1
|
Hegedüs M, Banerjee R, Hutcheson A, Barker T, Mahashabde S, Danilov AV, Kubatkin SE, Antonov V, de Graaf SE. In situ scanning gate imaging of individual quantum two-level system defects in live superconducting circuits. SCIENCE ADVANCES 2025; 11:eadt8586. [PMID: 40305602 DOI: 10.1126/sciadv.adt8586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/24/2025] [Indexed: 05/02/2025]
Abstract
The low-temperature physics of structurally amorphous materials is governed by low-energy two-level system (TLS) defects. Being impervious to most traditional condensed matter probes, the exact origin and nature of TLS remain elusive. Recent advances toward realizing stable high-coherence quantum computing platforms have increased the importance of studying TLS in solid-state quantum circuits, as they are a persistent source of decoherence and instability. Here, performing scanning gate microscopy on a live superconducting NbN resonator at millikelvin temperatures, we locate individual TLS, directly revealing their microscopic nature. Mapping and visualizing the most detrimental TLS in the bath pinpoints the dominant sources of ubiquitous 1/f dielectric noise and energy relaxation. We also deduce the three-dimensional orientation of individual TLS electric dipole moments. Combining these insights with structural information of the underlying materials can help unravel the detailed microscopic nature and chemical origin of TLS, directing targeted strategies for their eventual mitigation.
Collapse
Affiliation(s)
- Marius Hegedüs
- National Physical Laboratory, Teddington TW11 0LW, UK
- Physics Department, Royal Holloway University of London, Egham, UK
| | - Riju Banerjee
- National Physical Laboratory, Teddington TW11 0LW, UK
| | | | - Tomas Barker
- National Physical Laboratory, Teddington TW11 0LW, UK
| | - Sumedh Mahashabde
- Department of Microtechnology and Nanoscience MC2, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Andrey V Danilov
- Department of Microtechnology and Nanoscience MC2, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Sergey E Kubatkin
- Department of Microtechnology and Nanoscience MC2, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Vladimir Antonov
- Physics Department, Royal Holloway University of London, Egham, UK
| | | |
Collapse
|
2
|
Castillo-Moreno C, Amin KR, Strandberg I, Kervinen M, Osman A, Gasparinetti S. Dynamical Excitation Control and Multimode Emission of an Atom-Photon Bound State. PHYSICAL REVIEW LETTERS 2025; 134:133601. [PMID: 40250357 DOI: 10.1103/physrevlett.134.133601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 01/17/2025] [Accepted: 02/25/2025] [Indexed: 04/20/2025]
Abstract
Atom-photon bound states arise from the coupling of quantum emitters to the band edge of dispersion-engineered waveguides. Thanks to their tunable-range interactions, they are promising building blocks for quantum simulators. Here, we study the dynamics of an atom-photon bound state emerging from coupling a frequency-tunable quantum emitter-a transmon-type superconducting circuit-to the band edge of a microwave metamaterial. Employing precise temporal control over the frequency detuning of the emitter from the band edge, we examine the transition from adiabatic to nonadiabatic behavior in the formation of the bound state and its melting into the propagating modes of the metamaterial. Moreover, we experimentally observe multimode emission from the bound state, triggered by a fast change of the emitter's frequency. Our Letter offers insight into the dynamic preparation of APBS and provides a method to characterize their photonic content, with implications in quantum optics and quantum simulation.
Collapse
Affiliation(s)
- Claudia Castillo-Moreno
- Chalmers University of Technology, Department of Microtechnology and Nanoscience, 412 96 Gothenburg, Sweden
| | - Kazi Rafsanjani Amin
- Chalmers University of Technology, Department of Microtechnology and Nanoscience, 412 96 Gothenburg, Sweden
| | - Ingrid Strandberg
- Chalmers University of Technology, Department of Microtechnology and Nanoscience, 412 96 Gothenburg, Sweden
| | - Mikael Kervinen
- Chalmers University of Technology, Department of Microtechnology and Nanoscience, 412 96 Gothenburg, Sweden
| | - Amr Osman
- Chalmers University of Technology, Department of Microtechnology and Nanoscience, 412 96 Gothenburg, Sweden
| | - Simone Gasparinetti
- Chalmers University of Technology, Department of Microtechnology and Nanoscience, 412 96 Gothenburg, Sweden
| |
Collapse
|
3
|
McEwen M, Miao KC, Atalaya J, Bilmes A, Crook A, Bovaird J, Kreikebaum JM, Zobrist N, Jeffrey E, Ying B, Bengtsson A, Chang HS, Dunsworth A, Kelly J, Zhang Y, Forati E, Acharya R, Iveland J, Liu W, Kim S, Burkett B, Megrant A, Chen Y, Neill C, Sank D, Devoret M, Opremcak A. Resisting High-Energy Impact Events through Gap Engineering in Superconducting Qubit Arrays. PHYSICAL REVIEW LETTERS 2024; 133:240601. [PMID: 39750363 DOI: 10.1103/physrevlett.133.240601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/03/2024] [Indexed: 01/04/2025]
Abstract
Quantum error correction (QEC) provides a practical path to fault-tolerant quantum computing through scaling to large qubit numbers, assuming that physical errors are sufficiently uncorrelated in time and space. In superconducting qubit arrays, high-energy impact events can produce correlated errors, violating this key assumption. Following such an event, phonons with energy above the superconducting gap propagate throughout the device substrate, which in turn generate a temporary surge in quasiparticle (QP) density throughout the array. When these QPs tunnel across the qubits' Josephson junctions, they induce correlated errors. Engineering different superconducting gaps across the qubit's Josephson junctions provides a method to resist this form of QP tunneling. By fabricating all-aluminum transmon qubits with both strong and weak gap engineering on the same substrate, we observe starkly different responses during high-energy impact events. Strongly gap engineered qubits do not show any degradation in T_{1} during impact events, while weakly gap engineered qubits show events of correlated degradation in T_{1}. We also show that strongly gap engineered qubits are robust to QP poisoning from increasing optical illumination intensity, whereas weakly gap engineered qubits display rapid degradation in coherence. Based on these results, gap engineering mitigates the threat of high-energy impacts to QEC in superconducting qubit arrays.
Collapse
|
4
|
Liu BJ, Wang YY, Sheffer T, Wang C. Observation of Discrete Charge States of a Coherent Two-Level System in a Superconducting Qubit. PHYSICAL REVIEW LETTERS 2024; 133:160602. [PMID: 39485964 DOI: 10.1103/physrevlett.133.160602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/23/2024] [Indexed: 11/03/2024]
Abstract
We report observations of discrete charge states of a coherent two-level system (TLS) that is strongly coupled to an offset-charge-sensitive superconducting transmon qubit. We measure an offset charge of 0.072e associated with the two TLS eigenstates, which have a transition frequency of 2.9 GHz and a relaxation time exceeding 3 ms. Combining measurements in the strong dispersive and resonant regime, we quantify both transverse and longitudinal coupling of the TLS-qubit interaction. We further perform joint tracking of TLS transitions and quasiparticle tunneling dynamics but find no intrinsic correlations. This Letter demonstrates microwave-frequency TLS as a source of low-frequency charge noise.
Collapse
Affiliation(s)
- Bao-Jie Liu
- University of Massachusetts-Amherst, Department of Physics, Amherst, Massachusetts, USA
| | - Ying-Ying Wang
- University of Massachusetts-Amherst, Department of Physics, Amherst, Massachusetts, USA
| | - Tal Sheffer
- University of Massachusetts-Amherst, Department of Physics, Amherst, Massachusetts, USA
| | - Chen Wang
- University of Massachusetts-Amherst, Department of Physics, Amherst, Massachusetts, USA
| |
Collapse
|
5
|
Van Damme J, Massar S, Acharya R, Ivanov T, Perez Lozano D, Canvel Y, Demarets M, Vangoidsenhoven D, Hermans Y, Lai JG, Vadiraj AM, Mongillo M, Wan D, De Boeck J, Potočnik A, De Greve K. Advanced CMOS manufacturing of superconducting qubits on 300 mm wafers. Nature 2024; 634:74-79. [PMID: 39294381 PMCID: PMC11446867 DOI: 10.1038/s41586-024-07941-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
The development of superconducting qubit technology has shown great potential for the construction of practical quantum computers1,2. As the complexity of quantum processors continues to grow, the need for stringent fabrication tolerances becomes increasingly critical3. Utilizing advanced industrial fabrication processes could facilitate the necessary level of fabrication control to support the continued scaling of quantum processors. However, at present, these industrial processes are not optimized to produce high-coherence devices, nor are they a priori compatible with the approaches commonly used to make superconducting qubits. Here we demonstrate superconducting transmon qubits manufactured in a 300 mm complementary metal-oxide-semiconductor (CMOS) pilot line using industrial fabrication methods, with resulting relaxation and coherence times exceeding 100 μs. We show across-wafer, large-scale statistics of coherence, yield, variability and ageing that confirm the validity of our approach. The presented industry-scale fabrication process, which uses only optical lithography and reactive-ion etching, has a performance and yield in line with conventional laboratory-style techniques utilizing metal lift-off, angled evaporation and electron-beam writing4. Moreover, it offers the potential for further upscaling through three-dimensional integration5 and more process optimization. This result marks the advent of an alternative and new, large-scale, truly CMOS-compatible fabrication method for superconducting quantum computing processors.
Collapse
Affiliation(s)
- J Van Damme
- Imec, Leuven, Belgium
- Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
| | | | | | | | | | | | - M Demarets
- Imec, Leuven, Belgium
- Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | | - J De Boeck
- Imec, Leuven, Belgium
- Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
| | | | - K De Greve
- Imec, Leuven, Belgium
- Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Chen M, Owens JC, Putterman H, Schäfer M, Painter O. Phonon engineering of atomic-scale defects in superconducting quantum circuits. SCIENCE ADVANCES 2024; 10:eado6240. [PMID: 39270028 PMCID: PMC11397498 DOI: 10.1126/sciadv.ado6240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024]
Abstract
Noise within solid-state systems at low temperatures can typically be traced back to material defects. In amorphous materials, these defects are broadly described by the tunneling two-level systems (TLSs) model. TLS have recently taken on further relevance in quantum computing because they dominate the coherence limit of superconducting quantum circuits. Efforts to mitigate TLS impacts have thus far focused on circuit design, material selection, and surface treatments. Our work takes an approach that directly modifies TLS properties. This is achieved by creating an acoustic bandgap that suppresses all microwave-frequency phonons around the operating frequency of a transmon qubit. For embedded TLS strongly coupled to the transmon qubit, we measure a pronounced increase in relaxation time by two orders of magnitude, with the longest T1 time exceeding 5 milliseconds. Our work opens avenues for studying the physics of highly coherent TLS and methods for mitigating noise within solid-state quantum devices.
Collapse
Affiliation(s)
- Mo Chen
- Thomas J. Watson, Sr., Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA
- Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125, USA
- Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - John Clai Owens
- Thomas J. Watson, Sr., Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA
- Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125, USA
- Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Max Schäfer
- Thomas J. Watson, Sr., Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA
- Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125, USA
- Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Oskar Painter
- Thomas J. Watson, Sr., Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA
- Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125, USA
- Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA 91125, USA
- AWS Center for Quantum Computing, Pasadena, CA 91125, USA
| |
Collapse
|
7
|
Yi K, Hai YJ, Luo K, Chu J, Zhang L, Zhou Y, Song Y, Liu S, Yan T, Deng XH, Chen Y, Yu D. Robust Quantum Gates against Correlated Noise in Integrated Quantum Chips. PHYSICAL REVIEW LETTERS 2024; 132:250604. [PMID: 38996251 DOI: 10.1103/physrevlett.132.250604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/22/2024] [Indexed: 07/14/2024]
Abstract
As quantum circuits become more integrated and complex, additional error sources that were previously insignificant start to emerge. Consequently, the fidelity of quantum gates benchmarked under pristine conditions falls short of predicting their performance in realistic circuits. To overcome this problem, we must improve their robustness against pertinent error models besides isolated fidelity. Here, we report the experimental realization of robust quantum gates in superconducting quantum circuits based on a geometric framework for diagnosing and correcting various gate errors. Using quantum process tomography and randomized benchmarking, we demonstrate robust single-qubit gates against quasistatic noise and spatially correlated noise in a broad range of strengths, which are common sources of coherent errors in large-scale quantum circuits. We also apply our method to nonstatic noises and to realize robust two-qubit gates. Our Letter provides a versatile toolbox for achieving noise-resilient complex quantum circuits.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yuanzhen Chen
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dapeng Yu
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy (SIQA), Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
8
|
Cleland AY, Wollack EA, Safavi-Naeini AH. Studying phonon coherence with a quantum sensor. Nat Commun 2024; 15:4979. [PMID: 38862502 PMCID: PMC11167028 DOI: 10.1038/s41467-024-48306-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/25/2024] [Indexed: 06/13/2024] Open
Abstract
Nanomechanical oscillators offer numerous advantages for quantum technologies. Their integration with superconducting qubits shows promise for hardware-efficient quantum error-correction protocols involving superpositions of mechanical coherent states. Limitations of this approach include mechanical decoherence processes, particularly two-level system (TLS) defects, which have been widely studied using classical fields and detectors. In this manuscript, we use a superconducting qubit as a quantum sensor to perform phonon number-resolved measurements on a piezoelectrically coupled phononic crystal cavity. This enables a high-resolution study of mechanical dissipation and dephasing in coherent states of variable size (n ¯ ≃ 1 - 10 phonons). We observe nonexponential relaxation and state size-dependent reduction of the dephasing rate, which we attribute to TLS. Using a numerical model, we reproduce the dissipation signatures (and to a lesser extent, the dephasing signatures) via emission into a small ensemble (N = 5) of rapidly dephasing TLS. Our findings comprise a detailed examination of TLS-induced phonon decoherence in the quantum regime.
