1
|
Wörner HJ, Wolf JP. Ultrafast spectroscopy of liquids using extreme-ultraviolet to soft-X-ray pulses. Nat Rev Chem 2025; 9:185-199. [PMID: 40011715 DOI: 10.1038/s41570-025-00692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 02/28/2025]
Abstract
Ultrafast X-ray spectroscopy provides access to molecular dynamics with unprecedented time resolution, element specificity and site selectivity. These unique properties are optimally suited for investigating intramolecular and intermolecular interactions of molecular species in the liquid phase. This Review summarizes experimental breakthroughs, such as water photolysis and proton transfer on femtosecond and attosecond time scales, dynamics of solvated electrons, charge-transfer processes in metal complexes, multiscale dynamics in haem proteins, proton-transfer dynamics in prebiotic systems and liquid-phase extreme-ultraviolet high-harmonic spectroscopy. An important novelty for ultrafast liquid-phase spectroscopy is the availability of high-brightness ultrafast short-wavelength sources that allowed access to the water window (from 200 eV to 550 eV) and thus to the K-edges of the key elements of organic and biological chemistry: C, N and O. Not only does this Review present experimental examples that demonstrate the unique capabilities of ultrafast short-wavelength spectroscopy in liquids, but it also highlights the broad range of spectroscopic methodologies already applied in this field.
Collapse
Affiliation(s)
- Hans Jakob Wörner
- Laboratorium für Physikalische Chemie, ETH Zurich, Zürich, Switzerland.
| | | |
Collapse
|
2
|
Miedaner PR, Berndt N, Deschamps J, Urazhdin S, Khatu N, Fainozzi D, Brioschi M, Carrara P, Cucini R, Rossi G, Wittrock S, Ksenzov D, Mincigrucci R, Bencivenga F, Foglia L, Paltanin E, Bonetti S, Engel D, Schick D, Gutt C, Comin R, Nelson KA, Maznev AA. Excitation and detection of coherent nanoscale spin waves via extreme ultraviolet transient gratings. SCIENCE ADVANCES 2024; 10:eadp6015. [PMID: 39241073 PMCID: PMC11378899 DOI: 10.1126/sciadv.adp6015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/31/2024] [Indexed: 09/08/2024]
Abstract
The advent of free electron lasers has opened the opportunity to explore interactions between extreme ultraviolet (EUV) photons and collective excitations in solids. While EUV transient grating spectroscopy, a noncollinear four-wave mixing technique, has already been applied to probe coherent phonons, the potential of EUV radiation for studying nanoscale spin waves has not been harnessed. Here we report EUV transient grating experiments with coherent magnons in Fe/Gd ferrimagnetic multilayers. Magnons with tens of nanometers wavelengths are excited by a pair of femtosecond EUV pulses and detected via diffraction of a probe pulse tuned to an absorption edge of Gd. The results unlock the potential of nonlinear EUV spectroscopy for studying magnons and provide a tool for exploring spin waves in a wave vector range not accessible by established inelastic scattering techniques.
Collapse
Affiliation(s)
- Peter R. Miedaner
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nadia Berndt
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jude Deschamps
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Nupur Khatu
- Elettra Sincrotrone Trieste, Basovizza, Italy
- Department of Molecular Sciences and Nanosystems, Ca’Foscari University of Venice, Venice, Italy
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Marta Brioschi
- Dipartimento di Fisica, Università degli Studi di Milano, Milano, Italy
- CNR-Istituto Officina dei Materiali, Trieste, Italy
| | - Pietro Carrara
- Dipartimento di Fisica, Università degli Studi di Milano, Milano, Italy
- CNR-Istituto Officina dei Materiali, Trieste, Italy
| | | | - Giorgio Rossi
- Dipartimento di Fisica, Università degli Studi di Milano, Milano, Italy
- CNR-Istituto Officina dei Materiali, Trieste, Italy
| | - Steffen Wittrock
- Helmholtz-Zentrum Berlin Für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Str. 2A, 12489 Berlin, Germany
| | | | | | | | | | - Ettore Paltanin
- Elettra Sincrotrone Trieste, Basovizza, Italy
- Department of Physics, Università degli Studi di Trieste, 34127 Trieste, Italy
| | - Stefano Bonetti
- Department of Molecular Sciences and Nanosystems, Ca’Foscari University of Venice, Venice, Italy
- Department of Physics, Stockholm University, Stockholm, Sweden
| | - Dieter Engel
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Str. 2A, 12489 Berlin, Germany
| | - Daniel Schick
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Str. 2A, 12489 Berlin, Germany
| | | | - Riccardo Comin
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Keith A. Nelson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexei A. Maznev
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
3
|
Guo Z, Han D, Liu H, Hu Y, Zhang W, Chen R, Mao L. Controlling the Orientation-Dependent Second Harmonic Generation in Hybrid Germanium Perovskites. Angew Chem Int Ed Engl 2024; 63:e202407675. [PMID: 38770616 DOI: 10.1002/anie.202407675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/22/2024]
Abstract
Manipulating the crystal orientation plays a crucial role in the conversion efficiency during second harmonic generation (SHG). Here, we provide a new strategy in controlling the surface-dependent anisotropic SHG with the precise design of (101) and (21 ‾ ${\bar 1}$ 0) MAGeI3 facets. Based on the SHG measurement, the (101) MAGeI3 single crystal exhibits larger SHG (1.3×(21 ‾ ${\bar 1}$ 0) MAGeI3). Kelvin probe force microscopy imaging shows a smaller work function for the (101) MAGeI3 compared with the (21 ‾ ${\bar 1}$ 0), which indirectly demonstrates the stronger intrinsic polarization on the (101) surface. X-ray photoelectron spectroscopy confirms the band bending within the (101) facet. Temperature-dependent steady-state and time-resolved photoluminescence spectroscopy show shorter lifetime and wider emission band in the (101) MAGeI3 single crystal, revealing the higher defect states. Additionally, powder X-ray diffraction patterns show the (101) MAGeI3 possesses larger in-plane polar units [GeI3]- density, which could directly enhance the spontaneous polarization in the (101) facet. Density functional theory (DFT) calculation further demonstrates the higher intrinsic polarization in the (101) facet compared with the (21 ‾ ${\bar 1}$ 0) facet, and the larger built-in electric field in the (101) facet facilitates surface vacancy defect accumulation. Our work provides a new angle in tuning and optimizing hybrid perovskite-based nonlinear optical materials.
