1
|
Tang J, Li Y, Ye S, Jiang P, Xue Z, Li X, Lyu X, Liu Q, Chu S, Yang H, Wu C, Hu X, Gao Y, Wang S, Sun Q, Lu G, Gong Q. Direct Hot-Electron Transfer at the Au Nanoparticle/Monolayer Transition-Metal Dichalcogenide Interface Observed with Ultrahigh Spatiotemporal Resolution. NANO LETTERS 2024; 24:2931-2938. [PMID: 38377049 DOI: 10.1021/acs.nanolett.4c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Plasmon-induced hot-electron transfer at the metallic nanoparticle/semiconductor interface is the basis of plasmon-enhanced photocatalysis and energy harvesting. However, limited by the nanoscale size of hot spots and femtosecond time scale of hot-electron transfer, direct observation is still challenging. Herein, by using spatiotemporal-resolved photoemission electron microscopy with a two-color pump-probe beamline, we directly observed such a process with a concise system, the Au nanoparticle/monolayer transition-metal dichalcogenide (TMD) interface. The ultrafast hot-electron transfer from Au nanoparticles to monolayer TMDs and the plasmon-enhanced transfer process were directly measured and verified through an in situ comparison with the Au film/TMD interface and free TMDs. The lifetime at the Au nanoparticle/MoSe2 interface decreased from 410 to 42 fs, while the photoemission intensities exhibited a 27-fold increase compared to free MoSe2. We also measured the evolution of hot electrons in the energy distributions, indicating the hot-electron injection and decay happened in an ultrafast time scale of ∼50 fs without observable electron cooling.
Collapse
Affiliation(s)
- Jinglin Tang
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China
| | - Yaolong Li
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China
| | - Sheng Ye
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China
| | - Pengzuo Jiang
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China
| | - Zhaohang Xue
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China
| | - Xiaofang Li
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China
| | - Xiaying Lyu
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China
| | - Qinyun Liu
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China
| | - Saisai Chu
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China
| | - Hong Yang
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Chengyin Wu
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xiaoyong Hu
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yunan Gao
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Shufeng Wang
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Quan Sun
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| | - Guowei Lu
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
2
|
Lobet M, Kinsey N, Liberal I, Caglayan H, Huidobro PA, Galiffi E, Mejía-Salazar JR, Palermo G, Jacob Z, Maccaferri N. New Horizons in Near-Zero Refractive Index Photonics and Hyperbolic Metamaterials. ACS PHOTONICS 2023; 10:3805-3820. [PMID: 38027250 PMCID: PMC10655250 DOI: 10.1021/acsphotonics.3c00747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023]
Abstract
The engineering of the spatial and temporal properties of both the electric permittivity and the refractive index of materials is at the core of photonics. When vanishing to zero, those two variables provide efficient knobs to control light-matter interactions. This Perspective aims at providing an overview of the state of the art and the challenges in emerging research areas where the use of near-zero refractive index and hyperbolic metamaterials is pivotal, in particular, light and thermal emission, nonlinear optics, sensing applications, and time-varying photonics.
