1
|
Zhang H, Wang WW, Qiao C, Zhang L, Liang MC, Wu R, Wang XJ, Liu XJ, Zhang X. Topological spin-orbit-coupled fermions beyond rotating wave approximation. Sci Bull (Beijing) 2024; 69:747-755. [PMID: 38331706 DOI: 10.1016/j.scib.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/24/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024]
Abstract
The realization of spin-orbit-coupled ultracold gases has driven a wide range of research and is typically based on the rotating wave approximation (RWA). By neglecting the counter-rotating terms, RWA characterizes a single near-resonant spin-orbit (SO) coupling in a two-level system. Here, we propose and experimentally realize a new scheme for achieving a pair of two-dimensional (2D) SO couplings for ultracold fermions beyond RWA. This work not only realizes the first anomalous Floquet topological Fermi gas beyond RWA, but also significantly improves the lifetime of the 2D-SO-coupled Fermi gas. Based on pump-probe quench measurements, we observe a deterministic phase relation between two sets of SO couplings, which is characteristic of our beyond-RWA scheme and enables the two SO couplings to be simultaneously tuned to the optimum 2D configurations. We observe intriguing band topology by measuring two-ring band-inversion surfaces, quantitatively consistent with a Floquet topological Fermi gas in the regime of high Chern numbers. Our study can open an avenue to explore exotic SO physics and anomalous topological states based on long-lived SO-coupled ultracold fermions.
Collapse
Affiliation(s)
- Han Zhang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China; Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Wen-Wei Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China; Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Chang Qiao
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China; Collaborative Innovation Center of Quantum Matter, Beijing 100871, China.
| | - Long Zhang
- School of Physics and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hefei National Laboratory, Hefei 230088, China
| | - Ming-Cheng Liang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China; Collaborative Innovation Center of Quantum Matter, Beijing 100871, China; Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Rui Wu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China; Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Xu-Jie Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China; Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Xiong-Jun Liu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China; Collaborative Innovation Center of Quantum Matter, Beijing 100871, China; Hefei National Laboratory, Hefei 230088, China; International Quantum Academy, Shenzhen 518048, China.
| | - Xibo Zhang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China; Collaborative Innovation Center of Quantum Matter, Beijing 100871, China; Hefei National Laboratory, Hefei 230088, China; Beijing Academy of Quantum Information Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Zhang JY, Yi CR, Zhang L, Jiao RH, Shi KY, Yuan H, Zhang W, Liu XJ, Chen S, Pan JW. Tuning Anomalous Floquet Topological Bands with Ultracold Atoms. PHYSICAL REVIEW LETTERS 2023; 130:043201. [PMID: 36763419 DOI: 10.1103/physrevlett.130.043201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/08/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
The Floquet engineering opens the way to create new topological states without counterparts in static systems. Here, we report the experimental realization and characterization of new anomalous topological states with high-precision Floquet engineering for ultracold atoms trapped in a shaking optical Raman lattice. The Floquet band topology is manipulated by tuning the driving-induced band crossings referred to as band inversion surfaces (BISs), whose configurations fully characterize the topology of the underlying states. We uncover various exotic anomalous topological states by measuring the configurations of BISs that correspond to the bulk Floquet topology. In particular, we identify an unprecedented anomalous Floquet valley-Hall state that possesses anomalous helical-like edge modes protected by valleys and a chiral state with high Chern number.
Collapse
Affiliation(s)
- Jin-Yi Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Chang-Rui Yi
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Long Zhang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- School of Physics and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rui-Heng Jiao
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Kai-Ye Shi
- Department of Physics, Renmin University of China, Beijing 100872, China
| | - Huan Yuan
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Wei Zhang
- Department of Physics, Renmin University of China, Beijing 100872, China
| | - Xiong-Jun Liu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuai Chen
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Jian-Wei Pan
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
3
|
Chen C, Ding X, Qin J, Wu J, He Y, Lu CY, Li L, Liu XJ, Sanders BC, Pan JW. Topological Spin Texture of Chiral Edge States in Photonic Two-Dimensional Quantum Walks. PHYSICAL REVIEW LETTERS 2022; 129:046401. [PMID: 35939012 DOI: 10.1103/physrevlett.129.046401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Topological insulators host topology-linked boundary states, whose spin and charge degrees of freedom could be exploited to design topological devices with enhanced functionality. We experimentally observe that dissipationless chiral edge states in a spin-orbit coupled anomalous Floquet topological phase exhibit topological spin texture on boundaries, realized via a two-dimensional quantum walk. Our experiment shows that, for a walker traveling around a closed loop along the boundary in real space, its spin evolves and winds through a great circle on the Bloch sphere, which implies that edge-spin texture has nontrivial winding. This topological spin winding is protected by a chiral-like symmetry emerging for the low-energy Hamiltonian. Our experiment confirms that two-dimensional anomalous Floquet topological systems exhibit topological spin texture on the boundary, which could inspire novel topology-based spintronic phenomena and devices.
