1
|
Heindel JP, Kim L, Head-Gordon M, Head-Gordon T. Completely Multipolar Model for Many-Body Water-Ion and Ion-Ion Interactions. J Phys Chem Lett 2025; 16:975-984. [PMID: 39838271 DOI: 10.1021/acs.jpclett.4c02940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
This work constructs an advanced force field, the Completely Multipolar Model (CMM), to quantitatively reproduce each term of an energy decomposition analysis (EDA) for aqueous solvated alkali metal cations and halide anions and their ion pairings. We find that all individual EDA terms remain well-approximated in the CMM for ion-water and ion-ion interactions, except for polarization, which shows errors due to the partial covalency of ion interactions near their equilibrium. We quantify the onset of the dative bonding regime by examining the change in molecular polarizability and Mayer bond indices as a function of distance, showing that partial covalency manifests by breaking the symmetry of atomic polarizabilities while strongly damping them at short-range. This motivates an environment-dependent atomic polarizability parameter that depends on the strength of the local electric field experienced by the ions to account for strong damping, with anisotropy introduced by atomic multipoles. The resulting CMM model for ions provides accurate dimer surfaces and three-body polarization and charge transfer compared to EDA, and shows excellent performance on various ion benchmarks including vibrational frequencies and cluster geometries.
Collapse
Affiliation(s)
- Joseph P Heindel
- Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Lukas Kim
- Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Departments of Bioengineering and Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Rana A, Peredkov S, Behrens M, DeBeer S. Probing the Local Environment in Potassium Salts and Potassium-Promoted Catalysts by Potassium Valence-to-Core X-ray Emission Spectroscopy. Inorg Chem 2024; 63:16217-16223. [PMID: 39162299 PMCID: PMC11372750 DOI: 10.1021/acs.inorgchem.4c02069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Potassium plays an important role in biology as well as a promoter in heterogeneous catalysis. There are, however, limited characterization techniques for potassium available in the literature. This study elucidates the potential of element-selective X-ray emission spectroscopy (XES) for characterizing the coordination environment and the electronic properties of potassium. A series of XES measurements were conducted, primarily focusing on the VtC transition (Kβ2,5) of potassium halides (KCl, KBr, and KI) and oxide-bound potassium salts, including potassium nitrate (KNO3) and potassium carbonate (K2CO3). Across the series of potassium halides, the VtC transition energy is observed to increase, as accurately reproduced by TDDFT calculations. Molecular orbital analysis suggests that the Kβ2,5 transition is primarily derived from halide np contributions, with the primary factor influencing the energy shift being the metal-ligand distances. For oxide ligands, an additional Kβ″ transition appears alongside the Kβ2,5, which is attributed to a low-energy ligand ns, as elucidated by theoretical calculations. Finally, the XES spectra of two potassium-promoted catalysts for ammonia decomposition/synthesis were measured. These spectra show that potassium within the catalyst is distinct from other K salts in the VtC region, which could be promising for understanding the role of potassium as an electronic promoter.
Collapse
Affiliation(s)
- Atanu Rana
- Max Planck Institute for Chemical Energy Conversion, Stiftstraβe 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Sergey Peredkov
- Max Planck Institute for Chemical Energy Conversion, Stiftstraβe 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Malte Behrens
- Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Str. 2, 24118 Kiel, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstraβe 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
3
|
Alessio M, Paran GP, Utku C, Grüneis A, Jagau TC. Coupled-cluster treatment of complex open-shell systems: the case of single-molecule magnets. Phys Chem Chem Phys 2024; 26:17028-17041. [PMID: 38836327 PMCID: PMC11186456 DOI: 10.1039/d4cp01129e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
We investigate the reliability of two cost-effective coupled-cluster methods for computing spin-state energetics and spin-related properties of a set of open-shell transition-metal complexes. Specifically, we employ the second-order approximate coupled-cluster singles and doubles (CC2) method and projection-based embedding that combines equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) with density functional theory (DFT). The performance of CC2 and EOM-CCSD-in-DFT is assessed against EOM-CCSD. The chosen test set includes two hexaaqua transition-metal complexes containing Fe(II) and Fe(III), and a large Co(II)-based single-molecule magnet with a non-aufbau ground state. We find that CC2 describes the excited states more accurately, reproducing EOM-CCSD excitation energies within 0.05 eV. However, EOM-CCSD-in-DFT excels in describing transition orbital angular momenta and spin-orbit couplings. Moreover, for the Co(II) molecular magnet, using EOM-CCSD-in-DFT eigenstates and spin-orbit couplings, we compute spin-reversal energy barriers, as well as temperature-dependent and field-dependent magnetizations and magnetic susceptibilities that closely match experimental values within spectroscopic accuracy. These results underscore the efficiency of CC2 in computing state energies of multi-configurational, open-shell systems and highlight the utility of the more cost-efficient EOM-CCSD-in-DFT for computing spin-orbit couplings and magnetic properties of complex and large molecular magnets.
