1
|
Han Y, Liu J, Chong S, Du J, Meng L, Gao Y. The Topological Phases of One-Dimensional Non-Hermitian Systems with Spin-Orbit Coupling of the Generalized Brillouin Zone. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1417. [PMID: 40271594 PMCID: PMC11989859 DOI: 10.3390/ma18071417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 04/25/2025]
Abstract
Revealing singular quantum phenomena in various non-Hermitian systems is a hot topic in condensed matter physics research, with the bulk-boundary correspondence being one of the core issues in non-Hermitian topological states. In addition, the spin-orbit coupling (SOC) applied to electrons moving in the electric field in the material can bring unique topological properties to the energy band of the material. We investigated the topological phase transition of a non-Hermitian Su-Schrieffer-Heeger (SSH) model with SOC in the generalized Brillouin zone (GBZ). We demonstrate that SOC can alter the position and number of phase transition points. Due to the non-Hermitian skin effect, the bulk-boundary correspondence is broken, and the local positions of zero mode and bulk eigenstates will also change. By unitary transformation, two subspaces were obtained, and the exact solution of topological phase transition was obtained in the GBZ. The exact solution of non-Hermitian systems with the Dresselhaus and Rashba types of SOC is consistent with the numerical solutions. This result can be applied to more complex non-Hermitian models, providing a strong reference for experimental researchers in topological materials.
Collapse
Affiliation(s)
- Yanzhen Han
- College Electronics Information Engineering, Hengshui University, Hengshui 053000, China; (J.L.); (J.D.); (L.M.)
| | - Jianxiao Liu
- College Electronics Information Engineering, Hengshui University, Hengshui 053000, China; (J.L.); (J.D.); (L.M.)
| | - Shiyao Chong
- College Electronics Information Engineering, Hengshui University, Hengshui 053000, China; (J.L.); (J.D.); (L.M.)
| | - Jingjing Du
- College Electronics Information Engineering, Hengshui University, Hengshui 053000, China; (J.L.); (J.D.); (L.M.)
| | - Linghui Meng
- College Electronics Information Engineering, Hengshui University, Hengshui 053000, China; (J.L.); (J.D.); (L.M.)
| | - Yingjie Gao
- School of Electronics and Information Engineering, Jinling Institute of Technology, Nanjing 211169, China;
- School of Transportation, Southeast University, Nanjing 210009, China
| |
Collapse
|
2
|
Canós Valero A, Sztranyovszky Z, Muljarov EA, Bogdanov A, Weiss T. Exceptional Bound States in the Continuum. PHYSICAL REVIEW LETTERS 2025; 134:103802. [PMID: 40153636 DOI: 10.1103/physrevlett.134.103802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 01/21/2025] [Indexed: 03/30/2025]
Abstract
Bound states in the continuum and exceptional points are unique singularities of non-Hermitian systems. In optical implementations, the former demonstrate strong enhancement of the electromagnetic field, while the latter exhibit high sensitivity to small perturbations. Hence, exceptional points are being actively investigated as next-generation optical sensors. However, at the nanoscale, their performance is strongly constrained by parasitic radiative losses. Here, we show that several bound states in the continuum can be merged into one exceptional point, forming a new kind of singularity. The resulting state inherits properties from both, namely, it does not radiate and shows extremely high sensitivity to perturbations, making it prospective for the realization of exceptional sensing at the nanoscale. We validate our theory with numerical simulations and demonstrate the formation of second- and third-order exceptional bound states in the continuum in stacked dielectric metasurfaces.
Collapse
Affiliation(s)
- Adrià Canós Valero
- University of Graz, Institute of Physics, and NAWI Graz, 8010 Graz, Austria
| | - Zoltan Sztranyovszky
- University of Birmingham, School of Chemical Engineering, Birmingham B15 2TT, United Kingdom
| | - Egor A Muljarov
- Cardiff University, School of Physics and Astronomy, Cardiff CF24 3AA, United Kingdom
| | - Andrey Bogdanov
- Qingdao Innovation and Development Center of Harbin Engineering University, Sansha Road 1777, Qingdao 266404, China
- ITMO University, School of Physics and Engineering, Kronverkskiy Street 49, 197101, St. Petersburg, Russia
| | - Thomas Weiss
- University of Graz, Institute of Physics, and NAWI Graz, 8010 Graz, Austria
- University of Stuttgart, Physics Institute and SCoPE, 70569 Stuttgart, Germany
| |
Collapse
|
3
|
Kartik YR, R Kumar R. Scaling theory for non-Hermitian topological transitions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2025; 37:125602. [PMID: 39823749 DOI: 10.1088/1361-648x/adaba8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/17/2025] [Indexed: 01/20/2025]
Abstract
Understanding the critical properties is essential for determining the physical behavior of topological systems. In this context, scaling theories based on the curvature function in momentum space, the renormalization group (RG) method, and the universality of critical exponents have proven effective. In this work, we develop a scaling theory for non-Hermitian topological states of matter. We utilize the curvature function renormalization group (CRG) method, incorporating biorthonormal vectors for a one dimensional2×2non-Hermitian Dirac model. This approach allows us to analyze the Wannier state correlation function (WCF) and determine the corresponding localization critical exponent. The CRG method successfully identifies topological phase transitions and locates stable and unstable fixed points. To account for non-Hermitian effects, we construct the curvature function in the generalized Brillouin zone using non-Bloch wave functions, enabling a comprehensive WCF and CRG analysis.
Collapse
Affiliation(s)
- Y R Kartik
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Ranjith R Kumar
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
4
|
Wang J, Li F, Cheng W. Anomalous Behavior of the Non-Hermitian Topological System with an Asymmetric Coupling Impurity. ENTROPY (BASEL, SWITZERLAND) 2025; 27:78. [PMID: 39851698 PMCID: PMC11765153 DOI: 10.3390/e27010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025]
Abstract
A notable feature of systems with non-Hermitian skin effects is the sensitivity to boundary conditions. In this work, we introduce one type of boundary condition provided by a coupling impurity. We consider a system where a two-level system as an impurity couples to a nonreciprocal Su-Schrieffer-Heeger chain under periodic boundary conditions at two points with asymmetric couplings. We first study the spectrum of the system and find that asymmetric couplings lead to topological phase transitions. Meanwhile, a striking feature is that the coupling impurity can act as an effective boundary, and asymmetric couplings can also induce a flexibly adjusted zero mode. It is localized at one of the two effective boundaries or both of them by tuning coupling strengths. Moreover, we uncover three types of localization behaviors of eigenstates for this non-Hermitian impurity system with on-site disorder. These results corroborate the potential for control of a class of non-Hermitian systems with coupling impurities.