Collapse
Affiliation(s)
- Chao Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai Branch, Shanghai 201315, China
- CAS-Alibaba Quantum Computing Laboratory, CAS Centre for Excellence in Quantum Information and Quantum Physics, Shanghai 201315, China
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
| | - Xing Ding
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai Branch, Shanghai 201315, China
- CAS-Alibaba Quantum Computing Laboratory, CAS Centre for Excellence in Quantum Information and Quantum Physics, Shanghai 201315, China
| | - Jian Qin
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai Branch, Shanghai 201315, China
- CAS-Alibaba Quantum Computing Laboratory, CAS Centre for Excellence in Quantum Information and Quantum Physics, Shanghai 201315, China
| | - Jizhou Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai Branch, Shanghai 201315, China
- CAS-Alibaba Quantum Computing Laboratory, CAS Centre for Excellence in Quantum Information and Quantum Physics, Shanghai 201315, China
| | - Yu He
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chao-Yang Lu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai Branch, Shanghai 201315, China
- CAS-Alibaba Quantum Computing Laboratory, CAS Centre for Excellence in Quantum Information and Quantum Physics, Shanghai 201315, China
| | - Li Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai Branch, Shanghai 201315, China
- CAS-Alibaba Quantum Computing Laboratory, CAS Centre for Excellence in Quantum Information and Quantum Physics, Shanghai 201315, China
| | - Xiong-Jun Liu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Center for Quantum Materials and School of Physics, Peking University, Beijing 100871, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Barry C Sanders
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai Branch, Shanghai 201315, China
- CAS-Alibaba Quantum Computing Laboratory, CAS Centre for Excellence in Quantum Information and Quantum Physics, Shanghai 201315, China
- Institute for Quantum Science and Technology, University of Calgary, Alberta T2N 1N4, Canada
| | - Jian-Wei Pan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai Branch, Shanghai 201315, China
- CAS-Alibaba Quantum Computing Laboratory, CAS Centre for Excellence in Quantum Information and Quantum Physics, Shanghai 201315, China
| |
Collapse
|
4
|
Lauria P, Kuo WT, Cooper NR, Barreiro JT. Experimental Realization of a Fermionic Spin-Momentum Lattice. PHYSICAL REVIEW LETTERS 2022; 128:245301. [PMID: 35776473 DOI: 10.1103/physrevlett.128.245301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
We experimentally realize a spin-momentum lattice with a homogeneously trapped Fermi gas. The lattice is created via cyclically rotated atom-laser couplings between three bare atomic spin states, and are such that they form a triangular lattice in a synthetic spin-momentum space. We demonstrate the lattice and explore its dynamics with spin- and momentum-resolved absorption imaging. This platform will provide new opportunities for synthetic spin systems and the engineering of topological bands. In particular, the use of three spin states in two spatial dimensions would allow the simulation of synthetic magnetic fields of high spatial uniformity, which would lead to ultranarrow Chern bands that support robust fractional quantum Hall states.
Collapse
Affiliation(s)
- Paul Lauria
- Department of Physics and Astronomy, University of California San Diego, La Jolla, California 92093, USA
| | - Wei-Ting Kuo
- Department of Physics and Astronomy, University of California San Diego, La Jolla, California 92093, USA
| | - Nigel R Cooper
- T.C.M. Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Julio T Barreiro
- Department of Physics and Astronomy, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
5
|
Wang ZY, Cheng XC, Wang BZ, Zhang JY, Lu YH, Yi CR, Niu S, Deng Y, Liu XJ, Chen S, Pan JW. Realization of an ideal Weyl semimetal band in a quantum gas with 3D spin-orbit coupling. Science 2021; 372:271-276. [PMID: 33859030 DOI: 10.1126/science.abc0105] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 03/12/2021] [Indexed: 11/02/2022]
Abstract
Weyl semimetals are three-dimensional (3D) gapless topological phases with Weyl cones in the bulk band. According to lattice theory, Weyl cones must come in pairs, with the minimum number of cones being two. A semimetal with only two Weyl cones is an ideal Weyl semimetal (IWSM). Here we report the experimental realization of an IWSM band by engineering 3D spin-orbit coupling for ultracold atoms. The topological Weyl points are clearly measured via the virtual slicing imaging technique in equilibrium and are further resolved in the quench dynamics. The realization of an IWSM band opens an avenue to investigate various exotic phenomena that are difficult to access in solids.