Collapse
Affiliation(s)
- Agnetta Y Cleland
- Department of Applied Physics and Ginzton Laboratory, Stanford University 348 Via Pueblo Mall, Stanford, CA, 94305, USA
| | - E Alex Wollack
- Department of Applied Physics and Ginzton Laboratory, Stanford University 348 Via Pueblo Mall, Stanford, CA, 94305, USA
| | - Amir H Safavi-Naeini
- Department of Applied Physics and Ginzton Laboratory, Stanford University 348 Via Pueblo Mall, Stanford, CA, 94305, USA.
| |
Collapse
|
9
|
Kono S, Pan J, Chegnizadeh M, Wang X, Youssefi A, Scigliuzzo M, Kippenberg TJ. Mechanically induced correlated errors on superconducting qubits with relaxation times exceeding 0.4 ms. Nat Commun 2024; 15:3950. [PMID: 38729959 PMCID: PMC11087564 DOI: 10.1038/s41467-024-48230-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Superconducting qubits are among the most advanced candidates for achieving fault-tolerant quantum computing. Despite recent significant advancements in the qubit lifetimes, the origin of the loss mechanism for state-of-the-art qubits is still subject to investigation. Furthermore, the successful implementation of quantum error correction requires negligible correlated errors between qubits. Here, we realize long-lived superconducting transmon qubits that exhibit fluctuating lifetimes, averaging 0.2 ms and exceeding 0.4 ms - corresponding to quality factors above 5 million and 10 million, respectively. We then investigate their dominant error mechanism. By introducing novel time-resolved error measurements that are synchronized with the operation of the pulse tube cooler in a dilution refrigerator, we find that mechanical vibrations from the pulse tube induce nonequilibrium dynamics in highly coherent qubits, leading to their correlated bit-flip errors. Our findings not only deepen our understanding of the qubit error mechanisms but also provide valuable insights into potential error-mitigation strategies for achieving fault tolerance by decoupling superconducting qubits from their mechanical environments.
Collapse
Affiliation(s)
- Shingo Kono
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
- Center for Quantum Science and Engineering, EPFL, Lausanne, Switzerland.
| | - Jiahe Pan
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Center for Quantum Science and Engineering, EPFL, Lausanne, Switzerland
| | - Mahdi Chegnizadeh
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Center for Quantum Science and Engineering, EPFL, Lausanne, Switzerland
| | - Xuxin Wang
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Center for Quantum Science and Engineering, EPFL, Lausanne, Switzerland
| | - Amir Youssefi
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Center for Quantum Science and Engineering, EPFL, Lausanne, Switzerland
| | - Marco Scigliuzzo
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Center for Quantum Science and Engineering, EPFL, Lausanne, Switzerland
| | - Tobias J Kippenberg
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
- Center for Quantum Science and Engineering, EPFL, Lausanne, Switzerland.
| |
Collapse
|
10
|
Ganjam S, Wang Y, Lu Y, Banerjee A, Lei CU, Krayzman L, Kisslinger K, Zhou C, Li R, Jia Y, Liu M, Frunzio L, Schoelkopf RJ. Surpassing millisecond coherence in on chip superconducting quantum memories by optimizing materials and circuit design. Nat Commun 2024; 15:3687. [PMID: 38693124 PMCID: PMC11063213 DOI: 10.1038/s41467-024-47857-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/12/2024] [Indexed: 05/03/2024] Open
Abstract
The performance of superconducting quantum circuits for quantum computing has advanced tremendously in recent decades; however, a comprehensive understanding of relaxation mechanisms does not yet exist. In this work, we utilize a multimode approach to characterizing energy losses in superconducting quantum circuits, with the goals of predicting device performance and improving coherence through materials, process, and circuit design optimization. Using this approach, we measure significant reductions in surface and bulk dielectric losses by employing a tantalum-based materials platform and annealed sapphire substrates. With this knowledge we predict the relaxation times of aluminum- and tantalum-based transmon qubits, and find that they are consistent with experimental results. We additionally optimize device geometry to maximize coherence within a coaxial tunnel architecture, and realize on-chip quantum memories with single-photon Ramsey times of 2.0 - 2.7 ms, limited by their energy relaxation times of 1.0 - 1.4 ms. These results demonstrate an advancement towards a more modular and compact coaxial circuit architecture for bosonic qubits with reproducibly high coherence.
Collapse
Affiliation(s)
- Suhas Ganjam
- Departments of Applied Physics and Physics, Yale University, New Haven, 06511, CT, USA.
- Yale Quantum Institute, Yale University, New Haven, 06511, CT, USA.
| | - Yanhao Wang
- Departments of Applied Physics and Physics, Yale University, New Haven, 06511, CT, USA
- Yale Quantum Institute, Yale University, New Haven, 06511, CT, USA
| | - Yao Lu
- Departments of Applied Physics and Physics, Yale University, New Haven, 06511, CT, USA
- Yale Quantum Institute, Yale University, New Haven, 06511, CT, USA
| | - Archan Banerjee
- Departments of Applied Physics and Physics, Yale University, New Haven, 06511, CT, USA
- Yale Quantum Institute, Yale University, New Haven, 06511, CT, USA
| | - Chan U Lei
- Departments of Applied Physics and Physics, Yale University, New Haven, 06511, CT, USA
- Yale Quantum Institute, Yale University, New Haven, 06511, CT, USA
| | - Lev Krayzman
- Departments of Applied Physics and Physics, Yale University, New Haven, 06511, CT, USA
- Yale Quantum Institute, Yale University, New Haven, 06511, CT, USA
| | - Kim Kisslinger
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, 11973, NY, USA
| | - Chenyu Zhou
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, 11973, NY, USA
| | - Ruoshui Li
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, 11973, NY, USA
| | - Yichen Jia
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, 11973, NY, USA
| | - Mingzhao Liu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, 11973, NY, USA
| | - Luigi Frunzio
- Departments of Applied Physics and Physics, Yale University, New Haven, 06511, CT, USA
- Yale Quantum Institute, Yale University, New Haven, 06511, CT, USA
| | - Robert J Schoelkopf
- Departments of Applied Physics and Physics, Yale University, New Haven, 06511, CT, USA.
- Yale Quantum Institute, Yale University, New Haven, 06511, CT, USA.
| |
Collapse
|
11
|
Mi X, Michailidis AA, Shabani S, Miao KC, Klimov PV, Lloyd J, Rosenberg E, Acharya R, Aleiner I, Andersen TI, Ansmann M, Arute F, Arya K, Asfaw A, Atalaya J, Bardin JC, Bengtsson A, Bortoli G, Bourassa A, Bovaird J, Brill L, Broughton M, Buckley BB, Buell DA, Burger T, Burkett B, Bushnell N, Chen Z, Chiaro B, Chik D, Chou C, Cogan J, Collins R, Conner P, Courtney W, Crook AL, Curtin B, Dau AG, Debroy DM, Del Toro Barba A, Demura S, Di Paolo A, Drozdov IK, Dunsworth A, Erickson C, Faoro L, Farhi E, Fatemi R, Ferreira VS, Burgos LF, Forati E, Fowler AG, Foxen B, Genois É, Giang W, Gidney C, Gilboa D, Giustina M, Gosula R, Gross JA, Habegger S, Hamilton MC, Hansen M, Harrigan MP, Harrington SD, Heu P, Hoffmann MR, Hong S, Huang T, Huff A, Huggins WJ, Ioffe LB, Isakov SV, Iveland J, Jeffrey E, Jiang Z, Jones C, Juhas P, Kafri D, Kechedzhi K, Khattar T, Khezri M, Kieferová M, Kim S, Kitaev A, Klots AR, Korotkov AN, Kostritsa F, Kreikebaum JM, Landhuis D, Laptev P, Lau KM, Laws L, Lee J, Lee KW, Lensky YD, Lester BJ, Lill AT, Liu W, Locharla A, et alMi X, Michailidis AA, Shabani S, Miao KC, Klimov PV, Lloyd J, Rosenberg E, Acharya R, Aleiner I, Andersen TI, Ansmann M, Arute F, Arya K, Asfaw A, Atalaya J, Bardin JC, Bengtsson A, Bortoli G, Bourassa A, Bovaird J, Brill L, Broughton M, Buckley BB, Buell DA, Burger T, Burkett B, Bushnell N, Chen Z, Chiaro B, Chik D, Chou C, Cogan J, Collins R, Conner P, Courtney W, Crook AL, Curtin B, Dau AG, Debroy DM, Del Toro Barba A, Demura S, Di Paolo A, Drozdov IK, Dunsworth A, Erickson C, Faoro L, Farhi E, Fatemi R, Ferreira VS, Burgos LF, Forati E, Fowler AG, Foxen B, Genois É, Giang W, Gidney C, Gilboa D, Giustina M, Gosula R, Gross JA, Habegger S, Hamilton MC, Hansen M, Harrigan MP, Harrington SD, Heu P, Hoffmann MR, Hong S, Huang T, Huff A, Huggins WJ, Ioffe LB, Isakov SV, Iveland J, Jeffrey E, Jiang Z, Jones C, Juhas P, Kafri D, Kechedzhi K, Khattar T, Khezri M, Kieferová M, Kim S, Kitaev A, Klots AR, Korotkov AN, Kostritsa F, Kreikebaum JM, Landhuis D, Laptev P, Lau KM, Laws L, Lee J, Lee KW, Lensky YD, Lester BJ, Lill AT, Liu W, Locharla A, Malone FD, Martin O, McClean JR, McEwen M, Mieszala A, Montazeri S, Morvan A, Movassagh R, Mruczkiewicz W, Neeley M, Neill C, Nersisyan A, Newman M, Ng JH, Nguyen A, Nguyen M, Niu MY, O'Brien TE, Opremcak A, Petukhov A, Potter R, Pryadko LP, Quintana C, Rocque C, Rubin NC, Saei N, Sank D, Sankaragomathi K, Satzinger KJ, Schurkus HF, Schuster C, Shearn MJ, Shorter A, Shutty N, Shvarts V, Skruzny J, Smith WC, Somma R, Sterling G, Strain D, Szalay M, Torres A, Vidal G, Villalonga B, Heidweiller CV, White T, Woo BWK, Xing C, Yao ZJ, Yeh P, Yoo J, Young G, Zalcman A, Zhang Y, Zhu N, Zobrist N, Neven H, Babbush R, Bacon D, Boixo S, Hilton J, Lucero E, Megrant A, Kelly J, Chen Y, Roushan P, Smelyanskiy V, Abanin DA. Stable quantum-correlated many-body states through engineered dissipation. Science 2024; 383:1332-1337. [PMID: 38513021 DOI: 10.1126/science.adh9932] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 02/13/2024] [Indexed: 03/23/2024]
Abstract
Engineered dissipative reservoirs have the potential to steer many-body quantum systems toward correlated steady states useful for quantum simulation of high-temperature superconductivity or quantum magnetism. Using up to 49 superconducting qubits, we prepared low-energy states of the transverse-field Ising model through coupling to dissipative auxiliary qubits. In one dimension, we observed long-range quantum correlations and a ground-state fidelity of 0.86 for 18 qubits at the critical point. In two dimensions, we found mutual information that extends beyond nearest neighbors. Lastly, by coupling the system to auxiliaries emulating reservoirs with different chemical potentials, we explored transport in the quantum Heisenberg model. Our results establish engineered dissipation as a scalable alternative to unitary evolution for preparing entangled many-body states on noisy quantum processors.