Collapse
Affiliation(s)
- Junjie Wang
- College of Digital Technology and Engineering, Ningbo University of Finance & Economics, Ningbo 315175, China
| | - Fude Li
- College of Computer and Information Engineering, Tianjin Agricultural University, Tianjin 300384, China;
| | - Weijun Cheng
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China;
| |
Collapse
|
5
|
Mandal S, Kar S. Topology andPTsymmetry in a non-Hermitian Su-Schrieffer-Heeger chain with periodic hopping modulation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 37:095602. [PMID: 39671797 DOI: 10.1088/1361-648x/ad9f08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/13/2024] [Indexed: 12/15/2024]
Abstract
We study the effect of periodic hopping modulation in a Su-Schrieffer-Heeger (SSH) chain with an additional onsite staggered imaginary potential (of strengthγ). Such dissipative, non-Hermitian (NH) extension amply modifies the features of the topological trivial phase (TTP) and the topological nontrivial phase (TNP) of the SSH chain, more so with the periodic hopping distribution. Generally a weak NH potential can respect the parity-time (PT) symmetry keeping the energy eigenvalues real, while a strong potential breaksPTconservation leading to imaginary edge state and complex bulk state energies in the system. We find that the non-zero energy in-gap states, that appear due to periodic hopping modulations even in theγ = 0 limit, take purely real or purely imaginary eigenvalues depending on the strength of bothγand Δ (dimerization parameter). The localization of topological edge states (in-gap states) at the boundaries are investigated that reveals extended nature not only near topological transitions (further away from|Δ/t|=1) but also near the unmodulated limit ofΔ=0. Moreover, localization of the bulk states is observed at the maximally dimerized limit of|Δ/t|=1, which increases further withγ. These dissipative features can offer additional tunability in modulating the gain-loss contrast in optical systems or in designing various quantum information processing and storage devices.
Collapse
Affiliation(s)
- Surajit Mandal
- Department of Physics, Jadavpur University, Kolkata 700032, West Bengal, India
- Department of Physics, AKPC Mahavidyalaya, Bengai, West Bengal 712611, India
| | - Satyaki Kar
- Department of Physics, AKPC Mahavidyalaya, Bengai, West Bengal 712611, India
| |
Collapse
|
6
|
Shen R, Qin F, Desaules JY, Papić Z, Lee CH. Enhanced Many-Body Quantum Scars from the Non-Hermitian Fock Skin Effect. PHYSICAL REVIEW LETTERS 2024; 133:216601. [PMID: 39642519 DOI: 10.1103/physrevlett.133.216601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/30/2024] [Accepted: 10/02/2024] [Indexed: 12/09/2024]
Abstract
In contrast with extended Bloch waves, a single particle can become spatially localized due to the so-called skin effect originating from non-Hermitian pumping. Here we show that in kinetically constrained many-body systems, the skin effect can instead manifest as dynamical amplification within the Fock space, beyond the intuitively expected and previously studied particle localization and clustering. We exemplify this non-Hermitian Fock skin effect in an asymmetric version of the PXP model and show that it gives rise to ergodicity-breaking eigenstates-the non-Hermitian analogs of quantum many-body scars. A distinguishing feature of these non-Hermitian scars is their enhanced robustness against external disorders. We propose an experimental realization of the non-Hermitian scar enhancement in a tilted Bose-Hubbard optical lattice with laser-induced loss. Additionally, we implement digital simulations of such scar enhancement on the IBM quantum processor. Our results show that the Fock skin effect provides a powerful tool for creating robust nonergodic states in generic open quantum systems.
Collapse
|
7
|
Cheng N, Shu C, Zhang K, Mao X, Sun K. Universal Spectral Moment Theorem and Its Applications in Non-Hermitian Systems. PHYSICAL REVIEW LETTERS 2024; 133:216401. [PMID: 39642501 DOI: 10.1103/physrevlett.133.216401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/16/2024] [Accepted: 10/23/2024] [Indexed: 12/09/2024]
Abstract
The high sensitivity of the spectrum and wave functions to boundary conditions, termed the non-Hermitian skin effect, represents a fundamental aspect of non-Hermitian systems. While it endows non-Hermitian systems with unprecedented physical properties, it presents notable obstacles in grasping universal properties that are robust against microscopic details and boundary conditions. In this Letter, we introduce a pivotal theorem: in the thermodynamic limit, for any non-Hermitian systems with finite-range interactions, all spectral moments are invariant quantities, independent of boundary conditions, posing strong constraints on the spectrum. Utilizing this invariance, we propose a new criterion for bulk dynamical phases based on experimentally observable features and applicable to any dimensions and any boundary conditions. Based on this criterion, we define the bulk dispersive-to-proliferative phase transition, which is distinct from the real-to-complex spectral transition and contrasts with the traditional expectation that the existence of eigenvalues above the real axis implies proliferative behavior. We verify these findings in 1D and 2D lattice models.
Collapse
|
8
|
Shimomura K, Sato M. General Criterion for Non-Hermitian Skin Effects and Application: Fock Space Skin Effects in Many-Body Systems. PHYSICAL REVIEW LETTERS 2024; 133:136502. [PMID: 39392955 DOI: 10.1103/physrevlett.133.136502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/21/2024] [Accepted: 08/06/2024] [Indexed: 10/13/2024]
Abstract
Non-Hermiticity enables macroscopic accumulation of bulk states, named non-Hermitian skin effects. The non-Hermitian skin effects are well established for single-particle systems, but their proper characterization for general systems is elusive. Here, we propose a general criterion of non-Hermitian skin effects, which works for any finite-dimensional system evolved by a linear operator. The applicable systems include many-body systems and network systems. A system meeting the criterion exhibits enhanced non-normality of the evolution operator, accompanied by exceptional characteristics intrinsic to non-Hermitian systems. Applying the criterion, we discover a new type of non-Hermitian skin effect in many-body systems, which we dub the Fock space skin effect. We also discuss the Fock space skin effect-induced slow dynamics, which gives an experimental signal for the Fock space skin effect.
Collapse
|
9
|
Yang M, Lee CH. Percolation-Induced PT Symmetry Breaking. PHYSICAL REVIEW LETTERS 2024; 133:136602. [PMID: 39392962 DOI: 10.1103/physrevlett.133.136602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 08/27/2024] [Indexed: 10/13/2024]
Abstract
We propose a new avenue in which percolation, which has been much associated with critical phase transitions, can also dictate the asymptotic dynamics of non-Hermitian systems by breaking PT symmetry. Central to it is our newly designed mechanism of topologically guided gain, where chiral edge wave packets in a topological system experience non-Hermitian gain or loss based on how they are topologically steered. For sufficiently wide topological islands, this leads to irreversible growth due to positive feedback from interlayer tunneling. As such, a percolation transition that merges small topological islands into larger ones also drives the edge spectrum across a real to complex transition. Our discovery showcases intriguing dynamical consequences from the triple interplay of chiral topology, directed gain, and interlayer tunneling, and suggests new routes for the topology to be harnessed in the control of feedback systems.
Collapse
|
10
|
Chen L, Niu ZX, Xu X. Dynamic protected states in the non-Hermitian system. Sci Rep 2024; 14:21745. [PMID: 39289444 PMCID: PMC11408686 DOI: 10.1038/s41598-024-72557-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
The non-Hermitian skin effect and nonreciprocal behavior are sensitive to the boundary conditions, which are unique features of non-Hermitian systems. In such systems, eigenenergies can become complex, and all eigenstates tend to localize at the boundary, a phenomenon that contrasts with Hermitian topologies. In this work, we theoretically study the dynamic behavior of the propagation of Gaussian wavepackets inside a non-Hermitian lattice and analyze the self-acceleration process of bulk state or Gaussian wavepackets toward the system's boundary. The initial wavepackets will not only propagate toward the side where the eigenstates are localized, but also their momentum will approach to a specific value. This value corresponds to the maximum imaginary components of the energy dispersion. In addition, if the wavepackets in the momentum space cover this specific momentum, they will eventually exhibit exponentially increasing amplitudes with time evolution, maintaining the dynamic protected condition for an extended period of time until they approach the boundary. We also take two widely used toy models as examples in one and two dimensions to verify the correspondence of the non-Hermitian skin effect and the dynamic protected state.