Collapse
Affiliation(s)
- Zong-Yao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.,Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China.,Shanghai Research Center for Quantum Science, Shanghai 201315, China
| | - Xiang-Can Cheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.,Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China.,Shanghai Research Center for Quantum Science, Shanghai 201315, China
| | - Bao-Zong Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.,International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Jin-Yi Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.,Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China.,Shanghai Research Center for Quantum Science, Shanghai 201315, China
| | - Yue-Hui Lu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.,CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Chang-Rui Yi
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.,Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China.,Shanghai Research Center for Quantum Science, Shanghai 201315, China
| | - Sen Niu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.,CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Youjin Deng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.,Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China.,Shanghai Research Center for Quantum Science, Shanghai 201315, China
| | - Xiong-Jun Liu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China. .,CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Shuai Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China. .,Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China.,Shanghai Research Center for Quantum Science, Shanghai 201315, China
| | - Jian-Wei Pan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China. .,Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China.,Shanghai Research Center for Quantum Science, Shanghai 201315, China
| |
Collapse
|
6
|
Topological features without a lattice in Rashba spin-orbit coupled atoms. Nat Commun 2021; 12:593. [PMID: 33500408 PMCID: PMC7838279 DOI: 10.1038/s41467-020-20762-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 12/18/2020] [Indexed: 11/08/2022] Open
Abstract
Topological order can be found in a wide range of physical systems, from crystalline solids, photonic meta-materials and even atmospheric waves to optomechanic, acoustic and atomic systems. Topological systems are a robust foundation for creating quantized channels for transporting electrical current, light, and atmospheric disturbances. These topological effects are quantified in terms of integer-valued 'invariants', such as the Chern number, applicable to the quantum Hall effect, or the [Formula: see text] invariant suitable for topological insulators. Here, we report the engineering of Rashba spin-orbit coupling for a cold atomic gas giving non-trivial topology, without the underlying crystalline structure that conventionally yields integer Chern numbers. We validated our procedure by spectroscopically measuring both branches of the Rashba dispersion relation which touch at a single Dirac point. We then measured the quantum geometry underlying the dispersion relation using matter-wave interferometry to implement a form of quantum state tomography, giving a Berry's phase with magnitude π. This implies that opening a gap at the Dirac point would give two dispersions (bands) each with half-integer Chern number, potentially implying new forms of topological transport.
Collapse
|
7
|
Wang Y, Xia X, Zhang L, Yao H, Chen S, You J, Zhou Q, Liu XJ. One-Dimensional Quasiperiodic Mosaic Lattice with Exact Mobility Edges. PHYSICAL REVIEW LETTERS 2020; 125:196604. [PMID: 33216579 DOI: 10.1103/physrevlett.125.196604] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/30/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
The mobility edges (MEs) in energy that separate extended and localized states are a central concept in understanding the localization physics. In one-dimensional (1D) quasiperiodic systems, while MEs may exist for certain cases, the analytic results that allow for an exact understanding are rare. Here we uncover a class of exactly solvable 1D models with MEs in the spectra, where quasiperiodic on-site potentials are inlaid in the lattice with equally spaced sites. The analytical solutions provide the exact results not only for the MEs, but also for the localization and extended features of all states in the spectra, as derived through computing the Lyapunov exponents from Avila's global theory and also numerically verified by calculating the fractal dimension. We further propose a novel scheme with experimental feasibility to realize our model based on an optical Raman lattice, which paves the way for experimental exploration of the predicted exact ME physics.