Collapse
Affiliation(s)
- Zhu Guo
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Dingchong Han
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Huan Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yaoqiao Hu
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas, 75080, USA
| | - Weixiong Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Rui Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Lingling Mao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
4
|
Foglia L, Mincigrucci R, Maznev A, Baldi G, Capotondi F, Caporaletti F, Comin R, De Angelis D, Duncan R, Fainozzi D, Kurdi G, Li J, Martinelli A, Masciovecchio C, Monaco G, Milloch A, Nelson K, Occhialini C, Pancaldi M, Pedersoli E, Pelli-Cresi J, Simoncig A, Travasso F, Wehinger B, Zanatta M, Bencivenga F. Extreme ultraviolet transient gratings: A tool for nanoscale photoacoustics. PHOTOACOUSTICS 2023; 29:100453. [PMID: 36718271 PMCID: PMC9883289 DOI: 10.1016/j.pacs.2023.100453] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Collective lattice dynamics determine essential aspects of condensed matter, such as elastic and thermal properties. These exhibit strong dependence on the length-scale, reflecting the marked wavevector dependence of lattice excitations. The extreme ultraviolet transient grating (EUV TG) approach has demonstrated the potential of accessing a wavevector range corresponding to the 10s of nm length-scale, representing a spatial scale of the highest relevance for fundamental physics and forefront technology, previously inaccessible by optical TG and other inelastic scattering methods. In this manuscript we report on the capabilities of this technique in the context of probing thermoelastic properties of matter, both in the bulk and at the surface, as well as discussing future developments and practical considerations.
Collapse
Affiliation(s)
- L. Foglia
- Elettra - Sincrotrone Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy
| | - R. Mincigrucci
- Elettra - Sincrotrone Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy
| | - A.A. Maznev
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - G. Baldi
- Department of Physics, University of Trento, Povo, Trento I-38123, Italy
| | - F. Capotondi
- Elettra - Sincrotrone Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy
| | - F. Caporaletti
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, 1098XH Amsterdam, the Netherlands
- Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, the Netherlands
| | - R. Comin
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - D. De Angelis
- Elettra - Sincrotrone Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy
| | - R.A. Duncan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - D. Fainozzi
- Elettra - Sincrotrone Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy
| | - G. Kurdi
- Elettra - Sincrotrone Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy
| | - J. Li
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - A. Martinelli
- Department of Physics and Astronomy, Università di Padova, 35131 Padova, Italy
| | - C. Masciovecchio
- Elettra - Sincrotrone Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy
| | - G. Monaco
- Department of Physics and Astronomy, Università di Padova, 35131 Padova, Italy
| | - A. Milloch
- Department of Mathematics and Physics, Università Cattolica del Sacro Cuore, Brescia I-25133, Italy
| | - K.A. Nelson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - C.A. Occhialini
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - M. Pancaldi
- Elettra - Sincrotrone Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, 30172 Venezia, Italy
| | - E. Pedersoli
- Elettra - Sincrotrone Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy
| | - J.S. Pelli-Cresi
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - A. Simoncig
- Elettra - Sincrotrone Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy
| | - F. Travasso
- Università di Camerino, 62032 Camerino, Italy
- INFN, Sezione di Perugia, 06123 Perugia, Italy
| | - B. Wehinger
- Elettra - Sincrotrone Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, 30172, 400 Venezia Mestre, Italy
| | - M. Zanatta
- Department of Physics, University of Trento, Povo, Trento I-38123, Italy
| | - F. Bencivenga
- Elettra - Sincrotrone Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy
| |
Collapse
|
5
|
Abstract
Major advances in X-ray sources including the development of circularly polarized and orbital angular momentum pulses make it possible to probe matter chirality at unprecedented energy regimes and with Ångström and femtosecond spatiotemporal resolutions. We survey the theory of stationary and time-resolved nonlinear chiral measurements that can be carried out in the X-ray regime using tabletop X-ray sources or large scale (XFEL, synchrotron) facilities. A variety of possible signals and their information content are discussed.