Collapse
Affiliation(s)
- Lei Chen
- School of Information, Hunan University of Humanities, Science and Technology, Loudi, 417000, China
- School of Physics and Electronic Science, Zunyi Normal University, Zunyi, 563006, China
| | - Zhen-Xia Niu
- Department of Physics, Zhejiang Normal University, Jinhua, 321004, China
| | - Xingran Xu
- School of Science, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
11
|
Liu ZC, Li K, Xu Y. Dynamical Transition Due to Feedback-Induced Skin Effect. PHYSICAL REVIEW LETTERS 2024; 133:090401. [PMID: 39270160 DOI: 10.1103/physrevlett.133.090401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/26/2024] [Accepted: 07/29/2024] [Indexed: 09/15/2024]
Abstract
The traditional dynamical phase transition refers to the appearance of singularities in an observable with respect to a control parameter for a late-time state or singularities in the rate function of the Loschmidt echo with respect to time. Here, we study the many-body dynamics in a continuously monitored free fermion system with conditional feedback under open boundary conditions. We surprisingly find a novel dynamical transition from a logarithmic scaling of the entanglement entropy to an area-law scaling as time evolves. The transition, which is noticeably different from the conventional dynamical phase transition, arises from the competition between the bulk dynamics and boundary skin effects. In addition, we find that while quasidisorder or disorder cannot drive a transition for the steady state, a transition occurs for the maximum entanglement entropy during the time evolution, which agrees well with the entanglement transition for the steady state of the dynamics under periodic boundary conditions.
Collapse
Affiliation(s)
| | | | - Yong Xu
- Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, People's Republic of China
- Hefei National Laboratory, Hefei 230088, People's Republic of China
| |
Collapse
|
12
|
Shen PX, Lu Z, Lado JL, Trif M. Non-Hermitian Fermi-Dirac Distribution in Persistent Current Transport. PHYSICAL REVIEW LETTERS 2024; 133:086301. [PMID: 39241705 DOI: 10.1103/physrevlett.133.086301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/06/2024] [Accepted: 07/19/2024] [Indexed: 09/09/2024]
Abstract
Persistent currents circulate continuously without requiring external power sources. Here, we extend their theory to include dissipation within the framework of non-Hermitian quantum Hamiltonians. Using Green's function formalism, we introduce a non-Hermitian Fermi-Dirac distribution and derive an analytical expression for the persistent current that relies solely on the complex spectrum. We apply our formula to two dissipative models supporting persistent currents: (i) a phase-biased superconducting-normal-superconducting junction; (ii) a normal ring threaded by a magnetic flux. We show that the persistent currents in both systems exhibit no anomalies at any emergent exceptional points, whose signatures are only discernible in the current susceptibility. We validate our findings by exact diagonalization and extend them to account for finite temperatures and interaction effects. Our formalism offers a general framework for computing quantum many-body observables of non-Hermitian systems in equilibrium, with potential extensions to nonequilibrium scenarios.
Collapse
|
13
|
Yoshida T, Zhang SB, Neupert T, Kawakami N. Non-Hermitian Mott Skin Effect. PHYSICAL REVIEW LETTERS 2024; 133:076502. [PMID: 39213584 DOI: 10.1103/physrevlett.133.076502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/17/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024]
Abstract
We propose a novel type of skin effects in non-Hermitian quantum many-body systems that we dub a "non-Hermitian Mott skin effect." This phenomenon is induced by the interplay between strong correlations and the non-Hermitian point-gap topology. The Mott skin effect induces extreme sensitivity to the boundary conditions only in the spin degree of freedom (i.e., the charge distribution is not sensitive to boundary conditions), which is in sharp contrast to the ordinary non-Hermitian skin effect in noninteracting systems. Concretely, we elucidate that a bosonic non-Hermitian chain exhibits the Mott skin effect in the strongly correlated regime by closely examining an effective Hamiltonian. The emergence of the Mott skin effect is also supported by numerical diagonalization of the bosonic chain. The difference between the ordinary non-Hermitian skin effect and the Mott skin effect is also reflected in the time evolution of physical quantities; under the time evolution spin accumulation is observed while the charge distribution remains spatially uniform.
Collapse
Affiliation(s)
| | | | | | - Norio Kawakami
- Department of Materials Engineering Science, Osaka University, Toyonaka 560-8531, Japan
- Department of Physics, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
- Fundamental Quantum Science Program, TRIP Headquarters, RIKEN, Wako 351-0198, Japan
| |
Collapse
|
14
|
Lin Z, Song W, Wang LW, Xin H, Sun J, Wu S, Huang C, Zhu S, Jiang JH, Li T. Observation of Topological Transition in Floquet Non-Hermitian Skin Effects in Silicon Photonics. PHYSICAL REVIEW LETTERS 2024; 133:073803. [PMID: 39213563 DOI: 10.1103/physrevlett.133.073803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/24/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
Non-Hermitian physics has greatly enriched our understanding of nonequilibrium phenomena and uncovered novel effects such as the non-Hermitian skin effect (NHSE) that has profoundly revolutionized the field. NHSE has been predicted in systems with nonreciprocal couplings which, however, are challenging to realize in experiments. Without nonreciprocal couplings, the NHSE can also emerge in systems with coexisting gauge fields and loss or gain (e.g., in Floquet non-Hermitian systems). However, such Floquet NHSE remains largely unexplored in experiments. Here, we realize the Floquet NHSEs in periodically modulated optical waveguides integrated on a silicon photonic platform. By engineering the artificial gauge fields induced by the periodical modulation, we observe various Floquet NHSE phases and unveil their rich topological transitions. Remarkably, we discover the transitions between the unipolar NHSE phases and an unconventional bipolar NHSE phase, which is accompanied by the directional reversal of the NHSEs. The underlying physics is revealed by the band winding in complex quasienergy space which undergoes a topology change from isolated loops with the same winding to linked loops with opposite windings. Our work unfolds a new route toward Floquet NHSEs originating from the interplay between gauge fields and dissipation effects, and thus offers fundamentally new ways for steering light and other waves.