Collapse
Affiliation(s)
- Yucheng Wang
- Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Xu Xia
- Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, China
| | - Long Zhang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Hepeng Yao
- CPHT, CNRS, Institut Polytechnique de Paris, Route de Saclay 91128 Palaiseau, France
| | - Shu Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Yangtze River Delta Physics Research Center, Liyang, Jiangsu 213300, China
| | - Jiangong You
- Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, China
| | - Qi Zhou
- Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, China
| | - Xiong-Jun Liu
- Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
8
|
Zhang L, Zhang L, Liu XJ. Unified Theory to Characterize Floquet Topological Phases by Quench Dynamics. PHYSICAL REVIEW LETTERS 2020; 125:183001. [PMID: 33196215 DOI: 10.1103/physrevlett.125.183001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/26/2020] [Accepted: 09/24/2020] [Indexed: 05/22/2023]
Abstract
The conventional characterization of periodically driven systems usually necessitates the time-domain information beyond Floquet bands, hence lacking universal and direct schemes of measuring Floquet topological invariants. Here we propose a unified theory, based on quantum quenches, to characterize generic d-dimensional Floquet topological phases in which the topological invariants are constructed with only minimal information of the static Floquet bands. For a d-dimensional phase that is initially static and trivial, we introduce the quench dynamics by suddenly turning on the periodic driving. We show that the quench dynamics exhibits emergent topological patterns in (d-1)-dimensional momentum subspaces where Floquet bands cross, from which the Floquet topological invariants are directly obtained. This result provides a simple and unified characterization in which one can extract the number of conventional and anomalous Floquet boundary modes and identify the topologically protected singularities in the phase bands. These applications are illustrated with one- and two-dimensional models that are readily accessible in cold-atom experiments. Our study opens a new framework for the characterization of Floquet topological phases.
Collapse
Affiliation(s)
- Long Zhang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Lin Zhang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Xiong-Jun Liu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
- Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
9
|
Wang Y, Zhang L, Niu S, Yu D, Liu XJ. Realization and Detection of Nonergodic Critical Phases in an Optical Raman Lattice. PHYSICAL REVIEW LETTERS 2020; 125:073204. [PMID: 32857567 DOI: 10.1103/physrevlett.125.073204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
The critical phases, being delocalized but nonergodic, are fundamental phases different from both the many-body localization and ergodic extended quantum phases, and have so far not been realized in experiment. Here we propose an incommensurate topological insulating model of AIII symmetry class to realize such critical phases through an optical Raman lattice scheme, which possesses a one-dimensional (1D) spin-orbit coupling and an incommensurate Zeeman potential. We show the existence of both noninteracting and many-body critical phases, which can coexist with the topological phase, and show that the critical-localization transition coincides with the topological phase boundary in noninteracting regime. The dynamical detection of the critical phases is proposed and studied in detail based on the available experimental techniques. Finally, we demonstrate how the proposed critical phases can be achieved within the current ultracold atom experiments. This work paves the way to observe the novel critical phases.
Collapse
Affiliation(s)
- Yucheng Wang
- Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Long Zhang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Sen Niu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Dapeng Yu
- Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiong-Jun Liu
- Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
10
|
Ji W, Zhang L, Wang M, Zhang L, Guo Y, Chai Z, Rong X, Shi F, Liu XJ, Wang Y, Du J. Quantum Simulation for Three-Dimensional Chiral Topological Insulator. PHYSICAL REVIEW LETTERS 2020; 125:020504. [PMID: 32701334 DOI: 10.1103/physrevlett.125.020504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/21/2020] [Accepted: 06/09/2020] [Indexed: 05/22/2023]
Abstract
Quantum simulation, as a state-of-the-art technique, provides a powerful way to explore topological quantum phases beyond natural limits. Nevertheless, it is usually hard to simulate both the bulk and surface topological physics at the same time to reveal their correspondence. Here we build up a quantum simulator using nitrogen-vacancy center to investigate a three-dimensional (3D) chiral topological insulator, and demonstrate the study of both the bulk and surface topological physics by quantum quenches. First, a dynamical bulk-surface correspondence in momentum space is observed, showing that the bulk topology of the 3D phase uniquely corresponds to the nontrivial quench dynamics emerging on 2D momentum hypersurfaces called band inversion surfaces (BISs). This is the momentum-space counterpart of the bulk-boundary correspondence in real space. Further, the symmetry protection of the 3D chiral phase is uncovered by measuring dynamical spin textures on BISs, which exhibit perfect (broken) topology when the chiral symmetry is preserved (broken). Finally, we measure the topological charges to characterize directly the bulk topology and identify an emergent dynamical topological transition when varying the quenches from deep to shallow regimes. This work demonstrates how a full study of topological phases can be achieved in quantum simulators.