Collapse
Affiliation(s)
- Jérémy R Rouxel
- Université de Lyon, UJM-Saint-Etienne, CNRS, IOGS, Laboratoire Hubert Curien UMR 5516, Saint-Etienne F-42023, France
| | - Shaul Mukamel
- Department of Chemistry and Physics & Astronomy, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
6
|
Zhi Y, Liu W, Yang X, Wei Z, Du S, Meng H, Liu H, Guo J, Yang M, Wang J, Xiang L, Huang Z, Li H, Wang F. Communication wavelength investigation of bound states in the continuum of one-dimensional two-material periodic ring optical waveguide network. OPTICS EXPRESS 2022; 30:37888-37898. [PMID: 36258368 DOI: 10.1364/oe.471602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
In this study, a one-dimensional (1D) two-material period ring optical waveguide network (TMPROWN) was designed, and its optical properties were investigated. The key characteristics observed in the 1D TMPROWN include the following: (1) Bound states in continuum (BICs) can be generated in the optical waveguide network. (2) In contrast to the BICs previously reported in optical structures, the range of the BICs generated by the 1D TMPROWN is not only larger, but also continuous. This feature makes it possible for us to further study the electromagnetic wave characteristics in the range of the BICs. In addition, we analyzed the physical mechanisms of the BICs generated in the 1D TMPROWN. The 1D TMPROWN is simple in structure, demonstrates flexibility with respect to adjusting the frequency band of the BICs, and offers easy measurement of the amplitude and phase of electromagnetic waves. Hence, further research on high-power super luminescent diodes, optical switches, efficient photonic energy storage, and other optical devices based on the 1D TMPROWN designed in this study is likely to have implications in a broad range of applications.
Collapse
|
7
|
Uhl D, Wituschek A, Michiels R, Trinter F, Jahnke T, Allaria E, Callegari C, Danailov M, Di Fraia M, Plekan O, Bangert U, Dulitz K, Landmesser F, Michelbach M, Simoncig A, Manfredda M, Spampinati S, Penco G, Squibb RJ, Feifel R, Laarmann T, Mudrich M, Prince KC, Cerullo G, Giannessi L, Stienkemeier F, Bruder L. Extreme Ultraviolet Wave Packet Interferometry of the Autoionizing HeNe Dimer. J Phys Chem Lett 2022; 13:8470-8476. [PMID: 36054027 PMCID: PMC9486932 DOI: 10.1021/acs.jpclett.2c01619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Femtosecond extreme ultraviolet wave packet interferometry (XUV-WPI) was applied to study resonant interatomic Coulombic decay (ICD) in the HeNe dimer. The high demands on phase stability and sensitivity for vibronic XUV-WPI of molecular-beam targets are met using an XUV phase-cycling scheme. The detected quantum interferences exhibit vibronic dephasing and rephasing signatures along with an ultrafast decoherence assigned to the ICD process. A Fourier analysis reveals the molecular absorption spectrum with high resolution. The demonstrated experiment shows a promising route for the real-time analysis of ultrafast ICD processes with both high temporal and high spectral resolution.
Collapse
Affiliation(s)
- Daniel Uhl
- Institute
of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Andreas Wituschek
- Institute
of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Rupert Michiels
- Institute
of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Florian Trinter
- Institut
für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
- Molecular
Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Till Jahnke
- Institut
für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
- European
XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Enrico Allaria
- Elettra-Sincrotrone
Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Carlo Callegari
- Elettra-Sincrotrone
Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Miltcho Danailov
- Elettra-Sincrotrone
Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Michele Di Fraia
- Elettra-Sincrotrone
Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Oksana Plekan
- Elettra-Sincrotrone
Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Ulrich Bangert
- Institute
of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Katrin Dulitz
- Institute
of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Friedemann Landmesser
- Institute
of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Moritz Michelbach
- Institute
of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Alberto Simoncig
- Elettra-Sincrotrone
Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Michele Manfredda
- Elettra-Sincrotrone
Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Simone Spampinati
- Elettra-Sincrotrone
Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Giuseppe Penco
- Elettra-Sincrotrone
Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Richard James Squibb
- Department
of Physics, University of Gothenburg, Origovägen 6 B, 41296 Gothenburg, Sweden
| | - Raimund Feifel
- Department
of Physics, University of Gothenburg, Origovägen 6 B, 41296 Gothenburg, Sweden
| | - Tim Laarmann
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- The Hamburg
Centre for Ultrafast Imaging CUI, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Marcel Mudrich
- Department
of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus, Denmark
| | - Kevin C. Prince
- Elettra-Sincrotrone
Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Giulio Cerullo
- IFN-CNR
and Dipartimento di Fisica, Politecnico
di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Luca Giannessi
- Elettra-Sincrotrone
Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
- Istituto
Nazionale di Fisica Nucleare, Laboratori
Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati, Roma
| | - Frank Stienkemeier
- Institute
of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Lukas Bruder
- Institute
of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| |
Collapse
|
8
|
Rottke H, Engel RY, Schick D, Schunck JO, Miedema PS, Borchert MC, Kuhlmann M, Ekanayake N, Dziarzhytski S, Brenner G, Eichmann U, von Korff Schmising C, Beye M, Eisebitt S. Probing electron and hole colocalization by resonant four-wave mixing spectroscopy in the extreme ultraviolet. SCIENCE ADVANCES 2022; 8:eabn5127. [PMID: 35594356 PMCID: PMC9122317 DOI: 10.1126/sciadv.abn5127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
Extending nonlinear spectroscopic techniques into the x-ray domain promises unique insight into photoexcited charge dynamics, which are of fundamental and applied interest. We report on the observation of a third-order nonlinear process in lithium fluoride (LiF) at a free-electron laser. Exploring the yield of four-wave mixing (FWM) in resonance with transitions to strongly localized core exciton states versus delocalized Bloch states, we find resonant FWM to be a sensitive probe for the degree of charge localization: Substantial sum- and difference-frequency generation is observed exclusively when in a one- or three-photon resonance with a LiF core exciton, with a dipole forbidden transition affecting details of the nonlinear response. Our reflective geometry-based approach to detect FWM signals enables the study of a wide variety of condensed matter sample systems, provides atomic selectivity via resonant transitions, and can be easily scaled to shorter wavelengths at free-electron x-ray lasers.