Collapse
Affiliation(s)
- Zhiyuan Lin
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Wange Song
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Li-Wei Wang
- School of Physical Science and Technology & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 1 Shizi Street, Suzhou 215006, China
| | - Haoran Xin
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Jiacheng Sun
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Shengjie Wu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Chunyu Huang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Shining Zhu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Jian-Hua Jiang
- School of Physical Science and Technology & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 1 Shizi Street, Suzhou 215006, China
- School of Biomedical Engineering, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
- School of Physics, University of Science and Technology of China, Hefei 230026, China
| | - Tao Li
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| |
Collapse
|
15
|
Xiao L, Xue WT, Song F, Hu YM, Yi W, Wang Z, Xue P. Observation of Non-Hermitian Edge Burst in Quantum Dynamics. PHYSICAL REVIEW LETTERS 2024; 133:070801. [PMID: 39213575 DOI: 10.1103/physrevlett.133.070801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/20/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024]
Abstract
The non-Hermitian skin effect, by which the eigenstates of the Hamiltonian are predominantly localized at the boundary, has revealed a strong sensitivity of non-Hermitian systems to the boundary condition. Here we experimentally observe a striking boundary-induced dynamical phenomenon known as the non-Hermitian edge burst, which is characterized by a sharp boundary accumulation of loss in non-Hermitian time evolutions. In contrast to the eigenstate localization, the edge burst represents a generic non-Hermitian dynamical phenomenon that occurs in real time. Our experiment, based on photonic quantum walks, not only confirms the prediction of the phenomenon, but also unveils its complete space-time dynamics. Our observation of edge burst paves the way for studying the rich real-time dynamics in non-Hermitian topological systems.
Collapse
|
16
|
Li Z, Wang LW, Wang X, Lin ZK, Ma G, Jiang JH. Observation of dynamic non-Hermitian skin effects. Nat Commun 2024; 15:6544. [PMID: 39095338 PMCID: PMC11297047 DOI: 10.1038/s41467-024-50776-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
Non-Hermitian physics has emerged as a new paradigm that profoundly changes our understanding of non-equilibrium systems, introducing novel concepts such as exceptional points, spectral topology, and non-Hermitian skin effects (NHSEs). Most existing studies focus on non-Hermitian eigenstates, whereas dynamic properties have been discussed only recently, and the dynamic NHSEs are not yet confirmed in experiments. Here, we report the experimental observation of non-Hermitian skin dynamics using tunable one-dimensional nonreciprocal double-chain mechanical systems with glide-time symmetry. Remarkably, dynamic NHSEs are observed with various behaviors in different dynamic phases, which can be understood via the generalized Brillouin zone and the related concepts. Moreover, the observed dynamic NHSEs, amplifications, bulk unidirectional wave propagation, and boundary wave trapping provide promising ways to manipulate waves in a controllable and robust way. Our findings open a new pathway toward non-Hermitian dynamics, which will fertilize the study of non-equilibrium phases of matter.
Collapse
Affiliation(s)
- Zhen Li
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Li-Wei Wang
- School of Physical Science and Technology, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| | - Xulong Wang
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Zhi-Kang Lin
- School of Physical Science and Technology, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, China
| | - Guancong Ma
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
- Shenzhen Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518000, China.
| | - Jian-Hua Jiang
- School of Physical Science and Technology, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, China.
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China.
- Department of Modern Physics, School of Physical Sciences, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
17
|
Aifer M, Thingna J, Deffner S. Energetic Cost for Speedy Synchronization in Non-Hermitian Quantum Dynamics. PHYSICAL REVIEW LETTERS 2024; 133:020401. [PMID: 39073943 DOI: 10.1103/physrevlett.133.020401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 05/28/2024] [Indexed: 07/31/2024]
Abstract
Quantum synchronization is crucial for understanding complex dynamics and holds potential applications in quantum computing and communication. Therefore, assessing the thermodynamic resources required for finite-time synchronization in continuous-variable systems is a critical challenge. In the present work, we find these resources to be extensive for large systems. We also bound the speed of quantum and classical synchronization in coupled damped oscillators with non-Hermitian anti-PT-symmetric interactions, and show that the speed of synchronization is limited by the interaction strength relative to the damping. Compared to the classical limit, we find that quantum synchronization is slowed by the noncommutativity of the Hermitian and anti-Hermitian terms. Our general results could be tested experimentally, and we suggest an implementation in photonic systems.
Collapse
|
18
|
Yang K, Li Z, König JLK, Rødland L, Stålhammar M, Bergholtz EJ. Homotopy, symmetry, and non-Hermitian band topology. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:078002. [PMID: 38957897 DOI: 10.1088/1361-6633/ad4e64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/21/2024] [Indexed: 07/04/2024]
Abstract
Non-Hermitian matrices are ubiquitous in the description of nature ranging from classical dissipative systems, including optical, electrical, and mechanical metamaterials, to scattering of waves and open quantum many-body systems. Seminal line-gap and point-gap classifications of non-Hermitian systems using K-theory have deepened the understanding of many physical phenomena. However, ample systems remain beyond this description; reference points and lines do not in general distinguish whether multiple non-Hermitian bands exhibit intriguing exceptional points, spectral braids and crossings. To address this we consider two different notions: non-Hermitian band gaps and separation gaps that crucially encompass a broad class of multi-band scenarios, enabling the description of generic band structures with symmetries. With these concepts, we provide a unified and comprehensive classification of both gapped and nodal systems in the presence of physically relevant parity-time (PT) and pseudo-Hermitian symmetries using homotopy theory. This uncovers new stable topology stemming from both eigenvalues and wave functions, and remarkably also implies distinct fragile topological phases. In particular, we reveal different Abelian and non-Abelian phases inPT-symmetric systems, described by frame and braid topology. The corresponding invariants are robust to symmetry-preserving perturbations that do not induce (exceptional) degeneracy, and they also predict the deformation rules of nodal phases. We further demonstrate that spontaneousPTsymmetry breaking is captured by Chern-Euler and Chern-Stiefel-Whitney descriptions, a fingerprint of unprecedented non-Hermitian topology previously overlooked. These results open the door for theoretical and experimental exploration of a rich variety of novel topological phenomena in a wide range of physical platforms.
Collapse
Affiliation(s)
- Kang Yang
- Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Zhi Li
- Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
| | - J Lukas K König
- Department of Physics, Stockholm University, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Lukas Rødland
- Department of Physics, Stockholm University, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Marcus Stålhammar
- Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12, SE-106 91 Stockholm, Sweden
| | - Emil J Bergholtz
- Department of Physics, Stockholm University, AlbaNova University Center, 106 91 Stockholm, Sweden
| |
Collapse
|
19
|
Zhang Q, Leng Y, Xiong L, Li Y, Zhang K, Qi L, Qiu C. Construction and Observation of Flexibly Controllable High-Dimensional Non-Hermitian Skin Effects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403108. [PMID: 38748715 DOI: 10.1002/adma.202403108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/28/2024] [Indexed: 05/22/2024]
Abstract
Non-Hermitian skin effect (NHSE) is one of the most fundamental phenomena in non-Hermitian physics. It is established that 1D NHSE originates from the nontrivial spectral winding topology. However, the topological origin behind the higher-dimensional NHSE remains unclear, which poses a substantial challenge in constructing and manipulating high-dimensional NHSEs. Here, an intuitive bottom-to-top scheme to construct high-dimensional NHSEs is proposed, through assembling multiple independent 1D NHSEs. Not only the elusive high-dimensional NHSEs can be effectively predicted from the well-defined 1D spectral winding topologies, but also the high-dimensional generalized Brillouin zones can be directly synthesized from the 1D counterparts. As examples, two 2D nonreciprocal acoustic metamaterials are experimentally implemented to demonstrate highly controllable multi-polar NHSEs and hybrid skin-topological effects, where the sound fields can be frequency-selectively localized at any desired corners and boundaries. These results offer a practicable strategy for engineering high-dimensional NHSEs, which can boost advanced applications such as selective filters and directional amplifiers.
