST, Technical University of Munich, 85748 Garching, Germany
| | - Jonathan J. Finley
- Walter Schottky Institute, School of Natural Sciences and MCQST, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
5
|
Wood A, Lozovoi A, Zhang ZH, Sharma S, López-Morales GI, Jayakumar H, de Leon NP, Meriles CA. Room-Temperature Photochromism of Silicon Vacancy Centers in CVD Diamond. NANO LETTERS 2023; 23:1017-1022. [PMID: 36668997 DOI: 10.1021/acs.nanolett.2c04514] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The silicon vacancy (SiV) center in diamond is typically found in three stable charge states, SiV0, SiV-, and SiV2-, but studying the processes leading to their formation is challenging, especially at room temperature, due to their starkly different photoluminescence rates. Here, we use confocal fluorescence microscopy to activate and probe charge interconversion between all three charge states under ambient conditions. In particular, we witness the formation of SiV0 via the two-step capture of diffusing, photogenerated holes, a process we expose both through direct SiV0 fluorescence measurements at low temperatures and confocal microscopy observations in the presence of externally applied electric fields. In addition, we show that continuous red illumination induces the converse process, first transforming SiV0 into SiV- and then into SiV2-. Our results shed light on the charge dynamics of SiV and promise opportunities for nanoscale sensing and quantum information processing.
Collapse
Affiliation(s)
- Alexander Wood
- Department. of Physics, CUNY-City College of New York, New York, New York 10031, United States
- University of Melbourne, Parkville VIC 3010, Australia
| | - Artur Lozovoi
- Department. of Physics, CUNY-City College of New York, New York, New York 10031, United States
| | - Zi-Huai Zhang
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Sachin Sharma
- Department. of Physics, CUNY-City College of New York, New York, New York 10031, United States
| | - Gabriel I López-Morales
- Department. of Physics, CUNY-City College of New York, New York, New York 10031, United States
| | - Harishankar Jayakumar
- Department. of Physics, CUNY-City College of New York, New York, New York 10031, United States
- University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nathalie P de Leon
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Carlos A Meriles
- Department. of Physics, CUNY-City College of New York, New York, New York 10031, United States
- CUNY-Graduate Center, New York, New York 10016, United States
| |
Collapse
|
6
|
Titze M, Byeon H, Flores A, Henshaw J, Harris CT, Mounce AM, Bielejec ES. In Situ Ion Counting for Improved Implanted Ion Error Rate and Silicon Vacancy Yield Uncertainty. NANO LETTERS 2022; 22:3212-3218. [PMID: 35426685 DOI: 10.1021/acs.nanolett.1c04646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An in situ counted ion implantation experiment improving the error on the number of ions required to form a single optically active silicon vacancy (SiV) defect in diamond 7-fold compared to timed implantation is presented. Traditional timed implantation relies on a beam current measurement followed by implantation with a preset pulse duration. It is dominated by Poisson statistics, resulting in large errors for low ion numbers. Instead, our in situ detection, measuring the ion number arriving at the substrate, results in a 2-fold improvement of the error on the ion number required to generate a single SiV compared to timed implantation. Through postimplantation analysis, the error is improved 7-fold compared to timed implantation. SiVs are detected by photoluminescence spectroscopy, and the yield of 2.98% is calculated through the photoluminescence count rate. Hanbury-Brown-Twiss interferometry is performed on locations potentially hosting single-photon emitters, confirming that 82% of the locations exhibit single photon emission statistics.
Collapse
Affiliation(s)
- Michael Titze
- Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Heejun Byeon
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Anthony Flores
- Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Jacob Henshaw
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - C Thomas Harris
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Andrew M Mounce
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Edward S Bielejec
- Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| |
Collapse
|
7
|
Lozovoi A, Vizkelethy G, Bielejec E, Meriles CA. Imaging dark charge emitters in diamond via carrier-to-photon conversion. SCIENCE ADVANCES 2022; 8:eabl9402. [PMID: 34995119 PMCID: PMC8741179 DOI: 10.1126/sciadv.abl9402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/16/2021] [Indexed: 05/22/2023]
Abstract
The application of color centers in wide-bandgap semiconductors to nanoscale sensing and quantum information processing largely rests on our knowledge of the surrounding crystalline lattice, often obscured by the countless classes of point defects the material can host. Here, we monitor the fluorescence from a negatively charged nitrogen-vacancy (NV−) center in diamond as we illuminate its vicinity. Cyclic charge state conversion of neighboring point defects sensitive to the excitation beam leads to a position-dependent stream of photo-generated carriers whose capture by the probe NV− leads to a fluorescence change. This “charge-to-photon” conversion scheme allows us to image other individual point defects surrounding the probe NV, including nonfluorescent “single-charge emitters” that would otherwise remain unnoticed. Given the ubiquity of color center photochromism, this strategy may likely find extensions to material systems other than diamond.
