1
|
Gompper G, Stone HA, Kurzthaler C, Saintillan D, Peruani F, Fedosov DA, Auth T, Cottin-Bizonne C, Ybert C, Clément E, Darnige T, Lindner A, Goldstein RE, Liebchen B, Binysh J, Souslov A, Isa L, di Leonardo R, Frangipane G, Gu H, Nelson BJ, Brauns F, Marchetti MC, Cichos F, Heuthe VL, Bechinger C, Korman A, Feinerman O, Cavagna A, Giardina I, Jeckel H, Drescher K. The 2025 motile active matter roadmap. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2025; 37:143501. [PMID: 39837091 PMCID: PMC11836640 DOI: 10.1088/1361-648x/adac98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/01/2024] [Accepted: 01/21/2025] [Indexed: 01/23/2025]
Abstract
Activity and autonomous motion are fundamental aspects of many living and engineering systems. Here, the scale of biological agents covers a wide range, from nanomotors, cytoskeleton, and cells, to insects, fish, birds, and people. Inspired by biological active systems, various types of autonomous synthetic nano- and micromachines have been designed, which provide the basis for multifunctional, highly responsive, intelligent active materials. A major challenge for understanding and designing active matter is their inherent non-equilibrium nature due to persistent energy consumption, which invalidates equilibrium concepts such as free energy, detailed balance, and time-reversal symmetry. Furthermore, interactions in ensembles of active agents are often non-additive and non-reciprocal. An important aspect of biological agents is their ability to sense the environment, process this information, and adjust their motion accordingly. It is an important goal for the engineering of micro-robotic systems to achieve similar functionality. Many fundamental properties of motile active matter are by now reasonably well understood and under control. Thus, the ground is now prepared for the study of physical aspects and mechanisms of motion in complex environments, the behavior of systems with new physical features like chirality, the development of novel micromachines and microbots, the emergent collective behavior and swarming of intelligent self-propelled particles, and particular features of microbial systems. The vast complexity of phenomena and mechanisms involved in the self-organization and dynamics of motile active matter poses major challenges, which can only be addressed by a truly interdisciplinary effort involving scientists from biology, chemistry, ecology, engineering, mathematics, and physics. The 2025 motile active matter roadmap of Journal of Physics: Condensed Matter reviews the current state of the art of the field and provides guidance for further progress in this fascinating research area.
Collapse
Affiliation(s)
- Gerhard Gompper
- Theoretical Physics of Living Matter, Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, United States of America
| | - Christina Kurzthaler
- Max Planck Institute for the Physics of Complex Systems, Center for Systems Biology Dresden, Cluster of Excellence, Physics of Life, TU Dresden, Dresden, Germany
| | - David Saintillan
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, United States of America
| | | | - Dmitry A Fedosov
- Theoretical Physics of Living Matter, Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Thorsten Auth
- Theoretical Physics of Living Matter, Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Cecile Cottin-Bizonne
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, France
| | - Christophe Ybert
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, France
| | - Eric Clément
- Laboratoire PMMH-ESPCI, UMR 7636 CNRS-PSL-Research University, Sorbonne Université, Université Paris Cité, 75005 Paris, France
- Institut Universitaire de France, Paris, France
| | - Thierry Darnige
- Laboratoire PMMH-ESPCI, UMR 7636 CNRS-PSL-Research University, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Anke Lindner
- Laboratoire PMMH-ESPCI, UMR 7636 CNRS-PSL-Research University, Sorbonne Université, Université Paris Cité, 75005 Paris, France
- Institut Universitaire de France, Paris, France
| | - Raymond E Goldstein
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Benno Liebchen
- Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Jack Binysh
- Institute of Physics, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Anton Souslov
- T.C.M. Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | | | | | - Hongri Gu
- Department of Physics, University of Konstanz, Konstanz, Germany
| | - Bradley J Nelson
- Institute of Robotics and Intelligent Systems, ETH Zürich, Zurich, Switzerland
| | - Fridtjof Brauns
- Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, CA 93106, United States of America
| | - M Cristina Marchetti
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106, United States of America
| | - Frank Cichos
- Molecular Nanophotonics, Leipzig University, 04013 Leipzig, Germany
| | | | | | - Amos Korman
- Department of Computer Science, University of Haifa, Haifa, Israel
| | - Ofer Feinerman
