1
|
Chen Y, D'Antuono M, Trama M, Preziosi D, Jouault B, Teppe F, Consejo C, Perroni CA, Citro R, Stornaiuolo D, Salluzzo M. Dirac-Like Fermions Anomalous Magneto-Transport in a Spin-Polarized Oxide 2D Electron System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410354. [PMID: 39473304 PMCID: PMC11707568 DOI: 10.1002/adma.202410354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/14/2024] [Indexed: 01/11/2025]
Abstract
In a 2D electron system (2DES) the breaking of the inversion, time-reversal and bulk crystal-field symmetries is interlaced with the effects of spin-orbit coupling (SOC) triggering exotic quantum phenomena. Here, epitaxial engineering is used to design and realize a 2DES characterized simultaneously by ferromagnetic order, large Rashba SOC and hexagonal band warping at the (111) interfaces between LaAlO3, EuTiO3, and SrTiO3 insulators. The 2DES displays anomalous quantum corrections to the magneto-conductance driven by the time-reversal-symmetry breaking occurring below the magnetic transition temperature. The results are explained by the emergence of a non-trivial Berry phase and competing weak anti-localization/weak localization back-scattering of Dirac-like fermions, mimicking the phenomenology of gapped topological insulators. These findings open perspectives for the engineering of novel spin-polarized functional 2DES holding promises in spin-orbitronics and topological electronics.
Collapse
Affiliation(s)
- Yu Chen
- CNR‐SPINComplesso Univ. Monte S. AngeloNaplesI‐80126Italy
| | - Maria D'Antuono
- Department of PhysicsUniversity of Naples Federico IIComplesso Univ. Monte S. AngeloNaplesI‐80126Italy
- Present address:
Instituto de Microelectronica de Barcelona (IMB‐CNM, CSIC)Campus UAB08193BellaterraSpain
| | - Mattia Trama
- Department of PhysicsUniversitá degli studi di SalernoVia Giovanni Paolo II, 132SalernoI‐84084Italy
- Present address:
Institute for Theoretical Solid State PhysicsIFW Dresden, Helmholtzstr, 2001069DresdenGermany
| | - Daniele Preziosi
- Institut de Physique et Chimie des Matériaux de StrasbourgUMR 7504 CNRSStrasbourgF‐67034France
| | - Benoit Jouault
- Laboratoire Charles CoulombUMR 5221, CNRS, Université de MontpellierMontpellierF‐34095France
| | - Frédéric Teppe
- Laboratoire Charles CoulombUMR 5221, CNRS, Université de MontpellierMontpellierF‐34095France
| | - Christophe Consejo
- Laboratoire Charles CoulombUMR 5221, CNRS, Université de MontpellierMontpellierF‐34095France
| | - Carmine A. Perroni
- Department of PhysicsUniversity of Naples Federico IIComplesso Univ. Monte S. AngeloNaplesI‐80126Italy
| | - Roberta Citro
- Department of PhysicsUniversitá degli studi di SalernoVia Giovanni Paolo II, 132SalernoI‐84084Italy
- CNR‐SPINVia Giovanni Paolo II, 132SalernoI‐84084Italy
| | - Daniela Stornaiuolo
- CNR‐SPINComplesso Univ. Monte S. AngeloNaplesI‐80126Italy
- Department of PhysicsUniversity of Naples Federico IIComplesso Univ. Monte S. AngeloNaplesI‐80126Italy
| | - Marco Salluzzo
- CNR‐SPINComplesso Univ. Monte S. AngeloNaplesI‐80126Italy
| |
Collapse
|
2
|
Kim DJ, Kim KW, Lee K, Oh JH, Chen X, Yang S, Pu Y, Liu Y, Hu F, Cao Van P, Jeong JR, Lee KJ, Yang H. Spin Hall-induced bilinear magnetoelectric resistance. NATURE MATERIALS 2024; 23:1509-1514. [PMID: 39266677 DOI: 10.1038/s41563-024-02000-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 08/15/2024] [Indexed: 09/14/2024]
Abstract
Magnetoresistance is a fundamental transport phenomenon that is essential for reading the magnetic states for various information storage, innovative computing and sensor devices. Recent studies have expanded the scope of magnetoresistances to the nonlinear regime, such as a bilinear magnetoelectric resistance (BMER), which is proportional to both electric field and magnetic field. Here we demonstrate that the BMER is a general phenomenon that arises even in three-dimensional systems without explicit momentum-space spin textures. Our theory suggests that the spin Hall effect enables the BMER provided that the magnitudes of spin accumulation at the top and bottom interfaces are not identical. The sign of the BMER follows the sign of the spin Hall effect of heavy metals, thereby evidencing that the BMER originates from the bulk spin Hall effect. Our observation suggests that the BMER serves as a general nonlinear transport characteristic in three-dimensional systems, especially playing a crucial role in antiferromagnetic spintronics.
Collapse
Affiliation(s)
- Dong-Jun Kim
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Kyoung-Whan Kim
- Center for Spintronics, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Physics, Yonsei University, Seoul, Republic of Korea
| | - Kyusup Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- Department of Physics, Pukyong National University, Busan, Republic of Korea
| | - Jung Hyun Oh
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Xinhou Chen
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Shuhan Yang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Yuchen Pu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Yakun Liu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Fanrui Hu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Phuoc Cao Van
- Department of Materials Science and Engineering, Chungnam National University, Daejeon, Republic of Korea
| | - Jong-Ryul Jeong
- Department of Materials Science and Engineering, Chungnam National University, Daejeon, Republic of Korea
| | - Kyung-Jin Lee
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hyunsoo Yang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
3
|
Gu M, Sheng H, Wu X, Wu M, Liu X, Yang F, Zhang Z, Gao P, Wang Z, Meng M, Guo J. Momentum-space spin texture induced by strain gradient in nominally centrosymmetric SrIrO 3 films. Natl Sci Rev 2024; 11:nwad296. [PMID: 39301067 PMCID: PMC11409885 DOI: 10.1093/nsr/nwad296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/10/2023] [Accepted: 11/02/2023] [Indexed: 09/22/2024] Open
Abstract
Spin texture in k-space is a consequence of spin splitting due to strong spin-orbit coupling and inversion symmetry breaking. It underlies fertile spin transport phenomena and is of crucial importance for spintronics. Here, we observe the spin texture in k-space of nominally centrosymmetric SrIrO3 grown on NdGaO3 (110) substrates, using non-linear magnetotransport measurements. We demonstrate that the spin texture is not only induced by the interface, which inherently breaks the inversion symmetry in strong spin-orbit coupled SrIrO3 films, but also originates from the film bulk. Structural analysis reveals that thicker SrIrO3 films exhibit a strain gradient, which could be considered as a continuous change in the lattice constant across different layers and breaks the inversion symmetry throughout the entire SrIrO3 films, giving rise to the spin texture in k-space. First-principles calculations reveal that the strain gradient creates large spin-splitting bands, inducing the spin texture with anisotropy, which is consistent with our experimental observations. Our results offer an efficient method for inducing the spin textures in k-space.
Collapse
Affiliation(s)
- Minghui Gu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Haohao Sheng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaofeng Wu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Mei Wu
- International Center for Quantum Materials, and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100091, China
| | - Xiaoran Liu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Fang Yang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhongshan Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Peng Gao
- International Center for Quantum Materials, and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100091, China
| | - Zhijun Wang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Meng Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiandong Guo
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
4
|
Li C, Wang R, Zhang S, Qin Y, Ying Z, Wei B, Dai Z, Guo F, Chen W, Zhang R, Wang B, Wang X, Song F. Observation of giant non-reciprocal charge transport from quantum Hall states in a topological insulator. NATURE MATERIALS 2024; 23:1208-1213. [PMID: 38641696 DOI: 10.1038/s41563-024-01874-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 03/19/2024] [Indexed: 04/21/2024]
Abstract
Symmetry breaking in quantum materials is of great importance and can lead to non-reciprocal charge transport. Topological insulators provide a unique platform to study non-reciprocal charge transport due to their surface states, especially quantum Hall states under an external magnetic field. Here we report the observation of non-reciprocal charge transport mediated by quantum Hall states in devices composed of the intrinsic topological insulator Sn-Bi1.1Sb0.9Te2S, which is attributed to asymmetric scattering between quantum Hall states and Dirac surface states. A giant non-reciprocal coefficient of up to 2.26 × 105 A-1 is found. Our work not only reveals the properties of non-reciprocal charge transport of quantum Hall states in topological insulators but also paves the way for future electronic devices.