Collapse
Affiliation(s)
- Qicheng Zhang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Yufei Leng
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Liwei Xiong
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Yuzeng Li
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Kun Zhang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Liangjun Qi
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Chunyin Qiu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
20
|
Mao L, Yang F, Zhai H. Symmetry-preserving quadratic Lindbladian and dissipation driven topological transitions in Gaussian states. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:070501. [PMID: 38899363 DOI: 10.1088/1361-6633/ad44d4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/29/2024] [Indexed: 06/21/2024]
Abstract
The dynamical evolution of an open quantum system can be governed by the Lindblad equation of the density matrix. In this paper, we propose to characterize the density matrix topology by the topological invariant of its modular Hamiltonian. Since the topological classification of such Hamiltonians depends on their symmetry classes, a primary issue we address is determining the requirement for the Lindbladian operators, under which the modular Hamiltonian can preserve its symmetry class during the dynamical evolution. We solve this problem for the fermionic Gaussian state and for the modular Hamiltonian being a quadratic operator of a set of fermionic operators. When these conditions are satisfied, along with a nontrivial topological classification of the symmetry class of the modular Hamiltonian, a topological transition can occur as time evolves. We present two examples of dissipation-driven topological transitions where the modular Hamiltonian lies in the AIII class withU(1) symmetry and the DIII class withoutU(1) symmetry. By a finite size scaling, we show that this density matrix topology transition occurs at a finite time. We also present the physical signature of this transition.
Collapse
Affiliation(s)
- Liang Mao
- Institute for Advanced Study, Tsinghua University, Beijing 100084, People's Republic of China
| | - Fan Yang
- Institute for Advanced Study, Tsinghua University, Beijing 100084, People's Republic of China
| | - Hui Zhai
- Institute for Advanced Study, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
21
|
Xue P, Lin Q, Wang K, Xiao L, Longhi S, Yi W. Self acceleration from spectral geometry in dissipative quantum-walk dynamics. Nat Commun 2024; 15:4381. [PMID: 38782911 PMCID: PMC11116542 DOI: 10.1038/s41467-024-48815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
The dynamic behavior of a physical system often originates from its spectral properties. In open systems, where the effective non-Hermitian description enables a wealth of spectral structures in the complex plane, the concomitant dynamics are significantly enriched, whereas the identification and comprehension of the underlying connections are challenging. Here we experimentally demonstrate the correspondence between the transient self-acceleration of local excitations and the non-Hermitian spectral topology using lossy photonic quantum walks. Focusing first on one-dimensional quantum walks, we show that the measured short-time acceleration of the wave function is proportional to the area enclosed by the eigenspectrum. We then reveal a similar correspondence in two-dimension quantum walks, where the self-acceleration is proportional to the volume enclosed by the eigenspectrum in the complex parameter space. In both dimensions, the transient self-acceleration crosses over to a long-time behavior dominated by a constant flow at the drift velocity. Our results unveil the universal correspondence between spectral topology and transient dynamics, and offer a sensitive probe for phenomena in non-Hermitian systems that originate from spectral geometry.
Collapse
Affiliation(s)
- Peng Xue
- School of Physics, Southeast University, Nanjing, 211189, China.
| | - Quan Lin
- School of Physics, Southeast University, Nanjing, 211189, China
| | - Kunkun Wang
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei, 230601, China
| | - Lei Xiao
- School of Physics, Southeast University, Nanjing, 211189, China
| | - Stefano Longhi
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano, I-20133, Italy.
- IFISC (UIB-CSIC) Instituto de Fisica Interdisciplinar y Sistemas Complejos, Palma de Mallorca, E-07122, Spain.
| | - Wei Yi
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China.
- CAS Center For Excellence in Quantum Information and Quantum Physics, Hefei, 230026, China.
| |
Collapse
|
22
|
Lukyanets SP, Kliushnichenko OV. Nonequilibrium protection effect and spatial localization of noise-induced fluctuations: Quasi-one-dimensional driven lattice gas with partially penetrable obstacle. Phys Rev E 2024; 109:054103. [PMID: 38907458 DOI: 10.1103/physreve.109.054103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/08/2024] [Indexed: 06/24/2024]
Abstract
We consider a nonequilibrium transition that leads to the formation of nonlinear steady-state structures due to the gas flow scattering on a partially penetrable obstacle. The resulting nonequilibrium steady state (NESS) corresponds to a two-domain gas structure attained at certain critical parameters. We use a simple mean-field model of the driven lattice gas with ring topology to demonstrate that this transition is accompanied by the emergence of local invariants related to a complex composed of the obstacle and its nearest gas surrounding, which we refer to as obstacle edges. These invariants are independent of the main system parameters and behave as local first integrals, at least qualitatively. As a result, the complex becomes insensitive to the noise of external driving field within the overcritical domain. The emerged invariants describe the conservation of the number of particles inside the obstacle and strong temporal synchronization or correlation of gas states at obstacle edges. Such synchronization guarantees the equality to zero of the total edge current at any time. The robustness against external drive fluctuations is shown to be accompanied by strong spatial localization of induced gas fluctuations near the domain wall separating the depleted and dense gas phases. Such a behavior can be associated with nonequilibrium protection effect and synchronization of edges. The transition rates between different NESSs are shown to be different. The relaxation rates from one NESS to another take complex and real values in the sub- and overcritical regimes, respectively. The mechanism of these transitions is governed by the generation of shock waves at the back side of the obstacle. In the subcritical regime, these solitary waves are generated sequentially many times, while only a single excitation is sufficient to rearrange the system state in the overcritical regime.
Collapse
Affiliation(s)
- S P Lukyanets
- Department of Theoretical Physics, Institute of Physics, NAS of Ukraine, Prospect Nauky 46, 03028 Kyiv, Ukraine
| | - O V Kliushnichenko
- Department of Theoretical Physics, Institute of Physics, NAS of Ukraine, Prospect Nauky 46, 03028 Kyiv, Ukraine
| |
Collapse
|
23
|
Longhi S. Incoherent non-Hermitian skin effect in photonic quantum walks. LIGHT, SCIENCE & APPLICATIONS 2024; 13:95. [PMID: 38658541 PMCID: PMC11043335 DOI: 10.1038/s41377-024-01438-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
The non-Hermitian skin effect describes the concentration of an extensive number of eigenstates near the boundaries of certain dissipative systems. This phenomenon has raised a huge interest in different areas of physics, including photonics, deeply expanding our understanding of non-Hermitian systems and opening up new avenues in both fundamental and applied aspects of topological phenomena. The skin effect has been associated to a nontrivial point-gap spectral topology and has been experimentally demonstrated in a variety of synthetic matter systems, including photonic lattices. In most of physical models exhibiting the non-Hermitian skin effect full or partial wave coherence is generally assumed. Here we push the concept of skin effect into the fully incoherent regime and show that rather generally (but not universally) the non-Hermitian skin effect persists under dephasing dynamics. The results are illustrated by considering incoherent light dynamics in non-Hermitian photonic quantum walks.
Collapse
Affiliation(s)
- Stefano Longhi
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, I-20133, Milano, Italy.
