1
|
Du B, Suresh R, López S, Cadiente J, Ma R. Probing Site-Resolved Current in Strongly Interacting Superconducting Circuit Lattices. PHYSICAL REVIEW LETTERS 2024; 133:060601. [PMID: 39178460 DOI: 10.1103/physrevlett.133.060601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/08/2024] [Indexed: 08/25/2024]
Abstract
Transport measurements are fundamental for understanding condensed matter phenomena, from superconductivity to the fractional quantum Hall effect. Analogously, they can be powerful tools for probing synthetic quantum matter in quantum simulators. Here we demonstrate the measurement of in situ particle current in a superconducting circuit lattice and apply it to study transport in both coherent and bath-coupled lattices. Our method utilizes controlled tunneling in a double-well potential to map current to on-site density, revealing site-resolved current and current statistics. We prepare a strongly interacting Bose-Hubbard lattice at different lattice fillings, and observe the change in current statistics as the many-body states transition from superfluid to Mott insulator. Furthermore, we explore nonequilibrium current dynamics by coupling the lattice to engineered driven-dissipative baths that serve as tunable particle source and drain. We observe steady-state current in discrete conduction channels and interaction-assisted transport. These results establish a versatile platform to investigate microscopic quantum transport in superconducting circuits.
Collapse
|
2
|
Shen K, Sun K, Gelin MF, Zhao Y. Finite-Temperature Hole-Magnon Dynamics in an Antiferromagnet. J Phys Chem Lett 2024; 15:447-453. [PMID: 38189682 DOI: 10.1021/acs.jpclett.3c03298] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Employing the numerically accurate multiple Davydov Ansatz in combination with the thermo-field dynamics approach, we delve into the interplay of the finite-temperature dynamics of holes and magnons in an antiferromagnet, which allows for scrutinizing previous predictions from the self-consistent Born approximation while offering, for the first time, accurate finite-temperature computation of detailed magnon dynamics as a response and a facilitator to the hole motion. The study also uncovers a pronounced temperature dependence of the magnon and hole populations, pointing to the feasibility of potential thermal manipulation and control of hole dynamics. Our methodology can be applied not only to the calculation of steady-state angular-resolved photoemission spectra but also to the simulation of femtosecond terahertz pump-probe and other nonlinear signals for the characterization of antiferromagnetic materials.
Collapse
Affiliation(s)
- Kaijun Shen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kewei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Maxim F Gelin
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
3
|
Di Carli A, Parsonage C, La Rooij A, Koehn L, Ulm C, Duncan CW, Daley AJ, Haller E, Kuhr S. Commensurate and incommensurate 1D interacting quantum systems. Nat Commun 2024; 15:474. [PMID: 38212298 PMCID: PMC10784295 DOI: 10.1038/s41467-023-44610-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024] Open
Abstract
Single-atom imaging resolution of many-body quantum systems in optical lattices is routinely achieved with quantum-gas microscopes. Key to their great versatility as quantum simulators is the ability to use engineered light potentials at the microscopic level. Here, we employ dynamically varying microscopic light potentials in a quantum-gas microscope to study commensurate and incommensurate 1D systems of interacting bosonic Rb atoms. Such incommensurate systems are analogous to doped insulating states that exhibit atom transport and compressibility. Initially, a commensurate system with unit filling and fixed atom number is prepared between two potential barriers. We deterministically create an incommensurate system by dynamically changing the position of the barriers such that the number of available lattice sites is reduced while retaining the atom number. Our systems are characterised by measuring the distribution of particles and holes as a function of the lattice filling, and interaction strength, and we probe the particle mobility by applying a bias potential. Our work provides the foundation for preparation of low-entropy states with controlled filling in optical-lattice experiments.
Collapse
Affiliation(s)
- Andrea Di Carli
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, United Kingdom
| | - Christopher Parsonage
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, United Kingdom
| | - Arthur La Rooij
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, United Kingdom
| | - Lennart Koehn
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, United Kingdom
| | - Clemens Ulm
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, United Kingdom
| | - Callum W Duncan
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, United Kingdom
| | - Andrew J Daley
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, United Kingdom
| | - Elmar Haller
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, United Kingdom
| | - Stefan Kuhr
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, United Kingdom.