Collapse
Affiliation(s)
- Chunfeng Li
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing, China
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, State Key Laboratory of Spintronics Devices and Technologies, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Rui Wang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing, China
- Hefei National Laboratory, Hefei, China
| | - Shuai Zhang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing, China.
| | - Yuyuan Qin
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing, China
| | - Zhe Ying
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing, China
| | - Boyuan Wei
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing, China
| | - Zheng Dai
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing, China
| | - Fengyi Guo
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing, China
| | - Wei Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing, China
| | - Rong Zhang
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, State Key Laboratory of Spintronics Devices and Technologies, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
- Department of Physics, Xiamen University, Xiamen, China
| | - Baigeng Wang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing, China
| | - Xuefeng Wang
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, State Key Laboratory of Spintronics Devices and Technologies, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
| | - Fengqi Song
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing, China.
- Institute of Atom Manufacturing, Nanjing University, Suzhou, China.
| |
Collapse
|
5
|
Tuvia G, Burshtein A, Silber I, Aharony A, Entin-Wohlman O, Goldstein M, Dagan Y. Enhanced Nonlinear Response by Manipulating the Dirac Point at the (111) LaTiO_{3}/SrTiO_{3} Interface. PHYSICAL REVIEW LETTERS 2024; 132:146301. [PMID: 38640380 DOI: 10.1103/physrevlett.132.146301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/01/2024] [Indexed: 04/21/2024]
Abstract
Tunable spin-orbit interaction (SOI) is an important feature for future spin-based devices. In the presence of a magnetic field, SOI induces an asymmetry in the energy bands, which can produce nonlinear transport effects (V∼I^{2}). Here, we focus on such effects to study the role of SOI in the (111) LaTiO_{3}/SrTiO_{3} interface. This system is a convenient platform for understanding the role of SOI since it exhibits a single-band Hall response through the entire gate-voltage range studied. We report a pronounced rise in the nonlinear longitudinal resistance at a critical in-plane field H_{cr}. This rise disappears when a small out-of-plane field component is present. We explain these results by considering the location of the Dirac point formed at the crossing of the spin-split energy bands. An in-plane magnetic field pushes this point outside of the Fermi contour, and consequently changes the symmetry of the Fermi contours and intensifies the nonlinear transport. An out-of-plane magnetic field opens a gap at the Dirac point, thereby significantly diminishing the nonlinear effects. We propose that magnetoresistance effects previously reported in interfaces with SOI could be comprehended within our suggested scenario.
Collapse
Affiliation(s)
- G Tuvia
- School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - A Burshtein
- School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - I Silber
- School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - A Aharony
- School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - O Entin-Wohlman
- School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - M Goldstein
- School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Y Dagan
- School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
6
|
Zhai J, Trama M, Liu H, Zhu Z, Zhu Y, Perroni CA, Citro R, He P, Shen J. Large Nonlinear Transverse Conductivity and Berry Curvature in KTaO 3 Based Two-Dimensional Electron Gas. NANO LETTERS 2023; 23:11892-11898. [PMID: 38079285 DOI: 10.1021/acs.nanolett.3c03948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Two-dimensional electron gas (2DEG) at oxide interfaces exhibits various exotic properties stemming from interfacial inversion and symmetry breaking. In this work, we report large nonlinear transverse conductivities in the LaAlO3/KTaO3 interface 2DEG under zero magnetic field. Skew scattering was identified as the dominant origin based on the cubic scaling of nonlinear transverse conductivity with linear longitudinal conductivity and 3-fold symmetry. Moreover, gate-tunable nonlinear transport with pronounced peak and dip was observed and reproduced by our theoretical calculation. These results indicate the presence of Berry curvature hotspots and thus a large Berry curvature triplet at the oxide interface. Our theoretical calculations confirm the existence of large Berry curvatures from the avoided crossing of multiple 5d-orbit bands, orders of magnitude larger than that in transition-metal dichalcogenides. Nonlinear transport offers a new pathway to probe the Berry curvature at oxide interfaces and facilitates new applications in oxide nonlinear electronics.
Collapse
Affiliation(s)
- Jinfeng Zhai
- State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China
| | - Mattia Trama
- Physics Department "E.R. Caianiello" and CNR-SPIN Salerno Unit, Universitá Degli Studi di Salerno, Via Giovanni Paolo II, 132, I-84084 Fisciano (Sa), Italy
- INFN─Gruppo Collegato di Salerno, I-84084 Fisciano, Italy
- Institute for Theoretical Solid State Physics, IFW Dresden, Helmholtzstr. 20, 01069 Dresden, Germany
| | - Hao Liu
- State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China
| | - Zhifei Zhu
- State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China
| | - Yinyan Zhu
- State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China
| | - Carmine Antonio Perroni
- Physics Department "Ettore Pancini", Universitá Degli Studi di Napoli "Federico II", Complesso Univ. Monte S. Angelo, Via Cintia, I-80126 Napoli, Italy
- CNR-SPIN Napoli Unit, Complesso Univ. Monte S. Angelo, Via Cintia, I-80126 Napoli, Italy
- INFN Napoli Unit, Complesso Univ. Monte S. Angelo, Via Cintia, I-80126 Napoli, Italy
| | - Roberta Citro
- Physics Department "E.R. Caianiello" and CNR-SPIN Salerno Unit, Universitá Degli Studi di Salerno, Via Giovanni Paolo II, 132, I-84084 Fisciano (Sa), Italy
- INFN─Gruppo Collegato di Salerno, I-84084 Fisciano, Italy
| | - Pan He
- State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China
- Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201210, China
| | - Jian Shen
- State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China
- Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201210, China
- Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| |
Collapse
|
7
|
Lesne E, Saǧlam YG, Battilomo R, Mercaldo MT, van Thiel TC, Filippozzi U, Noce C, Cuoco M, Steele GA, Ortix C, Caviglia AD. Designing spin and orbital sources of Berry curvature at oxide interfaces. NATURE MATERIALS 2023; 22:576-582. [PMID: 36928382 PMCID: PMC10156604 DOI: 10.1038/s41563-023-01498-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/31/2023] [Indexed: 05/05/2023]
Abstract
Quantum materials can display physical phenomena rooted in the geometry of electronic wavefunctions. The corresponding geometric tensor is characterized by an emergent field known as the Berry curvature (BC). Large BCs typically arise when electronic states with different spin, orbital or sublattice quantum numbers hybridize at finite crystal momentum. In all the materials known to date, the BC is triggered by the hybridization of a single type of quantum number. Here we report the discovery of the first material system having both spin- and orbital-sourced BC: LaAlO3/SrTiO3 interfaces grown along the [111] direction. We independently detect these two sources and probe the BC associated to the spin quantum number through the measurements of an anomalous planar Hall effect. The observation of a nonlinear Hall effect with time-reversal symmetry signals large orbital-mediated BC dipoles. The coexistence of different forms of BC enables the combination of spintronic and optoelectronic functionalities in a single material.
Collapse
Affiliation(s)
- Edouard Lesne
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.