Collapse
Affiliation(s)
- Michaël Lobet
- Department
of Physics and Namur Institute of Structured Materials, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Nathaniel Kinsey
- Department
of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Iñigo Liberal
- Department
of Electrical, Electronic and Communications Engineering, Institute
of Smart Cities (ISC), Public University
of Navarre (UPNA), Pamplona 31006, Spain
| | - Humeyra Caglayan
- Faculty
of Engineering and Natural Science, Photonics, Tampere University, 33720 Tampere, Finland
| | - Paloma A. Huidobro
- Departamento
de Física Téorica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, E-28049 Madrid, Spain
- Instituto
de Telecomunicações, Instituto
Superior Técnico-University of Lisbon, Avenida Rovisco Pais 1, Lisboa, 1049-001, Portugal
| | - Emanuele Galiffi
- Photonics
Initiative, Advanced Science Research Center, City University of New York, New
York, New York 10027, United States
| | | | - Giovanna Palermo
- Department
of Physics, NLHT Lab, University of Calabria, 87036 Rende, Italy
- CNR NANOTEC-Institute
of Nanotechnology, Rende (CS), 87036 Rende, Italy
| | - Zubin Jacob
- Elmore
Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck
Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nicolò Maccaferri
- Department
of Physics, Umeå University, Linnaeus väg 24, 90187 Umeå, Sweden
- Department
of Physics and Materials Science, University
of Luxembourg, 162a avenue
de la Faïencerie, L-1511 Luxembourg, Luxembourg
| |
Collapse
|
3
|
Gonçalves PAD, García de Abajo FJ. Multi-plasmon effects and plasmon satellites in photoemission from nanostructures. NANOSCALE 2023. [PMID: 37401202 DOI: 10.1039/d3nr01223a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Plasmons can be excited during photoemission and produce spectral photoelectron features that yield information on the nanoscale optical response of the probed materials. However, these so-called plasmon satellites have so far been observed only for planar surfaces, while their potential for the characterization of nanostructures remains unexplored. Here, we theoretically demonstrate that core-level photoemission from nanostructures can display spectrally narrow plasmonic features, reaching relatively high probabilities similar to the direct peak. Using a nonperturbative quantum-mechanical framework, we find a dramatic effect of nanostructure morphology and dimensionality as well as universal scaling laws for the plasmon-satellite probabilities. In addition, we introduce a pump-probe scheme in which plasmons are optically excited prior to photoemission, leading to plasmon losses and gains in the photoemission spectra and granting us access to the ultrafast dynamics of the sampled nanostructure. These results emphasize the potential of plasmon satellites to explore multi-plasmon effects and ultrafast electron-plasmon dynamics in metal-based nanoparticles and two-dimensional nanoislands.
Collapse
Affiliation(s)
- P A D Gonçalves
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain.
| | - F Javier García de Abajo
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain.
- ICREA - Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
4
|
Shibuta M, Nakajima A. Two-Photon Photoemission Spectroscopy and Microscopy for Electronic and Plasmonic Characterizations of Molecularly Designed Organic Surfaces. J Phys Chem Lett 2023; 14:3285-3295. [PMID: 36988100 DOI: 10.1021/acs.jpclett.3c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Functional surfaces decorated with organic molecules and/or nanoclusters (NCs) composed of several tens of atoms are promising for use in future photoelectronic substrates, whose functionalities are governed by molecular local electronic/plasmonic excitations at the interfaces. Here, we combine two-photon photoemission spectroscopy (2P-PES) and microscopy (2P-PEEM) to investigate the local excited-state dynamics at organic surfaces functionalized with NCs. The 2P-PES and 2P-PEEM for organic fullerene (C60) layers on graphite and Au substrates demonstrated photophysical characterization of electronic and plasmonic properties, including propagating surface plasmon polaritons (SPPs). The SPP propagation at the Au interface buried by overlayered C60 can be visualized by Agn NC deposition, which enhances plasmon-induced hot electrons, where the threshold number of Ag atoms (n ≥ 9) for the plasmonic response is revealed by the size dependence of 2P-PES for Agn NCs on C60 layers.
Collapse
Affiliation(s)
- Masahiro Shibuta
- Department of Physics and Electronics, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
- Keio Institute of Pure and Applied Sciences (KiPAS), Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Atsushi Nakajima
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
- Keio Institute of Pure and Applied Sciences (KiPAS), Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
5
|
Jin X, Ye S, Cheng W, Hou JJ, Jin W, Sheng T, Hou L, Marsh JH, Yu Y, Sun M, Ni B, Liu X, Xiong J. Sub-wavelength visualization of near-field scattering mode of plasmonic nano-cavity in the far-field. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:297-305. [PMID: 39634852 PMCID: PMC11501192 DOI: 10.1515/nanoph-2022-0679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/08/2023] [Indexed: 12/07/2024]
Abstract
Spatial visualization of mode distribution of light scattering from plasmonic nanostructures is of vital importance for understanding the scattering mechanism and applications based on these plasmonic nanostructures. A long unanswered question in how the spatial information of scattered light from a single plasmonic nanostructure can be recovered in the far-field, under the constraints of the diffraction limit of the detection or imaging optical system. In this paper, we reported a theoretical model on retrieving local spatial information of scattered light by plasmonic nanostructures in a far-field optical imaging system. In the far-field parametric sin δ images, singularity points corresponding to near-field hot spots of the edge mode and the gap mode were resolved for gold ring and split rings with subwavelength diameters and feature sizes. The experimental results were verified with Finite Difference Time Domain (FDTD) simulation in the near-field and far-field, for the edge mode and the gap mode at 566 nm and 534 nm, respectively. In sin δ image of split-ring, two singularity points associated with near-field hot spots were visualized and resolved with the characteristic size of 90 and 100 nm, which is far below the diffraction limit. The reported results indicate the feasibility of characterizing the spatial distribution of scattering light in the far-field and with sub-wavelength resolution for single plasmonic nanostructures with sub-wavelength feature sizes.