Collapse
Affiliation(s)
- Artur Lozovoi
- Department of Physics, CUNY-City College of New York, New York, NY 10031, USA
| | | | | | - Carlos A. Meriles
- Department of Physics, CUNY-City College of New York, New York, NY 10031, USA
- CUNY-Graduate Center, New York, NY 10016, USA
- Corresponding author.
| |
Collapse
|
8
|
Gardill A, Kemeny I, Cambria MC, Li Y, Dinani HT, Norambuena A, Maze JR, Lordi V, Kolkowitz S. Probing Charge Dynamics in Diamond with an Individual Color Center. NANO LETTERS 2021; 21:6960-6966. [PMID: 34339601 DOI: 10.1021/acs.nanolett.1c02250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Control over the charge states of color centers in solids is necessary to fully utilize them in quantum technologies. However, the microscopic charge dynamics of deep defects in wide-band-gap semiconductors are complex, and much remains unknown. We utilize a single-shot charge-state readout of an individual nitrogen-vacancy (NV) center to probe the charge dynamics of the surrounding defects in diamond. We show that the NV center charge state can be converted through the capture of holes produced by optical illumination of defects many micrometers away. With this method, we study the optical charge conversion of silicon-vacancy (SiV) centers and provide evidence that the dark state of the SiV center under optical illumination is SiV2-. These measurements illustrate that charge carrier generation, transport, and capture are important considerations in the design and implementation of quantum devices with color centers and provide a novel way to probe and control charge dynamics in diamond.
Collapse
Affiliation(s)
- Aedan Gardill
- Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Ishita Kemeny
- Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Matthew C Cambria
- Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Yanfei Li
- Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Hossein T Dinani
- Centro de Investigación DAiTA Lab, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago 7560908, Chile
| | - Ariel Norambuena
- Centro de Investigación DAiTA Lab, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago 7560908, Chile
| | - Jeronimo R Maze
- Instituto de Física, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Centro de Investigación en Nanotecnología y Materiales Avanzados, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Vincenzo Lordi
- Lawrence Livermore National Laboratory, Livermore, California 94551, United States
| | - Shimon Kolkowitz
- Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| |
Collapse
|
9
|
Lozovoi A, Jayakumar H, Daw D, Lakra A, Meriles CA. Probing Metastable Space-Charge Potentials in a Wide Band Gap Semiconductor. PHYSICAL REVIEW LETTERS 2020; 125:256602. [PMID: 33416343 DOI: 10.1103/physrevlett.125.256602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/18/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
While the study of space-charge potentials has a long history, present models are largely based on the notion of steady state equilibrium, ill-suited to describe wide band gap semiconductors with moderate to low concentrations of defects. Here we build on color centers in diamond both to locally inject carriers into the crystal and probe their evolution as they propagate in the presence of external and internal potentials. We witness the formation of metastable charge patterns whose shape-and concomitant field-can be engineered through the timing of carrier injection and applied voltages. With the help of previously crafted charge patterns, we unveil a rich interplay between local and extended sources of space-charge field, which we then exploit to show space-charge-induced carrier guiding.
Collapse
Affiliation(s)
- Artur Lozovoi
- Department of Physics, CUNY-City College of New York, New York, New York 10031, USA
| | | | - Damon Daw
- Department of Physics, CUNY-City College of New York, New York, New York 10031, USA
- CUNY-Graduate Center, New York, New York 10016, USA
| | - Ayesha Lakra
- Department of Physics, CUNY-City College of New York, New York, New York 10031, USA
| | - Carlos A Meriles
- Department of Physics, CUNY-City College of New York, New York, New York 10031, USA
- CUNY-Graduate Center, New York, New York 10016, USA
| |
Collapse
|
10
|
Jayakumar H, Lozovoi A, Daw D, Meriles CA. Long-Term Spin State Storage Using Ancilla Charge Memories. PHYSICAL REVIEW LETTERS 2020; 125:236601. [PMID: 33337195 DOI: 10.1103/physrevlett.125.236601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 08/18/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
We articulate confocal microscopy and electron spin resonance to implement spin-to-charge conversion in a small ensemble of nitrogen-vacancy (NV) centers in bulk diamond and demonstrate charge conversion of neighboring defects conditional on the NV spin state. We build on this observation to show time-resolved NV spin manipulation and ancilla-charge-aided NV spin state detection via integrated measurements. Our results hint at intriguing opportunities in the development of novel measurement strategies in fundamental science and quantum spintronics as well as in the search for enhanced forms of color-center-based metrology down to the limit of individual point defects.