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Andrea Cavagna
- Istituto Sistemi Complessi (ISC-CNR), Rome, Italy
- Dipartimento di Fisica, Sapienza Università di Roma & INFN, Unità di Roma 1, Rome, Italy
| | - Irene Giardina
- Istituto Sistemi Complessi (ISC-CNR), Rome, Italy
- Dipartimento di Fisica, Sapienza Università di Roma & INFN, Unità di Roma 1, Rome, Italy
| | - Hannah Jeckel
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States of America
| | - Knut Drescher
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
2
|
Jentsch P, Lee CF. New Universality Class Describes Vicsek's Flocking Phase in Physical Dimensions. PHYSICAL REVIEW LETTERS 2024; 133:128301. [PMID: 39373409 DOI: 10.1103/physrevlett.133.128301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/05/2024] [Indexed: 10/08/2024]
Abstract
The Vicsek simulation model of flocking together with its theoretical treatment by Toner and Tu in 1995 were two foundational cornerstones of active matter physics. However, despite the field's tremendous progress, the actual universality class (UC) governing the scaling behavior of Viscek's "flocking" phase remains elusive. Here, we use nonperturbative, functional renormalization group methods to analyze, numerically and analytically, a simplified version of the Toner-Tu model, and uncover a novel UC with scaling exponents that agree remarkably well with the values obtained in a recent simulation study by Mahault et al. [Phys. Rev. Lett. 123, 218001 (2019)PRLTAO0031-900710.1103/PhysRevLett.123.218001], in both two and three spatial dimensions. We therefore believe that there is strong evidence that the UC uncovered here describes Vicsek's flocking phase.
Collapse
|
3
|
Li D, Liu Y, Luo H, Jing G. Anisotropic Diffusion of Elongated Particles in Active Coherent Flows. MICROMACHINES 2024; 15:199. [PMID: 38398928 PMCID: PMC10893016 DOI: 10.3390/mi15020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
The study of particle diffusion, a classical conundrum in scientific inquiry, holds manifold implications for various real-world applications. Particularly within the domain of active flows, where the motion of self-propelled particles instigates fluid movement, extensive research has been dedicated to unraveling the dynamics of passive spherical particles. This scrutiny has unearthed intriguing phenomena, such as superdiffusion at brief temporal scales and conventional diffusion at longer intervals. In contrast to the spherical counterparts, anisotropic particles, which manifest directional variations, are prevalent in nature. Although anisotropic behavior in passive fluids has been subject to exploration, enigmatic aspects persist in comprehending the interplay of anisotropic particles within active flows. This research delves into the intricacies of anisotropic passive particle diffusion, exposing a notable escalation in translational and rotational diffusion coefficients, as well as the superdiffusion index, contingent upon bacterial concentration. Through a detailed examination of particle coordinates, the directional preference of particle diffusion is not solely dependent on the particle length, but rather determined by the ratio of the particle length to the associated length scale of the background flow field. These revelations accentuate the paramount importance of unraveling the nuances of anisotropic particle diffusion within the context of active flows. Such insights not only contribute to the fundamental understanding of particle dynamics, but also have potential implications for a spectrum of applications.
Collapse
Affiliation(s)
| | - Yanan Liu
- School of Physics, Northwest University, Xi’an 710127, China
| | | | - Guangyin Jing
- School of Physics, Northwest University, Xi’an 710127, China
| |
Collapse
|
4
|
Vats A, Yadav PK, Banerjee V, Puri S. Symbiotic dynamics in living liquid crystals. Phys Rev E 2023; 108:024701. [PMID: 37723723 DOI: 10.1103/physreve.108.024701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/22/2023] [Indexed: 09/20/2023]
Abstract
An amalgam of nematic liquid crystals and active matter, referred to as living liquid crystals, is a promising self-healing material with futuristic applications for targeted delivery of information and microcargo. We provide a phenomenological model to study the symbiotic pattern dynamics in this contemporary system using the Toner-Tu model for active matter (AM), the Landau-de Gennes free energy for liquid crystals (LCs), and an experimentally motivated coupling term that favours coalignment of the active and nematic components. Our extensive theoretical studies unfold two novel steady states, chimeras and solitons, with sharp regions of distinct orientational order that sweep through the coupled system in synchrony. The induced dynamics in the passive nematic is unprecedented. We show that the symbiotic dynamics of the AM and LC components can be exploited to induce and manipulate order in an otherwise disordered system.