Collapse
Affiliation(s)
- Maristella Alessio
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, 1040 Vienna, Austria
| | | | - Cansu Utku
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| | - Andreas Grüneis
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, 1040 Vienna, Austria
| | - Thomas-C Jagau
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| |
Collapse
|
4
|
Focke K, De Santis M, Wolter M, Martinez B JA, Vallet V, Pereira Gomes AS, Olejniczak M, Jacob CR. Interoperable workflows by exchanging grid-based data between quantum-chemical program packages. J Chem Phys 2024; 160:162503. [PMID: 38686818 DOI: 10.1063/5.0201701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Quantum-chemical subsystem and embedding methods require complex workflows that may involve multiple quantum-chemical program packages. Moreover, such workflows require the exchange of voluminous data that go beyond simple quantities, such as molecular structures and energies. Here, we describe our approach for addressing this interoperability challenge by exchanging electron densities and embedding potentials as grid-based data. We describe the approach that we have implemented to this end in a dedicated code, PyEmbed, currently part of a Python scripting framework. We discuss how it has facilitated the development of quantum-chemical subsystem and embedding methods and highlight several applications that have been enabled by PyEmbed, including wave-function theory (WFT) in density-functional theory (DFT) embedding schemes mixing non-relativistic and relativistic electronic structure methods, real-time time-dependent DFT-in-DFT approaches, the density-based many-body expansion, and workflows including real-space data analysis and visualization. Our approach demonstrates, in particular, the merits of exchanging (complex) grid-based data and, in general, the potential of modular software development in quantum chemistry, which hinges upon libraries that facilitate interoperability.
Collapse
Affiliation(s)
- Kevin Focke
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Matteo De Santis
- CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, Univ. Lille, F-59000 Lille, France
| | - Mario Wolter
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Jessica A Martinez B
- CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, Univ. Lille, F-59000 Lille, France
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, USA
| | - Valérie Vallet
- CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, Univ. Lille, F-59000 Lille, France
| | | | - Małgorzata Olejniczak
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| | - Christoph R Jacob
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| |
Collapse
|
5
|
Chakraborty R, Boguslawski K, Tecmer P. Static embedding with pair coupled cluster doubles based methods. Phys Chem Chem Phys 2023; 25:25377-25388. [PMID: 37705409 DOI: 10.1039/d3cp02502k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Quantum embedding methods have recently been significantly developed to model large molecular structures. This work proposes a novel wave function theory in a density functional theory (WTF-in-DFT) embedding scheme based on pair-coupled cluster doubles (pCCD)-type methods. While pCCD can reliably describe strongly-correlated systems with mean-field-like computational cost, the large extent of the dynamic correlation can be accounted for by (linearized) coupled-cluster corrections on top of the pCCD wave function. Here we focus on the linearized coupled-cluster singles and doubles (LCCSD) ansatz for electronic ground states and its extension to excited states within the equation of motion (EOM) formalism. We test our EOM-pCCD-LCCSD-in-DFT approach for the vertical excitation energies of the hydrogen-bonded water-ammonia complex, micro-solvated thymine, and uranyl tetrahalides (UO2X42-, X = F, Cl, Br). Furthermore, we assess the quality of the embedding potential using an orbital entanglement and correlation analysis. The approximate embedding models successfully capture changes in the excitation energies going from bare fragments to supramolecular structures and represent a promising computational method for excited states in large molecular systems.
Collapse
Affiliation(s)
- Rahul Chakraborty
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland.
| | - Katharina Boguslawski
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland.
| | - Paweł Tecmer
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland.