Collapse
Affiliation(s)
- Wentao Ji
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Lin Zhang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Mengqi Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Long Zhang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Yuhang Guo
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zihua Chai
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xing Rong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Fazhan Shi
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiong-Jun Liu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ya Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jiangfeng Du
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
11
|
Hu H, Zhao E. Topological Invariants for Quantum Quench Dynamics from Unitary Evolution. PHYSICAL REVIEW LETTERS 2020; 124:160402. [PMID: 32383903 DOI: 10.1103/physrevlett.124.160402] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/30/2020] [Indexed: 05/22/2023]
Abstract
Recent experiments began to explore the topological properties of quench dynamics, i.e., the time evolution following a sudden change in the Hamiltonian, via tomography of quantum gases in optical lattices. In contrast to the well-established theory for static band insulators or periodically driven systems, at present it is not clear whether, and how, topological invariants can be defined for a general quench of band insulators. Previous work solved a special case of this problem beautifully using Hopf mapping of two-band Hamiltonians in two dimensions. However, it only works for a topologically trivial initial state and is hard to generalize to multiband systems or other dimensions. Here we introduce the concept of loop unitary constructed from the unitary time-evolution operator and show its homotopy invariant fully characterizes the dynamical topology. For two-band systems in two dimensions, we prove that the invariant is precisely equal to the change in the Chern number across the quench, regardless of the initial state. We further show that the nontrivial dynamical topology manifests as hedgehog defects in the loop unitary and also as winding and linking of its eigenvectors along a curve where dynamical quantum phase transition occurs. This opens up a systematic route to classify and characterize quantum quench dynamics.
Collapse
Affiliation(s)
- Haiping Hu
- Department of Physics and Astronomy, George Mason University, Fairfax, Virginia 22030, USA
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Erhai Zhao
- Department of Physics and Astronomy, George Mason University, Fairfax, Virginia 22030, USA
| |
Collapse
|
12
|
Yi CR, Zhang L, Zhang L, Jiao RH, Cheng XC, Wang ZY, Xu XT, Sun W, Liu XJ, Chen S, Pan JW. Observing Topological Charges and Dynamical Bulk-Surface Correspondence with Ultracold Atoms. PHYSICAL REVIEW LETTERS 2019; 123:190603. [PMID: 31765219 DOI: 10.1103/physrevlett.123.190603] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/16/2019] [Indexed: 05/22/2023]
Abstract
Quantum dynamics induced in quenching a d-dimensional topological phase across a phase transition may exhibit a nontrivial dynamical topological pattern on the (d-1)D momentum subspace, called band inversion surfaces (BISs), which have a one-to-one correspondence to the bulk topology of the postquench phase. Here we report the experimental observation of such dynamical bulk-surface correspondence through measuring the topological charges in a 2D quantum anomalous Hall model realized in an optical Raman lattice. The system can be quenched with respect to every spin axis by suddenly varying the two-photon detuning or phases of the Raman couplings, in which the topological charges and BISs are measured dynamically by the time-averaged spin textures. We observe that the total charges in the region enclosed by BISs define a dynamical topological invariant, which equals the Chern number of the postquench band and also characterizes the topological pattern of a dynamical field emerging on the BISs, rendering the dynamical bulk-surface correspondence. This study opens a new avenue to explore topological phases dynamically.
Collapse
Affiliation(s)
- Chang-Rui Yi
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Long Zhang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Lin Zhang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Rui-Heng Jiao
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Xiang-Can Cheng
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Zong-Yao Wang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Xiao-Tian Xu
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Wei Sun
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Xiong-Jun Liu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Beijing Academy of Quantum Information Science, Beijing 100193, China
| | - Shuai Chen
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Jian-Wei Pan
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| |
Collapse
|
13
|
Xu XT, Wang ZY, Jiao RH, Yi CR, Sun W, Chen S. Ultra-low noise magnetic field for quantum gases. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:054708. [PMID: 31153239 DOI: 10.1063/1.5087957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
A ultralow noise magnetic field is essential for many branches of scientific research. Examples include experiments conducted on ultracold atoms, quantum simulations, and precision measurements. In ultracold atom experiments specifically, a bias magnetic field will often serve as a quantization axis and be applied for Zeeman splitting. As atomic states are usually sensitive to magnetic fields, a magnetic field characterized by ultralow noise as well as high stability is typically required for experimentation. For this study, a bias magnetic field is successfully stabilized at 14.5 G, with the root mean square value of the noise reduced to 18.5 μG (1.28 ppm) by placing μ-metal magnetic shields together with a dynamical feedback circuit. Long-time instability is also regulated consistently below 7 μG. The level of noise exhibited in the bias magnetic field is further confirmed by evaluating the coherence time of a Bose-Einstein condensate characterized by Rabi oscillation. It is concluded that this approach can be applied to other physical systems as well.