Collapse
Affiliation(s)
- Xiao Jin
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Shengwei Ye
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Weiqing Cheng
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Jamie Jiangmin Hou
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Wanzhen Jin
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Tianyao Sheng
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Lianping Hou
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - John H. Marsh
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Yefeng Yu
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Ming Sun
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Bin Ni
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Xuefeng Liu
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Jichuan Xiong
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| |
Collapse
|
6
|
Vatani S, Barahimi B, Moravvej-Farshi MK. All-optical AZO-based modulator topped with Si metasurfaces. Sci Rep 2022; 12:21490. [PMID: 36513754 DOI: 10.1038/s41598-022-25991-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
All-optical communication systems are under continuous development to address different core elements of inconvenience. Here, we numerically investigate an all-optical modulator, realizing a highly efficient modulation depth of 22 dB and a low insertion loss of 0.32 dB. The tunable optical element of the proposed modulator is a layer of Al-doped Zinc Oxide (AZO), also known as an epsilon-near-zero transparent conductive oxide. Sandwiching the AZO layer between a carefully designed distributed Bragg reflector and a dielectric metasurface-i.e., composed of a two-dimensional periodic array of cubic Si-provides a guided-mode resonance at the OFF state of the modulator, preventing the incident signal reflection at λ = 1310 nm. We demonstrate the required pump fluence for switching between the ON/OFF states of the designed modulator is about a few milli-Joules per cm2. The unique properties of the AZO layer, along with the engineered dielectric metasurface above it, change the reflection from 1 to 93%, helping design better experimental configurations for the next-generation all-optical communication systems.
Collapse
Affiliation(s)
- Sareh Vatani
- Nano Plasmo-Photonic Research Group, Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, 1411713116, Iran
| | - Behdad Barahimi
- Nano Plasmo-Photonic Research Group, Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, 1411713116, Iran
| | - Mohammad Kazem Moravvej-Farshi
- Nano Plasmo-Photonic Research Group, Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, 1411713116, Iran.
| |
Collapse
|
7
|
Dubi Y, Un IW, Sivan Y. Distinguishing Thermal from Nonthermal ("Hot") Carriers in Illuminated Molecular Junctions. NANO LETTERS 2022; 22:2127-2133. [PMID: 35075905 DOI: 10.1021/acs.nanolett.1c04291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The search for the signature of nonthermal (so-called "hot") electrons in illuminated plasmonic nanostructures requires detailed understanding of the nonequilibrium electron distribution under illumination, as well as a careful design of the experimental system employed to distinguish nonthermal electrons from thermal ones. Here, we provide a theory for using plasmonic molecular junctions to achieve this goal. We show how nonthermal electrons can be measured directly and separately from the unavoidable thermal response and discuss the relevance of our theory to recent experiments.