| |
Collapse
|
6
|
Misael WA, Severo Pereira Gomes A. Core Excitations of Uranyl in Cs 2UO 2Cl 4 from Relativistic Embedded Damped Response Time-Dependent Density Functional Theory Calculations. Inorg Chem 2023; 62:11589-11601. [PMID: 37432868 DOI: 10.1021/acs.inorgchem.3c01302] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
X-ray spectroscopies, by their high selectivity and sensitivity to the chemical environment around the atoms probed, provide significant insights into the electronic structures of molecules and materials. Interpreting experimental results requires reliable theoretical models, accounting for environmental, relativistic, electron correlation, and orbital relaxation effects in a balanced manner. In this work, we present a protocol for the simulation of core excited spectra with damped response time-dependent density functional theory based on the Dirac-Coulomb Hamiltonian (4c-DR-TD-DFT), in which environmental effects are accounted for through the frozen density embedding (FDE) method. We showcase this approach for the uranium M4- and L3-edges and oxygen K-edge of the uranyl tetrachloride (UO2Cl42-) unit as found in a host Cs2UO2Cl4 crystal. We have found that the 4c-DR-TD-DFT simulations yield excitation spectra that very closely match the experiment for the uranium M4-edge and the oxygen K-edge, with good agreement for the broad experimental spectra for the L3-edge. By decomposing the complex polarizability in terms of its components, we have been able to correlate our results with angle-resolved spectra. We have observed that for all edges, but in particular the uranium M4-edge, an embedded model in which the chloride ligands are replaced by an embedding potential reproduces rather well the spectral profile obtained for UO2Cl42-. Our results underscore the importance of the equatorial ligands to simulating core spectra at both uranium and oxygen edges.
Collapse
Affiliation(s)
- Wilken Aldair Misael
- Univ. Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | | |
Collapse
|
7
|
Ammann M, Artiglia L. Solvation, Surface Propensity, and Chemical Reactions of Solutes at Atmospheric Liquid-Vapor Interfaces. Acc Chem Res 2022; 55:3641-3651. [PMID: 36472357 PMCID: PMC9774673 DOI: 10.1021/acs.accounts.2c00604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Indexed: 12/12/2022]
Abstract
surface is covered by oceans, a large number of liquid aerosol particles fill the air, and clouds hold a tiny but critical fraction of Earth's water in the air to influence our climate and hydrology, enabling the lives of humans and ecosystems. The surfaces of these liquids provide the interface for the transfer of gases, for nucleation processes, and for catalyzing important chemical reactions. Coupling a range of spectroscopic tools to liquid microjets has become an important approach to better understanding dynamics, structure, and chemistry at liquid interfaces. Liquid microjets offer stability in vacuum and ambient pressure environments, thus also allowing X-ray photoelectron spectroscopy (XPS) with manageable efforts in terms of differential pumping. Liquid microjets are operated at speeds sufficient to allow for a locally equilibrated surface in terms of water dynamics and solute surface partitioning. XPS is based on the emission of core-level electrons, the binding energy of which is selective for the element and its chemical environment. Inelastic scattering of electrons establishes the probing depth of XPS in the nanometer range and thus its surface sensitivity.In this Account, we focus on aqueous solutions relevant to the surface of oceans, aqueous aerosols, or cloudwater. We are interested in understanding solvation and acid dissociation at the interface, interfacial aspects of reactions with gas-phase reactants, and the interplay of ions with organic molecules at the interface. The strategy is to obtain a link between the molecular-level picture and macroscopic properties and reactivity in the atmospheric context.We show consistency between surface tension and XPS for a range of surface-active organic species as an important proof for interrogating an equilibrated liquid surface. Measurements with organic acids and amines offer important insight into the question of apparent acidity or basicity at the interface. Liquid microjet XPS has settled the debate of the surface enhancement of halide ions, shown using the example of bromide and its oxidation products. Despite the absence of a strong enhancement for the bromide ion, its rate of oxidation by ozone is surface catalyzed through the stabilization of the bromide ozonide intermediate at the interface. In another reaction system, the one between Fe2+ and H2O2, a similar intermediate in the form of highly valent iron species could not be detected by XPS under the experimental conditions employed, shedding light on the abundance of this intermediate in the environment but also on the constraints within which surface species can be detected. Emphasizing the importance of electrostatic effects, we show how a cationic surfactant attracts charged bromide anions to the interface, accompanied by enhanced oxidation rates by ozone, overriding the role of surfactants as a barrier for the access of gas-phase reactants. The reactivity and structure at interfaces thus result from a subtle balance between hygroscopic and hydrophobic interactions, electrostatic effects, and the structural properties of both liquids and solutes.