Collapse
Affiliation(s)
- Horst Rottke
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - Robin Y. Engel
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Daniel Schick
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - Jan O. Schunck
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Piter S. Miedema
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Martin C. Borchert
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - Marion Kuhlmann
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Nagitha Ekanayake
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | | | - Günter Brenner
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Ulrich Eichmann
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - Clemens von Korff Schmising
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - Martin Beye
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Stefan Eisebitt
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Straße 2A, 12489 Berlin, Germany
- Technische Universität Berlin, Institut für Optik und Atomare Physik, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
9
|
Montorsi F, Segatta F, Nenov A, Mukamel S, Garavelli M. Soft X-ray Spectroscopy Simulations with Multiconfigurational Wave Function Theory: Spectrum Completeness, Sub-eV Accuracy, and Quantitative Reproduction of Line Shapes. J Chem Theory Comput 2022; 18:1003-1016. [PMID: 35073066 PMCID: PMC8830047 DOI: 10.1021/acs.jctc.1c00566] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Indexed: 01/04/2023]
Abstract
Multireference methods are known for their ability to accurately treat states of very different nature in many molecular systems, facilitating high-quality simulations of a large variety of spectroscopic techniques. Here, we couple the multiconfigurational restricted active space self-consistent field RASSCF/RASPT2 method (of the CASSCF/CASPT2 methods family) to the displaced harmonic oscillator (DHO) model, to simulate soft X-ray spectroscopy. We applied such an RASSCF/RASPT2+DHO approach at the K-edges of various second-row elements for a set of small organic molecules that have been recently investigated at other levels of theory. X-ray absorption near-edge structure (XANES) and X-ray photoelectron spectroscopy (XPS) are simulated with a sub-eV accuracy and a correct description of the spectral line shapes. The method is extremely sensitive to the observed spectral shifts on a series of differently fluorinated ethylene systems, provides spectral fingerprints to distinguish between stable conformers of the glycine molecule, and accurately captures the vibrationally resolved carbon K-edge spectrum of formaldehyde. Differences with other theoretical methods are demonstrated, which show the advantages of employing a multireference/multiconfigurational approach. A protocol to systematically increase the number of core-excited states considered while maintaining a contained computational cost is presented. Insight is eventually provided for the effects caused by removing core-electrons from a given atom in terms of bond rearrangement and influence on the resulting spectral shapes within a unitary orbital-based framework for both XPS and XANES spectra.
Collapse
Affiliation(s)
- Francesco Montorsi
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Francesco Segatta
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Artur Nenov
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Shaul Mukamel
- Department
of Chemistry and Department of Physics & Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Marco Garavelli
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| |
Collapse
|
10
|
Biswas S, Kim J, Zhang X, Scholes GD. Coherent Two-Dimensional and Broadband Electronic Spectroscopies. Chem Rev 2022; 122:4257-4321. [PMID: 35037757 DOI: 10.1021/acs.chemrev.1c00623] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Over the past few decades, coherent broadband spectroscopy has been widely used to improve our understanding of ultrafast processes (e.g., photoinduced electron transfer, proton transfer, and proton-coupled electron transfer reactions) at femtosecond resolution. The advances in femtosecond laser technology along with the development of nonlinear multidimensional spectroscopy enabled further insights into ultrafast energy transfer and carrier relaxation processes in complex biological and material systems. New discoveries and interpretations have led to improved design principles for optimizing the photophysical properties of various artificial systems. In this review, we first provide a detailed theoretical framework of both coherent broadband and two-dimensional electronic spectroscopy (2DES). We then discuss a selection of experimental approaches and considerations of 2DES along with best practices for data processing and analysis. Finally, we review several examples where coherent broadband and 2DES were employed to reveal mechanisms of photoinitiated ultrafast processes in molecular, biological, and material systems. We end the review with a brief perspective on the future of the experimental techniques themselves and their potential to answer an even greater range of scientific questions.
Collapse
Affiliation(s)
- Somnath Biswas
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - JunWoo Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - Xinzi Zhang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| |
Collapse
|
11
|
Ferrante C, Principi E, Marini A, Batignani G, Fumero G, Virga A, Foglia L, Mincigrucci R, Simoncig A, Spezzani C, Masciovecchio C, Scopigno T. Non-linear self-driven spectral tuning of Extreme Ultraviolet Femtosecond Pulses in monoatomic materials. LIGHT, SCIENCE & APPLICATIONS 2021; 10:92. [PMID: 33911069 PMCID: PMC8080687 DOI: 10.1038/s41377-021-00531-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Self-action nonlinearity is a key aspect - either as a foundational element or a detrimental factor - of several optical spectroscopies and photonic devices. Supercontinuum generation, wavelength converters, and chirped pulse amplification are just a few examples. The recent advent of Free Electron Lasers (FEL) fostered building on nonlinearity to propose new concepts and extend optical wavelengths paradigms for extreme ultraviolet (EUV) and X-ray regimes. No evidence for intrapulse dynamics, however, has been reported at such short wavelengths, where the light-matter interactions are ruled by the sharp absorption edges of core electrons. Here, we provide experimental evidence for self-phase modulation of femtosecond FEL pulses, which we exploit for fine self-driven spectral tunability by interaction with sub-micrometric foils of selected monoatomic materials. Moving the pulse wavelength across the absorption edge, the spectral profile changes from a non-linear spectral blue-shift to a red-shifted broadening. These findings are rationalized accounting for ultrafast ionization and delayed thermal response of highly excited electrons above and below threshold, respectively.