Collapse
Affiliation(s)
- Yonatan Dubi
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva 8410501, Israel
| | - Ieng-Wai Un
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Be'er Sheva 8410501, Israel
| | - Yonatan Sivan
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Be'er Sheva 8410501, Israel
| |
Collapse
|
8
|
Hartelt M, Terekhin PN, Eul T, Mahro AK, Frisch B, Prinz E, Rethfeld B, Stadtmüller B, Aeschlimann M. Energy and Momentum Distribution of Surface Plasmon-Induced Hot Carriers Isolated via Spatiotemporal Separation. ACS NANO 2021; 15:19559-19569. [PMID: 34852458 PMCID: PMC8717854 DOI: 10.1021/acsnano.1c06586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Understanding the differences between photon-induced and plasmon-induced hot electrons is essential for the construction of devices for plasmonic energy conversion. The mechanism of the plasmonic enhancement in photochemistry, photocatalysis, and light-harvesting and especially the role of hot carriers is still heavily discussed. The question remains, if plasmon-induced and photon-induced hot carriers are fundamentally different or if plasmonic enhancement is only an effect of field concentration producing these carriers in greater numbers. For the bulk plasmon resonance, a fundamental difference is known, yet for the technologically important surface plasmons, this is far from being settled. The direct imaging of surface plasmon-induced hot carriers could provide essential insight, but the separation of the influence of driving laser, field-enhancement, and fundamental plasmon decay has proven to be difficult. Here, we present an approach using a two-color femtosecond pump-probe scheme in time-resolved 2-photon-photoemission (tr-2PPE), supported by a theoretical analysis of the light and plasmon energy flow. We separate the energy and momentum distribution of the plasmon-induced hot electrons from that of photoexcited electrons by following the spatial evolution of photoemitted electrons with energy-resolved photoemission electron microscopy (PEEM) and momentum microscopy during the propagation of a surface plasmon polariton (SPP) pulse along a gold surface. With this scheme, we realize a direct experimental access to plasmon-induced hot electrons. We find a plasmonic enhancement toward high excitation energies and small in-plane momenta, which suggests a fundamentally different mechanism of hot electron generation, as previously unknown for surface plasmons.
Collapse
Affiliation(s)
- Michael Hartelt
- Department
of Physics and Research Center OPTIMAS,TU
Kaiserslautern, Erwin-Schrödinger-Straße 46, 67663 Kaiserslautern, Germany
| | - Pavel N. Terekhin
- Department
of Physics and Research Center OPTIMAS,TU
Kaiserslautern, Erwin-Schrödinger-Straße 46, 67663 Kaiserslautern, Germany
| | - Tobias Eul
- Department
of Physics and Research Center OPTIMAS,TU
Kaiserslautern, Erwin-Schrödinger-Straße 46, 67663 Kaiserslautern, Germany
| | - Anna-Katharina Mahro
- Department
of Physics and Research Center OPTIMAS,TU
Kaiserslautern, Erwin-Schrödinger-Straße 46, 67663 Kaiserslautern, Germany
| | - Benjamin Frisch
- Department
of Physics and Research Center OPTIMAS,TU
Kaiserslautern, Erwin-Schrödinger-Straße 46, 67663 Kaiserslautern, Germany
| | - Eva Prinz
- Department
of Physics and Research Center OPTIMAS,TU
Kaiserslautern, Erwin-Schrödinger-Straße 46, 67663 Kaiserslautern, Germany
| | - Baerbel Rethfeld
- Department
of Physics and Research Center OPTIMAS,TU
Kaiserslautern, Erwin-Schrödinger-Straße 46, 67663 Kaiserslautern, Germany
| | - Benjamin Stadtmüller
- Department
of Physics and Research Center OPTIMAS,TU
Kaiserslautern, Erwin-Schrödinger-Straße 46, 67663 Kaiserslautern, Germany
- Institute
of Physics, Johannes Gutenberg University
Mainz, Staudingerweg
7, 55128 Mainz, Germany
| | - Martin Aeschlimann
- Department
of Physics and Research Center OPTIMAS,TU
Kaiserslautern, Erwin-Schrödinger-Straße 46, 67663 Kaiserslautern, Germany
| |
Collapse
|
9
|
Rodríguez Echarri Á, Cox JD, Iyikanat F, García de Abajo FJ. Nonlinear plasmonic response in atomically thin metal films. NANOPHOTONICS 2021; 10:4149-4159. [PMID: 36425323 PMCID: PMC9651024 DOI: 10.1515/nanoph-2021-0422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 06/15/2023]
Abstract
Nanoscale nonlinear optics is limited by the inherently weak nonlinear response of conventional materials and the small light-matter interaction volumes available in nanostructures. Plasmonic excitations can alleviate these limitations through subwavelength light focusing, boosting optical near fields that drive the nonlinear response, but also suffering from large inelastic losses that are further aggravated by fabrication imperfections. Here, we theoretically explore the enhanced nonlinear response arising from extremely confined plasmon polaritons in few-atom-thick crystalline noble metal films. Our results are based on quantum-mechanical simulations of the nonlinear optical response in atomically thin metal films that incorporate crucial electronic band structure features associated with vertical quantum confinement, electron spill-out, and surface states. We predict an overall enhancement in plasmon-mediated nonlinear optical phenomena with decreasing film thickness, underscoring the importance of surface and electronic structure in the response of ultrathin metal films.