Collapse
Affiliation(s)
- Aditya Vats
- Department of Physics, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Pradeep Kumar Yadav
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Varsha Banerjee
- Department of Physics, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Sanjay Puri
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| |
Collapse
|
5
|
Besse M, Chaté H, Solon A. Metastability of Constant-Density Flocks. PHYSICAL REVIEW LETTERS 2022; 129:268003. [PMID: 36608197 DOI: 10.1103/physrevlett.129.268003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
We study numerically the Toner-Tu field theory where the density field is maintained constant, a limit case of "Malthusian" flocks for which the asymptotic scaling of correlation functions in the ordered phase is known exactly. While we confirm these scaling laws, we also show that such constant-density flocks are metastable to the nucleation of a specific defect configuration, and are replaced by a globally disordered phase consisting of asters surrounded by shock lines that constantly evolves and remodels itself. We demonstrate that the main source of disorder lies along shock lines, rendering this active foam fundamentally different from the corresponding equilibrium system. We thus show that in the context of active matter also, a result obtained at all orders of perturbation theory can be superseded by nonperturbative effects, calling for a different approach.
Collapse
Affiliation(s)
- Marc Besse
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, 75005 Paris, France
| | - Hugues Chaté
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, 75005 Paris, France
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
- Computational Science Research Center, Beijing 100094, China
| | - Alexandre Solon
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, 75005 Paris, France
| |
Collapse
|
6
|
Chen L, Lee CF, Maitra A, Toner J. Incompressible Polar Active Fluids with Quenched Random Field Disorder in Dimensions d>2. PHYSICAL REVIEW LETTERS 2022; 129:198001. [PMID: 36399725 DOI: 10.1103/physrevlett.129.198001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/24/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
We present a hydrodynamic theory of incompressible polar active fluids with quenched random field disorder. This theory shows that such fluids can overcome the disruption caused by the quenched disorder and move coherently, in the sense of having a nonzero mean velocity in the hydrodynamic limit. However, the scaling behavior of this class of active systems cannot be described by linearized hydrodynamics in spatial dimensions between 2 and 5. Nonetheless, we obtain the exact dimension-dependent scaling exponents in these dimensions.
Collapse
Affiliation(s)
- Leiming Chen
- School of Material Science and Physics, China University of Mining and Technology, Xuzhou Jiangsu, 221116, People's Republic of China
| | - Chiu Fan Lee
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Ananyo Maitra
- Laboratoire de Physique Théorique et Modélisation, CNRS UMR 8089, CY Cergy Paris Université, F-95302 Cergy-Pontoise Cedex, France
| | - John Toner
- Department of Physics and Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403, USA
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| |
Collapse
|
7
|
Cameron S, Liverpool T. Obstacles need not impede cooperation in active matter. Nature 2022; 611:668-669. [PMID: 36411336 DOI: 10.1038/d41586-022-03769-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Chen L, Lee CF, Maitra A, Toner J. Packed Swarms on Dirt: Two-Dimensional Incompressible Flocks with Quenched and Annealed Disorder. PHYSICAL REVIEW LETTERS 2022; 129:188004. [PMID: 36374680 DOI: 10.1103/physrevlett.129.188004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
We show that incompressible polar active fluids can exhibit an ordered, coherently moving phase even in the presence of quenched disorder in two dimensions. Unlike such active fluids with annealed disorder (i.e., time-dependent random white noise) only, which behave like equilibrium ferromagnets with long-range interactions, this robustness against quenched disorder is a fundamentally nonequilibrium phenomenon. The ordered state belongs to a new universality class, whose scaling laws we calculate using three different renormalization group schemes, which all give scaling exponents within 0.02 of each other, indicating that our results are quite accurate. Our predictions can be quantitatively tested in readily available artificial active systems and imply that biological systems such as cell layers can move coherently in vivo, where disorder is inevitable.