Collapse
Affiliation(s)
- Carino Ferrante
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy.
- Center for Life Nano Science @Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, I-00161, Roma, Italy.
- Dipartimento di Fisica, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Roma, Italy.
| | - Emiliano Principi
- Elettra-Sincrotrone Trieste S.C.p.A., SS 14-km 163.5, 34149, Basovizza, Trieste, Italy
| | - Andrea Marini
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Giovanni Batignani
- Dipartimento di Fisica, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Giuseppe Fumero
- Dipartimento di Fisica, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Alessandra Virga
- Center for Life Nano Science @Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, I-00161, Roma, Italy
| | - Laura Foglia
- Elettra-Sincrotrone Trieste S.C.p.A., SS 14-km 163.5, 34149, Basovizza, Trieste, Italy
| | - Riccardo Mincigrucci
- Elettra-Sincrotrone Trieste S.C.p.A., SS 14-km 163.5, 34149, Basovizza, Trieste, Italy
| | - Alberto Simoncig
- Elettra-Sincrotrone Trieste S.C.p.A., SS 14-km 163.5, 34149, Basovizza, Trieste, Italy
| | - Carlo Spezzani
- Elettra-Sincrotrone Trieste S.C.p.A., SS 14-km 163.5, 34149, Basovizza, Trieste, Italy
| | - Claudio Masciovecchio
- Elettra-Sincrotrone Trieste S.C.p.A., SS 14-km 163.5, 34149, Basovizza, Trieste, Italy
| | - Tullio Scopigno
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy.
- Center for Life Nano Science @Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, I-00161, Roma, Italy.
- Dipartimento di Fisica, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Roma, Italy.
| |
Collapse
|
12
|
Bergmann U, Kern J, Schoenlein RW, Wernet P, Yachandra VK, Yano J. Using X-ray free-electron lasers for spectroscopy of molecular catalysts and metalloenzymes. NATURE REVIEWS. PHYSICS 2021; 3:264-282. [PMID: 34212130 PMCID: PMC8245202 DOI: 10.1038/s42254-021-00289-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 05/14/2023]
Abstract
The metal centres in metalloenzymes and molecular catalysts are responsible for the rearrangement of atoms and electrons during complex chemical reactions, and they enable selective pathways of charge and spin transfer, bond breaking/making and the formation of new molecules. Mapping the electronic structural changes at the metal sites during the reactions gives a unique mechanistic insight that has been difficult to obtain to date. The development of X-ray free-electron lasers (XFELs) enables powerful new probes of electronic structure dynamics to advance our understanding of metalloenzymes. The ultrashort, intense and tunable XFEL pulses enable X-ray spectroscopic studies of metalloenzymes, molecular catalysts and chemical reactions, under functional conditions and in real time. In this Technical Review, we describe the current state of the art of X-ray spectroscopy studies at XFELs and highlight some new techniques currently under development. With more XFEL facilities starting operation and more in the planning or construction phase, new capabilities are expected, including high repetition rate, better XFEL pulse control and advanced instrumentation. For the first time, it will be possible to make real-time molecular movies of metalloenzymes and catalysts in solution, while chemical reactions are taking place.
Collapse
Affiliation(s)
- Uwe Bergmann
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Physics, University of Wisconsin–Madison, Madison, WI, USA
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Robert W. Schoenlein
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Philippe Wernet
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Vittal K. Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
13
|
Tkachenko V, Lipp V, Büscher M, Capotondi F, Höppner H, Medvedev N, Pedersoli E, Prandolini MJ, Rossi GM, Tavella F, Toleikis S, Windeler M, Ziaja B, Teubner U. Effect of Auger recombination on transient optical properties in XUV and soft X-ray irradiated silicon nitride. Sci Rep 2021; 11:5203. [PMID: 33664337 PMCID: PMC7970863 DOI: 10.1038/s41598-021-84677-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/11/2021] [Indexed: 11/09/2022] Open
Abstract
Spatially encoded measurements of transient optical transmissivity became a standard tool for temporal diagnostics of free-electron-laser (FEL) pulses, as well as for the arrival time measurements in X-ray pump and optical probe experiments. The modern experimental techniques can measure changes in optical coefficients with a temporal resolution better than 10 fs. This, in an ideal case, would imply a similar resolution for the temporal pulse properties and the arrival time jitter between the FEL and optical laser pulses. However, carrier transport within the material and out of its surface, as well as carrier recombination may, in addition, significantly decrease the number of carriers. This would strongly affect the transient optical properties, making the diagnostic measurement inaccurate. Below we analyze in detail the effects of those processes on the optical properties of XUV and soft X-ray irradiated Si[Formula: see text]N[Formula: see text], on sub-picosecond timescales. Si[Formula: see text]N[Formula: see text] is a wide-gap insulating material widely used for FEL pulse diagnostics. Theoretical predictions are compared with the published results of two experiments at FERMI and LCLS facilities, and with our own recent measurement. The comparison indicates that three body Auger recombination strongly affects the optical response of Si[Formula: see text]N[Formula: see text] after its collisional ionization stops. By deconvolving the contribution of Auger recombination, in future applications one could regain a high temporal resolution for the reconstruction of the FEL pulse properties measured with a Si[Formula: see text]N[Formula: see text]-based diagnostics tool.