Collapse
Affiliation(s)
- X Mi
- Google Research, Mountain View, CA, USA
| | - A A Michailidis
- Department of Theoretical Physics, University of Geneva, Geneva, Switzerland
| | - S Shabani
- Google Research, Mountain View, CA, USA
| | - K C Miao
- Google Research, Mountain View, CA, USA
| | | | - J Lloyd
- Department of Theoretical Physics, University of Geneva, Geneva, Switzerland
| | | | - R Acharya
- Google Research, Mountain View, CA, USA
| | - I Aleiner
- Google Research, Mountain View, CA, USA
| | | | - M Ansmann
- Google Research, Mountain View, CA, USA
| | - F Arute
- Google Research, Mountain View, CA, USA
| | - K Arya
- Google Research, Mountain View, CA, USA
| | - A Asfaw
- Google Research, Mountain View, CA, USA
| | - J Atalaya
- Google Research, Mountain View, CA, USA
| | - J C Bardin
- Google Research, Mountain View, CA, USA
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, USA
| | | | - G Bortoli
- Google Research, Mountain View, CA, USA
| | | | - J Bovaird
- Google Research, Mountain View, CA, USA
| | - L Brill
- Google Research, Mountain View, CA, USA
| | | | | | - D A Buell
- Google Research, Mountain View, CA, USA
| | - T Burger
- Google Research, Mountain View, CA, USA
| | - B Burkett
- Google Research, Mountain View, CA, USA
| | | | - Z Chen
- Google Research, Mountain View, CA, USA
| | - B Chiaro
- Google Research, Mountain View, CA, USA
| | - D Chik
- Google Research, Mountain View, CA, USA
| | - C Chou
- Google Research, Mountain View, CA, USA
| | - J Cogan
- Google Research, Mountain View, CA, USA
| | - R Collins
- Google Research, Mountain View, CA, USA
| | - P Conner
- Google Research, Mountain View, CA, USA
| | | | - A L Crook
- Google Research, Mountain View, CA, USA
| | - B Curtin
- Google Research, Mountain View, CA, USA
| | - A G Dau
- Google Research, Mountain View, CA, USA
| | | | | | - S Demura
- Google Research, Mountain View, CA, USA
| | | | | | | | | | - L Faoro
- Google Research, Mountain View, CA, USA
| | - E Farhi
- Google Research, Mountain View, CA, USA
| | - R Fatemi
- Google Research, Mountain View, CA, USA
| | | | | | - E Forati
- Google Research, Mountain View, CA, USA
| | | | - B Foxen
- Google Research, Mountain View, CA, USA
| | - É Genois
- Google Research, Mountain View, CA, USA
| | - W Giang
- Google Research, Mountain View, CA, USA
| | - C Gidney
- Google Research, Mountain View, CA, USA
| | - D Gilboa
- Google Research, Mountain View, CA, USA
| | | | - R Gosula
- Google Research, Mountain View, CA, USA
| | - J A Gross
- Google Research, Mountain View, CA, USA
| | | | - M C Hamilton
- Google Research, Mountain View, CA, USA
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
| | - M Hansen
- Google Research, Mountain View, CA, USA
| | | | | | - P Heu
- Google Research, Mountain View, CA, USA
| | | | - S Hong
- Google Research, Mountain View, CA, USA
| | - T Huang
- Google Research, Mountain View, CA, USA
| | - A Huff
- Google Research, Mountain View, CA, USA
| | | | - L B Ioffe
- Google Research, Mountain View, CA, USA
| | | | - J Iveland
- Google Research, Mountain View, CA, USA
| | - E Jeffrey
- Google Research, Mountain View, CA, USA
| | - Z Jiang
- Google Research, Mountain View, CA, USA
| | - C Jones
- Google Research, Mountain View, CA, USA
| | - P Juhas
- Google Research, Mountain View, CA, USA
| | - D Kafri
- Google Research, Mountain View, CA, USA
| | | | - T Khattar
- Google Research, Mountain View, CA, USA
| | - M Khezri
- Google Research, Mountain View, CA, USA
| | - M Kieferová
- Google Research, Mountain View, CA, USA
- Centre for Quantum Software and Information (QSI), Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
| | - S Kim
- Google Research, Mountain View, CA, USA
| | - A Kitaev
- Google Research, Mountain View, CA, USA
| | - A R Klots
- Google Research, Mountain View, CA, USA
| | - A N Korotkov
- Google Research, Mountain View, CA, USA
- Department of Electrical and Computer Engineering, University of California, Riverside, CA, USA
| | | | | | | | - P Laptev
- Google Research, Mountain View, CA, USA
| | - K-M Lau
- Google Research, Mountain View, CA, USA
| | - L Laws
- Google Research, Mountain View, CA, USA
| | - J Lee
- Google Research, Mountain View, CA, USA
- Department of Chemistry, Columbia University, New York, NY, USA
| | - K W Lee
- Google Research, Mountain View, CA, USA
| | | | | | - A T Lill
- Google Research, Mountain View, CA, USA
| | - W Liu
- Google Research, Mountain View, CA, USA
| | | | | | - O Martin
- Google Research, Mountain View, CA, USA
| | | | - M McEwen
- Google Research, Mountain View, CA, USA
| | | | | | - A Morvan
- Google Research, Mountain View, CA, USA
| | | | | | - M Neeley
- Google Research, Mountain View, CA, USA
| | - C Neill
- Google Research, Mountain View, CA, USA
| | | | - M Newman
- Google Research, Mountain View, CA, USA
| | - J H Ng
- Google Research, Mountain View, CA, USA
| | - A Nguyen
- Google Research, Mountain View, CA, USA
| | - M Nguyen
- Google Research, Mountain View, CA, USA
| | - M Y Niu
- Google Research, Mountain View, CA, USA
| | | | | | | | - R Potter
- Google Research, Mountain View, CA, USA
| | - L P Pryadko
- Google Research, Mountain View, CA, USA
- Department of Physics and Astronomy, University of California, Riverside, CA, USA
| | | | - C Rocque
- Google Research, Mountain View, CA, USA
| | - N C Rubin
- Google Research, Mountain View, CA, USA
| | - N Saei
- Google Research, Mountain View, CA, USA
| | - D Sank
- Google Research, Mountain View, CA, USA
| | | | | | | | | | | | - A Shorter
- Google Research, Mountain View, CA, USA
| | - N Shutty
- Google Research, Mountain View, CA, USA
| | - V Shvarts
- Google Research, Mountain View, CA, USA
| | - J Skruzny
- Google Research, Mountain View, CA, USA
| | - W C Smith
- Google Research, Mountain View, CA, USA
| | - R Somma
- Google Research, Mountain View, CA, USA
| | | | - D Strain
- Google Research, Mountain View, CA, USA
| | - M Szalay
- Google Research, Mountain View, CA, USA
| | - A Torres
- Google Research, Mountain View, CA, USA
| | - G Vidal
- Google Research, Mountain View, CA, USA
| | | | | | - T White
- Google Research, Mountain View, CA, USA
| | - B W K Woo
- Google Research, Mountain View, CA, USA
| | - C Xing
- Google Research, Mountain View, CA, USA
| | - Z J Yao
- Google Research, Mountain View, CA, USA
| | - P Yeh
- Google Research, Mountain View, CA, USA
| | - J Yoo
- Google Research, Mountain View, CA, USA
| | - G Young
- Google Research, Mountain View, CA, USA
| | - A Zalcman
- Google Research, Mountain View, CA, USA
| | - Y Zhang
- Google Research, Mountain View, CA, USA
| | - N Zhu
- Google Research, Mountain View, CA, USA
| | - N Zobrist
- Google Research, Mountain View, CA, USA
| | - H Neven
- Google Research, Mountain View, CA, USA
| | - R Babbush
- Google Research, Mountain View, CA, USA
| | - D Bacon
- Google Research, Mountain View, CA, USA
| | - S Boixo
- Google Research, Mountain View, CA, USA
| | - J Hilton
- Google Research, Mountain View, CA, USA
| | - E Lucero
- Google Research, Mountain View, CA, USA
| | - A Megrant
- Google Research, Mountain View, CA, USA
| | - J Kelly
- Google Research, Mountain View, CA, USA
| | - Y Chen
- Google Research, Mountain View, CA, USA
| | - P Roushan
- Google Research, Mountain View, CA, USA
| | | | - D A Abanin
- Google Research, Mountain View, CA, USA
- Department of Theoretical Physics, University of Geneva, Geneva, Switzerland
- Department of Physics, Princeton University, Princeton, NJ, USA
| |
Collapse
|
12
|
Klimov PV, Bengtsson A, Quintana C, Bourassa A, Hong S, Dunsworth A, Satzinger KJ, Livingston WP, Sivak V, Niu MY, Andersen TI, Zhang Y, Chik D, Chen Z, Neill C, Erickson C, Grajales Dau A, Megrant A, Roushan P, Korotkov AN, Kelly J, Smelyanskiy V, Chen Y, Neven H. Optimizing quantum gates towards the scale of logical qubits. Nat Commun 2024; 15:2442. [PMID: 38499541 PMCID: PMC10948820 DOI: 10.1038/s41467-024-46623-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
A foundational assumption of quantum error correction theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance. Two major challenges that could become fundamental roadblocks are manufacturing high-performance quantum hardware and engineering a control system that can reach its performance limits. The control challenge of scaling quantum gates from small to large processors without degrading performance often maps to non-convex, high-constraint, and time-dynamic control optimization over an exponentially expanding configuration space. Here we report on a control optimization strategy that can scalably overcome the complexity of such problems. We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunable superconducting qubits to execute single- and two-qubit gates while mitigating computational errors. When combined with a comprehensive model of physical errors across our processor, the strategy suppresses physical error rates by ~3.7× compared with the case of no optimization. Furthermore, it is projected to achieve a similar performance advantage on a distance-23 surface code logical qubit with 1057 physical qubits. Our control optimization strategy solves a generic scaling challenge in a way that can be adapted to a variety of quantum operations, algorithms, and computing architectures.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Alexander N Korotkov
- Google AI, Mountain View, CA, USA
- Department of Electrical and Computer Engineering, University of California, Riverside, CA, USA
| | | | | | - Yu Chen
- Google AI, Mountain View, CA, USA
| | | |
Collapse
|
13
|
Thorbeck T, Xiao Z, Kamal A, Govia LCG. Readout-Induced Suppression and Enhancement of Superconducting Qubit Lifetimes. PHYSICAL REVIEW LETTERS 2024; 132:090602. [PMID: 38489646 DOI: 10.1103/physrevlett.132.090602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/23/2024] [Indexed: 03/17/2024]
Abstract
It has long been known that the lifetimes of superconducting qubits suffer during readout, increasing readout errors. We show that this degradation is due to the anti-Zeno effect, as readout-induced dephasing broadens the qubit so that it overlaps "hot spots" of strong dissipation, likely due to two-level systems in the qubit's bath. Using a flux-tunable qubit to probe the qubit's frequency-dependent loss, we accurately predict the change in lifetime during readout with a new self-consistent master equation that incorporates the modification to qubit relaxation due to measurement-induced dephasing. Moreover, we controllably demonstrate both the Zeno and anti-Zeno effects, which can explain both suppression and the rarer enhancement of qubit lifetimes during readout.
Collapse
Affiliation(s)
- Ted Thorbeck
- IBM Quantum, IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA
| | - Zhihao Xiao
- Department of Physics and Applied Physics, University of Massachusetts, Lowell, Massachusetts 01854, USA
| | - Archana Kamal
- Department of Physics and Applied Physics, University of Massachusetts, Lowell, Massachusetts 01854, USA
| | - Luke C G Govia
- IBM Quantum, IBM Almaden Research Center, San Jose, California 95120, USA
| |
Collapse
|
14
|
Brand D, Sinayskiy I, Petruccione F. Markovian noise modelling and parameter extraction framework for quantum devices. Sci Rep 2024; 14:4769. [PMID: 38413630 PMCID: PMC10899264 DOI: 10.1038/s41598-024-54598-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/14/2024] [Indexed: 02/29/2024] Open
Abstract
In recent years, Noisy Intermediate Scale Quantum (NISQ) computers have been widely used as a test bed for quantum dynamics. This work provides a new hardware-agnostic framework for modelling the Markovian noise and dynamics of quantum systems in benchmark procedures used to evaluate device performance. As an accessible example, the application and performance of this framework is demonstrated on IBM Quantum computers. This framework serves to extract multiple calibration parameters simultaneously through a simplified process which is more reliable than previously studied calibration experiments and tomographic procedures. Additionally, this method allows for real-time calibration of several hardware parameters of a quantum computer within a comprehensive procedure, providing quantitative insight into the performance of each device to be accounted for in future quantum circuits. The framework proposed here has the additional benefit of highlighting the consistency among qubit pairs when extracting parameters, which leads to a less computationally expensive calibration process than evaluating the entire device at once.