| |
Collapse
|
4
|
Morera I, Ołdziejewski R, Astrakharchik GE, Juliá-Díaz B. Superexchange Liquefaction of Strongly Correlated Lattice Dipolar Bosons. PHYSICAL REVIEW LETTERS 2023; 130:023602. [PMID: 36706388 DOI: 10.1103/physrevlett.130.023602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 11/03/2022] [Accepted: 12/07/2022] [Indexed: 06/18/2023]
Abstract
We propose a mechanism for liquid formation in strongly correlated lattice systems. The mechanism is based on an interplay between long-range attraction and superexchange processes. As an example, we study dipolar bosons in one-dimensional optical lattices. We present a perturbative theory and validate it in comparison with full density-matrix renormalization group simulations for the energetic and structural properties of different phases of the system, i.e., self-bound Mott insulator, liquid, and gas. We analyze the nonequilibrium properties and calculate the dynamic structure factor. Its structure differs in compressible and insulating phases. In particular, the low-energy excitations in compressible phases are linear phonons. We extract the speed of sound and analyze its dependence on dipolar interaction and density. We show that it exhibits a nontrivial behavior owing to the breaking of Galilean invariance. We argue that an experimental detection of this previously unknown quantum liquid could provide a fingerprint of the superexchange process and open intriguing possibilities for investigating non-Galilean invariant liquids.
Collapse
Affiliation(s)
- Ivan Morera
- Departament de Física Quàntica i Astrofísica, Facultat de Física, Universitat de Barcelona, E-08028 Barcelona, Spain
- Institut de Ciències del Cosmos, Universitat de Barcelona, ICCUB, Martí i Franquès 1, E-08028 Barcelona, Spain
| | - Rafał Ołdziejewski
- Max Planck Institute of Quantum Optics, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology, Schellingstrasse 4, 80799 Munich, Germany
| | - Grigori E Astrakharchik
- Departament de Física Quàntica i Astrofísica, Facultat de Física, Universitat de Barcelona, E-08028 Barcelona, Spain
- Institut de Ciències del Cosmos, Universitat de Barcelona, ICCUB, Martí i Franquès 1, E-08028 Barcelona, Spain
- Departament de Física, Universitat Politècnica de Catalunya, Campus Nord B4-B5, E-08034 Barcelona, Spain
| | - Bruno Juliá-Díaz
- Departament de Física Quàntica i Astrofísica, Facultat de Física, Universitat de Barcelona, E-08028 Barcelona, Spain
- Institut de Ciències del Cosmos, Universitat de Barcelona, ICCUB, Martí i Franquès 1, E-08028 Barcelona, Spain
| |
Collapse
|
5
|
Venu V, Xu P, Mamaev M, Corapi F, Bilitewski T, D'Incao JP, Fujiwara CJ, Rey AM, Thywissen JH. Unitary p-wave interactions between fermions in an optical lattice. Nature 2023; 613:262-267. [PMID: 36631646 DOI: 10.1038/s41586-022-05405-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 10/03/2022] [Indexed: 01/13/2023]
Abstract
Exchange-antisymmetric pair wavefunctions in fermionic systems can give rise to unconventional superconductors and superfluids1-3. The realization of these states in controllable quantum systems, such as ultracold gases, could enable new types of quantum simulations4-8, topological quantum gates9-11 and exotic few-body states12-15. However, p-wave and other antisymmetric interactions are weak in naturally occurring systems16,17, and their enhancement via Feshbach resonances in ultracold systems has been limited by three-body loss18-24. Here we create isolated pairs of spin-polarized fermionic atoms in a multiorbital three-dimensional optical lattice. We spectroscopically measure elastic p-wave interaction energies of strongly interacting pairs of atoms near a magnetic Feshbach resonance. The interaction strengths are widely tunable by the magnetic field and confinement strength, and yet collapse onto a universal curve when rescaled by the harmonic energy and length scales of a single lattice site. The absence of three-body processes enables the observation of elastic unitary p-wave interactions, as well as coherent oscillations between free-atom and interacting-pair states. All observations are compared both to an exact solution using a p-wave pseudopotential and to numerical solutions using an ab initio interaction potential. The understanding and control of on-site p-wave interactions provides a necessary component for the assembly of multiorbital lattice models25,26 and a starting point for investigations of how to protect such systems from three-body recombination in the presence of tunnelling, for instance using Pauli blocking and lattice engineering27,28.