- IFISC (UIB-CSIC), Instituto de Fisica Interdisciplinar y Sistemas Complejos, E-07122, Palma de Mallorca, Spain.
| |
Collapse
|
24
|
Nakamura D, Bessho T, Sato M. Bulk-Boundary Correspondence in Point-Gap Topological Phases. PHYSICAL REVIEW LETTERS 2024; 132:136401. [PMID: 38613277 DOI: 10.1103/physrevlett.132.136401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 01/18/2024] [Accepted: 02/27/2024] [Indexed: 04/14/2024]
Abstract
A striking feature of non-Hermitian systems is the presence of two different types of topology. One generalizes Hermitian topological phases, and the other is intrinsic to non-Hermitian systems, which are called line-gap topology and point-gap topology, respectively. Whereas the bulk-boundary correspondence is a fundamental principle in the former topology, its role in the latter has not been clear yet. This Letter establishes the bulk-boundary correspondence in the point-gap topology in non-Hermitian systems. After revealing the requirement for point-gap topology in the open boundary conditions, we clarify that the bulk point-gap topology in open boundary conditions can be different from that in periodic boundary conditions. On the basis of real space topological invariants and the K theory, we give a complete classification of the open boundary point-gap topology with symmetry and show that the nontrivial open boundary topology results in robust and exotic surface states.
Collapse
Affiliation(s)
- Daichi Nakamura
- Center for Gravitational Physics and Quantum Information, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
| | - Takumi Bessho
- Corporate Research and Development Center, Toshiba Corporation, Kawasaki, Japan
| | - Masatoshi Sato
- Center for Gravitational Physics and Quantum Information, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
25
|
Begg SE, Hanai R. Quantum Criticality in Open Quantum Spin Chains with Nonreciprocity. PHYSICAL REVIEW LETTERS 2024; 132:120401. [PMID: 38579202 DOI: 10.1103/physrevlett.132.120401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/26/2023] [Accepted: 02/20/2024] [Indexed: 04/07/2024]
Abstract
We investigate the impact of nonreciprocity on universality and critical phenomena in open quantum interacting many-body systems. Nonreciprocal open quantum systems often have an exotic spectral sensitivity to boundary conditions, known as the Liouvillian skin effect (LSE). By considering an open quantum XXZ spin chain that exhibits LSE, we demonstrate the existence of a universal scaling regime that is not affected by the presence of the LSE. We resolve the critical exponents, which differ from those of free fermions, via tensor network methods and demonstrate that observables exhibit a universal scaling collapse, irrespective of the reciprocity. We find that the LSE only becomes relevant when a healing length scale ξ_{heal} at the system's edge (which is different from the localization length of the eigenstate of the Liouvillian) exceeds the system size, allowing edge properties to dominate the physics. We expect this result to be a generic feature of nonreciprocal models in the vicinity of a critical point. The driven-dissipative quantum criticality we observe has no classical analog and stems from the existence of multiple dark states.
Collapse
Affiliation(s)
- Samuel E Begg
- Asia Pacific Center for Theoretical Physics, Pohang 37673, Korea
| | - Ryo Hanai
- Asia Pacific Center for Theoretical Physics, Pohang 37673, Korea
- Center for Gravitational Physics and Quantum Information, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
26
|
Yu XJ, Pan Z, Xu L, Li ZX. Non-Hermitian Strongly Interacting Dirac Fermions. PHYSICAL REVIEW LETTERS 2024; 132:116503. [PMID: 38563924 DOI: 10.1103/physrevlett.132.116503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/22/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
Exotic quantum phases and phase transition in the strongly interacting Dirac systems have attracted tremendous interests. On the other hand, non-Hermitian physics, usually associated with dissipation arising from the coupling to environment, emerges as a frontier of modern physics in recent years. In this Letter, we investigate the interplay between non-Hermitian physics and strong correlation in Dirac-fermion systems. We generalize the projector quantum Monte-Carlo (PQMC) algorithm to the non-Hermitian interacting fermionic systems. Employing PQMC simulation, we decipher the ground-state phase diagram of the honeycomb Hubbard model with spin resolved non-Hermitian asymmetric hopping processes. The antiferromagnetic (AFM) ordering induced by Hubbard interaction is enhanced by the non-Hermitian asymmetric hopping. Combining PQMC simulation and renormalization group analysis, we reveal that the quantum phase transition between Dirac semi-metal and AFM phases belongs to Hermitian chiral XY universality class, implying that a Hermitian Gross-Neveu transition is emergent at the quantum critical point although the model is non-Hermitian.
Collapse
Affiliation(s)
- Xue-Jia Yu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Fujian Key Laboratory of Quantum Information and Quantum Optics, College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhiming Pan
- Department of Physics, School of Science, Westlake University, Hangzhou 310030, China
- Institute for Theoretical Sciences, Westlake University, Hangzhou 310024, China
| | - Limei Xu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China
| | - Zi-Xiang Li
- Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Kawabata K, Sohal R, Ryu S. Lieb-Schultz-Mattis Theorem in Open Quantum Systems. PHYSICAL REVIEW LETTERS 2024; 132:070402. [PMID: 38427890 DOI: 10.1103/physrevlett.132.070402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/26/2023] [Accepted: 01/18/2024] [Indexed: 03/03/2024]
Abstract
The Lieb-Schultz-Mattis (LSM) theorem provides a general constraint on quantum many-body systems and plays a significant role in the Haldane gap phenomena and topological phases of matter. Here, we extend the LSM theorem to open quantum systems and establish a general theorem that restricts the steady state and spectral gap of Liouvillians based solely on symmetry. Specifically, we demonstrate that the unique gapped steady state is prohibited when translation invariance and U(1) symmetry are simultaneously present for noninteger filling numbers. As an illustrative example, we find that no dissipative gap is open in the spin-1/2 dissipative Heisenberg model, while a dissipative gap can be open in the spin-1 counterpart-an analog of the Haldane gap phenomena in open quantum systems. Furthermore, we show that the LSM constraint manifests itself in a quantum anomaly of the dissipative form factor of Liouvillians. We also find the LSM constraints due to symmetry intrinsic to open quantum systems, such as Kubo-Martin-Schwinger symmetry. Our work leads to a unified understanding of phases and phenomena in open quantum systems.
Collapse
Affiliation(s)
- Kohei Kawabata
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Ramanjit Sohal
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Shinsei Ryu
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
28
|
Sun Y, Hou X, Wan T, Wang F, Zhu S, Ruan Z, Yang Z. Photonic Floquet Skin-Topological Effect. PHYSICAL REVIEW LETTERS 2024; 132:063804. [PMID: 38394569 DOI: 10.1103/physrevlett.132.063804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/18/2024] [Indexed: 02/25/2024]
Abstract
Non-Hermitian skin effect and photonic topological edge states are of great interest in non-Hermitian physics and optics. However, the interplay between them is largely unexplored. Here, we propose and demonstrate experimentally the non-Hermitian skin effect constructed from the nonreciprocal flow of Floquet topological edge states, which can be dubbed "Floquet skin-topological effect." We first show the non-Hermitian skin effect can be induced by structured loss when the one-dimensional (1D) system is periodically driven. Next, based on a two-dimensional (2D) Floquet topological photonic lattice with structured loss, we investigate the interaction between the non-Hermiticity and the topological edge states. We observe that all the one-way edge states are imposed onto specific corners, featuring both the non-Hermitian skin effect and topological edge states. Furthermore, a topological switch for the skin-topological effect is presented by utilizing the phase-transition mechanism. Our experiment paves the way for realizing non-Hermitian topological effects in nonlinear and quantum regimes.