Collapse
Affiliation(s)
| | - Artur Lozovoi
- Department of Physics, CUNY-City College of New York, New York, New York 10031, USA
| | - Damon Daw
- Department of Physics, CUNY-City College of New York, New York, New York 10031, USA
| | - Carlos A Meriles
- Department of Physics, CUNY-City College of New York, New York, New York 10031, USA
- CUNY-Graduate Center, New York, New York 10016, USA
| |
Collapse
|
11
|
Khatri P, Ramsay AJ, Malein RN, Chong HMH, Luxmoore IJ. Optical Gating of Photoluminescence from Color Centers in Hexagonal Boron Nitride. NANO LETTERS 2020; 20:4256-4263. [PMID: 32383892 PMCID: PMC7304068 DOI: 10.1021/acs.nanolett.0c00751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/08/2020] [Indexed: 05/05/2023]
Abstract
We report on multicolor excitation experiments with color centers in hexagonal boron nitride at cryogenic temperatures. We demonstrate controllable optical switching between bright and dark states of color centers emitting around 2 eV. Resonant, or quasi-resonant, excitation of photoluminescence also pumps the color center, via a two-photon process, into a dark state, where it becomes trapped. Repumping back into the bright state has a step-like spectrum with a defect-dependent threshold between 2.25 and 2.6 eV. This behavior is consistent with photoionization and charging between optically bright and dark states of the defect. Furthermore, a second zero phonon line, detuned by +0.4 eV, is observed in absorption with orthogonal polarization to the emission, evidencing an additional energy level in the color center.
Collapse
Affiliation(s)
- Prince Khatri
- College
of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, United Kingdom
| | - Andrew J. Ramsay
- Hitachi
Cambridge Laboratory, Hitachi Europe Limited, Cambridge, CB3 0HE, United Kingdom
| | - Ralph Nicholas
Edward Malein
- College
of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, United Kingdom
| | - Harold M. H. Chong
- Sustainable
Electronics Technology Group, School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Isaac J. Luxmoore
- College
of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, United Kingdom
| |
Collapse
|
12
|
Stabilization of point-defect spin qubits by quantum wells. Nat Commun 2019; 10:5607. [PMID: 31811137 PMCID: PMC6898666 DOI: 10.1038/s41467-019-13495-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/12/2019] [Indexed: 11/15/2022] Open
Abstract
Defect-based quantum systems in wide bandgap semiconductors are strong candidates for scalable quantum-information technologies. However, these systems are often complicated by charge-state instabilities and interference by phonons, which can diminish spin-initialization fidelities and limit room-temperature operation. Here, we identify a pathway around these drawbacks by showing that an engineered quantum well can stabilize the charge state of a qubit. Using density-functional theory and experimental synchrotron X-ray diffraction studies, we construct a model for previously unattributed point defect centers in silicon carbide as a near-stacking fault axial divacancy and show how this model explains these defects’ robustness against photoionization and room temperature stability. These results provide a materials-based solution to the optical instability of color centers in semiconductors, paving the way for the development of robust single-photon sources and spin qubits. Certain point defects in crystals can be used as optically addressable quantum bits, much like atoms trapped in vacuum. Ivády et al. show that embedding such artificial atoms in stacking faults can actually improve their optical properties, making them function even more like true atoms.
Collapse
|
13
|
Bluvstein D, Zhang Z, Jayich ACB. Identifying and Mitigating Charge Instabilities in Shallow Diamond Nitrogen-Vacancy Centers. PHYSICAL REVIEW LETTERS 2019; 122:076101. [PMID: 30848640 DOI: 10.1103/physrevlett.122.076101] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Indexed: 05/22/2023]
Abstract
The charge degree of freedom in solid-state defects fundamentally underpins the electronic spin degree of freedom, a workhorse of quantum technologies. Here we measure, analyze, and control charge-state behavior in individual near-surface nitrogen-vacancy (NV) centers in diamond, where NV^{-} hosts the metrologically relevant electron spin. We find that NV^{-} initialization fidelity varies between individual centers and over time; we alleviate the deleterious effects of reduced NV^{-} initialization fidelity via logic-based initialization. Importantly, we also show that NV^{-} can ionize in the dark on experimentally relevant timescales, and we introduce measurement protocols that mitigate the compromising effects of charge conversion on spin measurements. We identify tunneling to a single local electron trap as the mechanism for ionization in the dark, and we develop novel NV-assisted techniques to control and read out the trap charge state. Our understanding and command of the NV's local electrostatic environment will simultaneously guide materials design and provide unique functionalities with NV centers.