Collapse
Affiliation(s)
- Xiao-Tian Xu
- Shanghai Branch, National Research Center for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Zong-Yao Wang
- Shanghai Branch, National Research Center for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Rui-Heng Jiao
- Shanghai Branch, National Research Center for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Chang-Rui Yi
- Shanghai Branch, National Research Center for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Wei Sun
- Shanghai Branch, National Research Center for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Shuai Chen
- Shanghai Branch, National Research Center for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
| |
Collapse
|
14
|
Sun W, Yi CR, Wang BZ, Zhang WW, Sanders BC, Xu XT, Wang ZY, Schmiedmayer J, Deng Y, Liu XJ, Chen S, Pan JW. Uncover Topology by Quantum Quench Dynamics. PHYSICAL REVIEW LETTERS 2018; 121:250403. [PMID: 30608809 DOI: 10.1103/physrevlett.121.250403] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/21/2018] [Indexed: 05/22/2023]
Abstract
Topological quantum states are characterized by nonlocal invariants. We present a new dynamical approach for ultracold-atom systems to uncover their band topology, and we provide solid evidence to demonstrate its experimental advantages. After quenching a two-dimensional (2D) Chern band, realized in an ultracold ^{87}Rb gas from a trivial to a topological parameter regime, we observe an emerging ring structure in the spin dynamics during the unitary evolution, which uniquely corresponds to the Chern number for the postquench band. By extracting 2D bulk topology from the 1D ring pattern, our scheme displays simplicity and is insensitive to perturbations. This insensitivity enables a high-precision determination of the full phase diagram for the system's band topology.
Collapse
Affiliation(s)
- Wei Sun
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
- Chinese Academy of Sciences Center for Excellence: Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei Anhui 230326, China
- CAS-Alibaba Lab for Quantum Computation, Shanghai 201315, China
| | - Chang-Rui Yi
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
- Chinese Academy of Sciences Center for Excellence: Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei Anhui 230326, China
- CAS-Alibaba Lab for Quantum Computation, Shanghai 201315, China
| | - Bao-Zong Wang
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
- Chinese Academy of Sciences Center for Excellence: Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei Anhui 230326, China
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Wei-Wei Zhang
- Centre for Engineered Quantum Systems, School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Barry C Sanders
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Program in Quantum Information Science, Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| | - Xiao-Tian Xu
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
- Chinese Academy of Sciences Center for Excellence: Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei Anhui 230326, China
- CAS-Alibaba Lab for Quantum Computation, Shanghai 201315, China
| | - Zong-Yao Wang
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
- Chinese Academy of Sciences Center for Excellence: Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei Anhui 230326, China
- CAS-Alibaba Lab for Quantum Computation, Shanghai 201315, China
| | - Joerg Schmiedmayer
- Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna, Austria
| | - Youjin Deng
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
- Chinese Academy of Sciences Center for Excellence: Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei Anhui 230326, China
- CAS-Alibaba Lab for Quantum Computation, Shanghai 201315, China
| | - Xiong-Jun Liu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Shuai Chen
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
- Chinese Academy of Sciences Center for Excellence: Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei Anhui 230326, China
- CAS-Alibaba Lab for Quantum Computation, Shanghai 201315, China
| | - Jian-Wei Pan
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
- Chinese Academy of Sciences Center for Excellence: Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei Anhui 230326, China
- CAS-Alibaba Lab for Quantum Computation, Shanghai 201315, China
| |
Collapse
|
15
|
Precision mapping the topological bands of 2D spin-orbit coupling with microwave spin-injection spectroscopy. Sci Bull (Beijing) 2018; 63:1464-1469. [PMID: 36658827 DOI: 10.1016/j.scib.2018.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/20/2018] [Accepted: 11/05/2018] [Indexed: 01/21/2023]
Abstract
To investigate the band structure is one of the key approaches to study the fundamental properties of a novel material. We report here the precision band mapping of a 2-dimensional (2D) spin-orbit (SO) coupling in an optical lattice. By applying the microwave spin-injection spectroscopy, the band structure and spin-polarization distribution are achieved simultaneously. The band topology is also addressed with observing the band gap close and re-open at the Dirac points. Furthermore, the lattice depth and the Raman coupling strength are precisely calibrated with relative errors in the order of 10-3. Our approach could also be applied for exploring the exotic topological phases with even higher dimensional system.
Collapse
|