Collapse
Affiliation(s)
- Markus Ammann
- Laboratory of Environmental
Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Luca Artiglia
- Laboratory of Environmental
Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
8
|
De Santis M, Sorbelli D, Vallet V, Gomes AS, Storchi L, Belpassi L. Frozen-Density Embedding for Including Environmental Effects in the Dirac-Kohn-Sham Theory: An Implementation Based on Density Fitting and Prototyping Techniques. J Chem Theory Comput 2022; 18:5992-6009. [PMID: 36172757 PMCID: PMC9558305 DOI: 10.1021/acs.jctc.2c00499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 11/28/2022]
Abstract
Frozen density embedding (FDE) represents an embedding scheme in which environmental effects are included from first-principles calculations by considering the surrounding system explicitly by means of its electron density. In the present paper, we extend the full four-component relativistic Dirac-Kohn-Sham (DKS) method, as implemented in the BERTHA code, to include environmental and confinement effects with the FDE scheme (DKS-in-DFT FDE). The implementation, based on the auxiliary density fitting techniques, has been enormously facilitated by BERTHA's python API (PyBERTHA), which facilitates the interoperability with other FDE implementations available through the PyADF framework. The accuracy and numerical stability of this new implementation, also using different auxiliary fitting basis sets, has been demonstrated on the simple NH3-H2O system, in comparison with a reference nonrelativistic implementation. The computational performance has been evaluated on a series of gold clusters (Aun, with n = 2, 4, 8) embedded into an increasing number of water molecules (5, 10, 20, 40, and 80 water molecules). We found that the procedure scales approximately linearly both with the size of the frozen surrounding environment (consistent with the underpinnings of the FDE approach) and with the size of the active system (in line with the use of density fitting). Finally, we applied the code to a series of heavy (Rn) and super-heavy elements (Cn, Fl, Og) embedded in a C60 cage to explore the confinement effect induced by C60 on their electronic structure. We compare the results from our simulations, with respect to more-approximate models employed in the atomic physics literature. Our results indicate that the specific interactions described by FDE are able to improve upon the cruder approximations currently employed, and, thus, they provide a basis from which to generate more-realistic radial potentials for confined atoms.
Collapse
Affiliation(s)
- Matteo De Santis
- Univ.
Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - Diego Sorbelli
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
- Istituto
di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle
Ricerche c/o Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Valérie Vallet
- Univ.
Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | | | - Loriano Storchi
- Istituto
di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle
Ricerche c/o Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
- Dipartimento
di Farmacia, Università degli Studi
‘G. D’Annunzio’, Via dei Vestini 31, 66100 Chieti, Italy
| | - Leonardo Belpassi
- Istituto
di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle
Ricerche c/o Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
9
|
Opoku RA, Toubin C, Gomes ASP. Simulating core electron binding energies of halogenated species adsorbed on ice surfaces and in solution via relativistic quantum embedding calculations. Phys Chem Chem Phys 2022; 24:14390-14407. [PMID: 35647703 DOI: 10.1039/d1cp05836c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we investigate the effects of the environment on the X-ray photoelectron spectra of hydrogen chloride and chloride ions adsorbed on ice surfaces, as well as of chloride ions in water droplets. In our approach, we combine a density functional theory (DFT) description of the ice surface with that of halogen species using the recently developed relativistic core-valence separation equation of motion coupled cluster (CVS-EOM-IP-CCSD) via the frozen density embedding formalism (FDE), to determine the K and L1,2,3 edges of chlorine. Our calculations, which incorporate temperature effects through snapshots from classical molecular dynamics simulations, are shown to reproduce experimental trends in the change of the core binding energies of Cl- upon moving from a liquid (water droplets) to an interfacial (ice quasi-liquid layer) environment. Our simulations yield water valence band binding energies in good agreement with experiment, which vary little between the droplets and the ice surface. For halide core binding energies there is an overall trend for overestimating experimental values, though good agreement between theory and experiment is found for Cl- in water droplets and on ice. For HCl on the other hand there are significant discrepancies between experimental and calculated core binding energies when we consider structural models that maintain the H-Cl bond more or less intact. An analysis of models that allow for pre-dissociated and dissociated structures suggests that experimentally observed chemical shifts in binding energies between Cl- and HCl would require that H+ (in the form of H3O+) and Cl- are separated by roughly 4-6 Å.