Collapse
Affiliation(s)
- Victor Tkachenko
- Institute for Laser and Optics, Hochschule Emden/Leer-University of Applied Sciences, Constantiaplatz 4, 26723, Emden, Germany. .,Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342, Kraków, Poland. .,European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany.
| | - Vladimir Lipp
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany.
| | - Martin Büscher
- Institute for Laser and Optics, Hochschule Emden/Leer-University of Applied Sciences, Constantiaplatz 4, 26723, Emden, Germany
| | - Flavio Capotondi
- Elettra-Sincrotrone Trieste S.C.p.A, 34149, Trieste, Basovizza, Italy
| | - Hauke Höppner
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf e.V., Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Nikita Medvedev
- Institute of Physics CAS, v.v.i., Na Slovance 2, 182 21, Prague, Czech Republic.,Institute of Plasma Physics CAS, v.v.i., Za Slovankou 3, 182 00, Prague, Czech Republic
| | | | - Mark J Prandolini
- Institut für Experimentalphysik, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Giulio M Rossi
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany.,Institut für Experimentalphysik, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Franz Tavella
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Sven Toleikis
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Matthew Windeler
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Beata Ziaja
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342, Kraków, Poland. .,Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany.
| | - Ulrich Teubner
- Institute for Laser and Optics, Hochschule Emden/Leer-University of Applied Sciences, Constantiaplatz 4, 26723, Emden, Germany.,Institute of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Str. 9-11, 26111, Oldenburg, Germany
| |
Collapse
|
14
|
Ding T, Rebholz M, Aufleger L, Hartmann M, Meyer K, Stooß V, Magunia A, Wachs D, Birk P, Mi Y, Borisova GD, Castanheira CDC, Rupprecht P, Loh ZH, Attar AR, Gaumnitz T, Roling S, Butz M, Zacharias H, Düsterer S, Treusch R, Cavaletto SM, Ott C, Pfeifer T. Nonlinear Coherence Effects in Transient-Absorption Ion Spectroscopy with Stochastic Extreme-Ultraviolet Free-Electron Laser Pulses. PHYSICAL REVIEW LETTERS 2019; 123:103001. [PMID: 31573300 DOI: 10.1103/physrevlett.123.103001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Indexed: 06/10/2023]
Abstract
We demonstrate time-resolved nonlinear extreme-ultraviolet absorption spectroscopy on multiply charged ions, here applied to the doubly charged neon ion, driven by a phase-locked sequence of two intense free-electron laser pulses. Absorption signatures of resonance lines due to 2p-3d bound-bound transitions between the spin-orbit multiplets ^{3}P_{0,1,2} and ^{3}D_{1,2,3} of the transiently produced doubly charged Ne^{2+} ion are revealed, with time-dependent spectral changes over a time-delay range of (2.4±0.3) fs. Furthermore, we observe 10-meV-scale spectral shifts of these resonances owing to the ac Stark effect. We use a time-dependent quantum model to explain the observations by an enhanced coupling of the ionic quantum states with the partially coherent free-electron laser radiation when the phase-locked pump and probe pulses precisely overlap in time.
Collapse
Affiliation(s)
- Thomas Ding
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Marc Rebholz
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Lennart Aufleger
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Maximilian Hartmann
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Kristina Meyer
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Veit Stooß
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Alexander Magunia
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - David Wachs
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Paul Birk
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Yonghao Mi
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | | | | | - Patrick Rupprecht
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Zhi-Heng Loh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Andrew R Attar
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Thomas Gaumnitz
- Laboratorium für Physikalische Chemie, Eidgenössische Technische Hochschule Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Sebastian Roling
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149 Münster, Germany
| | - Marco Butz
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149 Münster, Germany
| | - Helmut Zacharias
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149 Münster, Germany
| | - Stefan Düsterer
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Rolf Treusch
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Stefano M Cavaletto
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Christian Ott
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Thomas Pfeifer
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| |
Collapse
|
15
|
Bencivenga F, Mincigrucci R, Capotondi F, Foglia L, Naumenko D, Maznev AA, Pedersoli E, Simoncig A, Caporaletti F, Chiloyan V, Cucini R, Dallari F, Duncan RA, Frazer TD, Gaio G, Gessini A, Giannessi L, Huberman S, Kapteyn H, Knobloch J, Kurdi G, Mahne N, Manfredda M, Martinelli A, Murnane M, Principi E, Raimondi L, Spampinati S, Spezzani C, Trovò M, Zangrando M, Chen G, Monaco G, Nelson KA, Masciovecchio C. Nanoscale transient gratings excited and probed by extreme ultraviolet femtosecond pulses. SCIENCE ADVANCES 2019; 5:eaaw5805. [PMID: 31360768 PMCID: PMC6660206 DOI: 10.1126/sciadv.aaw5805] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/20/2019] [Indexed: 05/27/2023]
Abstract
Advances in developing ultrafast coherent sources operating at extreme ultraviolet (EUV) and x-ray wavelengths allow the extension of nonlinear optical techniques to shorter wavelengths. Here, we describe EUV transient grating spectroscopy, in which two crossed femtosecond EUV pulses produce spatially periodic nanoscale excitations in the sample and their dynamics is probed via diffraction of a third time-delayed EUV pulse. The use of radiation with wavelengths down to 13.3 nm allowed us to produce transient gratings with periods as short as 28 nm and observe thermal and coherent phonon dynamics in crystalline silicon and amorphous silicon nitride. This approach allows measurements of thermal transport on the ~10-nm scale, where the two samples show different heat transport regimes, and can be applied to study other phenomena showing nontrivial behaviors at the nanoscale, such as structural relaxations in complex liquids and ultrafast magnetic dynamics.