Collapse
Affiliation(s)
- Leiming Chen
- School of Material Science and Physics, China University of Mining and Technology, Xuzhou Jiangsu, 221116, People's Republic of China
| | - Chiu Fan Lee
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Ananyo Maitra
- Laboratoire de Physique Théorique et Modélisation, CNRS UMR 8089, CY Cergy Paris Université, F-95032 Cergy-Pontoise Cedex, France
| | - John Toner
- Department of Physics and Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403, USA
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| |
Collapse
|
9
|
Chen L, Lee CF, Maitra A, Toner J. Hydrodynamic theory of two-dimensional incompressible polar active fluids with quenched and annealed disorder. Phys Rev E 2022; 106:044608. [PMID: 36397548 DOI: 10.1103/physreve.106.044608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
We study the moving phase of two-dimensional (2D) incompressible polar active fluids in the presence of both quenched and annealed disorder. We show that long-range polar order persists even in this defect-ridden two-dimensional system. We obtain the large-distance, long-time scaling laws of the velocity fluctuations using three distinct dynamic renormalization group schemes. These are an uncontrolled one-loop calculation in exactly two dimensions, and two d=(d_{c}-ε) expansions to O(ε), obtained by two different analytic continuations of our 2D model to higher spatial dimensions: a "hard" continuation which has d_{c}=7/3, and a "soft" continuation with d_{c}=5/2. Surprisingly, the quenched and annealed parts of the velocity correlation function have the same anisotropy exponent and the relaxational and propagating parts of the dispersion relation have the same dynamic exponent in the nonlinear theory even though they are distinct in the linearized theory. This is due to anomalous hydrodynamics. Furthermore, all three renormalization schemes yield very similar values for the universal exponents, and therefore we expect the numerical values that we predict for them to be highly accurate.
Collapse
Affiliation(s)
- Leiming Chen
- School of Material Science and Physics, China University of Mining and Technology, Xuzhou Jiangsu 221116, People's Republic of China
| | - Chiu Fan Lee
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Ananyo Maitra
- Laboratoire de Physique Théorique et Modélisation, CNRS UMR 8089, CY Cergy Paris Université, F-95032 Cergy-Pontoise Cedex, France
| | - John Toner
- Department of Physics and Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403, USA
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
| |
Collapse
|
10
|
Zinati RBA, Besse M, Tarjus G, Tissier M. Dense polar active fluids in a disordered environment. Phys Rev E 2022; 105:064605. [PMID: 35854525 DOI: 10.1103/physreve.105.064605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
We examine the influence of quenched disorder on the flocking transition of dense polar active matter. We consider incompressible systems of active particles with aligning interactions under the effect of either quenched random forces or random dilution. The system displays a continuous disorder-order (flocking) transition, and the associated scaling behavior is described by a new universality class which is controlled by a quenched Navier-Stokes fixed point. We determine the critical exponents through a perturbative renormalization group analysis. We show that the two forms of quenched disorder, random force and random mass (dilution), belong to the same universality class, in contrast with the situation at equilibrium.
Collapse
Affiliation(s)
- Riccardo Ben Alì Zinati
- Sorbonne University, CNRS-UMR7600, Laboratoire de Physique Théorique de la Matière Condensée, F-75005, Paris, France
| | - Marc Besse
- Sorbonne University, CNRS-UMR7600, Laboratoire de Physique Théorique de la Matière Condensée, F-75005, Paris, France
| | - Gilles Tarjus
- Sorbonne University, CNRS-UMR7600, Laboratoire de Physique Théorique de la Matière Condensée, F-75005, Paris, France
| | - Matthieu Tissier
- Sorbonne University, CNRS-UMR7600, Laboratoire de Physique Théorique de la Matière Condensée, F-75005, Paris, France
| |
Collapse
|
11
|
Codina J, Mahault B, Chaté H, Dobnikar J, Pagonabarraga I, Shi XQ. Small Obstacle in a Large Polar Flock. PHYSICAL REVIEW LETTERS 2022; 128:218001. [PMID: 35687474 DOI: 10.1103/physrevlett.128.218001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
We show that arbitrarily large polar flocks are susceptible to the presence of a single small obstacle. In a wide region of parameter space, the obstacle triggers counterpropagating dense bands leading to reversals of the flow. In very large systems, these bands interact, yielding a never-ending chaotic dynamics that constitutes a new disordered phase of the system. While most of these results were obtained using simulations of aligning self-propelled particles, we find similar phenomena at the continuous level, not when considering the basic Toner-Tu hydrodynamic theory, but in simulations of truncations of the relevant Boltzmann equation.