Collapse
Affiliation(s)
- Richard A Opoku
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France.
| | - Céline Toubin
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France.
| | | |
Collapse
|
10
|
De Santis M, Vallet V, Gomes ASP. Environment Effects on X-Ray Absorption Spectra With Quantum Embedded Real-Time Time-Dependent Density Functional Theory Approaches. Front Chem 2022; 10:823246. [PMID: 35295974 PMCID: PMC8919347 DOI: 10.3389/fchem.2022.823246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
In this work we implement the real-time time-dependent block-orthogonalized Manby-Miller embedding (rt-BOMME) approach alongside our previously developed real-time frozen density embedding time-dependent density functional theory (rt-TDDFT-in-DFT FDE) code, and investigate these methods' performance in reproducing X-ray absorption spectra (XAS) obtained with standard rt-TDDFT simulations, for model systems comprised of solvated fluoride and chloride ions ([X@( H 2 O ) 8 - , X = F, Cl). We observe that for ground-state quantities such as core orbital energies, the BOMME approach shows significantly better agreement with supermolecular results than FDE for the strongly interacting fluoride system, while for chloride the two embedding approaches show more similar results. For the excited states, we see that while FDE (constrained not to have the environment densities relaxed in the ground state) is in good agreement with the reference calculations for the region around the K and L1 edges, and is capable of reproducing the splitting of the 1s1 (n + 1)p1 final states (n + 1 being the lowest virtual p orbital of the halides), it by and large fails to properly reproduce the 1s1 (n + 2)p1 states and misses the electronic states arising from excitation to orbitals with important contributions from the solvent. The BOMME results, on the other hand, provide a faithful qualitative representation of the spectra in all energy regions considered, though its intrinsic approximation of employing a lower-accuracy exchange-correlation functional for the environment induces non-negligible shifts in peak positions for the excitations from the halide to the environment. Our results thus confirm that QM/QM embedding approaches are viable alternatives to standard real-time simulations of X-ray absorption spectra of species in complex or confined environments.
Collapse
|
11
|
Parravicini V, Jagau TC. Embedded equation-of-motion coupled-cluster theory for electronic excitation, ionisation, electron attachment, and electronic resonances. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1943029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Valentina Parravicini
- Department of Chemistry, KU Leuven, Leuven, BelgiumThis article is dedicated to Professor John Stanton on the occasion of his 60th birthday
| | - Thomas-C. Jagau
- Department of Chemistry, KU Leuven, Leuven, BelgiumThis article is dedicated to Professor John Stanton on the occasion of his 60th birthday
| |
Collapse
|
12
|
Pelimanni E, Hautala L, Hans A, Kivimäki A, Kook M, Küstner-Wetekam C, Marder L, Patanen M, Huttula M. Core and Valence Level Photoelectron Spectroscopy of Nanosolvated KCl. J Phys Chem A 2021; 125:4750-4759. [PMID: 34034483 PMCID: PMC8279652 DOI: 10.1021/acs.jpca.1c01539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/22/2021] [Indexed: 01/04/2023]
Abstract
The solvation of alkali and halide ions in the aqueous environment has been a subject of intense experimental and theoretical research with multidisciplinary interests; yet, a comprehensive molecular-level understanding has still not been obtained. In recent years, electron spectroscopy has been increasingly applied to study the electronic and structural properties of aqueous ions with implications, especially in atmospheric chemistry. In this work, we report core and valence level (Cl 2p, Cl 3p, and K 3p) photoelectron spectra of the common alkali halide, KCl, doped in gas-phase water clusters in the size range of a few hundred water molecules. The results indicate that the electronic structure of these nanosolutions shows a distinct character from that observed at the liquid-vapor interface in liquid microjets and ambient pressure setups. Insights are provided into the unique solvation properties of ions in a nanoaqueous environment, emerging properties of bulk electrolyte solutions with growing cluster size, and sensitivity of the electronic structure to varying solvation configurations.