Collapse
Affiliation(s)
- Vijin Venu
- Department of Physics and CQIQC, University of Toronto, Toronto, Ontario, Canada
| | - Peihang Xu
- Department of Physics and CQIQC, University of Toronto, Toronto, Ontario, Canada
| | - Mikhail Mamaev
- JILA, NIST and Department of Physics, University of Colorado, Boulder, CO, USA.,Center for Theory of Quantum Matter, University of Colorado, Boulder, CO, USA
| | - Frank Corapi
- Department of Physics and CQIQC, University of Toronto, Toronto, Ontario, Canada
| | - Thomas Bilitewski
- JILA, NIST and Department of Physics, University of Colorado, Boulder, CO, USA.,Center for Theory of Quantum Matter, University of Colorado, Boulder, CO, USA.,Department of Physics, Oklahoma State University, Stillwater, OK, USA
| | - Jose P D'Incao
- JILA, NIST and Department of Physics, University of Colorado, Boulder, CO, USA
| | - Cora J Fujiwara
- Department of Physics and CQIQC, University of Toronto, Toronto, Ontario, Canada.
| | - Ana Maria Rey
- JILA, NIST and Department of Physics, University of Colorado, Boulder, CO, USA. .,Center for Theory of Quantum Matter, University of Colorado, Boulder, CO, USA.
| | - Joseph H Thywissen
- Department of Physics and CQIQC, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Heyl M, Adachi K, Itahashi YM, Nakagawa Y, Kasahara Y, List-Kratochvil EJW, Kato Y, Iwasa Y. Vortex dynamics in the two-dimensional BCS-BEC crossover. Nat Commun 2022; 13:6986. [DOI: 10.1038/s41467-022-34756-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 11/03/2022] [Indexed: 11/17/2022] Open
Abstract
AbstractThe Bardeen–Cooper–Schrieffer (BCS) condensation and Bose–Einstein condensation (BEC) are the two limiting ground states of paired Fermion systems, and the crossover between these two limits has been a source of excitement for both fields of high temperature superconductivity and cold atom superfluidity. For superconductors, ultra-low doping systems like graphene and LixZrNCl successfully approached the crossover starting from the BCS-side. These superconductors offer new opportunities to clarify the nature of charged-particles transport towards the BEC regime. Here we report the study of vortex dynamics within the crossover using their Hall effect as a probe in LixZrNCl. We observed a systematic enhancement of the Hall angle towards the BCS-BEC crossover, which was qualitatively reproduced by the phenomenological time-dependent Ginzburg-Landau (TDGL) theory. LixZrNCl exhibits a band structure free from various electronic instabilities, allowing us to achieve a comprehensive understanding of the vortex Hall effect and thereby propose a global picture of vortex dynamics within the crossover. These results demonstrate that gate-controlled superconductors are ideal platforms towards investigations of unexplored properties in BEC superconductors.
Collapse
|
7
|
Takayoshi S, Giamarchi T. Dynamical conductivity of disordered quantum chains. THE EUROPEAN PHYSICAL JOURNAL. D, ATOMIC, MOLECULAR, AND OPTICAL PHYSICS 2022; 76:213. [PMID: 36397821 PMCID: PMC9640472 DOI: 10.1140/epjd/s10053-022-00524-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
ABSTRACT We study the transport properties of a one-dimensional quantum system with disorder. We numerically compute the frequency dependence of the conductivity of a fermionic chain with nearest-neighbor interaction and a random chemical potential by using the Chebyshev matrix product state (CheMPS) method. As a benchmark, we investigate the noninteracting case first. Comparison with exact diagonalization and analytical solutions demonstrates that the results of CheMPS are reliable over a wide range of frequencies. We then calculate the dynamical conductivity spectra of the interacting system for various values of the interaction and disorder strengths. In the high-frequency regime, the conductivity decays as a power law, with an interaction-dependent exponent. This behavior is qualitatively consistent with the bosonized field theory predictions, although the numerical evaluation of the exponent shows deviations from the analytically expected values. We also compute the characteristic pinning frequency at which a peak in the conductivity appears. We confirm that it is directly related to the inverse of the localization length, even in the interacting case. We demonstrate that the localization length follows a power law of the disorder strength with an exponent dependent on the interaction, and find good quantitative agreement with the field theory predictions. In the low-frequency regime, we find a behavior consistent with the one of the noninteracting system ω 2 ( ln ω ) 2 independently of the interaction. We discuss the consequences of our finding for experiments in cold atomic gases.