Collapse
Affiliation(s)
- Dean Brand
- Department of Physics, School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, 7604, South Africa.
| | - Ilya Sinayskiy
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa.
- National Institute for Theoretical and Computational Sciences (NITheCS), Stellenbosch, 7604, South Africa.
| | - Francesco Petruccione
- Department of Physics, School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, 7604, South Africa
- National Institute for Theoretical and Computational Sciences (NITheCS), Stellenbosch, 7604, South Africa
| |
Collapse
|
15
|
Ma X, Zhang G, Wu F, Bao F, Chang X, Chen J, Deng H, Gao R, Gao X, Hu L, Ji H, Ku HS, Lu K, Ma L, Mao L, Song Z, Sun H, Tang C, Wang F, Wang H, Wang T, Xia T, Ying M, Zhan H, Zhou T, Zhu M, Zhu Q, Shi Y, Zhao HH, Deng C. Native Approach to Controlled-Z Gates in Inductively Coupled Fluxonium Qubits. PHYSICAL REVIEW LETTERS 2024; 132:060602. [PMID: 38394561 DOI: 10.1103/physrevlett.132.060602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/08/2024] [Indexed: 02/25/2024]
Abstract
The fluxonium qubits have emerged as a promising platform for gate-based quantum information processing. However, their extraordinary protection against charge fluctuations comes at a cost: when coupled capacitively, the qubit-qubit interactions are restricted to XX interactions. Consequently, effective ZZ or XZ interactions are only constructed either by temporarily populating higher-energy states, or by exploiting perturbative effects under microwave driving. Instead, we propose and demonstrate an inductive coupling scheme, which offers a wide selection of native qubit-qubit interactions for fluxonium. In particular, we leverage a built-in, flux-controlled ZZ interaction to perform qubit entanglement. To combat the increased flux-noise-induced dephasing away from the flux-insensitive position, we use a continuous version of the dynamical decoupling scheme to perform noise filtering. Combining these, we demonstrate a 20 ns controlled-z gate with a mean fidelity of 99.53%. More than confirming the efficacy of our gate scheme, this high-fidelity result also reveals a promising but rarely explored parameter space uniquely suitable for gate operations between fluxonium qubits.
Collapse
Affiliation(s)
- Xizheng Ma
- DAMO Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, China
| | - Gengyan Zhang
- DAMO Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, China
| | - Feng Wu
- DAMO Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, China
| | - Feng Bao
- DAMO Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, China
| | - Xu Chang
- DAMO Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, China
| | - Jianjun Chen
- DAMO Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, China
| | - Hao Deng
- DAMO Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, China
| | - Ran Gao
- DAMO Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, China
| | - Xun Gao
- DAMO Quantum Laboratory, Alibaba Group USA, Bellevue, Washington 98004, USA
| | - Lijuan Hu
- DAMO Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, China
| | - Honghong Ji
- DAMO Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, China
| | - Hsiang-Sheng Ku
- DAMO Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, China
| | - Kannan Lu
- DAMO Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, China
| | - Lu Ma
- DAMO Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, China
| | - Liyong Mao
- DAMO Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, China
| | - Zhijun Song
- DAMO Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, China
| | - Hantao Sun
- DAMO Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, China
| | - Chengchun Tang
- DAMO Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, China
| | - Fei Wang
- DAMO Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, China
| | - Hongcheng Wang
- DAMO Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, China
| | - Tenghui Wang
- DAMO Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, China
| | - Tian Xia
- DAMO Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, China
| | - Make Ying
- DAMO Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, China
| | - Huijuan Zhan
- DAMO Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, China
| | - Tao Zhou
- DAMO Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, China
| | - Mengyu Zhu
- DAMO Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, China
| | - Qingbin Zhu
- DAMO Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, China
| | - Yaoyun Shi
- DAMO Quantum Laboratory, Alibaba Group USA, Bellevue, Washington 98004, USA
| | - Hui-Hai Zhao
- DAMO Quantum Laboratory, Alibaba Group, Beijing 100102, China
| | - Chunqing Deng
- DAMO Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
16
|
Somoroff A, Ficheux Q, Mencia RA, Xiong H, Kuzmin R, Manucharyan VE. Millisecond Coherence in a Superconducting Qubit. PHYSICAL REVIEW LETTERS 2023; 130:267001. [PMID: 37450803 DOI: 10.1103/physrevlett.130.267001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 03/24/2023] [Accepted: 05/10/2023] [Indexed: 07/18/2023]
Abstract
Improving control over physical qubits is a crucial component of quantum computing research. Here we report a superconducting fluxonium qubit with uncorrected coherence time T_{2}^{*}=1.48±0.13 ms, exceeding the state of the art for transmons by an order of magnitude. The average gate fidelity was benchmarked at 0.99991(1). Notably, even in the millisecond range, the coherence time is limited by material absorption and could be further improved with a more rigorous fabrication. Our demonstration may be useful for suppressing errors in the next generation quantum processors.
Collapse
Affiliation(s)
- Aaron Somoroff
- Department of Physics, Joint Quantum Institute, and Quantum Materials Center, University of Maryland, College Park, Maryland 20742, USA
| | - Quentin Ficheux
- Department of Physics, Joint Quantum Institute, and Quantum Materials Center, University of Maryland, College Park, Maryland 20742, USA
| | - Raymond A Mencia
- Department of Physics, Joint Quantum Institute, and Quantum Materials Center, University of Maryland, College Park, Maryland 20742, USA
| | - Haonan Xiong
- Department of Physics, Joint Quantum Institute, and Quantum Materials Center, University of Maryland, College Park, Maryland 20742, USA
| | - Roman Kuzmin
- Department of Physics, Joint Quantum Institute, and Quantum Materials Center, University of Maryland, College Park, Maryland 20742, USA
| | - Vladimir E Manucharyan
- Department of Physics, Joint Quantum Institute, and Quantum Materials Center, University of Maryland, College Park, Maryland 20742, USA
- École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Lucas M, Danilov AV, Levitin LV, Jayaraman A, Casey AJ, Faoro L, Tzalenchuk AY, Kubatkin SE, Saunders J, de Graaf SE. Quantum bath suppression in a superconducting circuit by immersion cooling. Nat Commun 2023; 14:3522. [PMID: 37316500 DOI: 10.1038/s41467-023-39249-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023] Open
Abstract
Quantum circuits interact with the environment via several temperature-dependent degrees of freedom. Multiple experiments to-date have shown that most properties of superconducting devices appear to plateau out at T ≈ 50 mK - far above the refrigerator base temperature. This is for example reflected in the thermal state population of qubits, in excess numbers of quasiparticles, and polarisation of surface spins - factors contributing to reduced coherence. We demonstrate how to remove this thermal constraint by operating a circuit immersed in liquid 3He. This allows to efficiently cool the decohering environment of a superconducting resonator, and we see a continuous change in measured physical quantities down to previously unexplored sub-mK temperatures. The 3He acts as a heat sink which increases the energy relaxation rate of the quantum bath coupled to the circuit a thousand times, yet the suppressed bath does not introduce additional circuit losses or noise. Such quantum bath suppression can reduce decoherence in quantum circuits and opens a route for both thermal and coherence management in quantum processors.
Collapse
Affiliation(s)
- M Lucas
- Physics Department, Royal Holloway University of London, Egham, UK
| | - A V Danilov
- Department of Microtechnology and Nanoscience MC2, Chalmers University of Technology, SE-412 96, Göteborg, Sweden
| | - L V Levitin
- Physics Department, Royal Holloway University of London, Egham, UK
| | - A Jayaraman
- Department of Microtechnology and Nanoscience MC2, Chalmers University of Technology, SE-412 96, Göteborg, Sweden
| | - A J Casey
- Physics Department, Royal Holloway University of London, Egham, UK
| | - L Faoro
- Google Quantum AI, Google Research, Mountain View, CA, USA
| | - A Ya Tzalenchuk
- Physics Department, Royal Holloway University of London, Egham, UK
- National Physical Laboratory, Teddington, TW11 0LW, UK
| | - S E Kubatkin
- Department of Microtechnology and Nanoscience MC2, Chalmers University of Technology, SE-412 96, Göteborg, Sweden
| | - J Saunders
- Physics Department, Royal Holloway University of London, Egham, UK
| | - S E de Graaf
- National Physical Laboratory, Teddington, TW11 0LW, UK.
| |
Collapse
|
18
|
Sivak VV, Eickbusch A, Royer B, Singh S, Tsioutsios I, Ganjam S, Miano A, Brock BL, Ding AZ, Frunzio L, Girvin SM, Schoelkopf RJ, Devoret MH. Real-time quantum error correction beyond break-even. Nature 2023; 616:50-55. [PMID: 36949196 DOI: 10.1038/s41586-023-05782-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/02/2023] [Indexed: 03/24/2023]
Abstract
The ambition of harnessing the quantum for computation is at odds with the fundamental phenomenon of decoherence. The purpose of quantum error correction (QEC) is to counteract the natural tendency of a complex system to decohere. This cooperative process, which requires participation of multiple quantum and classical components, creates a special type of dissipation that removes the entropy caused by the errors faster than the rate at which these errors corrupt the stored quantum information. Previous experimental attempts to engineer such a process1-7 faced the generation of an excessive number of errors that overwhelmed the error-correcting capability of the process itself. Whether it is practically possible to utilize QEC for extending quantum coherence thus remains an open question. Here we answer it by demonstrating a fully stabilized and error-corrected logical qubit whose quantum coherence is substantially longer than that of all the imperfect quantum components involved in the QEC process, beating the best of them with a coherence gain of G = 2.27 ± 0.07. We achieve this performance by combining innovations in several domains including the fabrication of superconducting quantum circuits and model-free reinforcement learning.
Collapse
Affiliation(s)
- V V Sivak
- Department of Physics, Yale University, New Haven, CT, USA.
- Department of Applied Physics, Yale University, New Haven, CT, USA.
- Yale Quantum Institute, Yale University, New Haven, CT, USA.
- Google AI Quantum, Santa Barbara, CA, USA.
| | - A Eickbusch
- Department of Physics, Yale University, New Haven, CT, USA
- Department of Applied Physics, Yale University, New Haven, CT, USA
- Yale Quantum Institute, Yale University, New Haven, CT, USA
| | - B Royer
- Department of Physics, Yale University, New Haven, CT, USA
- Department of Applied Physics, Yale University, New Haven, CT, USA
- Yale Quantum Institute, Yale University, New Haven, CT, USA
- Institut Quantique, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Département de Physique, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - S Singh
- Department of Physics, Yale University, New Haven, CT, USA
- Department of Applied Physics, Yale University, New Haven, CT, USA
- Yale Quantum Institute, Yale University, New Haven, CT, USA
| | - I Tsioutsios
- Department of Physics, Yale University, New Haven, CT, USA
- Department of Applied Physics, Yale University, New Haven, CT, USA
- Yale Quantum Institute, Yale University, New Haven, CT, USA
| | - S Ganjam
- Department of Physics, Yale University, New Haven, CT, USA
- Department of Applied Physics, Yale University, New Haven, CT, USA
- Yale Quantum Institute, Yale University, New Haven, CT, USA
| | - A Miano
- Department of Physics, Yale University, New Haven, CT, USA
- Department of Applied Physics, Yale University, New Haven, CT, USA
- Yale Quantum Institute, Yale University, New Haven, CT, USA
| | - B L Brock
- Department of Physics, Yale University, New Haven, CT, USA
- Department of Applied Physics, Yale University, New Haven, CT, USA
- Yale Quantum Institute, Yale University, New Haven, CT, USA
| | - A Z Ding
- Department of Physics, Yale University, New Haven, CT, USA
- Department of Applied Physics, Yale University, New Haven, CT, USA
- Yale Quantum Institute, Yale University, New Haven, CT, USA
| | - L Frunzio
- Department of Physics, Yale University, New Haven, CT, USA
- Department of Applied Physics, Yale University, New Haven, CT, USA
- Yale Quantum Institute, Yale University, New Haven, CT, USA
| | - S M Girvin
- Department of Physics, Yale University, New Haven, CT, USA
- Department of Applied Physics, Yale University, New Haven, CT, USA
- Yale Quantum Institute, Yale University, New Haven, CT, USA
| | - R J Schoelkopf
- Department of Physics, Yale University, New Haven, CT, USA
- Department of Applied Physics, Yale University, New Haven, CT, USA
- Yale Quantum Institute, Yale University, New Haven, CT, USA
| | - M H Devoret
- Department of Physics, Yale University, New Haven, CT, USA.
- Department of Applied Physics, Yale University, New Haven, CT, USA.