- Max Planck Institute for Chemical Physics of Solids, Dresden, Germany.
| | - Yildiz G Saǧlam
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Raffaele Battilomo
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Utrecht, the Netherlands
| | | | - Thierry C van Thiel
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Ulderico Filippozzi
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Canio Noce
- Dipartimento di Fisica 'E. R. Caianiello', Universitá di Salerno, Fisciano, Italy
| | - Mario Cuoco
- CNR-SPIN c/o Universita' di Salerno, Fisciano, Italy
| | - Gary A Steele
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Carmine Ortix
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Utrecht, the Netherlands.
- Dipartimento di Fisica 'E. R. Caianiello', Universitá di Salerno, Fisciano, Italy.
| | - Andrea D Caviglia
- Department of Quantum Matter Physics, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
8
|
Arnault EG, Al-Tawhid AH, Salmani-Rezaie S, Muller DA, Kumah DP, Bahramy MS, Finkelstein G, Ahadi K. Anisotropic superconductivity at KTaO 3(111) interfaces. SCIENCE ADVANCES 2023; 9:eadf1414. [PMID: 36791191 PMCID: PMC9931206 DOI: 10.1126/sciadv.adf1414] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
A two-dimensional, anisotropic superconductivity was recently found at the KTaO3(111) interfaces. The nature of the anisotropic superconducting transition remains a subject of debate. To investigate the origins of the observed behavior, we grew epitaxial KTaO3(111)-based heterostructures. We show that the superconductivity is robust against the in-plane magnetic field and violates the Pauli limit. We also show that the Cooper pairs are more resilient when the bias is along [11[Formula: see text]] (I ∥ [11[Formula: see text]]) and the magnetic field is along [1[Formula: see text]0] (B ∥ [1[Formula: see text]0]). We discuss the anisotropic nature of superconductivity in the context of electronic structure, orbital character, and spin texture at the KTaO3(111) interfaces. The results point to future opportunities to enhance superconducting transition temperatures and critical fields in crystalline, two-dimensional superconductors with strong spin-orbit coupling.
Collapse
Affiliation(s)
| | - Athby H. Al-Tawhid
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27265, USA
| | - Salva Salmani-Rezaie
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
| | - David A. Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
| | - Divine P. Kumah
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Mohammad S. Bahramy
- Department of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | | | - Kaveh Ahadi
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27265, USA
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
9
|
Li L, Wu Y, Liu X, Liu J, Ruan H, Zhi Z, Zhang Y, Huang P, Ji Y, Tang C, Yang Y, Che R, Kou X. Room-Temperature Gate-Tunable Nonreciprocal Charge Transport in Lattice-Matched InSb/CdTe Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207322. [PMID: 36526594 DOI: 10.1002/adma.202207322] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/30/2022] [Indexed: 06/17/2023]
Abstract
Symmetry manipulation can be used to effectively tailor the physical order in solid-state systems. With the breaking of both the inversion and time-reversal symmetries, nonreciprocal magneto-transport may arise in nonmagnetic systems to enrich spin-orbit effects. Here, the observation of unidirectional magnetoresistance (UMR) in lattice-matched InSb/CdTe films is investigated up to room temperature. Benefiting from the strong built-in electric field of 0.13 V nm-1 in the heterojunction region, the resulting Rashba-type spin-orbit coupling and quantum confinement result in a distinct sinusoidal UMR signal with a nonreciprocal coefficient that is 1-2 orders of magnitude larger than most non-centrosymmetric materials at 298 K. Moreover, this heterostructure configuration enables highly efficient gate tuning of the rectification response, wherein the UMR amplitude is enhanced by 40%. The results of this study advocate the use of narrow-bandgap semiconductor-based hybrid systems with robust spin textures as suitable platforms for the pursuit of controllable chiral spin-orbit applications.
Collapse
Affiliation(s)
- Lun Li
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yuyang Wu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
- Department of Materials Science, Fudan University, Shanghai, 200438, China
| | - Xiaoyang Liu
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- University of Chinese Academy of Science, Beijing, 101408, China
| | - Jiuming Liu
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Hanzhi Ruan
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zhenghang Zhi
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- University of Chinese Academy of Science, Beijing, 101408, China
| | - Yong Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- University of Chinese Academy of Science, Beijing, 101408, China
| | - Puyang Huang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yuchen Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chenjia Tang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai, 201210, China
| | - Yumeng Yang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
- Department of Materials Science, Fudan University, Shanghai, 200438, China
| | - Xufeng Kou
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
10
|
Noh S, Choe D, Jin H, Yoo JW. Enhancement of the Rashba Effect in a Conducting SrTiO 3 Surface by MoO 3 Capping. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50280-50287. [PMID: 36282511 DOI: 10.1021/acsami.2c11840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Systems having inherent structural asymmetry retain the Rashba-type spin-orbit interaction, which ties the spin and momentum of electrons in the band structure, leading to coupled spin and charge transport. One of the electrical manifestations of the Rashba spin-orbit interaction is nonreciprocal charge transport, which could be utilized for rectifying devices. Further tuning of the Rashba spin-orbit interaction allows additional functionalities in spin-orbitronic applications. In this work, we present our study of nonreciprocal charge transport in a conducting SrTiO3 (001) surface and its significant enhancement by a capping layer. The conductive strontium titanate SrTiO3 (STO) (001) surface was created through oxygen vacancies by Ar+ irradiation, and the nonreciprocal signal was probed by angle- and magnetic field-dependent second harmonic voltage measurement with an AC current. We observed robust directional transport in the Ar+-irradiated sample at low temperatures. The magnitude of the nonreciprocal signal is highly dependent on the irradiation time as it affects the depth of the conducting layer and the impact of the topmost conducting layer. Moreover, the nonreciprocal resistance was significantly enhanced by simply adding a MoO3 capping layer on the conductive STO surface. These results show a simple methodology for tuning and investigating the Rashba effect in a conductive STO surface, which could be adopted for various two-dimensional (2D) conducting layers for spin-orbitronic applications.
Collapse
Affiliation(s)
- Seunghyeon Noh
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan44919, Korea
| | - Daeseong Choe
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan44919, Korea
| | - Hosub Jin
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan44919, Korea
| | - Jung-Woo Yoo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan44919, Korea
| |
Collapse
|
11
|
Controlled large non-reciprocal charge transport in an intrinsic magnetic topological insulator MnBi 2Te 4. Nat Commun 2022; 13:6191. [PMID: 36261426 PMCID: PMC9582003 DOI: 10.1038/s41467-022-33705-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022] Open
Abstract
Symmetries, quantum geometries and electronic correlations are among the most important ingredients of condensed matters, and lead to nontrivial phenomena in experiments, for example, non-reciprocal charge transport. Of particular interest is whether the non-reciprocal transport can be manipulated. Here, we report the controllable large non-reciprocal charge transport in the intrinsic magnetic topological insulator MnBi2Te4. The current direction relevant resistance is observed at chiral edges, which is magnetically switchable, edge position sensitive and stacking sequence controllable. Applying gate voltage can also effectively manipulate the non-reciprocal response. The observation and manipulation of non-reciprocal charge transport reveals the fundamental role of chirality in charge transport of MnBi2Te4, and pave ways to develop van der Waals spintronic devices by chirality engineering.
Collapse
|
12
|
Fu Y, Li J, Papin J, Noël P, Teresi S, Cosset-Chéneau M, Grezes C, Guillet T, Thomas C, Niquet YM, Ballet P, Meunier T, Attané JP, Fert A, Vila L. Bilinear Magnetoresistance in HgTe Topological Insulator: Opposite Signs at Opposite Surfaces Demonstrated by Gate Control. NANO LETTERS 2022; 22:7867-7873. [PMID: 36136339 DOI: 10.1021/acs.nanolett.2c02585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Spin-orbit effects appearing in topological insulators (TI) and at Rashba interfaces are currently revolutionizing how we can manipulate spins and have led to several newly discovered effects, from spin-charge interconversion and spin-orbit torques to novel magnetoresistance phenomena. In particular, a puzzling magnetoresistance has been evidenced as bilinear in electric and magnetic fields. Here, we report the observation of bilinear magnetoresistance (BMR) in strained HgTe, a prototypical TI. We show that both the amplitude and sign of this BMR can be tuned by controlling with an electric gate the relative proportions of the opposite contributions of opposite surfaces. At magnetic fields of 1 T, the magnetoresistance is of the order of 1% and has a larger figure of merit than previously measured TIs. We propose a theoretical model giving a quantitative account of our experimental data. This phenomenon, unique to TI, offers novel opportunities to tune their electrical response for spintronics.