Collapse
Affiliation(s)
| | - Thierry Giamarchi
- Department of Quantum Matter Physics, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
8
|
Huang GH, Xu ZF, Wu Z. Intrinsic Anomalous Hall Effect in a Bosonic Chiral Superfluid. PHYSICAL REVIEW LETTERS 2022; 129:185301. [PMID: 36374672 DOI: 10.1103/physrevlett.129.185301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/25/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The anomalous Hall effect has had a profound influence on the understanding of many electronic topological materials but is much less studied in their bosonic counterparts. We predict that an intrinsic anomalous Hall effect exists in a recently realized bosonic chiral superfluid, a p-orbital Bose-Einstein condensate in a 2D hexagonal boron nitride optical lattice [Wang et al., Nature (London) 596, 227 (2021)NATUAS0028-083610.1038/s41586-021-03702-0]. We evaluate the frequency-dependent Hall conductivity within a multi-orbital Bose-Hubbard model that accurately captures the real experimental system. We find that in the high frequency limit, the Hall conductivity is determined by finite loop current correlations on the s-orbital residing sublattice, the latter a defining feature of the system's chirality. In the opposite limit, the dc Hall conductivity can trace its origin back to the noninteracting band Berry curvature at the condensation momentum, although the contribution from atomic interactions can be significant. We discuss available experimental probes to observe this intrinsic anomalous Hall effect at both zero and finite frequencies.
Collapse
Affiliation(s)
- Guan-Hua Huang
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhi-Fang Xu
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhigang Wu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
9
|
Hilker TA, Dogra LH, Eigen C, Glidden JAP, Smith RP, Hadzibabic Z. First and Second Sound in a Compressible 3D Bose Fluid. PHYSICAL REVIEW LETTERS 2022; 128:223601. [PMID: 35714252 DOI: 10.1103/physrevlett.128.223601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
The two-fluid model is fundamental for the description of superfluidity. In the nearly incompressible liquid regime, it successfully describes first and second sound, corresponding, respectively, to density and entropy waves, in both liquid helium and unitary Fermi gases. Here, we study the two sounds in the opposite regime of a highly compressible fluid, using an ultracold ^{39}K Bose gas in a three-dimensional box trap. We excite the longest-wavelength mode of our homogeneous gas, and observe two distinct resonant oscillations below the critical temperature, of which only one persists above it. In a microscopic mode-structure analysis, we find agreement with the hydrodynamic theory, where first and second sound involve density oscillations dominated by, respectively, thermal and condensed atoms. Varying the interaction strength, we explore the crossover from hydrodynamic to collisionless behavior in a normal gas.
Collapse
Affiliation(s)
- Timon A Hilker
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Lena H Dogra
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Christoph Eigen
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Jake A P Glidden
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Robert P Smith
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Zoran Hadzibabic
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
10
|
Sticlet D, Dóra B, Moca CP. Kubo Formula for Non-Hermitian Systems and Tachyon Optical Conductivity. PHYSICAL REVIEW LETTERS 2022; 128:016802. [PMID: 35061493 DOI: 10.1103/physrevlett.128.016802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/26/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Linear response theory plays a prominent role in various fields of physics and provides us with extensive information about the thermodynamics and dynamics of quantum and classical systems. Here we develop a general theory for the linear response in non-Hermitian systems with nonunitary dynamics and derive a modified Kubo formula for the generalized susceptibility for an arbitrary (Hermitian and non-Hermitian) system and perturbation. We use this to evaluate the dynamical response of a non-Hermitian, one-dimensional Dirac model with imaginary and real masses, perturbed by a time-dependent electric field. The model has a rich phase diagram, and in particular, features a tachyon phase, where excitations travel faster than an effective speed of light. Surprisingly, we find that the dc conductivity of tachyons is finite, and the optical sum rule is exactly satisfied for all masses. Our results highlight the peculiar properties of the Kubo formula for non-Hermitian systems and are applicable for a large variety of settings.