Collapse
Affiliation(s)
- Álvaro Rodríguez Echarri
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860Castelldefels, Barcelona, Spain
| | - Joel D. Cox
- Center for Nano Optics, University of Southern Denmark, Campusvej 55, DK-5230Odense M, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, Campusvej 55, DK-5230Odense M, Denmark
| | - Fadil Iyikanat
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860Castelldefels, Barcelona, Spain
| | - F. Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860Castelldefels, Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010Barcelona, Spain
| |
Collapse
|
10
|
Shibuta M, Yamamoto K, Ohta T, Inoue T, Mizoguchi K, Nakaya M, Eguchi T, Nakajima A. Confined Hot Electron Relaxation at the Molecular Heterointerface of the Size-Selected Plasmonic Noble Metal Nanocluster and Layered C 60. ACS NANO 2021; 15:1199-1209. [PMID: 33411503 DOI: 10.1021/acsnano.0c08248] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The plasmonic response of metallic nanostructures plays a key role in amplifying photocatalytic and photoelectric conversion. Since the plasmonic behavior of noble metal nanoparticles is known to generate energetic charge carriers such as hot electrons, it is expected that the hot electrons can enhance conversion efficiency if they are transferred into a neighboring molecule or semiconductor. However, the method of transferring the energized charge carriers from the plasmonically generated hot electrons to the neighboring species remains controversial. Herein, we fabricated a molecularly well-defined heterointerface between the size-selected plasmonic noble-metal nanoclusters (NCs) of Agn (n = 3-55)/Aun (n = 21) and the organic C60 film to investigate hot electron generation and relaxation dynamics using time-resolved two-photon photoemission (2PPE) spectroscopy. By tuning the NC size and the polarization of the femtosecond excitation photons, the plasmonic behavior is characterized by 2PPE intensity enhancement by 10-100 times magnitude, which emerge at n ≥ 9 for Agn NCs. The 2PPE spectra exhibit contributions from low-energy electrons forming coherent plasmonic currents and hot electrons with an excitation energy up to photon energy owing to two-photon excitation of an occupied state of the Agn NC below the Fermi level. The time-resolved pump-probe measurements demonstrate that plasmon dephasing generates hot electrons which undergo electron-electron scattering. However, no photoemission occurs via the charge transfer state forming Agn+C60- located in the vicinity of the Fermi level. Thus, this study reveals the mechanism of ultrafast confined hot electron relaxation within plasmonic Agn NCs at the molecular heterointerface.