Collapse
Affiliation(s)
- Yu Fu
- Université Grenoble Alpes, CEA, CNRS, SPINTEC, F-38054, Grenoble, France
| | - Jing Li
- Université Grenoble Alpes, CEA, Leti, F-38000, Grenoble, France
- Université Grenoble Alpes, CEA, IRIG-MEM-L_Sim, F-38000, Grenoble, France
| | - Jules Papin
- Université Grenoble Alpes, CNRS, Institut NEEL, F-38042, Grenoble, France
- Université Grenoble Alpes, CEA, Leti, F-38000, Grenoble, France
| | - Paul Noël
- Université Grenoble Alpes, CEA, CNRS, SPINTEC, F-38054, Grenoble, France
| | - Salvatore Teresi
- Université Grenoble Alpes, CEA, CNRS, SPINTEC, F-38054, Grenoble, France
| | | | - Cécile Grezes
- Université Grenoble Alpes, CEA, CNRS, SPINTEC, F-38054, Grenoble, France
| | - Thomas Guillet
- Université Grenoble Alpes, CEA, CNRS, SPINTEC, F-38054, Grenoble, France
| | - Candice Thomas
- Université Grenoble Alpes, CEA, Leti, F-38000, Grenoble, France
| | - Yann-Michel Niquet
- Université Grenoble Alpes, CEA, IRIG-MEM-L_Sim, F-38000, Grenoble, France
| | - Philippe Ballet
- Université Grenoble Alpes, CEA, Leti, F-38000, Grenoble, France
| | - Tristan Meunier
- Université Grenoble Alpes, CNRS, Institut NEEL, F-38042, Grenoble, France
| | | | - Albert Fert
- Unité Mixte de Physique CNRS-Thales, Université Paris-Saclay, 91767 Palaiseau, France
| | - Laurent Vila
- Université Grenoble Alpes, CEA, CNRS, SPINTEC, F-38054, Grenoble, France
| |
Collapse
|
13
|
Zhang Y, Kalappattil V, Liu C, Mehraeen M, Zhang SSL, Ding J, Erugu U, Chen Z, Tian J, Liu K, Tang J, Wu M. Large magnetoelectric resistance in the topological Dirac semimetal α-Sn. SCIENCE ADVANCES 2022; 8:eabo0052. [PMID: 35905193 PMCID: PMC9337753 DOI: 10.1126/sciadv.abo0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The spin-momentum locking of surface states in topological materials can produce a resistance that scales linearly with magnetic and electric fields. Such a bilinear magnetoelectric resistance (BMER) effect offers a new approach for information reading and field sensing applications, but the effects demonstrated so far are too weak or for low temperatures. This article reports the first observation of BMER effects in topological Dirac semimetals; the BMER responses were measured at room temperature and were substantially stronger than those reported previously. The experiments used topological Dirac semimetal α-Sn thin films grown on silicon substrates. The films showed BMER responses that are 106 times larger than previously measured at room temperature and are also larger than those previously obtained at low temperatures. These results represent a major advance toward realistic BMER applications. Significantly, the data also yield the first characterization of three-dimensional Fermi-level spin texture of topological surface states in α-Sn.
Collapse
Affiliation(s)
- Yuejie Zhang
- Department of Physics, Colorado State University, Fort Collins, CO 80523, USA
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | | | - Chuanpu Liu
- Department of Physics, Colorado State University, Fort Collins, CO 80523, USA
| | - M. Mehraeen
- Department of Physics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Steven S.-L. Zhang
- Department of Physics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jinjun Ding
- Department of Physics, Colorado State University, Fort Collins, CO 80523, USA
| | - Uppalaiah Erugu
- Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071, USA
| | - Zhijie Chen
- Physics Department, Georgetown University, Washington, DC 20057, USA
| | - Jifa Tian
- Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071, USA
| | - Kai Liu
- Physics Department, Georgetown University, Washington, DC 20057, USA
| | - Jinke Tang
- Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071, USA
| | - Mingzhong Wu
- Department of Physics, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
14
|
Tunable Spin and Orbital Edelstein Effect at (111) LaAlO3/SrTiO3 Interface. NANOMATERIALS 2022; 12:nano12142494. [PMID: 35889717 PMCID: PMC9318607 DOI: 10.3390/nano12142494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022]
Abstract
Converting charge current into spin current is one of the main mechanisms exploited in spintronics. One prominent example is the Edelstein effect, namely, the generation of a magnetization in response to an external electric field, which can be realized in systems with lack of inversion symmetry. If a system has electrons with an orbital angular momentum character, an orbital magnetization can be generated by the applied electric field, giving rise to the so-called orbital Edelstein effect. Oxide heterostructures are the ideal platform for these effects due to the strong spin–orbit coupling and the lack of inversion symmetries. Beyond a gate-tunable spin Edelstein effect, we predict an orbital Edelstein effect an order of magnitude larger then the spin one at the (111) LaAlO3/SrTiO3 interface for very low and high fillings. We model the material as a bilayer of t2g orbitals using a tight-binding approach, whereas transport properties are obtained in the Boltzmann approach. We give an effective model at low filling, which explains the non-trivial behaviour of the Edelstein response, showing that the hybridization between the electronic bands crucially impacts the Edelstein susceptibility.
Collapse
|
15
|
Calavalle F, Suárez-Rodríguez M, Martín-García B, Johansson A, Vaz DC, Yang H, Maznichenko IV, Ostanin S, Mateo-Alonso A, Chuvilin A, Mertig I, Gobbi M, Casanova F, Hueso LE. Gate-tuneable and chirality-dependent charge-to-spin conversion in tellurium nanowires. NATURE MATERIALS 2022; 21:526-532. [PMID: 35256792 DOI: 10.1038/s41563-022-01211-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Chiral materials are an ideal playground for exploring the relation between symmetry, relativistic effects and electronic transport. For instance, chiral organic molecules have been intensively studied to electrically generate spin-polarized currents in the last decade, but their poor electronic conductivity limits their potential for applications. Conversely, chiral inorganic materials such as tellurium have excellent electrical conductivity, but their potential for enabling the electrical control of spin polarization in devices remains unclear. Here, we demonstrate the all-electrical generation, manipulation and detection of spin polarization in chiral single-crystalline tellurium nanowires. By recording a large (up to 7%) and chirality-dependent unidirectional magnetoresistance, we show that the orientation of the electrically generated spin polarization is determined by the nanowire handedness and uniquely follows the current direction, while its magnitude can be manipulated by an electrostatic gate. Our results pave the way for the development of magnet-free chirality-based spintronic devices.