Collapse
Affiliation(s)
- Yeyang Sun
- School of Physics and Zhejiang Province Key Laboratory of Quantum Technology and Device, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
| | - Xiangrui Hou
- School of Physics and Zhejiang Province Key Laboratory of Quantum Technology and Device, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
| | - Tuo Wan
- School of Physics and Zhejiang Province Key Laboratory of Quantum Technology and Device, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
| | - Fangyu Wang
- School of Physics and Zhejiang Province Key Laboratory of Quantum Technology and Device, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
| | - Shiyao Zhu
- School of Physics and Zhejiang Province Key Laboratory of Quantum Technology and Device, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
- State Key Laboratory for Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou 310027, China
| | - Zhichao Ruan
- School of Physics and Zhejiang Province Key Laboratory of Quantum Technology and Device, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
- State Key Laboratory for Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou 310027, China
| | - Zhaoju Yang
- School of Physics and Zhejiang Province Key Laboratory of Quantum Technology and Device, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
| |
Collapse
|
29
|
Hegde SS, Ehmcke T, Meng T. Edge-Selective Extremal Damping from Topological Heritage of Dissipative Chern Insulators. PHYSICAL REVIEW LETTERS 2023; 131:256601. [PMID: 38181369 DOI: 10.1103/physrevlett.131.256601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/02/2023] [Accepted: 11/14/2023] [Indexed: 01/07/2024]
Abstract
One of the most important practical hallmarks of topological matter is the presence of topologically protected, exponentially localized edge states at interfaces of regions characterized by unequal topological invariants. Here, we show that, even when driven far from their equilibrium ground state, Chern insulators can inherit topological edge features from their parent Hamiltonian. In particular, we show that the asymptotic long-time approach of the nonequilibrium steady state, governed by a Lindblad master equation, can exhibit edge-selective extremal damping. This phenomenon derives from edge states of non-Hermitian extensions of the parent Chern insulator Hamiltonian. The combination of (non-Hermitian) topology and dissipation hence allows one to design topologically robust, spatially localized damping patterns.
Collapse
Affiliation(s)
- Suraj S Hegde
- Institute of Theoretical Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany
| | - Toni Ehmcke
- Institute of Theoretical Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany
| | - Tobias Meng
- Institute of Theoretical Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
30
|
Wan T, Zhang K, Li J, Yang Z, Yang Z. Observation of the geometry-dependent skin effect and dynamical degeneracy splitting. Sci Bull (Beijing) 2023; 68:2330-2335. [PMID: 37741745 DOI: 10.1016/j.scib.2023.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/11/2023] [Accepted: 09/05/2023] [Indexed: 09/25/2023]
Abstract
The non-Hermitian skin effect is a distinctive phenomenon in non-Hermitian systems, which manifests as the anomalous localization of bulk states at the boundary. To understand the physical origin of the non-Hermitian skin effect, a bulk band characterization based on the dynamical degeneracy on an equal frequency contour is proposed, which reflects the strong anisotropy of the spectral function. In this paper, we report the experimental observation of a newly-discovered geometry-dependent non-Hermitian skin effect and dynamical degeneracy splitting in a two-dimensional acoustic crystal and reveal their remarkable correspondence by performing single-frequency excitation measurements. Our work not only provides a controllable experimental platform for studying the non-Hermitian physics, but also confirms the unique correspondence between the non-Hermitian skin effect and the dynamical degeneracy splitting, paving a new way to characterize the non-Hermitian skin effect.
Collapse
Affiliation(s)
- Tuo Wan
- School of Physics, Interdisciplinary Center for Quantum Information, Zhejiang Province Key Laboratory of Quantum Technology and Device, Zhejiang University, Hangzhou 310027, China
| | - Kai Zhang
- Department of Physics, University of Michigan Ann Arbor, Ann Arbor 48105, USA
| | - Junkai Li
- School of Physics, Interdisciplinary Center for Quantum Information, Zhejiang Province Key Laboratory of Quantum Technology and Device, Zhejiang University, Hangzhou 310027, China
| | - Zhesen Yang
- Department of Physics, Xiamen University, Xiamen 361005, China.
| | - Zhaoju Yang
- School of Physics, Interdisciplinary Center for Quantum Information, Zhejiang Province Key Laboratory of Quantum Technology and Device, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
31
|
Chu CG, Chen JJ, Wang AQ, Tan ZB, Li CZ, Li C, Brinkman A, Xiang PZ, Li N, Pan ZC, Lu HZ, Yu D, Liao ZM. Broad and colossal edge supercurrent in Dirac semimetal Cd 3As 2 Josephson junctions. Nat Commun 2023; 14:6162. [PMID: 37788988 PMCID: PMC10547728 DOI: 10.1038/s41467-023-41815-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
Edge supercurrent has attracted great interest recently due to its crucial role in achieving and manipulating topological superconducting states. Proximity-induced superconductivity has been realized in quantum Hall and quantum spin Hall edge states, as well as in higher-order topological hinge states. Non-Hermitian skin effect, the aggregation of non-Bloch eigenstates at open boundaries, promises an abnormal edge channel. Here we report the observation of broad edge supercurrent in Dirac semimetal Cd3As2-based Josephson junctions. The as-grown Cd3As2 nanoplates are electron-doped by intrinsic defects, which enhance the non-Hermitian perturbations. The superconducting quantum interference indicates edge supercurrent with a width of ~1.6 μm and a magnitude of ~1 μA at 10 mK. The wide and large edge supercurrent is inaccessible for a conventional edge system and suggests the presence of non-Hermitian skin effect. A supercurrent nonlocality is also observed. The interplay between band topology and non-Hermiticity is beneficial for exploiting exotic topological matter.
Collapse
Affiliation(s)
- Chun-Guang Chu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871, Beijing, China
| | - Jing-Jing Chen
- Shenzhen Institute for Quantum Science and Engineering, Department of Physics, Southern University of Science and Technology, 518055, Shenzhen, China
- International Quantum Academy, 518048, Shenzhen, China
| | - An-Qi Wang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871, Beijing, China.
| | - Zhen-Bing Tan
- Shenzhen Institute for Quantum Science and Engineering, Department of Physics, Southern University of Science and Technology, 518055, Shenzhen, China.
- International Quantum Academy, 518048, Shenzhen, China.
| | - Cai-Zhen Li
- Shenzhen Institute for Quantum Science and Engineering, Department of Physics, Southern University of Science and Technology, 518055, Shenzhen, China
- International Quantum Academy, 518048, Shenzhen, China
| | - Chuan Li
- MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Alexander Brinkman
- MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Peng-Zhan Xiang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871, Beijing, China
| | - Na Li
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871, Beijing, China
| | - Zhen-Cun Pan
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871, Beijing, China
| | - Hai-Zhou Lu
- Shenzhen Institute for Quantum Science and Engineering, Department of Physics, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Dapeng Yu
- Shenzhen Institute for Quantum Science and Engineering, Department of Physics, Southern University of Science and Technology, 518055, Shenzhen, China
- International Quantum Academy, 518048, Shenzhen, China
- Hefei National Laboratory, 230088, Hefei, China
| | - Zhi-Min Liao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871, Beijing, China.