Collapse
Affiliation(s)
- Masahiro Shibuta
- Fachbereich Physik und Zentrum für Materialwissenschaften, Philipps-Universität, D-35032 Marburg, Germany
| | | | | | | | | | - Masato Nakaya
- Nakajima Designer Nanocluster Assembly Project, ERATO, Japan Science and Technology Agency (JST), 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012, Japan
| | - Toyoaki Eguchi
- Nakajima Designer Nanocluster Assembly Project, ERATO, Japan Science and Technology Agency (JST), 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012, Japan
| | - Atsushi Nakajima
- Nakajima Designer Nanocluster Assembly Project, ERATO, Japan Science and Technology Agency (JST), 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012, Japan
| |
Collapse
|
11
|
Sun Q, Zu S, Misawa H. Ultrafast photoemission electron microscopy: Capability and potential in probing plasmonic nanostructures from multiple domains. J Chem Phys 2020; 153:120902. [DOI: 10.1063/5.0013659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Quan Sun
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Shuai Zu
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Hiroaki Misawa
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
12
|
Garzón-Ramírez AJ, Franco I. Symmetry breaking in the Stark Control of Electrons at Interfaces (SCELI). J Chem Phys 2020; 153:044704. [DOI: 10.1063/5.0013190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
| | - Ignacio Franco
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
- Department of Physics, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
13
|
Da Browski M, Dai Y, Petek H. Ultrafast Photoemission Electron Microscopy: Imaging Plasmons in Space and Time. Chem Rev 2020; 120:6247-6287. [PMID: 32530607 DOI: 10.1021/acs.chemrev.0c00146] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Plasmonics is a rapidly growing field spanning research and applications across chemistry, physics, optics, energy harvesting, and medicine. Ultrafast photoemission electron microscopy (PEEM) has demonstrated unprecedented power in the characterization of surface plasmons and other electronic excitations, as it uniquely combines the requisite spatial and temporal resolution, making it ideally suited for 3D space and time coherent imaging of the dynamical plasmonic phenomena on the nanofemto scale. The ability to visualize plasmonic fields evolving at the local speed of light on subwavelength scale with optical phase resolution illuminates old phenomena and opens new directions for growth of plasmonics research. In this review, we guide the reader thorough experimental description of PEEM as a characterization tool for both surface plasmon polaritons and localized plasmons and summarize the exciting progress it has opened by the ultrafast imaging of plasmonic phenomena on the nanofemto scale.
Collapse
Affiliation(s)
- Maciej Da Browski
- Department of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter, Devon EX4 4QL, U.K
| | - Yanan Dai
- Department of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Hrvoje Petek
- Department of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
14
|
Keunecke M, Möller C, Schmitt D, Nolte H, Jansen GSM, Reutzel M, Gutberlet M, Halasi G, Steil D, Steil S, Mathias S. Time-resolved momentum microscopy with a 1 MHz high-harmonic extreme ultraviolet beamline. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:063905. [PMID: 32611056 DOI: 10.1063/5.0006531] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Recent progress in laser-based high-repetition rate extreme ultraviolet (EUV) light sources and multidimensional photoelectron spectroscopy enables the build-up of a new generation of time-resolved photoemission experiments. Here, we present a setup for time-resolved momentum microscopy driven by a 1 MHz fs EUV table-top light source optimized for the generation of 26.5 eV photons. The setup provides simultaneous access to the temporal evolution of the photoelectron's kinetic energy and in-plane momentum. We discuss opportunities and limitations of our new experiment based on a series of static and time-resolved measurements on graphene.
Collapse
Affiliation(s)
- Marius Keunecke
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Christina Möller
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - David Schmitt
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Hendrik Nolte
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - G S Matthijs Jansen
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Marcel Reutzel
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Marie Gutberlet
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Gyula Halasi
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Daniel Steil
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Sabine Steil
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Stefan Mathias
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
15
|
Reutzel M, Li A, Wang Z, Petek H. Coherent multidimensional photoelectron spectroscopy of ultrafast quasiparticle dressing by light. Nat Commun 2020; 11:2230. [PMID: 32376985 PMCID: PMC7203103 DOI: 10.1038/s41467-020-16064-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/14/2020] [Indexed: 11/13/2022] Open
Abstract
Depending on the applied strength, electromagnetic fields in electronic materials can induce dipole transitions between eigenstates or distort the Coulomb potentials that define them. Between the two regimes, they can also modify the electronic properties in more subtle ways when electron motion becomes governed by time and space-periodic potentials. The optical field introduces new virtual bands through Floquet engineering that under resonant conditions interacts strongly with the preexisting bands. Under such conditions the virtual bands can become real, and real ones become virtual as the optical fields and electronic band dispersions entangle the electronic response. We reveal optical dressing of electronic bands in a metal by exciting four-photon photoemission from the Cu(111) surface involving a three-photon resonant transition from the Shockley surface band to the first image potential band. Attosecond resolved interferometric scanning between identical pump–probe pulses and its Fourier analysis reveal how the optical field modifies the electronic properties of a solid through combined action of dipole excitation and field dressing. Strong pulses of light can drive materials into nonequilibrium states with distinct physical properties. Here the authors observe the changes in copper’s electronic properties as intense optical fields dress the band structure and quasiparticle mass.