Collapse
Affiliation(s)
- Eetu Pelimanni
- Nano
and Molecular Systems Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland
| | - Lauri Hautala
- Nano
and Molecular Systems Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland
| | - Andreas Hans
- Nano
and Molecular Systems Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland
- Universität
Kassel, Institut für Physik und CINSaT, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Antti Kivimäki
- Nano
and Molecular Systems Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland
- MAX
IV Laboratory, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
| | - Mati Kook
- Institute
of Physics, University of Tartu, W. Ostwaldi 1, EE-50411 Tartu, Estonia
| | - Catmarna Küstner-Wetekam
- Universität
Kassel, Institut für Physik und CINSaT, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Lutz Marder
- Universität
Kassel, Institut für Physik und CINSaT, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Minna Patanen
- Nano
and Molecular Systems Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland
| | - Marko Huttula
- Nano
and Molecular Systems Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland
| |
Collapse
|
13
|
Liu J, Cheng L. Relativistic coupled‐cluster and equation‐of‐motion coupled‐cluster methods. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1536] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Junzi Liu
- Department of Chemistry The Johns Hopkins University Baltimore Maryland USA
| | - Lan Cheng
- Department of Chemistry The Johns Hopkins University Baltimore Maryland USA
| |
Collapse
|
14
|
Abstract
Magnetic anisotropy, in the absence of an external magnetic field, relates to the degeneracy lift of energy levels. In the standard case of transition metal complexes, this property is usually modeled by an anisotropic spin Hamiltonian and one speaks of "zero-field splitting" (ZFS) of spin states. While the case of mononuclear complexes has been extensively described by means of ab initio quantum mechanical calculations, the literature on polynuclear complexes studied with these methodologies is rather scarce. In this work, advanced multiconfigurational wave function theory methods are applied to compute the ZFS of the ground S = 4 state of an actual tetranickel(II) complex, displaying a magnet behavior below 0.5 K. First, the isotropic couplings are computed in the absence of the spin-orbit coupling operator, in the full complex and also in clusters with only two active nickel(II) centers, confirming the occurrence of weak ferromagnetic couplings in this system. Second, the single-site magnetic anisotropies are computed on a cluster bearing only one active nickel(II) site, showing that the single-site anisotropy axes are not oriented in an optimal fashion for generating a large uniaxial molecular anisotropy. Furthermore, the possibility for involving only a few local orbital excited states in the calculation is assessed, actually opening the way for a consistent and manageable treatment of the ZFS of the ground S = 4 state. Third, multiconfigurational calculations are performed on the full complex, confirming the weak uniaxial anisotropy occurring for this state and also, interestingly, revealing a significant contribution of the lowest-lying orbitally excited S = 3 states. Overall, by comparison with the experiment, the reported results question the common habit of using only one structure, in particular derived from a crystallography experiment, to compute magnetic anisotropy parameters.
Collapse
Affiliation(s)
- Rémi Maurice
- SUBATECH, UMR CNRS 6457, IN2P3/IMT Atlantique/Université de Nantes, 4 rue A. Kastler, 44307 Nantes Cedex 3, France
| |
Collapse
|
15
|
Senjean B, Sen S, Repisky M, Knizia G, Visscher L. Generalization of Intrinsic Orbitals to Kramers-Paired Quaternion Spinors, Molecular Fragments, and Valence Virtual Spinors. J Chem Theory Comput 2021; 17:1337-1354. [PMID: 33555866 DOI: 10.1021/acs.jctc.0c00964] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Localization of molecular orbitals finds its importance in the representation of chemical bonding (and antibonding) and in the local correlation treatments beyond mean-field approximation. In this paper, we generalize the intrinsic atomic and bonding orbitals [G. Knizia, J. Chem. Theory Comput. 2013, 9, 11, 4834-4843] to relativistic applications using complex and quaternion spinors, as well as to molecular fragments instead of atomic fragments only. By performing a singular value decomposition, we show how localized valence virtual orbitals can be expressed on this intrinsic minimal basis. We demonstrate our method on systems of increasing complexity, starting from simple cases such as benzene, acrylic acid, and ferrocene molecules, and then demonstrate the use of molecular fragments and inclusion of relativistic effects for complexes containing heavy elements such as tellurium, iridium, and astatine. The aforementioned scheme is implemented into a standalone program interfaced with several different quantum chemistry packages.