Collapse
Affiliation(s)
| | | | | | - Annika Johansson
- Institute of Physics, Martin Luther University Halle-Wittenberg, Halle, Germany
- Max Planck Institute of Microstructure Physics, Halle, Germany
| | - Diogo C Vaz
- CIC nanoGUNE BRTA, Donostia-San Sebastian, Spain
| | - Haozhe Yang
- CIC nanoGUNE BRTA, Donostia-San Sebastian, Spain
| | - Igor V Maznichenko
- Institute of Physics, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Sergey Ostanin
- Institute of Physics, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Aurelio Mateo-Alonso
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- POLYMAT, University of the Basque Country UPV/EHU, Donostia-San Sebastian, Spain
| | - Andrey Chuvilin
- CIC nanoGUNE BRTA, Donostia-San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Ingrid Mertig
- Institute of Physics, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Marco Gobbi
- CIC nanoGUNE BRTA, Donostia-San Sebastian, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Centro de Física de Materiales CSIC-UPV/EHU, Donostia-San Sebastian, Spain.
| | - Fèlix Casanova
- CIC nanoGUNE BRTA, Donostia-San Sebastian, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | - Luis E Hueso
- CIC nanoGUNE BRTA, Donostia-San Sebastian, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
16
|
Ye C, Xie X, Lv W, Huang K, Yang AJ, Jiang S, Liu X, Zhu D, Qiu X, Tong M, Zhou T, Hsu CH, Chang G, Lin H, Li P, Yang K, Wang Z, Jiang T, Renshaw Wang X. Nonreciprocal Transport in a Bilayer of MnBi 2Te 4 and Pt. NANO LETTERS 2022; 22:1366-1373. [PMID: 35073094 DOI: 10.1021/acs.nanolett.1c04756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
MnBi2Te4 (MBT) is the first intrinsic magnetic topological insulator with the interaction of spin-momentum locked surface electrons and intrinsic magnetism, and it exhibits novel magnetic and topological phenomena. Recent studies suggested that the interaction of electrons and magnetism can be affected by the Mn-doped Bi2Te3 phase at the surface due to inevitable structural defects. Here, we report an observation of nonreciprocal transport, that is, current-direction-dependent resistance, in a bilayer composed of antiferromagnetic MBT and nonmagnetic Pt. The emergence of the nonreciprocal response below the Néel temperature confirms a correlation between nonreciprocity and intrinsic magnetism in the surface state of MBT. The angular dependence of the nonreciprocal transport indicates that nonreciprocal response originates from the asymmetry scattering of electrons at the surface of MBT mediated by magnon. Our work provides an insight into nonreciprocity arising from the correlation between magnetism and Dirac surface electrons in intrinsic magnetic topological insulators.
Collapse
Affiliation(s)
- Chen Ye
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link 637371, Singapore
| | - Xiangnan Xie
- State Key Laboratory of High Performance Computing, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, P.R. China
| | - Wenxing Lv
- Physics Laboratory, Industrial Training Center, Shenzhen Polytechnic, Shenzhen, Guangdong 518055, P.R. China
| | - Ke Huang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link 637371, Singapore
| | - Allen Jian Yang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link 637371, Singapore
| | - Sicong Jiang
- Department of NanoEngineering and Program of Chemical Engineering, University of California San Diego, La Jolla, California 92093-0448, United States
- Program of Materials Science and Engineering, University of California San Diego, La Jolla, California 92093-0418, United States
| | - Xue Liu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link 637371, Singapore
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P.R. China
| | - Dapeng Zhu
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, P.R. China
- Beihang-Goertek Joint Microelectronics Institute, Qingdao Research Institute, Beihang University, Qingdao 266000, P.R. China
| | - Xuepeng Qiu
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology and School of Physics Science and Engineering, Tongji University, Shanghai 200092, P.R. China
| | - Mingyu Tong
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, P.R. China
| | - Tong Zhou
- State Key Laboratory of High Performance Computing, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, P.R. China
| | - Chuang-Han Hsu
- Insitute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | - Guoqing Chang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link 637371, Singapore
| | - Hsin Lin
- Insitute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | - Peisen Li
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, P.R. China
| | - Kesong Yang
- Department of NanoEngineering and Program of Chemical Engineering, University of California San Diego, La Jolla, California 92093-0448, United States
- Program of Materials Science and Engineering, University of California San Diego, La Jolla, California 92093-0418, United States
| | - Zhenyu Wang
- State Key Laboratory of High Performance Computing, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, P.R. China
- National Innovation Institute of Defense Technology, Academy of Military Sciences PLA China, Beijing 100010, P.R. China
- Beijing Academy of Quantum Information Sciences, Beijing 100084, P.R. China
| | - Tian Jiang
- State Key Laboratory of High Performance Computing, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, P.R. China
- Beijing Institute for Advanced Study, National University of Defense Technology, Changsha 410073, P.R. China
| | - Xiao Renshaw Wang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link 637371, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
17
|
Baumgartner C, Fuchs L, Costa A, Reinhardt S, Gronin S, Gardner GC, Lindemann T, Manfra MJ, Faria Junior PE, Kochan D, Fabian J, Paradiso N, Strunk C. Supercurrent rectification and magnetochiral effects in symmetric Josephson junctions. NATURE NANOTECHNOLOGY 2022; 17:39-44. [PMID: 34795437 DOI: 10.1038/s41565-021-01009-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/16/2021] [Indexed: 05/28/2023]
Abstract
Transport is non-reciprocal when not only the sign, but also the absolute value of the current depends on the polarity of the applied voltage. It requires simultaneously broken inversion and time-reversal symmetries, for example, by an interplay of spin-orbit coupling and magnetic field. Hitherto, observation of nonreciprocity was tied to resistivity, and dissipationless non-reciprocal circuit elements were elusive. Here we engineer fully superconducting non-reciprocal devices based on highly transparent Josephson junctions fabricated on InAs quantum wells. We demonstrate supercurrent rectification far below the transition temperature. By measuring Josephson inductance, we can link the non-reciprocal supercurrent to an asymmetry of the current-phase relation, and directly derive the supercurrent magnetochiral anisotropy coefficient. A semiquantitative model explains well the main features of our experimental data. Non-reciprocal Josephson junctions have the potential to become for superconducting circuits what pn junctions are for traditional electronics, enabling new non-dissipative circuit elements.
Collapse
Affiliation(s)
- Christian Baumgartner
- Institut für Experimentelle und Angewandte Physik, University of Regensburg, Regensburg, Germany
| | - Lorenz Fuchs
- Institut für Experimentelle und Angewandte Physik, University of Regensburg, Regensburg, Germany
| | - Andreas Costa
- Institut für Theoretische Physik, University of Regensburg, Regensburg, Germany
| | - Simon Reinhardt
- Institut für Experimentelle und Angewandte Physik, University of Regensburg, Regensburg, Germany
| | - Sergei Gronin
- Microsoft Quantum Purdue, Purdue University, West Lafayette, IN, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Geoffrey C Gardner
- Microsoft Quantum Purdue, Purdue University, West Lafayette, IN, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Tyler Lindemann
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
| | - Michael J Manfra
- Microsoft Quantum Purdue, Purdue University, West Lafayette, IN, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
- School of Materials Engineering, Purdue University, West Lafayette, IN, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | | | - Denis Kochan
- Institut für Theoretische Physik, University of Regensburg, Regensburg, Germany
| | - Jaroslav Fabian
- Institut für Theoretische Physik, University of Regensburg, Regensburg, Germany
| | - Nicola Paradiso
- Institut für Experimentelle und Angewandte Physik, University of Regensburg, Regensburg, Germany.
| | - Christoph Strunk
- Institut für Experimentelle und Angewandte Physik, University of Regensburg, Regensburg, Germany
| |
Collapse
|
18
|
Ohtsuka Y, Kanazawa N, Hirayama M, Matsui A, Nomoto T, Arita R, Nakajima T, Hanashima T, Ukleev V, Aoki H, Mogi M, Fujiwara K, Tsukazaki A, Ichikawa M, Kawasaki M, Tokura Y. Emergence of spin-orbit coupled ferromagnetic surface state derived from Zak phase in a nonmagnetic insulator FeSi. SCIENCE ADVANCES 2021; 7:eabj0498. [PMID: 34788092 PMCID: PMC8598002 DOI: 10.1126/sciadv.abj0498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
FeSi is a nonmagnetic narrow-gap insulator, exhibiting peculiar charge and spin dynamics beyond a simple band structure picture. Those unusual features have been attracting renewed attention from topological aspects. Although the surface conduction was demonstrated according to size-dependent resistivity in bulk crystals, its topological characteristics and consequent electromagnetic responses remain elusive. Here, we demonstrate an inherent surface ferromagnetic-metal state of FeSi thin films and its strong spin-orbit coupling (SOC) properties through multiple characterizations of two-dimensional conductance, magnetization, and spintronic functionality. Terminated covalent bonding orbitals constitute the polar surface state with momentum-dependent spin textures due to Rashba-type spin splitting, as corroborated by unidirectional magnetoresistance measurements and first-principles calculations. As a consequence of the spin-momentum locking, nonequilibrium spin accumulation causes magnetization switching. These surface properties are closely related to the Zak phase of the bulk band topology. Our findings propose another route to explore noble metal–free materials for SOC-based spin manipulation.