Collapse
Affiliation(s)
- Joan Codina
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Benoît Mahault
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
| | - Hugues Chaté
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
- Computational Science Research Center, Beijing 100193, China
- Sorbonne Université, CNRS UMR7600, Laboratoire de Physique Théorique de la Matière Condensée, 75005 Paris, France
| | - Jure Dobnikar
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Ignacio Pagonabarraga
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems, 08028 Barcelona, Spain
- Centre Européen de Calcul Atomique et Moléculaire, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Xia-Qing Shi
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| |
Collapse
|
12
|
Solon A, Chaté H, Toner J, Tailleur J. Susceptibility of Polar Flocks to Spatial Anisotropy. PHYSICAL REVIEW LETTERS 2022; 128:208004. [PMID: 35657869 DOI: 10.1103/physrevlett.128.208004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
We study the effect of spatial anisotropy on polar flocks by investigating active q-state clock models in two dimensions. In contrast to the equilibrium case, we find that any amount of anisotropy is asymptotically relevant, drastically altering the phenomenology from that of the rotationally invariant case. All of the well-known physics of the Vicsek model, from giant density fluctuations to microphase separation, is replaced by that of the active Ising model, with short-range correlations and complete phase separation. These changes appear beyond a length scale that diverges in the q→∞ limit, so that the Vicsek-model phenomenology is observed in finite systems for weak enough anisotropy, i.e., sufficiently high q. We provide a scaling argument which explains why anisotropy has such different effects in the passive and active cases.
Collapse
Affiliation(s)
- Alexandre Solon
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, 75005 Paris, France
| | - Hugues Chaté
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, 75005 Paris, France
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
- Computational Science Research Center, Beijing 100094, China
| | - John Toner
- Department of Physics and Institute for Fundamental Science, University of Oregon, Eugene, Oregon 97403, USA
| | - Julien Tailleur
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, 75205 Paris, France
| |
Collapse
|
13
|
Bhattacharjee T, Amchin DB, Alert R, Ott JA, Datta SS. Chemotactic smoothing of collective migration. eLife 2022; 11:e71226. [PMID: 35257660 PMCID: PMC8903832 DOI: 10.7554/elife.71226] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 01/24/2022] [Indexed: 12/24/2022] Open
Abstract
Collective migration-the directed, coordinated motion of many self-propelled agents-is a fascinating emergent behavior exhibited by active matter with functional implications for biological systems. However, how migration can persist when a population is confronted with perturbations is poorly understood. Here, we address this gap in knowledge through studies of bacteria that migrate via directed motion, or chemotaxis, in response to a self-generated nutrient gradient. We find that bacterial populations autonomously smooth out large-scale perturbations in their overall morphology, enabling the cells to continue to migrate together. This smoothing process arises from spatial variations in the ability of cells to sense and respond to the local nutrient gradient-revealing a population-scale consequence of the manner in which individual cells transduce external signals. Altogether, our work provides insights to predict, and potentially control, the collective migration and morphology of cellular populations and diverse other forms of active matter.
Collapse
Affiliation(s)
- Tapomoy Bhattacharjee
- The Andlinger Center for Energy and the Environment, Princeton UniversityPrincetonUnited States
| | - Daniel B Amchin
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| | - Ricard Alert
- Lewis-Sigler Institute for Integrative Genomics, Princeton UniversityPrincetonUnited States
- Princeton Center for Theoretical Science, Princeton UniversityPrincetonUnited States
| | - Jenna Anne Ott
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| | - Sujit Sankar Datta
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| |
Collapse
|
14
|
Ventejou B, Chaté H, Montagne R, Shi XQ. Susceptibility of Orientationally Ordered Active Matter to Chirality Disorder. PHYSICAL REVIEW LETTERS 2021; 127:238001. [PMID: 34936788 DOI: 10.1103/physrevlett.127.238001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
We investigate the susceptibility of long-range ordered phases of two-dimensional dry aligning active matter to population disorder, taken in the form of a distribution of intrinsic individual chiralities. Using a combination of particle-level models and hydrodynamic theories derived from them, we show that while in finite systems all ordered phases resist a finite amount of such chirality disorder, the homogeneous ones (polar flocks and active nematics) are unstable to any amount of disorder in the infinite-size limit. On the other hand, we find that the inhomogeneous solutions of the coexistence phase (bands) may resist a finite amount of chirality disorder even asymptotically.