Collapse
Affiliation(s)
- Marcel Reutzel
- Department of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA. .,I. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany.
| | - Andi Li
- Department of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Zehua Wang
- Department of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Hrvoje Petek
- Department of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA.
| |
Collapse
|
16
|
Vempati S, Bogner L, Richter C, Deinert JC, Foglia L, Gierster L, Stähler J. Photoexcited organic molecules en route to highly efficient autoionization. J Chem Phys 2020; 152:074715. [DOI: 10.1063/1.5136075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Sesha Vempati
- Fritz Haber Institute of the Max Planck Society, Faradayweg
4-6, 14195 Berlin, Germany
| | - Lea Bogner
- Fritz Haber Institute of the Max Planck Society, Faradayweg
4-6, 14195 Berlin, Germany
| | - Clemens Richter
- Fritz Haber Institute of the Max Planck Society, Faradayweg
4-6, 14195 Berlin, Germany
| | - Jan-Christoph Deinert
- Fritz Haber Institute of the Max Planck Society, Faradayweg
4-6, 14195 Berlin, Germany
| | - Laura Foglia
- Fritz Haber Institute of the Max Planck Society, Faradayweg
4-6, 14195 Berlin, Germany
| | - Lukas Gierster
- Fritz Haber Institute of the Max Planck Society, Faradayweg
4-6, 14195 Berlin, Germany
| | - Julia Stähler
- Fritz Haber Institute of the Max Planck Society, Faradayweg
4-6, 14195 Berlin, Germany
| |
Collapse
|
17
|
Dai Y, Dąbrowski M, Petek H. Optical field tuning of localized plasmon modes in Ag microcrystals at the nanofemto scale. J Chem Phys 2020; 152:054201. [PMID: 32035439 DOI: 10.1063/1.5139543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nanoscale plasmonic field enhancement at sub-wavelength metallic particles is crucial for surface sensitive spectroscopy, ultrafast microscopy, and nanoscale energy transduction. Here, we demonstrate control of the spatial distribution of localized surface plasmon modes at sub-optical-wavelength crystalline silver (Ag) micropyramids grown on a Si(001) surface. We employ multiphoton photoemission electron microscopy (mP-PEEM) to image how the plasmonic field distributions vary with the photon energy, light polarization, and phase in coherent two-pulse excitation. For photon energy hυ > 2.0 eV, the mP-PEEM images show single photoemission locus, which splits into a dipolar pattern that straddles the Ag crystal at a lower energy. We attribute the variation to the migration of plasmon resonances from the Ag/vacuum to the Ag/Si interfaces by choice of the photon energy. Furthermore, the dipolar response of the Ag/Si interface follows the polarization state of light: for linearly polarized excitations, the plasmon dipole follows the in-plane electric field vector, while for circularly polarized excitations, it tilts in the direction of the handedness due to the conversion of spin angular momentum of light into orbital angular momentum of the plasmons excited in the sample. Finally, we show the coherent control of the spatial plasmon distribution by exciting the sample with two identical circularly polarized light pulses with delay defined with attosecond precision. The near field distribution wobbles at the pyramid base as the pump-probe delay is advanced due to interferences among the contributing fields. We illustrate how the frequency, polarization, and pulse structure can be used to design and control plasmon fields on the nanofemto scale for applications in chemistry and physics.
Collapse
Affiliation(s)
- Yanan Dai
- Department of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Maciej Dąbrowski
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Hrvoje Petek
- Department of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|