- Yale Quantum Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
19
|
Yu L, Matityahu S, Rosen YJ, Hung CC, Maksymov A, Burin AL, Schechter M, Osborn KD. Experimentally revealing anomalously large dipoles in the dielectric of a quantum circuit. Sci Rep 2022; 12:16960. [PMID: 36216864 PMCID: PMC9551083 DOI: 10.1038/s41598-022-21256-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Quantum two-level systems (TLSs) intrinsic to glasses induce decoherence in many modern quantum devices, such as superconducting qubits. Although the low-temperature physics of these TLSs is usually well-explained by a phenomenological standard tunneling model of independent TLSs, the nature of these TLSs, as well as their behavior out of equilibrium and at high energies above 1 K, remain inconclusive. Here we measure the non-equilibrium dielectric loss of TLSs in amorphous silicon using a superconducting resonator, where energies of TLSs are varied in time using a swept electric field. Our results show the existence of two distinct ensembles of TLSs, interacting weakly and strongly with phonons, where the latter also possesses anomalously large electric dipole moment. These results may shed new light on the low temperature characteristics of amorphous solids, and hold implications to experiments and applications in quantum devices using time-varying electric fields.
Collapse
Affiliation(s)
- Liuqi Yu
- Laboratory for Physical Sciences, University of Maryland, College Park, MD, 20740, USA. .,Department of Physics, University of Maryland, College Park, MD, 20742, USA.
| | - Shlomi Matityahu
- Department of Physics, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel.,Institut für Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Yaniv J Rosen
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Chih-Chiao Hung
- Laboratory for Physical Sciences, University of Maryland, College Park, MD, 20740, USA.,Department of Physics, University of Maryland, College Park, MD, 20742, USA
| | - Andrii Maksymov
- Department of Chemistry, Tulane University, New Orleans, LA, 70118, USA
| | - Alexander L Burin
- Department of Chemistry, Tulane University, New Orleans, LA, 70118, USA
| | - Moshe Schechter
- Department of Physics, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Kevin D Osborn
- Laboratory for Physical Sciences, University of Maryland, College Park, MD, 20740, USA. .,Joint Quantum Institute, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
20
|
Bao F, Deng H, Ding D, Gao R, Gao X, Huang C, Jiang X, Ku HS, Li Z, Ma X, Ni X, Qin J, Song Z, Sun H, Tang C, Wang T, Wu F, Xia T, Yu W, Zhang F, Zhang G, Zhang X, Zhou J, Zhu X, Shi Y, Chen J, Zhao HH, Deng C. Fluxonium: An Alternative Qubit Platform for High-Fidelity Operations. PHYSICAL REVIEW LETTERS 2022; 129:010502. [PMID: 35841558 DOI: 10.1103/physrevlett.129.010502] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Superconducting qubits provide a promising path toward building large-scale quantum computers. The simple and robust transmon qubit has been the leading platform, achieving multiple milestones. However, fault-tolerant quantum computing calls for qubit operations at error rates significantly lower than those exhibited in the state of the art. Consequently, alternative superconducting qubits with better error protection have attracted increasing interest. Among them, fluxonium is a particularly promising candidate, featuring large anharmonicity and long coherence times. Here, we engineer a fluxonium-based quantum processor that integrates high qubit coherence, fast frequency tunability, and individual-qubit addressability for reset, readout, and gates. With simple and fast gate schemes, we achieve an average single-qubit gate fidelity of 99.97% and a two-qubit gate fidelity of up to 99.72%. This performance is comparable to the highest values reported in the literature of superconducting circuits. Thus our work, within the realm of superconducting qubits, reveals an alternative qubit platform that is competitive with the transmon system.
Collapse
Affiliation(s)
- Feng Bao
- Alibaba Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Hao Deng
- Alibaba Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Dawei Ding
- Alibaba Quantum Laboratory, Alibaba Group USA, Bellevue, Washington, D.C. 98004, USA
| | - Ran Gao
- Alibaba Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Xun Gao
- Alibaba Quantum Laboratory, Alibaba Group USA, Bellevue, Washington, D.C. 98004, USA
| | - Cupjin Huang
- Alibaba Quantum Laboratory, Alibaba Group USA, Bellevue, Washington, D.C. 98004, USA
| | - Xun Jiang
- Alibaba Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Hsiang-Sheng Ku
- Alibaba Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Zhisheng Li
- Alibaba Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Xizheng Ma
- Alibaba Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Xiaotong Ni
- Alibaba Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Jin Qin
- Alibaba Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Zhijun Song
- Alibaba Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Hantao Sun
- Alibaba Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Chengchun Tang
- Alibaba Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Tenghui Wang
- Alibaba Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Feng Wu
- Alibaba Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Tian Xia
- Alibaba Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Wenlong Yu
- Alibaba Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Fang Zhang
- Alibaba Quantum Laboratory, Alibaba Group USA, Bellevue, Washington, D.C. 98004, USA
| | - Gengyan Zhang
- Alibaba Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Xiaohang Zhang
- Alibaba Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Jingwei Zhou
- Alibaba Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Xing Zhu
- Alibaba Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Yaoyun Shi
- Alibaba Quantum Laboratory, Alibaba Group USA, Bellevue, Washington, D.C. 98004, USA
| | - Jianxin Chen
- Alibaba Quantum Laboratory, Alibaba Group USA, Bellevue, Washington, D.C. 98004, USA
| | - Hui-Hai Zhao
- Alibaba Quantum Laboratory, Alibaba Group, Beijing 100102, People's Republic of China
| | - Chunqing Deng
- Alibaba Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, People's Republic of China
| |
Collapse
|
21
|
Spring PA, Cao S, Tsunoda T, Campanaro G, Fasciati S, Wills J, Bakr M, Chidambaram V, Shteynas B, Carpenter L, Gow P, Gates J, Vlastakis B, Leek PJ. High coherence and low cross-talk in a tileable 3D integrated superconducting circuit architecture. SCIENCE ADVANCES 2022; 8:eabl6698. [PMID: 35452292 PMCID: PMC9032975 DOI: 10.1126/sciadv.abl6698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
We report high qubit coherence as well as low cross-talk and single-qubit gate errors in a superconducting circuit architecture that promises to be tileable to two-dimensional (2D) lattices of qubits. The architecture integrates an inductively shunted cavity enclosure into a design featuring nongalvanic out-of-plane control wiring and qubits and resonators fabricated on opposing sides of a substrate. The proof-of-principle device features four uncoupled transmon qubits and exhibits average energy relaxation times T1 = 149(38) μs, pure echoed dephasing times Tϕ,e = 189(34) μs, and single-qubit gate fidelities F = 99.982(4)% as measured by simultaneous randomized benchmarking. The 3D integrated nature of the control wiring means that qubits will remain addressable as the architecture is tiled to form larger qubit lattices. Band structure simulations are used to predict that the tiled enclosure will still provide a clean electromagnetic environment to enclosed qubits at arbitrary scale.
Collapse
Affiliation(s)
- Peter A. Spring
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Shuxiang Cao
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Takahiro Tsunoda
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Giulio Campanaro
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Simone Fasciati
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - James Wills
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Mustafa Bakr
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Vivek Chidambaram
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Boris Shteynas
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Lewis Carpenter
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - Paul Gow
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - James Gates
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - Brian Vlastakis
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Peter J. Leek
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| |
Collapse
|
22
|
Vepsäläinen A, Winik R, Karamlou AH, Braumüller J, Paolo AD, Sung Y, Kannan B, Kjaergaard M, Kim DK, Melville AJ, Niedzielski BM, Yoder JL, Gustavsson S, Oliver WD. Improving qubit coherence using closed-loop feedback. Nat Commun 2022; 13:1932. [PMID: 35410327 PMCID: PMC9001732 DOI: 10.1038/s41467-022-29287-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 02/24/2022] [Indexed: 11/09/2022] Open
Abstract
Superconducting qubits are a promising platform for building a larger-scale quantum processor capable of solving otherwise intractable problems. In order for the processor to reach practical viability, the gate errors need to be further suppressed and remain stable for extended periods of time. With recent advances in qubit control, both single- and two-qubit gate fidelities are now in many cases limited by the coherence times of the qubits. Here we experimentally employ closed-loop feedback to stabilize the frequency fluctuations of a superconducting transmon qubit, thereby increasing its coherence time by 26% and reducing the single-qubit error rate from (8.5 ± 2.1) × 10-4 to (5.9 ± 0.7) × 10-4. Importantly, the resulting high-fidelity operation remains effective even away from the qubit flux-noise insensitive point, significantly increasing the frequency bandwidth over which the qubit can be operated with high fidelity. This approach is helpful in large qubit grids, where frequency crowding and parasitic interactions between the qubits limit their performance.
Collapse
Affiliation(s)
- Antti Vepsäläinen
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Roni Winik
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Amir H Karamlou
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jochen Braumüller
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Agustin Di Paolo
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Youngkyu Sung
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bharath Kannan
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Morten Kjaergaard
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Quantum Devices, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | - Simon Gustavsson
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William D Oliver
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- MIT Lincoln Laboratory, Lexington, MA, USA
| |
Collapse
|
23
|
Tran QH, Nakajima K. Learning Temporal Quantum Tomography. PHYSICAL REVIEW LETTERS 2021; 127:260401. [PMID: 35029475 DOI: 10.1103/physrevlett.127.260401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 10/11/2021] [Accepted: 11/30/2021] [Indexed: 05/26/2023]
Abstract
Quantifying and verifying the control level in preparing a quantum state are central challenges in building quantum devices. The quantum state is characterized from experimental measurements, using a procedure known as tomography, which requires a vast number of resources. However, tomography for a quantum device with temporal processing, which is fundamentally different from standard tomography, has not been formulated. We develop a practical and approximate tomography method using a recurrent machine learning framework for this intriguing situation. The method is based on repeated quantum interactions between a system called quantum reservoir with a stream of quantum states. Measurement data from the reservoir are connected to a linear readout to train a recurrent relation between quantum channels applied to the input stream. We demonstrate our algorithms for representative quantum learning tasks, followed by the proposal of a quantum memory capacity to evaluate the temporal processing ability of near-term quantum devices.
Collapse
Affiliation(s)
- Quoc Hoan Tran
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| | - Kohei Nakajima
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
- Next Generation Artificial Intelligence Research Center, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
24
|
Abstract
Interfacing long-lived qubits with propagating photons is a fundamental challenge in quantum technology. Cavity and circuit quantum electrodynamics (cQED) architectures rely on an off-resonant cavity, which blocks the qubit emission and enables a quantum non-demolition (QND) dispersive readout. However, no such buffer mode is necessary for controlling a large class of three-level systems that combine a metastable qubit transition with a bright cycling transition, using the electron shelving effect. Here we demonstrate shelving of a circuit atom, fluxonium, placed inside a microwave waveguide. With no cavity modes in the setup, the qubit coherence time exceeds 50 μs, and the cycling transition’s radiative lifetime is under 100 ns. By detecting a homodyne fluorescence signal from the cycling transition, we implement a QND readout of the qubit and account for readout errors using a minimal optical pumping model. Our result establishes a resource-efficient (cavityless) alternative to cQED for controlling superconducting qubits. Existing schemes for coherent control and measurements in superconducting circuits rely on the coupling between superconducting qubits and cavity photons. Here the authors implement conditional fluorescence readout of a fluxonium qubit placed inside an open waveguide, with no coupling to cavity modes.
Collapse
|
25
|
De Santis L, Trusheim ME, Chen KC, Englund DR. Investigation of the Stark Effect on a Centrosymmetric Quantum Emitter in Diamond. PHYSICAL REVIEW LETTERS 2021; 127:147402. [PMID: 34652204 DOI: 10.1103/physrevlett.127.147402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Quantum emitters in diamond are leading optically accessible solid-state qubits. Among these, Group IV-vacancy defect centers have attracted great interest as coherent and stable optical interfaces to long-lived spin states. Theory indicates that their inversion symmetry provides first-order insensitivity to stray electric fields, a common limitation for optical coherence in any host material. Here we experimentally quantify this electric field dependence via an external electric field applied to individual tin-vacancy (SnV) centers in diamond. These measurements reveal that the permanent electric dipole moment and polarizability are at least 4 orders of magnitude smaller than for the diamond nitrogen vacancy (NV) centers, representing the first direct measurement of the inversion symmetry protection of a Group IV defect in diamond. Moreover, we show that by modulating the electric-field-induced dipole we can use the SnV as a nanoscale probe of local electric field noise, and we employ this technique to highlight the effect of spectral diffusion on the SnV.