Collapse
Affiliation(s)
- Dolev Bluvstein
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - Zhiran Zhang
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | | |
Collapse
|
14
|
Dhomkar S, Jayakumar H, Zangara PR, Meriles CA. Charge Dynamics in near-Surface, Variable-Density Ensembles of Nitrogen-Vacancy Centers in Diamond. NANO LETTERS 2018; 18:4046-4052. [PMID: 29733616 DOI: 10.1021/acs.nanolett.8b01739] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Although the spin properties of superficial shallow nitrogen-vacancy (NV) centers have been the subject of extensive scrutiny, considerably less attention has been devoted to studying the dynamics of NV charge conversion near the diamond surface. Using multicolor confocal microscopy, here we show that near-surface point defects arising from high-density ion implantation dramatically increase the ionization and recombination rates of shallow NVs compared to those in bulk diamond. Further, we find that these rates grow linearly, not quadratically, with laser intensity, indicative of single-photon processes enabled by NV state mixing with other defect states. Accompanying these findings, we observe NV ionization and recombination in the dark, likely the result of charge transfer to neighboring traps. Despite the altered charge dynamics, we show that one can imprint rewritable, long-lasting patterns of charged-initialized, near-surface NVs over large areas, an ability that could be exploited for electrochemical biosensing or to optically store digital data sets with subdiffraction resolution.
Collapse
Affiliation(s)
- Siddharth Dhomkar
- Department of Physics , CUNY-City College of New York , New York , New York 10031 , United States
| | - Harishankar Jayakumar
- Department of Physics , CUNY-City College of New York , New York , New York 10031 , United States
| | - Pablo R Zangara
- Department of Physics , CUNY-City College of New York , New York , New York 10031 , United States
| | - Carlos A Meriles
- Department of Physics , CUNY-City College of New York , New York , New York 10031 , United States
- CUNY-Graduate Center , New York , New York 10016 , United States
| |
Collapse
|
15
|
Stehlik S, Ondic L, Varga M, Fait J, Artemenko A, Glatzel T, Kromka A, Rezek B. Silicon-Vacancy Centers in Ultra-Thin Nanocrystalline Diamond Films. MICROMACHINES 2018; 9:E281. [PMID: 30424214 PMCID: PMC6187497 DOI: 10.3390/mi9060281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/25/2018] [Accepted: 05/30/2018] [Indexed: 11/18/2022]
Abstract
Color centers in diamond have shown excellent potential for applications in quantum information processing, photonics, and biology. Here we report the optoelectronic investigation of shallow silicon vacancy (SiV) color centers in ultra-thin (7⁻40 nm) nanocrystalline diamond (NCD) films with variable surface chemistry. We show that hydrogenated ultra-thin NCD films exhibit no or lowered SiV photoluminescence (PL) and relatively high negative surface photovoltage (SPV) which is ascribed to non-radiative electron transitions from SiV to surface-related traps. Higher SiV PL and low positive SPV of oxidized ultra-thin NCD films indicate an efficient excitation-emission PL process without significant electron escape, yet with some hole trapping in diamond surface states. Decreasing SPV magnitude and increasing SiV PL intensity with thickness, in both cases, is attributed to resonant energy transfer between shallow and bulk SiV. We also demonstrate that thermal treatments (annealing in air or in hydrogen gas), commonly applied to modify the surface chemistry of nanodiamonds, are also applicable to ultra-thin NCD films in terms of tuning their SiV PL and surface chemistry.
Collapse
Affiliation(s)
- Stepan Stehlik
- Institute of Physics ASCR, Cukrovarnická 10, Prague 16200, Czech Republic.
| | - Lukas Ondic
- Institute of Physics ASCR, Cukrovarnická 10, Prague 16200, Czech Republic.
| | - Marian Varga
- Institute of Physics ASCR, Cukrovarnická 10, Prague 16200, Czech Republic.
| | - Jan Fait
- Institute of Physics ASCR, Cukrovarnická 10, Prague 16200, Czech Republic.
- Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, Prague 16627, Czech Republic.
| | - Anna Artemenko
- Institute of Physics ASCR, Cukrovarnická 10, Prague 16200, Czech Republic.
| | - Thilo Glatzel
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland.
| | - Alexander Kromka
- Institute of Physics ASCR, Cukrovarnická 10, Prague 16200, Czech Republic.
| | - Bohuslav Rezek
- Institute of Physics ASCR, Cukrovarnická 10, Prague 16200, Czech Republic.
- Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, Prague 16627, Czech Republic.
| |
Collapse
|