Collapse
Affiliation(s)
- Yusuke Ohtsuka
- Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
| | - Naoya Kanazawa
- Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
| | - Motoaki Hirayama
- Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| | - Akira Matsui
- Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
| | - Takuya Nomoto
- Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
| | - Ryotaro Arita
- Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| | - Taro Nakajima
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
- Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8561, Japan
| | | | - Victor Ukleev
- Laboratory for Neutron Scattering and Imaging (LNS), Paul Scherrer Institute (PSI), CH-5232 Villigen, Switzerland
| | - Hiroyuki Aoki
- Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, Tokai 319-1195, Japan
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tokai 319-1106, Japan
| | - Masataka Mogi
- Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
| | - Kohei Fujiwara
- Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Atsushi Tsukazaki
- Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Masakazu Ichikawa
- Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
| | - Masashi Kawasaki
- Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| | - Yoshinori Tokura
- Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
- Tokyo College, University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
19
|
Chen M, Lee K, Li J, Cheng L, Wang Q, Cai K, Chia EEM, Chang H, Yang H. Anisotropic Picosecond Spin-Photocurrent from Weyl Semimetal WTe 2. ACS NANO 2020; 14:3539-3545. [PMID: 32160456 DOI: 10.1021/acsnano.9b09828] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The generation and detection of ultrafast spin current, preferably reaching a frequency up to terahertz, is the core of spintronics. Studies have shown that the Weyl semimetal WTe2 is of great potential in generating spin currents. However, the prior studies have been limited to the static measurements with the in-plane spin orientation. In this work, we demonstrate a picosecond spin-photocurrent in a Td-WTe2 thin film via a terahertz time domain spectroscopy with a circularly polarized laser excitation. The anisotropic dependence of the circular photogalvanic effect (CPGE) in the terahertz emission reveals that the picosecond spin-photocurrent is generated along the rotational asymmetry a-axis. Notably, the generated spins are aligned along the out-of-plane direction under the light normally incident to the film surface, which provides an efficient means to manipulate magnetic devices with perpendicular magnetic anisotropy. A spin-splitting band induced by intrinsic inversion symmetry breaking enables the manipulation of a spin current by modulating the helicity of the laser excitation. Moreover, CPGE nearly vanishes at a transition temperature of ∼175 K due to the carrier compensation. Our work provides an insight into the dynamic behavior of the anisotropic spin-photocurrent of Td-WTe2 in terahertz frequencies and shows a great potential for the future development of terahertz-spintronic devices with Weyl semimetals.
Collapse
Affiliation(s)
- Mengji Chen
- Department of Electrical and Computer Engineering and NUSNNI, National University of Singapore, 117576, Singapore
| | - Kyusup Lee
- Department of Electrical and Computer Engineering and NUSNNI, National University of Singapore, 117576, Singapore
| | - Jie Li
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liang Cheng
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Qisheng Wang
- Department of Electrical and Computer Engineering and NUSNNI, National University of Singapore, 117576, Singapore
| | - Kaiming Cai
- Department of Electrical and Computer Engineering and NUSNNI, National University of Singapore, 117576, Singapore
| | - Elbert E M Chia
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Haixin Chang
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hyunsoo Yang
- Department of Electrical and Computer Engineering and NUSNNI, National University of Singapore, 117576, Singapore
| |
Collapse
|
20
|
Itahashi YM, Ideue T, Saito Y, Shimizu S, Ouchi T, Nojima T, Iwasa Y. Nonreciprocal transport in gate-induced polar superconductor SrTiO 3. SCIENCE ADVANCES 2020; 6:eaay9120. [PMID: 32258403 PMCID: PMC7101218 DOI: 10.1126/sciadv.aay9120] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/03/2020] [Indexed: 05/05/2023]
Abstract
Polar conductors/superconductors with Rashba-type spin-orbit interaction are potential material platforms for quantum transport and spintronic functionalities. One of their inherent properties is the nonreciprocal transport, where the rightward and leftward currents become inequivalent, reflecting spatial inversion/time-reversal symmetry breaking. Such a rectification effect originating from the polar symmetry has been recently observed at interfaces or bulk Rashba semiconductors, while its mechanism in a polar superconductor remains elusive. Here, we report the nonreciprocal transport in gate-induced two-dimensional superconductor SrTiO3, which is a Rashba superconductor candidate. In addition to the gigantic enhancement of nonreciprocal signals in the superconducting fluctuation region, we found kink and sharp peak structures around critical temperatures, which reflect the crossover behavior from the paraconductivity origin to the vortex origin, based on a microscopic theory. The present result proves that the nonreciprocal transport is a powerful tool for investigating the interfacial/polar superconductors without inversion symmetry, where rich exotic features are theoretically prognosticated.
Collapse
Affiliation(s)
- Yuki M. Itahashi
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| | - Toshiya Ideue
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
- Corresponding author. (T.I.); (Y.I.)
| | - Yu Saito
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
- California NanoSystems Institute, University of California at Santa Barbara, Santa Barbara CA 93106, USA
| | - Sunao Shimizu
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
- Central Research Institute of Electric Power Industry (CRIEPI), Kanagawa 240-0196, Japan
| | - Takumi Ouchi
- Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Tsutomu Nojima
- Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Yoshihiro Iwasa
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
- Corresponding author. (T.I.); (Y.I.)
| |
Collapse
|
21
|
Song P, Hsu CH, Vignale G, Zhao M, Liu J, Deng Y, Fu W, Liu Y, Zhang Y, Lin H, Pereira VM, Loh KP. Coexistence of large conventional and planar spin Hall effect with long spin diffusion length in a low-symmetry semimetal at room temperature. NATURE MATERIALS 2020; 19:292-298. [PMID: 32015531 DOI: 10.1038/s41563-019-0600-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
The spin Hall effect (SHE) is usually observed as a bulk effect in high-symmetry crystals with substantial spin-orbit coupling (SOC), where the symmetric spin-orbit field imposes a widely encountered trade-off between spin Hall angle (θSH) and spin diffusion length (Lsf), and spin polarization, spin current and charge current are constrained to be mutually orthogonal. Here, we report a large θSH of 0.32 accompanied by a long Lsf of 2.2 μm at room temperature in a low-symmetry few-layered semimetal MoTe2, thus identifying it as an excellent candidate for simultaneous spin generation, transport and detection. In addition, we report that longitudinal spin current with out-of-plane polarization can be generated by both transverse and vertical charge current, due to the conventional and a newly observed planar SHE, respectively. Our study suggests that manipulation of crystalline symmetries and strong SOC opens access to new charge-spin interconversion configurations and spin-orbit torques for spintronic applications.
Collapse
Affiliation(s)
- Peng Song
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Chuang-Han Hsu
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore
- Department of Physics, National University of Singapore, Singapore, Singapore
| | - Giovanni Vignale
- Yale-NUS College, Singapore, Singapore
- Department of Physics, University of Missouri, Columbia, MO, USA
| | - Meng Zhao
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Innovis, Singapore, Singapore
| | - Jiawei Liu
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore
- Department of Physics, National University of Singapore, Singapore, Singapore
| | - Yujun Deng
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China
| | - Wei Fu
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Yanpeng Liu
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Yuanbo Zhang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China
| | - Hsin Lin
- Institute of Physics, Academia Sinica, Taipei, Taiwan.
| | - Vitor M Pereira
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore.