Collapse
Affiliation(s)
- F. Bencivenga
- Elettra Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, 34149 Basovizza (TS), Italy
| | - R. Mincigrucci
- Elettra Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, 34149 Basovizza (TS), Italy
| | - F. Capotondi
- Elettra Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, 34149 Basovizza (TS), Italy
| | - L. Foglia
- Elettra Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, 34149 Basovizza (TS), Italy
| | - D. Naumenko
- Elettra Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, 34149 Basovizza (TS), Italy
| | - A. A. Maznev
- Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - E. Pedersoli
- Elettra Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, 34149 Basovizza (TS), Italy
| | - A. Simoncig
- Elettra Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, 34149 Basovizza (TS), Italy
| | - F. Caporaletti
- Department of Physics, University of Trento, Via Sommarive 14, Povo (TN), Italy
| | - V. Chiloyan
- Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - R. Cucini
- IOM-CNR, Strada Statale 14, km 163.5, in Area Science Park, I-34012 Basovizza (TS), Italy
| | - F. Dallari
- Department of Physics, University of Trento, Via Sommarive 14, Povo (TN), Italy
| | - R. A. Duncan
- Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - T. D. Frazer
- JILA and Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - G. Gaio
- Elettra Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, 34149 Basovizza (TS), Italy
| | - A. Gessini
- Elettra Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, 34149 Basovizza (TS), Italy
| | - L. Giannessi
- Elettra Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, 34149 Basovizza (TS), Italy
| | - S. Huberman
- Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - H. Kapteyn
- JILA and Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - J. Knobloch
- JILA and Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - G. Kurdi
- Elettra Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, 34149 Basovizza (TS), Italy
| | - N. Mahne
- Elettra Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, 34149 Basovizza (TS), Italy
- IOM-CNR, Strada Statale 14, km 163.5, in Area Science Park, I-34012 Basovizza (TS), Italy
| | - M. Manfredda
- Elettra Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, 34149 Basovizza (TS), Italy
| | - A. Martinelli
- Department of Physics, University of Trento, Via Sommarive 14, Povo (TN), Italy
| | - M. Murnane
- JILA and Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - E. Principi
- Elettra Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, 34149 Basovizza (TS), Italy
| | - L. Raimondi
- Elettra Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, 34149 Basovizza (TS), Italy
| | - S. Spampinati
- Elettra Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, 34149 Basovizza (TS), Italy
| | - C. Spezzani
- Elettra Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, 34149 Basovizza (TS), Italy
| | - M. Trovò
- Elettra Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, 34149 Basovizza (TS), Italy
| | - M. Zangrando
- Elettra Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, 34149 Basovizza (TS), Italy
- IOM-CNR, Strada Statale 14, km 163.5, in Area Science Park, I-34012 Basovizza (TS), Italy
| | - G. Chen
- Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - G. Monaco
- Department of Physics, University of Trento, Via Sommarive 14, Povo (TN), Italy
| | - K. A. Nelson
- Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - C. Masciovecchio
- Elettra Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, 34149 Basovizza (TS), Italy
| |
Collapse
|
16
|
Foglia L, Capotondi F, Höppner H, Gessini A, Giannessi L, Kurdi G, Lopez Quintas I, Masciovecchio C, Kiskinova M, Mincigrucci R, Naumenko D, Nikolov IP, Pedersoli E, Rossi GM, Simoncig A, Bencivenga F. Exploring the multiparameter nature of EUV-visible wave mixing at the FERMI FEL. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2019; 6:040901. [PMID: 31372368 PMCID: PMC6663514 DOI: 10.1063/1.5111501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
The rapid development of extreme ultraviolet (EUV) and x-ray ultrafast coherent light sources such as free electron lasers (FELs) has triggered the extension of wave-mixing techniques to short wavelengths. This class of experiments, based on the interaction of matter with multiple light pulses through the Nth order susceptibility, holds the promise of combining intrinsic ultrafast time resolution and background-free signal detection with nanometer spatial resolution and chemical specificity. A successful approach in this direction has been the combination of the unique characteristics of the seeded FEL FERMI with dedicated four-wave-mixing (FWM) setups, which leads to the demonstration of EUV-based transient grating (TG) spectroscopy. In this perspective paper, we discuss how the TG approach can be extended toward more general FWM spectroscopies by exploring the intrinsic multiparameter nature of nonlinear processes, which derives from the ability of controlling the properties of each field independently.