Collapse
Affiliation(s)
- Bruno Ventejou
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - Hugues Chaté
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
- Computational Science Research Center, Beijing 100193, China
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, 75005 Paris, France
| | - Raul Montagne
- Departamento de Fisica, Universidade Federal Rural de Pernambuco (UFRPE), 52171-900 Recife, Pernambuco, Brazil
| | - Xia-Qing Shi
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| |
Collapse
|
15
|
Duan Y, Mahault B, Ma YQ, Shi XQ, Chaté H. Breakdown of Ergodicity and Self-Averaging in Polar Flocks with Quenched Disorder. PHYSICAL REVIEW LETTERS 2021; 126:178001. [PMID: 33988412 DOI: 10.1103/physrevlett.126.178001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/10/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
We show that spatial quenched disorder affects polar active matter in ways more complex and far reaching than heretofore believed. Using simulations of the 2D Vicsek model subjected to random couplings or a disordered scattering field, we find in particular that ergodicity is lost in the ordered phase, the nature of which we show to depend qualitatively on the type of quenched disorder: for random couplings, it remains long-range ordered, but qualitatively different from the pure (disorderless) case. For random scatterers, polar order varies with system size but we find strong non-self-averaging, with sample-to-sample fluctuations dominating asymptotically, which prevents us from elucidating the asymptotic status of order.
Collapse
Affiliation(s)
- Yu Duan
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Benoît Mahault
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
| | - Yu-Qiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xia-Qing Shi
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| | - Hugues Chaté
- Service de Physique de l'Etat Condensé, CEA, CNRS, Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
- Computational Science Research Center, Beijing 100193, China
| |
Collapse
|
16
|
Chardac A, Shankar S, Marchetti MC, Bartolo D. Emergence of dynamic vortex glasses in disordered polar active fluids. Proc Natl Acad Sci U S A 2021; 118:e2018218118. [PMID: 33658364 PMCID: PMC7958234 DOI: 10.1073/pnas.2018218118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In equilibrium, disorder conspires with topological defects to redefine the ordered states of matter in systems as diverse as crystals, superconductors, and liquid crystals. Far from equilibrium, however, the consequences of quenched disorder on active condensed matter remain virtually uncharted. Here, we reveal a state of strongly disordered active matter with no counterparts in equilibrium: a dynamical vortex glass. Combining microfluidic experiments and theory, we show how colloidal flocks collectively cruise through disordered environments without relaxing the topological singularities of their flows. The resulting state is highly dynamical but the flow patterns, shaped by a finite density of frozen vortices, are stationary and exponentially degenerated. Quenched isotropic disorder acts as a random gauge field turning active liquids into dynamical vortex glasses. We argue that this robust mechanism should shape the collective dynamics of a broad class of disordered active matter, from synthetic active nematics to collections of living cells exploring heterogeneous media.
Collapse
Affiliation(s)
- Amélie Chardac
- Université de Lyon, École Normale Supérieure de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Suraj Shankar
- Department of Physics, Harvard University, Cambridge, MA 02138
| | | | - Denis Bartolo
- Université de Lyon, École Normale Supérieure de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France;
| |
Collapse
|
17
|
Ro S, Kafri Y, Kardar M, Tailleur J. Disorder-Induced Long-Ranged Correlations in Scalar Active Matter. PHYSICAL REVIEW LETTERS 2021; 126:048003. [PMID: 33576681 DOI: 10.1103/physrevlett.126.048003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
We study the impact of quenched random potentials and torques on scalar active matter. Microscopic simulations reveal that motility-induced phase separation is replaced in two dimensions by an asymptotically homogeneous phase with anomalous long-ranged correlations and nonvanishing steady-state currents. Using a combination of phenomenological models and a field-theoretical treatment, we show the existence of a lower-critical dimension d_{c}=4, below which phase separation is only observed for systems smaller than an Imry-Ma length scale. We identify a weak-disorder regime in which the structure factor scales as S(q)∼1/q^{2}, which accounts for our numerics. In d=2, we predict that, at larger scales, the behavior should cross over to a strong-disorder regime. In d>2, these two regimes exist separately, depending on the strength of the potential.
Collapse
Affiliation(s)
- Sunghan Ro
- Department of Physics, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yariv Kafri
- Department of Physics, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Mehran Kardar
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Julien Tailleur
- Université de Paris, laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, 75205 Paris, France
| |
Collapse
|
18
|
Kumar S, Mishra S. Active nematics with quenched disorder. Phys Rev E 2020; 102:052609. [PMID: 33327090 DOI: 10.1103/physreve.102.052609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 11/02/2020] [Indexed: 11/07/2022]
Abstract
We introduce a two-dimensional active nematic with quenched disorder. We write the coarse-grained hydrodynamic equations of motion for slow variables, viz. density and orientation. Disorder strength is tuned from zero to large values. Results from the numerical solution of equations of motion as well as the calculation of two-point orientation correlation function using linear approximation shows that the ordered steady state follows a disorder dependent crossover from quasi-long-range order to short-range order. Such crossover is due to the pinning of ±1/2 topological defects in the presence of finite disorder, which breaks the system in uncorrelated domains. Finite disorder slows the dynamics of +1/2 defect, and it leads to slower growth dynamics. The two-point correlation functions for the density and orientation fields show good dynamic scaling but no static scaling for the different disorder strengths. Our findings can motivate experimentalists to verify the results and find applications in living and artificial apolar systems in the presence of a quenched disorder.