- Department of Physics, National University of Singapore, Singapore, Singapore.
| | - Kian Ping Loh
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore.
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
22
|
Guillet T, Zucchetti C, Barbedienne Q, Marty A, Isella G, Cagnon L, Vergnaud C, Jaffrès H, Reyren N, George JM, Fert A, Jamet M. Observation of Large Unidirectional Rashba Magnetoresistance in Ge(111). PHYSICAL REVIEW LETTERS 2020; 124:027201. [PMID: 32004027 DOI: 10.1103/physrevlett.124.027201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Relating magnetotransport properties to specific spin textures at surfaces or interfaces is an intense field of research nowadays. Here, we investigate the variation of the electrical resistance of Ge(111) grown epitaxially on semi-insulating Si(111) under the application of an external magnetic field. We find a magnetoresistance term that is linear in current density j and magnetic field B, hence, odd in j and B, corresponding to a unidirectional magnetoresistance. At 15 K, for I=10 μA (or j=0.33 A m^{-1}) and B=1 T, it represents 0.5% of the zero field resistance, a much higher value compared to previous reports on unidirectional magnetoresistance (UMR). We ascribe the origin of this magnetoresistance to the interplay between the externally applied magnetic field and the pseudomagnetic field generated by the current applied in the spin-splitted subsurface states of Ge(111). This unidirectional magnetoresistance is independent of the current direction with respect to the Ge crystal axes. It progressively vanishes, either using a negative gate voltage due to carrier activation into the bulk (without spin-splitted bands), or by increasing the temperature due to the Rashba energy splitting of the subsurface states lower than ∼58k_{B}. We believe that UMR could be used as a powerful probe of the spin-orbit interaction in a wide range of materials.
Collapse
Affiliation(s)
- T Guillet
- Université Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG-SPINTEC, 38000 Grenoble, France
| | - C Zucchetti
- LNESS-Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Q Barbedienne
- Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay, 91767, Palaiseau, France
| | - A Marty
- Université Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG-SPINTEC, 38000 Grenoble, France
| | - G Isella
- LNESS-Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - L Cagnon
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut NEEL, 38000 Grenoble, France
| | - C Vergnaud
- Université Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG-SPINTEC, 38000 Grenoble, France
| | - H Jaffrès
- Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay, 91767, Palaiseau, France
| | - N Reyren
- Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay, 91767, Palaiseau, France
| | - J-M George
- Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay, 91767, Palaiseau, France
| | - A Fert
- Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay, 91767, Palaiseau, France
| | - M Jamet
- Université Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG-SPINTEC, 38000 Grenoble, France
| |
Collapse
|
23
|
Choe D, Jin MJ, Kim SI, Choi HJ, Jo J, Oh I, Park J, Jin H, Koo HC, Min BC, Hong S, Lee HW, Baek SH, Yoo JW. Gate-tunable giant nonreciprocal charge transport in noncentrosymmetric oxide interfaces. Nat Commun 2019; 10:4510. [PMID: 31586096 PMCID: PMC6778138 DOI: 10.1038/s41467-019-12466-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 09/06/2019] [Indexed: 11/09/2022] Open
Abstract
A polar conductor, where inversion symmetry is broken, may exhibit directional propagation of itinerant electrons, i.e., the rightward and leftward currents differ from each other, when time-reversal symmetry is also broken. This potential rectification effect was shown to be very weak due to the fact that the kinetic energy is much higher than the energies associated with symmetry breaking, producing weak perturbations. Here we demonstrate the appearance of giant nonreciprocal charge transport in the conductive oxide interface, LaAlO3/SrTiO3, where the electrons are confined to two-dimensions with low Fermi energy. In addition, the Rashba spin-orbit interaction correlated with the sub-band hierarchy of this system enables a strongly tunable nonreciprocal response by applying a gate voltage. The observed behavior of directional response in LaAlO3/SrTiO3 is associated with comparable energy scales among kinetic energy, spin-orbit interaction, and magnetic field, which inspires a promising route to enhance nonreciprocal response and its functionalities in spin orbitronics.
Collapse
Affiliation(s)
- Daeseong Choe
- School of Materials Science and Engineering-Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea
| | - Mi-Jin Jin
- School of Materials Science and Engineering-Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea
| | - Shin-Ik Kim
- Center for Electronic Materials, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Hyung-Jin Choi
- Center for Electronic Materials, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Junhyeon Jo
- School of Materials Science and Engineering-Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea
| | - Inseon Oh
- School of Materials Science and Engineering-Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea
| | - Jungmin Park
- School of Materials Science and Engineering-Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea.,Center for Scientific Instrumentation, Division of Scientific Instrumentation & Management, Korea Basic Science Institute, Daejeon, 305-806, Korea
| | - Hosub Jin
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea
| | - Hyun Cheol Koo
- Center for Spintronics, Korea Institute of Science and Technology, Seoul, 02792, Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Korea
| | - Byoung-Chul Min
- Center for Spintronics, Korea Institute of Science and Technology, Seoul, 02792, Korea.,Division of Nano and Information Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Korea
| | - Seokmin Hong
- Center for Spintronics, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Hyun-Woo Lee
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Seung-Hyub Baek
- Center for Electronic Materials, Korea Institute of Science and Technology, Seoul, 02792, Korea.,Division of Nano and Information Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Korea
| | - Jung-Woo Yoo
- School of Materials Science and Engineering-Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea.
| |
Collapse
|
24
|
He P, Zhang SSL, Zhu D, Shi S, Heinonen OG, Vignale G, Yang H. Nonlinear Planar Hall Effect. PHYSICAL REVIEW LETTERS 2019; 123:016801. [PMID: 31386424 DOI: 10.1103/physrevlett.123.016801] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/07/2019] [Indexed: 06/10/2023]
Abstract
An intriguing property of a three-dimensional (3D) topological insulator (TI) is the existence of surface states with spin-momentum locking, which offers a new frontier of exploration in spintronics. Here, we report the observation of a new type of Hall effect in a 3D TI Bi_{2}Se_{3} film. The Hall resistance scales linearly with both the applied electric and magnetic fields and exhibits a π/2 angle offset with respect to its longitudinal counterpart, in contrast to the usual angle offset of π/4 between the linear planar Hall effect and the anisotropic magnetoresistance. This novel nonlinear planar Hall effect originates from the conversion of a nonlinear transverse spin current to a charge current due to the concerted actions of spin-momentum locking and time-reversal symmetry breaking, which also exists in a wide class of noncentrosymmetric materials with a large span of magnitude. It provides a new way to characterize and utilize the nonlinear spin-to-charge conversion in a variety of topological quantum materials.