Collapse
Affiliation(s)
- Lorenzo De Santis
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- QuTech, Delft University of Technology, PO Box 5046, 2600 GA Delft, Netherlands
| | - Matthew E Trusheim
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- CCDC Army Research Laboratory, Adelphi, Maryland 20783, USA
| | - Kevin C Chen
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Dirk R Englund
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
26
|
Niepce D, Burnett JJ, Kudra M, Cole JH, Bylander J. Stability of superconducting resonators: Motional narrowing and the role of Landau-Zener driving of two-level defects. SCIENCE ADVANCES 2021; 7:eabh0462. [PMID: 34559556 PMCID: PMC8462906 DOI: 10.1126/sciadv.abh0462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Frequency instability of superconducting resonators and qubits leads to dephasing and time-varying energy loss and hinders quantum processor tune-up. Its main source is dielectric noise originating in surface oxides. Thorough noise studies are needed to develop a comprehensive understanding and mitigation strategy of these fluctuations. We use a frequency-locked loop to track the resonant frequency jitter of three different resonator types—one niobium nitride superinductor, one aluminum coplanar waveguide, and one aluminum cavity—and we observe notably similar random telegraph signal fluctuations. At low microwave drive power, the resonators exhibit multiple, unstable frequency positions, which, for increasing power, coalesce into one frequency due to motional narrowing caused by sympathetic driving of two-level system defects by the resonator. In all three devices, we identify a dominant fluctuator whose switching amplitude (separation between states) saturates with increasing drive power, but whose characteristic switching rate follows the power law dependence of quasi-classical Landau-Zener transitions.
Collapse
Affiliation(s)
- David Niepce
- Chalmers University of Technology, Microtechnology, and Nanoscience, SE-41296 Gothenburg, Sweden
| | - Jonathan J. Burnett
- National Physical Laboratory, Hampton Road, Teddington Middlesex TW11 0LW, UK
| | - Marina Kudra
- Chalmers University of Technology, Microtechnology, and Nanoscience, SE-41296 Gothenburg, Sweden
| | - Jared H. Cole
- Chemical and Quantum Physics, School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Jonas Bylander
- Chalmers University of Technology, Microtechnology, and Nanoscience, SE-41296 Gothenburg, Sweden
| |
Collapse
|
27
|
Córcoles AD, Takita M, Inoue K, Lekuch S, Minev ZK, Chow JM, Gambetta JM. Exploiting Dynamic Quantum Circuits in a Quantum Algorithm with Superconducting Qubits. PHYSICAL REVIEW LETTERS 2021; 127:100501. [PMID: 34533358 DOI: 10.1103/physrevlett.127.100501] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
To date, quantum computation on real, physical devices has largely been limited to simple, time-ordered sequences of unitary operations followed by a final projective measurement. As hardware platforms for quantum computing continue to mature in size and capability, it is imperative to enable quantum circuits beyond their conventional construction. Here we break into the realm of dynamic quantum circuits on a superconducting-based quantum system. Dynamic quantum circuits not only involve the evolution of the quantum state throughout the computation but also periodic measurements of qubits midcircuit and concurrent processing of the resulting classical information on timescales shorter than the execution times of the circuits. Using noisy quantum hardware, we explore one of the most fundamental quantum algorithms, quantum phase estimation, in its adaptive version, which exploits dynamic circuits, and compare the results to a nonadaptive implementation of the same algorithm. We demonstrate that the version of real-time quantum computing with dynamic circuits can yield results comparable to an approach involving classical asynchronous postprocessing, thus opening the door to a new realm of available algorithms on real quantum systems.
Collapse
Affiliation(s)
- A D Córcoles
- IBM Quantum, IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA
| | - Maika Takita
- IBM Quantum, IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA
| | - Ken Inoue
- IBM Quantum, IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA
| | - Scott Lekuch
- IBM Quantum, IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA
| | - Zlatko K Minev
- IBM Quantum, IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA
| | - Jerry M Chow
- IBM Quantum, IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA
| | - Jay M Gambetta
- IBM Quantum, IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA
| |
Collapse
|
28
|
de Graaf SE, Mahashabde S, Kubatkin SE, Tzalenchuk AY, Danilov AV. Quantifying dynamics and interactions of individual spurious low-energy fluctuators in superconducting circuits. PHYSICAL REVIEW B 2021; 103:174103. [DOI: 10.1103/physrevb.103.174103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
29
|
New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds. Nat Commun 2021; 12:1779. [PMID: 33741989 PMCID: PMC7979772 DOI: 10.1038/s41467-021-22030-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/24/2021] [Indexed: 11/13/2022] Open
Abstract
The superconducting transmon qubit is a leading platform for quantum computing and quantum science. Building large, useful quantum systems based on transmon qubits will require significant improvements in qubit relaxation and coherence times, which are orders of magnitude shorter than limits imposed by bulk properties of the constituent materials. This indicates that relaxation likely originates from uncontrolled surfaces, interfaces, and contaminants. Previous efforts to improve qubit lifetimes have focused primarily on designs that minimize contributions from surfaces. However, significant improvements in the lifetime of two-dimensional transmon qubits have remained elusive for several years. Here, we fabricate two-dimensional transmon qubits that have both lifetimes and coherence times with dynamical decoupling exceeding 0.3 milliseconds by replacing niobium with tantalum in the device. We have observed increased lifetimes for seventeen devices, indicating that these material improvements are robust, paving the way for higher gate fidelities in multi-qubit processors. Quantum computers based on superconducting transmon qubits are limited by single qubit lifetimes and coherence times, which are orders of magnitude shorter than limits imposed by bulk material properties. Here, the authors fabricate two-dimensional transmon qubits with both lifetimes and coherence times longer than 0.3 milliseconds by replacing niobium with tantalum in the device.
Collapse
|
30
|
Bardin JC, Slichter DH, Reilly DJ. Microwaves in Quantum Computing. IEEE JOURNAL OF MICROWAVES 2021; 1:10.1109/JMW.2020.3034071. [PMID: 34355217 PMCID: PMC8335598 DOI: 10.1109/jmw.2020.3034071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Quantum information processing systems rely on a broad range of microwave technologies and have spurred development of microwave devices and methods in new operating regimes. Here we review the use of microwave signals and systems in quantum computing, with specific reference to three leading quantum computing platforms: trapped atomic ion qubits, spin qubits in semiconductors, and superconducting qubits. We highlight some key results and progress in quantum computing achieved through the use of microwave systems, and discuss how quantum computing applications have pushed the frontiers of microwave technology in some areas. We also describe open microwave engineering challenges for the construction of large-scale, fault-tolerant quantum computers.
Collapse
Affiliation(s)
- Joseph C Bardin
- Department of Electrical and Computer Engineering, University of Massachusetts Amherst, Amherst, MA 01003 USA
- Google LLC, Goleta, CA 93117 USA
| | - Daniel H Slichter
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO 80305 USA
| | - David J Reilly
- Microsoft Inc., Microsoft Quantum Sydney, The University of Sydney, Sydney, NSW 2050, Australia
- ARC Centre of Excellence for Engineered Quantum Systems (EQuS), School of Physics, The University of Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
31
|
de Graaf SE, Faoro L, Ioffe LB, Mahashabde S, Burnett JJ, Lindström T, Kubatkin SE, Danilov AV, Tzalenchuk AY. Two-level systems in superconducting quantum devices due to trapped quasiparticles. SCIENCE ADVANCES 2020; 6:eabc5055. [PMID: 33355127 PMCID: PMC11206451 DOI: 10.1126/sciadv.abc5055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/30/2020] [Indexed: 06/12/2023]
Abstract
A major issue for the implementation of large-scale superconducting quantum circuits is the interaction with interfacial two-level system (TLS) defects that lead to qubit parameter fluctuations and relaxation. Another major challenge comes from nonequilibrium quasiparticles (QPs) that result in qubit relaxation and dephasing. Here, we reveal a previously unexplored decoherence mechanism in the form of a new type of TLS originating from trapped QPs, which can induce qubit relaxation. Using spectral, temporal, thermal, and magnetic field mapping of TLS-induced fluctuations in frequency tunable resonators, we identify a highly coherent subset of the general TLS population with a low reconfiguration temperature ∼300 mK and a nonuniform density of states. These properties can be understood if the TLS are formed by QPs trapped in shallow subgap states formed by spatial fluctutations of the superconducting order parameter. This implies that even very rare QP bursts will affect coherence over exponentially long time scales.
Collapse
Affiliation(s)
- S E de Graaf
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK.
| | - L Faoro
- Sorbonne Université, Laboratoire de Physique Théorique et Hautes Énergies, UMR 7589 CNRS, Tour 13, 5eme Etage, 4 Place Jussieu, F-75252 Paris 05, France
- Department of Physics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - L B Ioffe
- Department of Physics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Google Inc., Venice, CA 90291, USA
| | - S Mahashabde
- Department of Microtechnology and Nanoscience, MC2, Chalmers University of Technology, SE-41296 Goteborg, Sweden
| | - J J Burnett
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK
| | - T Lindström
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK
| | - S E Kubatkin
- Department of Microtechnology and Nanoscience, MC2, Chalmers University of Technology, SE-41296 Goteborg, Sweden
| | - A V Danilov
- Department of Microtechnology and Nanoscience, MC2, Chalmers University of Technology, SE-41296 Goteborg, Sweden
| | - A Ya Tzalenchuk
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK
- Royal Holloway, University of London, Egham TW20 0EX, UK
| |
Collapse
|
32
|
Proctor T, Revelle M, Nielsen E, Rudinger K, Lobser D, Maunz P, Blume-Kohout R, Young K. Detecting and tracking drift in quantum information processors. Nat Commun 2020; 11:5396. [PMID: 33106482 PMCID: PMC7588494 DOI: 10.1038/s41467-020-19074-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/21/2020] [Indexed: 11/17/2022] Open
Abstract
If quantum information processors are to fulfill their potential, the diverse errors that affect them must be understood and suppressed. But errors typically fluctuate over time, and the most widely used tools for characterizing them assume static error modes and rates. This mismatch can cause unheralded failures, misidentified error modes, and wasted experimental effort. Here, we demonstrate a spectral analysis technique for resolving time dependence in quantum processors. Our method is fast, simple, and statistically sound. It can be applied to time-series data from any quantum processor experiment. We use data from simulations and trapped-ion qubit experiments to show how our method can resolve time dependence when applied to popular characterization protocols, including randomized benchmarking, gate set tomography, and Ramsey spectroscopy. In the experiments, we detect instability and localize its source, implement drift control techniques to compensate for this instability, and then demonstrate that the instability has been suppressed. Time-dependent errors are one of the main obstacles to fully-fledged quantum information processing. Here, the authors develop a general methodology to monitor time-dependent errors, which could be used to make other characterisation protocols time-resolved, and demonstrate it on a trapped-ion qubit.
Collapse
Affiliation(s)
- Timothy Proctor
- Quantum Performance Laboratory, Sandia National Laboratories, Albuquerque, NM, 87185, USA. .,Quantum Performance Laboratory, Sandia National Laboratories, Livermore, CA, 94550, USA.
| | | | - Erik Nielsen
- Quantum Performance Laboratory, Sandia National Laboratories, Albuquerque, NM, 87185, USA.,Quantum Performance Laboratory, Sandia National Laboratories, Livermore, CA, 94550, USA
| | - Kenneth Rudinger
- Quantum Performance Laboratory, Sandia National Laboratories, Albuquerque, NM, 87185, USA.,Quantum Performance Laboratory, Sandia National Laboratories, Livermore, CA, 94550, USA
| | - Daniel Lobser
- Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Peter Maunz
- Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Robin Blume-Kohout
- Quantum Performance Laboratory, Sandia National Laboratories, Albuquerque, NM, 87185, USA.,Quantum Performance Laboratory, Sandia National Laboratories, Livermore, CA, 94550, USA
| | - Kevin Young
- Quantum Performance Laboratory, Sandia National Laboratories, Albuquerque, NM, 87185, USA.,Quantum Performance Laboratory, Sandia National Laboratories, Livermore, CA, 94550, USA
| |
Collapse
|
33
|
Ren W, Liu W, Song C, Li H, Guo Q, Wang Z, Zheng D, Agarwal GS, Scully MO, Zhu SY, Wang H, Wang DW. Simultaneous Excitation of Two Noninteracting Atoms with Time-Frequency Correlated Photon Pairs in a Superconducting Circuit. PHYSICAL REVIEW LETTERS 2020; 125:133601. [PMID: 33034504 DOI: 10.1103/physrevlett.125.133601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
We report the first observation of simultaneous excitation of two noninteracting atoms by a pair of time-frequency correlated photons in a superconducting circuit. The strong coupling regime of this process enables the synthesis of a three-body interaction Hamiltonian, which allows the generation of the tripartite Greenberger-Horne-Zeilinger state in a single step with a fidelity as high as 0.95. We further demonstrate the inhibition of the simultaneous two-atom excitation by continuously measuring whether the first photon is emitted. This work provides a new route in synthesizing many-body interaction Hamiltonian and coherent control of entanglement.