Collapse
Affiliation(s)
- L Foglia
- Elettra Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5 in Area Science Park, I-34149 Basovizza, Trieste, Italy
| | - F Capotondi
- Elettra Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5 in Area Science Park, I-34149 Basovizza, Trieste, Italy
| | - H Höppner
- Institute for Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf e.V., 01328 Dresden, Germany
| | - A Gessini
- Elettra Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5 in Area Science Park, I-34149 Basovizza, Trieste, Italy
| | - L Giannessi
- Elettra Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5 in Area Science Park, I-34149 Basovizza, Trieste, Italy
| | - G Kurdi
- Elettra Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5 in Area Science Park, I-34149 Basovizza, Trieste, Italy
| | - I Lopez Quintas
- Elettra Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5 in Area Science Park, I-34149 Basovizza, Trieste, Italy
| | - C Masciovecchio
- Elettra Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5 in Area Science Park, I-34149 Basovizza, Trieste, Italy
| | - M Kiskinova
- Elettra Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5 in Area Science Park, I-34149 Basovizza, Trieste, Italy
| | - R Mincigrucci
- Elettra Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5 in Area Science Park, I-34149 Basovizza, Trieste, Italy
| | - D Naumenko
- Elettra Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5 in Area Science Park, I-34149 Basovizza, Trieste, Italy
| | - I P Nikolov
- Elettra Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5 in Area Science Park, I-34149 Basovizza, Trieste, Italy
| | - E Pedersoli
- Elettra Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5 in Area Science Park, I-34149 Basovizza, Trieste, Italy
| | - G M Rossi
- Physics Department and The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - A Simoncig
- Elettra Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5 in Area Science Park, I-34149 Basovizza, Trieste, Italy
| | - F Bencivenga
- Elettra Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5 in Area Science Park, I-34149 Basovizza, Trieste, Italy
| |
Collapse
|
17
|
Fidler AP, Camp SJ, Warrick ER, Bloch E, Marroux HJB, Neumark DM, Schafer KJ, Gaarde MB, Leone SR. Nonlinear XUV signal generation probed by transient grating spectroscopy with attosecond pulses. Nat Commun 2019; 10:1384. [PMID: 30918260 PMCID: PMC6437156 DOI: 10.1038/s41467-019-09317-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/05/2019] [Indexed: 11/17/2022] Open
Abstract
Nonlinear spectroscopies are utilized extensively for selective measurements of chemical dynamics in the optical, infrared, and radio-frequency regimes. The development of these techniques for extreme ultraviolet (XUV) light sources facilitates measurements of electronic dynamics on attosecond timescales. Here, we elucidate the temporal dynamics of nonlinear signal generation by utilizing a transient grating scheme with a subfemtosecond XUV pulse train and two few-cycle near-infrared pulses in atomic helium. Simultaneous detection of multiple diffraction orders reveals delays of ≥1.5 fs in higher-order XUV signal generation, which are reproduced theoretically by solving the coupled Maxwell–Schrödinger equations and with a phase grating model. The delays result in measurable order-dependent differences in the energies of transient light induced states. As nonlinear methods are extended into the attosecond regime, the observed higher-order signal generation delays will significantly impact and aid temporal and spectral measurements of dynamic processes. Ultrafast dynamics following light-matter interaction are governed by nonlinear processes. Here the authors show that initial nonlinear signal time-evolution is a consequence of phase grating accumulation using transient grating measurements with attosecond and near-infrared pulses.
Collapse
Affiliation(s)
- Ashley P Fidler
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Seth J Camp
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Erika R Warrick
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Etienne Bloch
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hugo J B Marroux
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Daniel M Neumark
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Kenneth J Schafer
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Mette B Gaarde
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Stephen R Leone
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. .,Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA. .,Department of Physics, University of California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
18
|
Affiliation(s)
- Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Svetina C, Mankowsky R, Knopp G, Koch F, Seniutinas G, Rösner B, Kubec A, Lebugle M, Mochi I, Beck M, Cirelli C, Krempasky J, Pradervand C, Rouxel J, Mancini GF, Zerdane S, Pedrini B, Esposito V, Ingold G, Wagner U, Flechsig U, Follath R, Chergui M, Milne C, Lemke HT, David C, Beaud P. Towards X-ray transient grating spectroscopy. OPTICS LETTERS 2019; 44:574-577. [PMID: 30702682 DOI: 10.1364/ol.44.000574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
The extension of transient grating spectroscopy to the x-ray regime will create numerous opportunities, ranging from the study of thermal transport in the ballistic regime to charge, spin, and energy transfer processes with atomic spatial and femtosecond temporal resolution. Studies involving complicated split-and-delay lines have not yet been successful in achieving this goal. Here we propose a novel, simple method based on the Talbot effect for converging beams, which can easily be implemented at current x-ray free electron lasers. We validate our proposal by analyzing printed interference patterns on polymethyl methacrylate and gold samples using ∼3 keV X-ray pulses.
Collapse
|
20
|
Beye M, Engel RY, Schunck JO, Dziarzhytski S, Brenner G, Miedema PS. Non-linear soft x-ray methods on solids with MUSIX-the multi-dimensional spectroscopy and inelastic x-ray scattering endstation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:014003. [PMID: 30504529 DOI: 10.1088/1361-648x/aaedf3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
With the intense and coherent x-ray pulses available from free-electron lasers, the possibility to transfer non-linear spectroscopic methods from the laser lab to the x-ray world arises. Advantages especially regarding selectivity and thus information content as well as an improvement of signal levels are expected. The use of coherences is especially fruitful and the example of coherent x-ray/optical sum-frequency generation is discussed. However, many non-linear x-ray methods still await discovery, partially due to the necessity for extremely adaptable and versatile instrumentation that can be brought to free-electron lasers for the analysis of the spectral content emitted from the sample into a continuous range of emission angles. Such an instrument (called MUSIX) is being developed and employed at FLASH, the free-electron laser in Hamburg and is described in this contribution together with first results.
Collapse
Affiliation(s)
- M Beye
- Deutsches Elektronen Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany. Physics Department, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|