Collapse
Affiliation(s)
- Pan He
- Department of Electrical and Computer Engineering, and NUSNNI, National University of Singapore, 117576 Singapore
| | - Steven S-L Zhang
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, USA
| | - Dapeng Zhu
- Department of Electrical and Computer Engineering, and NUSNNI, National University of Singapore, 117576 Singapore
| | - Shuyuan Shi
- Department of Electrical and Computer Engineering, and NUSNNI, National University of Singapore, 117576 Singapore
| | - Olle G Heinonen
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Giovanni Vignale
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, USA
| | - Hyunsoo Yang
- Department of Electrical and Computer Engineering, and NUSNNI, National University of Singapore, 117576 Singapore
| |
Collapse
|
25
|
Nonreciprocal charge transport at topological insulator/superconductor interface. Nat Commun 2019; 10:2734. [PMID: 31227710 PMCID: PMC6588591 DOI: 10.1038/s41467-019-10658-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/24/2019] [Indexed: 11/16/2022] Open
Abstract
Topological superconductor is attracting growing interest for its potential application to topological quantum computation. The superconducting proximity effect on the topological insulator surface state is one promising way to yield topological superconductivity. The superconductivity realized at the interface between Bi2Te3 and non-superconductor FeTe is one such candidate. Here, to detect the mutual interaction between superconductivity and topological surface state, we investigate nonreciprocal transport; i.e., current-direction dependent resistance, which is sensitive to the broken inversion symmetry of the electronic state. The largely enhanced nonreciprocal phenomenon is detected in the Bi2Te3/FeTe heterostructure associated with the superconducting transition. The emergent nonreciprocal signal at low magnetic fields is attributed to the current-induced modulation of supercurrent density under the in-plane magnetic fields due to the spin-momentum locking. The angular dependence of the signal reveals the symmetry of superconductivity and indicates the existence of another mechanism of nonreciprocal transport at high fields. The superconducting proximity effect on the surface state of a topological insulator is promising to generate topological superconductivity. Here, Yasuda et al. reported enhanced nonreciprocal charge transport in a Bi2Te3/FeTe heterostructure with an emerging superconducting order parameter.
Collapse
|
26
|
He P, Hsu CH, Shi S, Cai K, Wang J, Wang Q, Eda G, Lin H, Pereira VM, Yang H. Nonlinear magnetotransport shaped by Fermi surface topology and convexity. Nat Commun 2019; 10:1290. [PMID: 30894524 PMCID: PMC6426858 DOI: 10.1038/s41467-019-09208-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/27/2019] [Indexed: 11/09/2022] Open
Abstract
The nature of Fermi surface defines the physical properties of conductors and many physical phenomena can be traced to its shape. Although the recent discovery of a current-dependent nonlinear magnetoresistance in spin-polarized non-magnetic materials has attracted considerable attention in spintronics, correlations between this phenomenon and the underlying fermiology remain unexplored. Here, we report the observation of nonlinear magnetoresistance at room temperature in a semimetal WTe2, with an interesting temperature-driven inversion. Theoretical calculations reproduce the nonlinear transport measurements and allow us to attribute the inversion to temperature-induced changes in Fermi surface convexity. We also report a large anisotropy of nonlinear magnetoresistance in WTe2, due to its low symmetry of Fermi surfaces. The good agreement between experiments and theoretical modeling reveals the critical role of Fermi surface topology and convexity on the nonlinear magneto-response. These results lay a new path to explore ramifications of distinct fermiology for nonlinear transport in condensed-matter.
Collapse
Affiliation(s)
- Pan He
- Department of Electrical and Computer Engineering, and NUSNNI, National University of Singapore, Singapore, 117576, Singapore
| | - Chuang-Han Hsu
- Centre for Advanced 2D Materials, National University of Singapore, Singapore, 117546, Singapore.,Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Shuyuan Shi
- Department of Electrical and Computer Engineering, and NUSNNI, National University of Singapore, Singapore, 117576, Singapore.,Centre for Advanced 2D Materials, National University of Singapore, Singapore, 117546, Singapore
| | - Kaiming Cai
- Department of Electrical and Computer Engineering, and NUSNNI, National University of Singapore, Singapore, 117576, Singapore
| | - Junyong Wang
- Centre for Advanced 2D Materials, National University of Singapore, Singapore, 117546, Singapore.,Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Qisheng Wang
- Department of Electrical and Computer Engineering, and NUSNNI, National University of Singapore, Singapore, 117576, Singapore
| | - Goki Eda
- Centre for Advanced 2D Materials, National University of Singapore, Singapore, 117546, Singapore.,Department of Physics, National University of Singapore, Singapore, 117542, Singapore.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Hsin Lin
- Institute of Physics, Academia Sinica, Taipei, 11529, Taiwan
| | - Vitor M Pereira
- Centre for Advanced 2D Materials, National University of Singapore, Singapore, 117546, Singapore.,Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Hyunsoo Yang
- Department of Electrical and Computer Engineering, and NUSNNI, National University of Singapore, Singapore, 117576, Singapore. .,Centre for Advanced 2D Materials, National University of Singapore, Singapore, 117546, Singapore.
| |
Collapse
|
27
|
Zhang H, Ma Y, Zhang H, Chen X, Wang S, Li G, Yun Y, Yan X, Chen Y, Hu F, Cai J, Shen B, Han W, Sun J. Thermal Spin Injection and Inverse Edelstein Effect of the Two-Dimensional Electron Gas at EuO-KTaO 3 Interfaces. NANO LETTERS 2019; 19:1605-1612. [PMID: 30715894 DOI: 10.1021/acs.nanolett.8b04509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
With the help of the two-dimensional electron gas (2DEG) at the LaAlO3-SrTiO3 interface, spin and charge currents can be interconverted. However, the conversion efficiency has been strongly depressed by LaAlO3, which blocks spin transmission. It is therefore highly desired to explore 2DEGs sandwiched between ferromagnetic insulators that are transparent for magnons. By constructing epitaxial heterostructure with ferromagnetic EuO, which is conducting for spin current but insulating for electric current, and KTaO3, we successfully obtained the 2DEGs, which can receive thermally injected spin current directly from EuO and convert the spin current to charge current via inverse Edelstein effect of the interface. Strong dependence of the spin Seebeck coefficient on the layer thickness of EuO is further observed and the propagation length for non-equilibrium magnons in EuO has been determined. The present work demonstrates the great potential of the 2DEGs formed by ferromagnetic oxides for spin caloritronics.
Collapse
Affiliation(s)
- Hongrui Zhang
- Beijing National Laboratory for Condensed Matter Physics & Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
- School of Physics , University of the Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Yang Ma
- International Centre for Quantum Materials , School of Physics, Peking University , Beijing 100871 , People's Republic of China
- Collaborative Innovation Centre of Quantum Matter , Beijing 100871 , People's Republic of China
| | - Hui Zhang
- Beijing National Laboratory for Condensed Matter Physics & Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
- School of Physics , University of the Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Xiaobing Chen
- Beijing National Laboratory for Condensed Matter Physics & Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
- School of Physics , University of the Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Shuanhu Wang
- Shanxi Key Laboratory of Condensed Matter Structures and Properties, School of Science , Northwestern Polytechnic University , Xi'an 710072 , People's Republic of China
| | - Gang Li
- Beijing National Laboratory for Condensed Matter Physics & Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
- School of Physics , University of the Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Yu Yun
- International Centre for Quantum Materials , School of Physics, Peking University , Beijing 100871 , People's Republic of China
- Collaborative Innovation Centre of Quantum Matter , Beijing 100871 , People's Republic of China
| | - Xi Yan
- Beijing National Laboratory for Condensed Matter Physics & Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
- School of Physics , University of the Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Yuansha Chen
- Beijing National Laboratory for Condensed Matter Physics & Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
- School of Physics , University of the Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Fengxia Hu
- Beijing National Laboratory for Condensed Matter Physics & Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
- School of Physics , University of the Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
- Songshan Lake Materials Laboratory , Dongguan , Guangdong 523808 , People's Republic of China
| | - Jianwang Cai
- Beijing National Laboratory for Condensed Matter Physics & Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
- School of Physics , University of the Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Baogen Shen
- Beijing National Laboratory for Condensed Matter Physics & Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
- School of Physics , University of the Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
- Songshan Lake Materials Laboratory , Dongguan , Guangdong 523808 , People's Republic of China
| | - Wei Han
- International Centre for Quantum Materials , School of Physics, Peking University , Beijing 100871 , People's Republic of China
- Collaborative Innovation Centre of Quantum Matter , Beijing 100871 , People's Republic of China
| | - Jirong Sun
- Beijing National Laboratory for Condensed Matter Physics & Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
- School of Physics , University of the Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
- Songshan Lake Materials Laboratory , Dongguan , Guangdong 523808 , People's Republic of China
| |
Collapse
|