Collapse
Affiliation(s)
- Wenhui Ren
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Wuxin Liu
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Chao Song
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Hekang Li
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
- Institute of Physics, Chinese Academy of Sciences, Bejing 100190, China
| | - Qiujiang Guo
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Zhen Wang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Dongning Zheng
- Institute of Physics, Chinese Academy of Sciences, Bejing 100190, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Bejing 100190, China
| | - Girish S Agarwal
- Institute for Quantum Science and Engineering, Departments of Biological and Agricultural Engineering, Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA
| | - Marlan O Scully
- Institute for Quantum Science and Engineering, Departments of Biological and Agricultural Engineering, Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA
- Baylor University, Waco, Texas 76706, USA
| | - Shi-Yao Zhu
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - H Wang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Da-Wei Wang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Bejing 100190, China
| |
Collapse
|
34
|
Foxen B, Neill C, Dunsworth A, Roushan P, Chiaro B, Megrant A, Kelly J, Chen Z, Satzinger K, Barends R, Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Boixo S, Buell D, Burkett B, Chen Y, Collins R, Farhi E, Fowler A, Gidney C, Giustina M, Graff R, Harrigan M, Huang T, Isakov SV, Jeffrey E, Jiang Z, Kafri D, Kechedzhi K, Klimov P, Korotkov A, Kostritsa F, Landhuis D, Lucero E, McClean J, McEwen M, Mi X, Mohseni M, Mutus JY, Naaman O, Neeley M, Niu M, Petukhov A, Quintana C, Rubin N, Sank D, Smelyanskiy V, Vainsencher A, White TC, Yao Z, Yeh P, Zalcman A, Neven H, Martinis JM. Demonstrating a Continuous Set of Two-Qubit Gates for Near-Term Quantum Algorithms. PHYSICAL REVIEW LETTERS 2020; 125:120504. [PMID: 33016760 DOI: 10.1103/physrevlett.125.120504] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/27/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Quantum algorithms offer a dramatic speedup for computational problems in material science and chemistry. However, any near-term realizations of these algorithms will need to be optimized to fit within the finite resources offered by existing noisy hardware. Here, taking advantage of the adjustable coupling of gmon qubits, we demonstrate a continuous two-qubit gate set that can provide a threefold reduction in circuit depth as compared to a standard decomposition. We implement two gate families: an imaginary swap-like (iSWAP-like) gate to attain an arbitrary swap angle, θ, and a controlled-phase gate that generates an arbitrary conditional phase, ϕ. Using one of each of these gates, we can perform an arbitrary two-qubit gate within the excitation-preserving subspace allowing for a complete implementation of the so-called Fermionic simulation (fSim) gate set. We benchmark the fidelity of the iSWAP-like and controlled-phase gate families as well as 525 other fSim gates spread evenly across the entire fSim(θ,ϕ) parameter space, achieving a purity-limited average two-qubit Pauli error of 3.8×10^{-3} per fSim gate.
Collapse
Affiliation(s)
- B Foxen
- Department of Physics, University of California, Santa Barbara, California 93106, USA
- Google Research, Santa Barbara, California 93117, USA
| | - C Neill
- Google Research, Santa Barbara, California 93117, USA
| | - A Dunsworth
- Google Research, Santa Barbara, California 93117, USA
| | - P Roushan
- Google Research, Santa Barbara, California 93117, USA
| | - B Chiaro
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - A Megrant
- Google Research, Santa Barbara, California 93117, USA
| | - J Kelly
- Google Research, Santa Barbara, California 93117, USA
| | - Zijun Chen
- Google Research, Santa Barbara, California 93117, USA
| | - K Satzinger
- Google Research, Santa Barbara, California 93117, USA
| | - R Barends
- Google Research, Santa Barbara, California 93117, USA
| | - F Arute
- Google Research, Santa Barbara, California 93117, USA
| | - K Arya
- Google Research, Santa Barbara, California 93117, USA
| | - R Babbush
- Google Research, Santa Barbara, California 93117, USA
| | - D Bacon
- Google Research, Santa Barbara, California 93117, USA
| | - J C Bardin
- Google Research, Santa Barbara, California 93117, USA
- Department of Electrical and Computer Engineering, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA
| | - S Boixo
- Google Research, Santa Barbara, California 93117, USA
| | - D Buell
- Google Research, Santa Barbara, California 93117, USA
| | - B Burkett
- Google Research, Santa Barbara, California 93117, USA
| | - Yu Chen
- Google Research, Santa Barbara, California 93117, USA
| | - R Collins
- Google Research, Santa Barbara, California 93117, USA
| | - E Farhi
- Google Research, Santa Barbara, California 93117, USA
| | - A Fowler
- Google Research, Santa Barbara, California 93117, USA
| | - C Gidney
- Google Research, Santa Barbara, California 93117, USA
| | - M Giustina
- Google Research, Santa Barbara, California 93117, USA
| | - R Graff
- Google Research, Santa Barbara, California 93117, USA
| | - M Harrigan
- Google Research, Santa Barbara, California 93117, USA
| | - T Huang
- Google Research, Santa Barbara, California 93117, USA
| | - S V Isakov
- Google Research, Santa Barbara, California 93117, USA
| | - E Jeffrey
- Google Research, Santa Barbara, California 93117, USA
| | - Z Jiang
- Google Research, Santa Barbara, California 93117, USA
| | - D Kafri
- Google Research, Santa Barbara, California 93117, USA
| | - K Kechedzhi
- Google Research, Santa Barbara, California 93117, USA
| | - P Klimov
- Google Research, Santa Barbara, California 93117, USA
| | - A Korotkov
- Google Research, Santa Barbara, California 93117, USA
| | - F Kostritsa
- Google Research, Santa Barbara, California 93117, USA
| | - D Landhuis
- Google Research, Santa Barbara, California 93117, USA
| | - E Lucero
- Google Research, Santa Barbara, California 93117, USA
| | - J McClean
- Google Research, Santa Barbara, California 93117, USA
| | - M McEwen
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - X Mi
- Google Research, Santa Barbara, California 93117, USA
| | - M Mohseni
- Google Research, Santa Barbara, California 93117, USA
| | - J Y Mutus
- Google Research, Santa Barbara, California 93117, USA
| | - O Naaman
- Google Research, Santa Barbara, California 93117, USA
| | - M Neeley
- Google Research, Santa Barbara, California 93117, USA
| | - M Niu
- Google Research, Santa Barbara, California 93117, USA
| | - A Petukhov
- Google Research, Santa Barbara, California 93117, USA
| | - C Quintana
- Google Research, Santa Barbara, California 93117, USA
| | - N Rubin
- Google Research, Santa Barbara, California 93117, USA
| | - D Sank
- Google Research, Santa Barbara, California 93117, USA
| | - V Smelyanskiy
- Google Research, Santa Barbara, California 93117, USA
| | - A Vainsencher
- Google Research, Santa Barbara, California 93117, USA
| | - T C White
- Google Research, Santa Barbara, California 93117, USA
| | - Z Yao
- Google Research, Santa Barbara, California 93117, USA
| | - P Yeh
- Google Research, Santa Barbara, California 93117, USA
| | - A Zalcman
- Google Research, Santa Barbara, California 93117, USA
| | - H Neven
- Google Research, Santa Barbara, California 93117, USA
| | - J M Martinis
- Department of Physics, University of California, Santa Barbara, California 93106, USA
- Google Research, Santa Barbara, California 93117, USA
| |
Collapse
|
35
|
Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, Boixo S, Broughton M, Buckley BB, Buell DA, Burkett B, Bushnell N, Chen Y, Chen Z, Chiaro B, Collins R, Courtney W, Demura S, Dunsworth A, Farhi E, Fowler A, Foxen B, Gidney C, Giustina M, Graff R, Habegger S, Harrigan MP, Ho A, Hong S, Huang T, Huggins WJ, Ioffe L, Isakov SV, Jeffrey E, Jiang Z, Jones C, Kafri D, Kechedzhi K, Kelly J, Kim S, Klimov PV, Korotkov A, Kostritsa F, Landhuis D, Laptev P, Lindmark M, Lucero E, Martin O, Martinis JM, McClean JR, McEwen M, Megrant A, Mi X, Mohseni M, Mruczkiewicz W, Mutus J, Naaman O, Neeley M, Neill C, Neven H, Niu MY, O’Brien TE, Ostby E, Petukhov A, Putterman H, Quintana C, Roushan P, Rubin NC, Sank D, Satzinger KJ, Smelyanskiy V, Strain D, Sung KJ, Szalay M, Takeshita TY, Vainsencher A, White T, Wiebe N, Yao ZJ, Yeh P, Zalcman A. Hartree-Fock on a superconducting qubit quantum computer. Science 2020; 369:1084-1089. [DOI: 10.1126/science.abb9811] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/18/2020] [Indexed: 01/21/2023]
Abstract
The simulation of fermionic systems is among the most anticipated applications of quantum computing. We performed several quantum simulations of chemistry with up to one dozen qubits, including modeling the isomerization mechanism of diazene. We also demonstrated error-mitigation strategies based on N-representability that dramatically improve the effective fidelity of our experiments. Our parameterized ansatz circuits realized the Givens rotation approach to noninteracting fermion evolution, which we variationally optimized to prepare the Hartree-Fock wave function. This ubiquitous algorithmic primitive is classically tractable to simulate yet still generates highly entangled states over the computational basis, which allowed us to assess the performance of our hardware and establish a foundation for scaling up correlated quantum chemistry simulations.
Collapse
|
36
|
Impact of ionizing radiation on superconducting qubit coherence. Nature 2020; 584:551-556. [DOI: 10.1038/s41586-020-2619-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 06/05/2020] [Indexed: 11/09/2022]
|
37
|
Kulikov A, Navarathna R, Fedorov A. Measuring Effective Temperatures of Qubits Using Correlations. PHYSICAL REVIEW LETTERS 2020; 124:240501. [PMID: 32639795 DOI: 10.1103/physrevlett.124.240501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Initialization of a qubit in a pure state is a prerequisite for quantum computer operation. A plethora of ways to achieve this has been proposed in the last decade, from active reset protocols to advances in materials and shielding. An instrumental tool to evaluate those methods and develop new ones is the ability to measure the population of excited states with high precision and in a short period of time. In this Letter, we propose a new technique of finding the excited state population of a qubit using correlations between two sequential measurements. We experimentally implement the proposed technique using a circuit QED platform and compare its performance with previously developed ones. Unlike other techniques, our method does not require high-fidelity readout and does not involve the excited levels of the system outside of the qubit subspace. We experimentally demonstrated measurement of the spurious qubit population with accuracy of up to 0.01%. This accuracy enabled us to perform "temperature spectroscopy" of the qubit, which helps to shed light on decoherence sources.
Collapse
Affiliation(s)
- Anatoly Kulikov
- ARC Centre of Excellence for Engineered Quantum Systems, Queensland 4072, Australia
- School of Mathematics and Physics, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Rohit Navarathna
- ARC Centre of Excellence for Engineered Quantum Systems, Queensland 4072, Australia
- School of Mathematics and Physics, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Arkady Fedorov
- ARC Centre of Excellence for Engineered Quantum Systems, Queensland 4072, Australia
- School of Mathematics and Physics, University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
38
|
Song C, Xu K, Li H, Zhang YR, Zhang X, Liu W, Guo Q, Wang Z, Ren W, Hao J, Feng H, Fan H, Zheng D, Wang DW, Wang H, Zhu SY. Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits. Science 2020; 365:574-577. [PMID: 31395779 DOI: 10.1126/science.aay0600] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/08/2019] [Indexed: 11/02/2022]
Abstract
Multipartite entangled states are crucial for numerous applications in quantum information science. However, the generation and verification of multipartite entanglement on fully controllable and scalable quantum platforms remains an outstanding challenge. We report the deterministic generation of an 18-qubit Greenberger-Horne-Zeilinger (GHZ) state and multicomponent atomic Schrödinger cat states of up to 20 qubits on a quantum processor, which features 20 superconducting qubits, also referred to as artificial atoms, interconnected by a bus resonator. By engineering a one-axis twisting Hamiltonian, the system of qubits, once initialized, coherently evolves to multicomponent atomic Schrödinger cat states-that is, superpositions of atomic coherent states including the GHZ state-at specific time intervals as expected. Our approach on a solid-state platform should not only stimulate interest in exploring the fundamental physics of quantum many-body systems, but also enable the development of applications in practical quantum metrology and quantum information processing.