Collapse
Affiliation(s)
- Sameer Kumar
- Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Shradha Mishra
- Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
19
|
McLennan-Smith TA, Roberts DO, Sidhu HS. Emergent behavior in an adversarial synchronization and swarming model. Phys Rev E 2020; 102:032607. [PMID: 33076023 DOI: 10.1103/physreve.102.032607] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022]
Abstract
We consider a red-versus-blue coupled synchronization and spatial swarming (i.e., swarmalator) model that incorporates attraction and repulsion terms and an adversarial game of phases. The model exhibits behaviors such as spontaneous emergence of tactical manoeuvres of envelopment (e.g., flanking, pincer, and envelopment) that are often proposed in military theory or observed in nature. We classify these states based on a large set of features such as spatial densities, synchronization between clusters, and measures of cluster distances. These features are used to study the influence of coupling parameters on the expected presence of these states and the-sometimes sharp-transitions between them.
Collapse
Affiliation(s)
| | - Dale O Roberts
- College of Business and Economics, Australian National University, Canberra, ACT 2601, Australia
| | - Harvinder S Sidhu
- School of Science, University of New South Wales, Canberra, ACT 2600, Australia
| |
Collapse
|
20
|
Pattanayak S, Singh JP, Kumar M, Mishra S. Speed inhomogeneity accelerates information transfer in polar flock. Phys Rev E 2020; 101:052602. [PMID: 32575321 DOI: 10.1103/physreve.101.052602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/10/2020] [Indexed: 11/07/2022]
Abstract
A collection of self-propelled particles (SPPs) shows coherent motion and exhibits a true long-range-ordered state in two dimensions. Various studies show that the presence of spatial inhomogeneities can destroy the usual long-range ordering in the system. However, the effects of inhomogeneity due to the intrinsic properties of the particles are barely addressed. In this paper we consider a collection of polar SPPs moving at inhomogeneous speed (IS) on a two-dimensional substrate, which can arise due to varying physical strengths of the individual particles. To our surprise, the IS not only preserves the usual long-range ordering present in homogeneous speed models but also induces faster ordering in the system. Furthermore, the response of the flock to an external perturbation is also faster, compared to the Vicsek-like model systems, due to the frequent update of neighbors of each SPP in the presence of the IS. Therefore, our study shows that an IS can promote information transfer in a moving flock.
Collapse
Affiliation(s)
- Sudipta Pattanayak
- S. N. Bose National Centre for Basic Sciences, J D Block, Sector III, Salt Lake City, Kolkata 700106, India
| | - Jay Prakash Singh
- Department of Physics, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Manoranjan Kumar
- S. N. Bose National Centre for Basic Sciences, J D Block, Sector III, Salt Lake City, Kolkata 700106, India
| | - Shradha Mishra
- Department of Physics, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
21
|
Maitra A. Active uniaxially ordered suspensions on disordered substrates. Phys Rev E 2020; 101:012605. [PMID: 32069541 DOI: 10.1103/physreve.101.012605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Indexed: 11/07/2022]
Abstract
Multiple experiments on active systems consider oriented active suspensions on substrates or in chambers tightly confined along one direction. The theories of polar and apolar phases in such geometries were considered in A. Maitra et al. [Phys. Rev. Lett. 124, 028002 (2020)10.1103/PhysRevLett.124.028002] and A. Maitra et al. [Proc. Natl. Acad. Sci. USA 115, 6934 (2018)10.1073/pnas.1720607115], respectively. However, the presence of quenched random disorder due to the substrate cannot be completely eliminated in many experimental contexts possibly masking the predictions from those theories. In this paper, I consider the effect of quenched orientational disorder on the phase behavior of both polar and apolar suspensions on substrates. I show that polar suspensions have long-range order in two dimensions with anomalous number fluctuations, while their apolar counterparts have only short-range order, albeit with a correlation length that can increase with activity, and even more violent number fluctuations than active nematics without quenched disorder. These results should be of value in interpreting experiments on active suspensions on substrates with random disorder.