Collapse
Affiliation(s)
- Doru Sticlet
- National Institute for R&D of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Balázs Dóra
- Department of Theoretical Physics and MTA-BME Lendület Topology and Correlation Research Group, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - Cătălin Paşcu Moca
- MTA-BME Quantum Dynamics and Correlations Research Group, Institute of Physics, Budapest University of Technology and Economics, 1521 Budapest, Hungary
- Department of Physics, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
11
|
Wang YC, Cheng M, Witczak-Krempa W, Meng ZY. Fractionalized conductivity and emergent self-duality near topological phase transitions. Nat Commun 2021; 12:5347. [PMID: 34504099 PMCID: PMC8429463 DOI: 10.1038/s41467-021-25707-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/24/2021] [Indexed: 11/08/2022] Open
Abstract
The experimental discovery of the fractional Hall conductivity in two-dimensional electron gases revealed new types of quantum particles, called anyons, which are beyond bosons and fermions as they possess fractionalized exchange statistics. These anyons are usually studied deep inside an insulating topological phase. It is natural to ask whether such fractionalization can be detected more broadly, say near a phase transition from a conventional to a topological phase. To answer this question, we study a strongly correlated quantum phase transition between a topological state, called a [Formula: see text] quantum spin liquid, and a conventional superfluid using large-scale quantum Monte Carlo simulations. Our results show that the universal conductivity at the quantum critical point becomes a simple fraction of its value at the conventional insulator-to-superfluid transition. Moreover, a dynamically self-dual optical conductivity emerges at low temperatures above the transition point, indicating the presence of the elusive vison particles. Our study opens the door for the experimental detection of anyons in a broader regime, and has ramifications in the study of quantum materials, programmable quantum simulators, and ultra-cold atomic gases. In the latter case, we discuss the feasibility of measurements in optical lattices using current techniques.
Collapse
Affiliation(s)
- Yan-Cheng Wang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, China
| | - Meng Cheng
- Department of Physics, Yale University, New Haven, CT, USA
| | - William Witczak-Krempa
- Département de physique, Université de Montréal, Montréal, QC, Canada
- Centre de Recherches Mathématiques, Université de Montréal, Montréal, QC, Canada
| | - Zi Yang Meng
- Department of Physics and HKU-UCAS Joint Institute of Theoretical and Computational Physics, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
12
|
Bonança MVS, Nazé P, Deffner S. Negative entropy production rates in Drude-Sommerfeld metals. Phys Rev E 2021; 103:012109. [PMID: 33601516 DOI: 10.1103/physreve.103.012109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/17/2020] [Indexed: 11/07/2022]
Abstract
It is commonly accepted that in typical situations the rate of entropy production is non-negative. We show that this assertion is not entirely correct, not even in the linear regime, if a time-dependent, external perturbation is not compensated by a rapid enough decay of the response function. This is demonstrated for three variants of the Drude model to describe electrical conduction in noble metals, namely the classical free electron gas, the Drude-Sommerfeld model, and the extended Drude-Sommerfeld model. The analysis is concluded with a discussion of potential experimental verifications and ramifications of negative entropy production rates.
Collapse
Affiliation(s)
- Marcus V S Bonança
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo, Brazil
| | - Pierre Nazé
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo, Brazil
| | - Sebastian Deffner
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo, Brazil.,Department of Physics, University of Maryland, Baltimore County, Baltimore, Maryland 21250, USA
| |
Collapse
|
13
|
Repellin C, Goldman N. Detecting Fractional Chern Insulators through Circular Dichroism. PHYSICAL REVIEW LETTERS 2019; 122:166801. [PMID: 31075039 DOI: 10.1103/physrevlett.122.166801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Great efforts are currently devoted to the engineering of topological Bloch bands in ultracold atomic gases. Recent achievements in this direction, together with the possibility of tuning interparticle interactions, suggest that strongly correlated states reminiscent of fractional quantum Hall (FQH) liquids could soon be generated in these systems. In this experimental framework, where transport measurements are limited, identifying unambiguous signatures of FQH-type states constitutes a challenge on its own. Here, we demonstrate that the fractional nature of the quantized Hall conductance, a fundamental characteristic of FQH states, could be detected in ultracold gases through a circular-dichroic measurement, namely, by monitoring the energy absorbed by the atomic cloud upon a circular drive. We validate this approach by comparing the circular-dichroic signal to the many-body Chern number and discuss how such measurements could be performed to distinguish FQH-type states from competing states. Our scheme offers a practical tool for the detection of topologically ordered states in quantum-engineered systems, with potential applications in solid state.
Collapse
Affiliation(s)
- C Repellin
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - N Goldman
- CENOLI, Université Libre de Bruxelles, CP 231, Campus Plaine, B-1050 Brussels, Belgium
| |
Collapse
|