Collapse
Affiliation(s)
- Bruno Senjean
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands
| | - Souloke Sen
- Theoretical Chemistry, Vrije Universiteit, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands
| | - Michal Repisky
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Gerald Knizia
- Department of Chemistry, The Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
| | - Lucas Visscher
- Theoretical Chemistry, Vrije Universiteit, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands
| |
Collapse
|
16
|
De Santis M, Belpassi L, Jacob CR, Severo Pereira Gomes A, Tarantelli F, Visscher L, Storchi L. Environmental Effects with Frozen-Density Embedding in Real-Time Time-Dependent Density Functional Theory Using Localized Basis Functions. J Chem Theory Comput 2020; 16:5695-5711. [PMID: 32786918 PMCID: PMC8009524 DOI: 10.1021/acs.jctc.0c00603] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Indexed: 12/14/2022]
Abstract
Frozen-density embedding (FDE) represents a versatile embedding scheme to describe the environmental effect on electron dynamics in molecular systems. The extension of the general theory of FDE to the real-time time-dependent Kohn-Sham method has previously been presented and implemented in plane waves and periodic boundary conditions [Pavanello, M.; J. Chem. Phys. 2015, 142, 154116]. In the current paper, we extend our recent formulation of the real-time time-dependent Kohn-Sham method based on localized basis set functions and developed within the Psi4NumPy framework to the FDE scheme. The latter has been implemented in its "uncoupled" flavor (in which the time evolution is only carried out for the active subsystem, while the environment subsystems remain at their ground state), using and adapting the FDE implementation already available in the PyEmbed module of the scripting framework PyADF. The implementation was facilitated by the fact that both Psi4NumPy and PyADF, being native Python API, provided an ideal framework of development using the Python advantages in terms of code readability and reusability. We employed this new implementation to investigate the stability of the time-propagation procedure, which is based on an efficient predictor/corrector second-order midpoint Magnus propagator employing an exact diagonalization, in combination with the FDE scheme. We demonstrate that the inclusion of the FDE potential does not introduce any numerical instability in time propagation of the density matrix of the active subsystem, and in the limit of the weak external field, the numerical results for low-lying transition energies are consistent with those obtained using the reference FDE calculations based on the linear-response TDDFT. The method is found to give stable numerical results also in the presence of a strong external field inducing nonlinear effects. Preliminary results are reported for high harmonic generation (HHG) of a water molecule embedded in a small water cluster. The effect of the embedding potential is evident in the HHG spectrum reducing the number of the well-resolved high harmonics at high energy with respect to the free water. This is consistent with a shift toward lower ionization energy passing from an isolated water molecule to a small water cluster. The computational burden for the propagation step increases approximately linearly with the size of the surrounding frozen environment. Furthermore, we have also shown that the updating frequency of the embedding potential may be significantly reduced, much less than one per time step, without jeopardizing the accuracy of the transition energies.
Collapse
Affiliation(s)
- Matteo De Santis
- Dipartimento di
Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
- Istituto di Scienze
e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche
c/o Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Leonardo Belpassi
- Istituto di Scienze
e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche
c/o Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Christoph R. Jacob
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106 Braunschweig, Germany
| | | | - Francesco Tarantelli
- Dipartimento di
Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Lucas Visscher
- Theoretical Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Loriano Storchi
- Istituto di Scienze
e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche
c/o Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
- Dipartimento di Farmacia, Università
degli Studi ‘G. D’Annunzio’, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
17
|
Guo J, Zhou L, Zen A, Michaelides A, Wu X, Wang E, Xu L, Chen J. Hydration of NH_{4}^{+} in Water: Bifurcated Hydrogen Bonding Structures and Fast Rotational Dynamics. PHYSICAL REVIEW LETTERS 2020; 125:106001. [PMID: 32955332 DOI: 10.1103/physrevlett.125.106001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/04/2020] [Indexed: 05/08/2023]
Abstract
Understanding the hydration and diffusion of ions in water at the molecular level is a topic of widespread importance. The ammonium ion (NH_{4}^{+}) is an exemplar system that has received attention for decades because of its complex hydration structure and relevance in industry. Here we report a study of the hydration and the rotational diffusion of NH_{4}^{+} in water using ab initio molecular dynamics simulations and quantum Monte Carlo calculations. We find that the hydration structure of NH_{4}^{+} features bifurcated hydrogen bonds, which leads to a rotational mechanism involving the simultaneous switching of a pair of bifurcated hydrogen bonds. The proposed hydration structure and rotational mechanism are supported by existing experimental measurements, and they also help to rationalize the measured fast rotation of NH_{4}^{+} in water. This study highlights how subtle changes in the electronic structure of hydrogen bonds impacts the hydration structure, which consequently affects the dynamics of ions and molecules in hydrogen bonded systems.