Collapse
Affiliation(s)
- Chao Song
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Kai Xu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Hekang Li
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu-Ran Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,Beijing Computational Science Research Center, Beijing 100094, China
| | - Xu Zhang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Wuxin Liu
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Qiujiang Guo
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Zhen Wang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Wenhui Ren
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Jie Hao
- Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Hui Feng
- Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Heng Fan
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. .,CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Dongning Zheng
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. .,CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Da-Wei Wang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China.,CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| | - H Wang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China. .,Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shi-Yao Zhu
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China.,Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
39
|
Bilmes A, Megrant A, Klimov P, Weiss G, Martinis JM, Ustinov AV, Lisenfeld J. Resolving the positions of defects in superconducting quantum bits. Sci Rep 2020; 10:3090. [PMID: 32080272 PMCID: PMC7033136 DOI: 10.1038/s41598-020-59749-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/31/2020] [Indexed: 11/22/2022] Open
Abstract
Solid-state quantum coherent devices are quickly progressing. Superconducting circuits, for instance, have already been used to demonstrate prototype quantum processors comprising a few tens of quantum bits. This development also revealed that a major part of decoherence and energy loss in such devices originates from a bath of parasitic material defects. However, neither the microscopic structure of defects nor the mechanisms by which they emerge during sample fabrication are understood. Here, we present a technique to obtain information on locations of defects relative to the thin film edge of the qubit circuit. Resonance frequencies of defects are tuned by exposing the qubit sample to electric fields generated by electrodes surrounding the chip. By determining the defect's coupling strength to each electrode and comparing it to a simulation of the field distribution, we obtain the probability at which location and at which interface the defect resides. This method is applicable to already existing samples of various qubit types, without further on-chip design changes. It provides a valuable tool for improving the material quality and nano-fabrication procedures towards more coherent quantum circuits.
Collapse
Affiliation(s)
- Alexander Bilmes
- Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe, 76131, Germany.
| | | | - Paul Klimov
- Google, Santa Barbara, California, 93117, USA
| | - Georg Weiss
- Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe, 76131, Germany
| | | | - Alexey V Ustinov
- Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe, 76131, Germany
- National University of Science and Technology MISiS, Moscow, 119049, Russia
- Russian Quantum Center, Skolkovo, Moscow, 143025, Russia
| | - Jürgen Lisenfeld
- Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe, 76131, Germany
| |
Collapse
|
40
|
Kristen M, Schneider A, Stehli A, Wolz T, Danilin S, Ku HS, Long J, Wu X, Lake R, Pappas DP, Ustinov AV, Weides M. Amplitude and frequency sensing of microwave fields with a superconducting transmon qudit. NPJ QUANTUM INFORMATION 2020; 6:10.1038/s41534-020-00287-w. [PMID: 40144772 PMCID: PMC11938830 DOI: 10.1038/s41534-020-00287-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 05/21/2020] [Indexed: 03/28/2025]
Abstract
Experiments with superconducting circuits require careful calibration of the applied pulses and fields over a large frequency range. This remains an ongoing challenge as commercial semiconductor electronics are not able to probe signals arriving at the chip due to its cryogenic environment. Here, we demonstrate how the on-chip amplitude and frequency of a microwave signal can be inferred from the ac Stark shifts of higher transmon levels. In our time-resolved measurements we employ Ramsey fringes, allowing us to detect the amplitude of the systems transfer function over a range of several hundreds of MHz with an energy sensitivity on the order of 10-4. Combined with similar measurements for the phase of the transfer function, our sensing method can facilitate pulse correction for high fidelity quantum gates in superconducting circuits. Additionally, the potential to characterize arbitrary microwave fields promotes applications in related areas of research, such as quantum optics or hybrid microwave systems including photonic, mechanical or magnonic subsystems.
Collapse
Affiliation(s)
- M. Kristen
- Institute of Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - A. Schneider
- Institute of Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - A. Stehli
- Institute of Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - T. Wolz
- Institute of Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - S. Danilin
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
| | - H. S. Ku
- National Institute of Standards and Technology, Boulder, Colorado 80309, USA
| | - J. Long
- National Institute of Standards and Technology, Boulder, Colorado 80309, USA
| | - X. Wu
- National Institute of Standards and Technology, Boulder, Colorado 80309, USA
| | - R. Lake
- National Institute of Standards and Technology, Boulder, Colorado 80309, USA
| | - D. P. Pappas
- National Institute of Standards and Technology, Boulder, Colorado 80309, USA
| | - A. V. Ustinov
- Institute of Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Russian Quantum Center, National University of Science and Technology MISIS, 119049 Moscow, Russia
| | - M. Weides
- Institute of Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
| |
Collapse
|
41
|
Müller C, Cole JH, Lisenfeld J. Towards understanding two-level-systems in amorphous solids: insights from quantum circuits. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:124501. [PMID: 31404914 DOI: 10.1088/1361-6633/ab3a7e] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Amorphous solids show surprisingly universal behaviour at low temperatures. The prevailing wisdom is that this can be explained by the existence of two-state defects within the material. The so-called standard tunneling model has become the established framework to explain these results, yet it still leaves the central question essentially unanswered-what are these two-level defects (TLS)? This question has recently taken on a new urgency with the rise of superconducting circuits in quantum computing, circuit quantum electrodynamics, magnetometry, electrometry and metrology. Superconducting circuits made from aluminium or niobium are fundamentally limited by losses due to TLS within the amorphous oxide layers encasing them. On the other hand, these circuits also provide a novel and effective method for studying the very defects which limit their operation. We can now go beyond ensemble measurements and probe individual defects-observing the quantum nature of their dynamics and studying their formation, their behaviour as a function of applied field, strain, temperature and other properties. This article reviews the plethora of recent experimental results in this area and discusses the various theoretical models which have been used to describe the observations. In doing so, it summarises the current approaches to solving this fundamentally important problem in solid-state physics.
Collapse
Affiliation(s)
- Clemens Müller
- IBM Research Zurich, 8803 Rüschlikon, Switzerland. Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland. ARC Centre of Excellence for Engineered Quantum Systems, School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | |
Collapse
|
42
|
Lee KH, Chakram S, Kim SE, Mujid F, Ray A, Gao H, Park C, Zhong Y, Muller DA, Schuster DI, Park J. Two-Dimensional Material Tunnel Barrier for Josephson Junctions and Superconducting Qubits. NANO LETTERS 2019; 19:8287-8293. [PMID: 31661615 DOI: 10.1021/acs.nanolett.9b03886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Quantum computing based on superconducting qubits requires the understanding and control of the materials, device architecture, and operation. However, the materials for the central circuit element, the Josephson junction, have mostly been focused on using the AlOx tunnel barrier. Here, we demonstrate Josephson junctions and superconducting qubits employing two-dimensional materials as the tunnel barrier. We batch-fabricate and design the critical Josephson current of these devices via layer-by-layer stacking N layers of MoS2 on the large scale. Based on such junctions, MoS2 transmon qubits are engineered and characterized in a bulk superconducting microwave resonator for the first time. Our work allows Josephson junctions to access the diverse material properties of two-dimensional materials that include a wide range of electrical and magnetic properties, which can be used to study the effects of different material properties in superconducting qubits and to engineer novel quantum circuit elements in the future.
Collapse
Affiliation(s)
- Kan-Heng Lee
- School of Applied and Engineering Physics , Cornell University , Ithaca , New York 14853 , United States
- Pritzker School of Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States
| | - Srivatsan Chakram
- James Franck Institute , University of Chicago , Chicago , Illinois 60637 , United States
- Department of Physics , University of Chicago , Chicago , Illinois 60637 , United States
| | - Shi En Kim
- Pritzker School of Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States
| | - Fauzia Mujid
- Department of Chemistry , University of Chicago , Chicago , Illinois 60637 , United States
| | - Ariana Ray
- School of Applied and Engineering Physics , Cornell University , Ithaca , New York 14853 , United States
| | - Hui Gao
- Department of Chemistry , University of Chicago , Chicago , Illinois 60637 , United States
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Chibeom Park
- James Franck Institute , University of Chicago , Chicago , Illinois 60637 , United States
- Department of Chemistry , University of Chicago , Chicago , Illinois 60637 , United States
| | - Yu Zhong
- Department of Chemistry , University of Chicago , Chicago , Illinois 60637 , United States
| | - David A Muller
- School of Applied and Engineering Physics , Cornell University , Ithaca , New York 14853 , United States
| | - David I Schuster
- Pritzker School of Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States
- James Franck Institute , University of Chicago , Chicago , Illinois 60637 , United States
- Department of Physics , University of Chicago , Chicago , Illinois 60637 , United States
| | - Jiwoong Park
- Pritzker School of Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States
- James Franck Institute , University of Chicago , Chicago , Illinois 60637 , United States
- Department of Chemistry , University of Chicago , Chicago , Illinois 60637 , United States
| |
Collapse
|
43
|
Schlör S, Lisenfeld J, Müller C, Bilmes A, Schneider A, Pappas DP, Ustinov AV, Weides M. Correlating Decoherence in Transmon Qubits: Low Frequency Noise by Single Fluctuators. PHYSICAL REVIEW LETTERS 2019; 123:190502. [PMID: 31765204 PMCID: PMC11915200 DOI: 10.1103/physrevlett.123.190502] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Indexed: 06/10/2023]
Abstract
We report on long-term measurements of a highly coherent, nontunable superconducting transmon qubit, revealing low-frequency burst noise in coherence times and qubit transition frequency. We achieve this through a simultaneous measurement of the qubit's relaxation and dephasing rate as well as its resonance frequency. The analysis of correlations between these parameters yields information about the microscopic origin of the intrinsic decoherence mechanisms in Josephson qubits. Our results are consistent with a small number of microscopic two-level systems located at the edges of the superconducting film, which is further confirmed by a spectral noise analysis.
Collapse
Affiliation(s)
- Steffen Schlör
- Institute of Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Jürgen Lisenfeld
- Institute of Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Clemens Müller
- IBM Research Zürich, 8803 Rüschlikon, Switzerland
- Institute for Theoretical Physics, ETH Zürich, 8092 Zürich, Switzerland
| | - Alexander Bilmes
- Institute of Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Andre Schneider
- Institute of Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - David P Pappas
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - Alexey V Ustinov
- Institute of Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Russian Quantum Center, National University of Science and Technology MISIS, 119049 Moscow, Russia
| | - Martin Weides
- Institute of Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, United Kingdom
| |
Collapse
|
44
|
Quantum supremacy using a programmable superconducting processor. Nature 2019; 574:505-510. [PMID: 31645734 DOI: 10.1038/s41586-019-1666-5] [Citation(s) in RCA: 945] [Impact Index Per Article: 157.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/20/2019] [Indexed: 11/08/2022]
Abstract
The promise of quantum computers is that certain computational tasks might be executed exponentially faster on a quantum processor than on a classical processor1. A fundamental challenge is to build a high-fidelity processor capable of running quantum algorithms in an exponentially large computational space. Here we report the use of a processor with programmable superconducting qubits2-7 to create quantum states on 53 qubits, corresponding to a computational state-space of dimension 253 (about 1016). Measurements from repeated experiments sample the resulting probability distribution, which we verify using classical simulations. Our Sycamore processor takes about 200 seconds to sample one instance of a quantum circuit a million times-our benchmarks currently indicate that the equivalent task for a state-of-the-art classical supercomputer would take approximately 10,000 years. This dramatic increase in speed compared to all known classical algorithms is an experimental realization of quantum supremacy8-14 for this specific computational task, heralding a much-anticipated computing paradigm.
Collapse
|
45
|
Geaney S, Cox D, Hönigl-Decrinis T, Shaikhaidarov R, Kubatkin SE, Lindström T, Danilov AV, de Graaf SE. Near-Field Scanning Microwave Microscopy in the Single Photon Regime. Sci Rep 2019; 9:12539. [PMID: 31467310 PMCID: PMC6715798 DOI: 10.1038/s41598-019-48780-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/07/2019] [Indexed: 11/09/2022] Open
Abstract
The microwave properties of nano-scale structures are important in a wide variety of applications in quantum technology. Here we describe a low-power cryogenic near-field scanning microwave microscope (NSMM) which maintains nano-scale dielectric contrast down to the single microwave photon regime, up to 109 times lower power than in typical NSMMs. We discuss the remaining challenges towards developing nano-scale NSMM for quantum coherent interaction with two-level systems as an enabling tool for the development of quantum technologies in the microwave regime.
Collapse
Affiliation(s)
- S Geaney
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK.
- Royal Holloway, University of London, Egham, TW20 0EX, UK.
| | - D Cox
- Advanced Technology Institute, The University of Surrey, Guildford, GU2 7XH, UK
| | - T Hönigl-Decrinis
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | | | - S E Kubatkin
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-412 96, Göteborg, Sweden
| | - T Lindström
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - A V Danilov
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-412 96, Göteborg, Sweden
| | - S E de Graaf
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK.
| |
Collapse
|