Collapse
Affiliation(s)
- Ananyo Maitra
- Sorbonne Université and CNRS, Laboratoire Jean Perrin, F-75005 Paris, France
| |
Collapse
|
22
|
Das R, Kumar M, Mishra S. Nonquenched rotators ease flocking and memorize it. Phys Rev E 2020; 101:012607. [PMID: 32069681 DOI: 10.1103/physreve.101.012607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Indexed: 02/03/2023]
Abstract
We introduce a minimal model for a two-dimensional polar flock with nonquenched rotators and show that the rotators make the usual macroscopic long-range order of the flock more robust than the clean system. The rotators memorize the flock-information which helps in establishing the robustness. Moreover, the memory of the rotators assists in probing the moving flock. We also formulate a hydrodynamic framework for the microscopic model that makes our study comprehensive. Using linearized hydrodynamics, it is shown that the presence of such nonquenched heterogeneities increases the sound speeds of the flock. The enhanced sound speeds lead to faster convection of information and consequently the robust ordering in the system. We argue that similar nonquenched heterogeneities may be useful in monitoring and controlling large crowds.
Collapse
Affiliation(s)
- Rakesh Das
- S N Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| | - Manoranjan Kumar
- S N Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| | - Shradha Mishra
- Department of Physics, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
23
|
Ben Dor Y, Woillez E, Kafri Y, Kardar M, Solon AP. Ramifications of disorder on active particles in one dimension. Phys Rev E 2019; 100:052610. [PMID: 31869918 DOI: 10.1103/physreve.100.052610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Indexed: 06/10/2023]
Abstract
The effects of quenched disorder on a single and many active run-and-tumble particles are studied in one dimension. For a single particle, we consider both the steady-state distribution and the particle's dynamics subject to disorder in three parameters: a bounded external potential, the particle's speed, and its tumbling rate. We show that in the case of a disordered potential, the behavior is like an equilibrium particle diffusing on a random force landscape, implying a dynamics that is logarithmically slow in time. In the situations of disorder in the speed or tumbling rate, we find that the particle generically exhibits diffusive motion, although particular choices of the disorder may lead to anomalous diffusion. Based on the single-particle results, we find that in a system with many interacting particles, disorder in the potential leads to strong clustering. We characterize the clustering in two different regimes depending on the system size and show that the mean cluster size scales with the system size, in contrast to nondisordered systems.
Collapse
Affiliation(s)
- Ydan Ben Dor
- Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel
- The Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Eric Woillez
- Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Yariv Kafri
- Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Mehran Kardar
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Alexandre P Solon
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matiére Condensée, LPTMC, F-75005 Paris, France
| |
Collapse
|
24
|
Pattanayak S, Das R, Kumar M, Mishra S. Enhanced dynamics of active Brownian particles in periodic obstacle arrays and corrugated channels. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:62. [PMID: 31115728 DOI: 10.1140/epje/i2019-11826-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
We study the motion of an active Brownian particle (ABP) using the overdamped Langevin dynamics on a two-dimensional substrate with periodic array of obstacles and in a quasi-one-dimensional corrugated channel comprised of periodically arrayed obstacles. The periodic arrangement of the obstacles enhances the persistent motion of the ABP in comparison to its motion in the free space. Persistent motion increases with the activity of the ABP. We note that the periodic arrangement induces directionality in ABP motion at late time, and it increases with the size of the obstacles. We also note that the ABP exhibits a super-diffusive dynamics in the corrugated channel. The transport property is independent of the shape of the channel; rather it depends on the packing fraction of the obstacles in the system. However, the ABP shows the usual diffusive dynamics in the quasi-one-dimensional channel with flat boundary.
Collapse
Affiliation(s)
- Sudipta Pattanayak
- S.N. Bose National Centre for Basic Sciences, J D Block, Sector III, 700106, Salt Lake City, Kolkata, India.
| | - Rakesh Das
- S.N. Bose National Centre for Basic Sciences, J D Block, Sector III, 700106, Salt Lake City, Kolkata, India
| | - Manoranjan Kumar
- S.N. Bose National Centre for Basic Sciences, J D Block, Sector III, 700106, Salt Lake City, Kolkata, India
| | - Shradha Mishra
- Department of Physics, Indian Institute of Technology (BHU), 221005, Varanasi, India
| |
Collapse
|