Collapse
Affiliation(s)
- Jianqing Guo
- International Center for Quantum Materials, Peking University, Beijing 100871, People's Republic of China
- School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Liying Zhou
- International Center for Quantum Materials, Peking University, Beijing 100871, People's Republic of China
- School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Andrea Zen
- Department of Physics and Astronomy, Thomas Young Centre and London Centre for Nanotechnology University College London, Gower Street, London WC1E 6BT, United Kingdom
- Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Angelos Michaelides
- Department of Physics and Astronomy, Thomas Young Centre and London Centre for Nanotechnology University College London, Gower Street, London WC1E 6BT, United Kingdom
- Max Planck Institute for Solid State Research, Stuttgart 70569, Germany
| | - Xifan Wu
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Enge Wang
- International Center for Quantum Materials, Peking University, Beijing 100871, People's Republic of China
- School of Physics, Peking University, Beijing 100871, People's Republic of China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, People's Republic of China
- Songshan Lake Materials Lab, Institute of Physics, Chinese Academy of Sciences, Guangdong 523808, People's Republic of China
- School of Physics, Liaoning University, Shenyang 110136, People's Republic of China
| | - Limei Xu
- International Center for Quantum Materials, Peking University, Beijing 100871, People's Republic of China
- School of Physics, Peking University, Beijing 100871, People's Republic of China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, People's Republic of China
| | - Ji Chen
- School of Physics, Peking University, Beijing 100871, People's Republic of China
- Max Planck Institute for Solid State Research, Stuttgart 70569, Germany
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, People's Republic of China
| |
Collapse
|
18
|
Saue T, Bast R, Gomes ASP, Jensen HJA, Visscher L, Aucar IA, Di Remigio R, Dyall KG, Eliav E, Fasshauer E, Fleig T, Halbert L, Hedegård ED, Helmich-Paris B, Iliaš M, Jacob CR, Knecht S, Laerdahl JK, Vidal ML, Nayak MK, Olejniczak M, Olsen JMH, Pernpointner M, Senjean B, Shee A, Sunaga A, van Stralen JNP. The DIRAC code for relativistic molecular calculations. J Chem Phys 2020; 152:204104. [PMID: 32486677 DOI: 10.1063/5.0004844] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DIRAC is a freely distributed general-purpose program system for one-, two-, and four-component relativistic molecular calculations at the level of Hartree-Fock, Kohn-Sham (including range-separated theory), multiconfigurational self-consistent-field, multireference configuration interaction, electron propagator, and various flavors of coupled cluster theory. At the self-consistent-field level, a highly original scheme, based on quaternion algebra, is implemented for the treatment of both spatial and time reversal symmetry. DIRAC features a very general module for the calculation of molecular properties that to a large extent may be defined by the user and further analyzed through a powerful visualization module. It allows for the inclusion of environmental effects through three different classes of increasingly sophisticated embedding approaches: the implicit solvation polarizable continuum model, the explicit polarizable embedding model, and the frozen density embedding model.
Collapse
Affiliation(s)
- Trond Saue
- Laboratoire de Chimie et Physique Quantique, UMR 5626 CNRS-Université Toulouse III-Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Radovan Bast
- Department of Information Technology, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - André Severo Pereira Gomes
- Université de Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers, Atomes et Molécules, F-59000 Lille, France
| | - Hans Jørgen Aa Jensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Lucas Visscher
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, NL-1081HV Amsterdam, The Netherlands
| | - Ignacio Agustín Aucar
- Instituto de Modelado e Innovación Tecnológica, CONICET, and Departamento de Física-Facultad de Ciencias Exactas y Naturales, UNNE, Avda. Libertad 5460, W3404AAS Corrientes, Argentina
| | - Roberto Di Remigio
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Kenneth G Dyall
- Dirac Solutions, 10527 NW Lost Park Drive, Portland, Oregon 97229, USA
| | - Ephraim Eliav
- School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Elke Fasshauer
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus, Denmark
| | - Timo Fleig
- Laboratoire de Chimie et Physique Quantique, UMR 5626 CNRS-Université Toulouse III-Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Loïc Halbert
- Université de Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers, Atomes et Molécules, F-59000 Lille, France
| | - Erik Donovan Hedegård
- Division of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Benjamin Helmich-Paris
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Miroslav Iliaš
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovakia
| | - Christoph R Jacob
- Technische Universität Braunschweig, Institute of Physical and Theoretical Chemistry, Gaußstr. 17, 38106 Braunschweig, Germany
| | - Stefan Knecht
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Jon K Laerdahl
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Marta L Vidal
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Malaya K Nayak
- Theoretical Chemistry Section, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Małgorzata Olejniczak
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| | - Jógvan Magnus Haugaard Olsen
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | | | - Bruno Senjean
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, NL-1081HV Amsterdam, The Netherlands
| | - Avijit Shee
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ayaki Sunaga
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-city, Tokyo 192-0397, Japan
| | - Joost N P van Stralen
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, NL-1081HV Amsterdam, The Netherlands
| |
Collapse
|
19
|
Liu J, Hättig C, Höfener S. Analytical nuclear gradients for electron-attached and electron-detached states for the second-order algebraic diagrammatic construction scheme combined with frozen-density embedding. J Chem Phys 2020; 152:174109. [DOI: 10.1063/5.0002851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jing Liu
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), P.O. Box 6980, D-76049 Karlsruhe, Germany
| | - Christof Hättig
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Sebastian Höfener
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), P.O. Box 6980, D-76049 Karlsruhe, Germany
| |
Collapse
|