- Hefei National Laboratory, 230088, Hefei, China.
| |
Collapse
|
32
|
Zhou L, Zhang DJ. Non-Hermitian Floquet Topological Matter-A Review. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1401. [PMID: 37895522 PMCID: PMC10606436 DOI: 10.3390/e25101401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
The past few years have witnessed a surge of interest in non-Hermitian Floquet topological matter due to its exotic properties resulting from the interplay between driving fields and non-Hermiticity. The present review sums up our studies on non-Hermitian Floquet topological matter in one and two spatial dimensions. We first give a bird's-eye view of the literature for clarifying the physical significance of non-Hermitian Floquet systems. We then introduce, in a pedagogical manner, a number of useful tools tailored for the study of non-Hermitian Floquet systems and their topological properties. With the aid of these tools, we present typical examples of non-Hermitian Floquet topological insulators, superconductors, and quasicrystals, with a focus on their topological invariants, bulk-edge correspondences, non-Hermitian skin effects, dynamical properties, and localization transitions. We conclude this review by summarizing our main findings and presenting our vision of future directions.
Collapse
Affiliation(s)
- Longwen Zhou
- College of Physics and Optoelectronic Engineering, Ocean University of China, Qingdao 266100, China
- Key Laboratory of Optics and Optoelectronics, Qingdao 266100, China
- Engineering Research Center of Advanced Marine Physical Instruments and Equipment of MOE, Qingdao 266100, China
| | - Da-Jian Zhang
- Department of Physics, Shandong University, Jinan 250100, China
| |
Collapse
|
33
|
Jiang H, Lee CH. Dimensional Transmutation from Non-Hermiticity. PHYSICAL REVIEW LETTERS 2023; 131:076401. [PMID: 37656848 DOI: 10.1103/physrevlett.131.076401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 03/18/2023] [Accepted: 07/25/2023] [Indexed: 09/03/2023]
Abstract
Dimensionality plays a fundamental role in the classification of novel phases and their responses. In generic lattices of 2D and beyond, however, we found that non-Hermitian couplings do not merely distort the Brillouin zone (BZ), but can in fact alter its effective dimensionality. This is due to the fundamental noncommutativity of multidimensional non-Hermitian pumping, which obstructs the usual formation of a generalized complex BZ. As such, basis states are forced to assume "entangled" profiles that are orthogonal in a lower dimensional effective BZ, completely divorced from any vestige of lattice Bloch states unlike conventional skin states. Characterizing this reduced dimensionality is an emergent winding number intimately related to the homotopy of noncontractible spectral paths. We illustrate this dimensional transmutation through a 2D model whose topological zero modes are protected by a 1D, not 2D, topological invariant. Our findings can be readily demonstrated via the bulk properties of nonreciprocally coupled platforms such as circuit arrays, and provokes us to rethink the fundamental role of geometric obstruction in the dimensional classification of topological states.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Physics, National University of Singapore, Singapore 117551, Republic of Singapore
| | - Ching Hua Lee
- Department of Physics, National University of Singapore, Singapore 117551, Republic of Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
34
|
Zhou Q, Wu J, Pu Z, Lu J, Huang X, Deng W, Ke M, Liu Z. Observation of geometry-dependent skin effect in non-Hermitian phononic crystals with exceptional points. Nat Commun 2023; 14:4569. [PMID: 37516772 PMCID: PMC10387049 DOI: 10.1038/s41467-023-40236-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/19/2023] [Indexed: 07/31/2023] Open
Abstract
Exceptional points and skin effect, as the two distinct hallmark features unique to the non-Hermitian physics, have each attracted enormous interests. Recent theoretical works reveal that the topologically nontrivial exceptional points can guarantee the non-Hermitian skin effect, which is geometry-dependent, relating these two unique phenomena. However, such novel relation remains to be confirmed by experiments. Here, we realize a non-Hermitian phononic crystal with exceptional points, which exhibits the geometry-dependent skin effect. The exceptional points connected by the bulk Fermi arcs, and the skin effects with the geometry dependence, are evidenced in simulations and experiments. Our work, building an experimental bridge between the exceptional points and skin effect and uncovering the unconventional geometry-dependent skin effect, expands a horizon in non-Hermitian physics.
Collapse
Affiliation(s)
- Qiuyan Zhou
- Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Jien Wu
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Zhenhang Pu
- Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Jiuyang Lu
- Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Xueqin Huang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Weiyin Deng
- Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong, 510640, China.
| | - Manzhu Ke
- Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
| | - Zhengyou Liu
- Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
35
|
Zhang K, Fang C, Yang Z. Dynamical Degeneracy Splitting and Directional Invisibility in Non-Hermitian Systems. PHYSICAL REVIEW LETTERS 2023; 131:036402. [PMID: 37540867 DOI: 10.1103/physrevlett.131.036402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/28/2023] [Accepted: 06/21/2023] [Indexed: 08/06/2023]
Abstract
In this Letter, we introduce the concept of dynamical degeneracy splitting to describe the anisotropic decay behaviors in non-Hermitian systems. We demonstrate that systems with dynamical degeneracy splitting exhibit two distinctive features: (i) the system shows frequency-resolved non-Hermitian skin effect; (ii) Green's function exhibits anomalous behavior at given frequency, leading to uneven broadening in spectral function and anomalous scattering. As an application, we propose directional invisibility based on wave packet dynamics to investigate the geometry-dependent skin effect in higher dimensions. Our work elucidates a faithful correspondence between non-Hermitian skin effect and Green's function, offering a guiding principle for exploration of novel physical phenomena emerging from this effect.
Collapse
Affiliation(s)
- Kai Zhang
- Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Chen Fang
- Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Kavli Institute for Theoretical Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhesen Yang
- Kavli Institute for Theoretical Sciences, Chinese Academy of Sciences, Beijing 100190, China
- Department of Physics, Xiamen University, Xiamen 361005, Fujian Province, China
| |
Collapse
|
36
|
Feng Y, Liu Z, Liu F, Yu J, Liang S, Li F, Zhang Y, Xiao M, Zhang Z. Loss Difference Induced Localization in a Non-Hermitian Honeycomb Photonic Lattice. PHYSICAL REVIEW LETTERS 2023; 131:013802. [PMID: 37478430 DOI: 10.1103/physrevlett.131.013802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/25/2023] [Indexed: 07/23/2023]
Abstract
Non-Hermitian systems with complex-valued energy spectra provide an extraordinary platform for manipulating unconventional dynamics of light. Here, we demonstrate the localization of light in an instantaneously reconfigurable non-Hermitian honeycomb photonic lattice that is established in a coherently prepared atomic system. One set of the sublattices is optically modulated to introduce the absorptive difference between neighboring lattice sites, where the Dirac points in reciprocal space are extended into dispersionless local flat bands, with two shared eigenstates: low-loss (high-loss) one with fields confined at sublattice B (A). When these local flat bands are broad enough due to larger loss difference, the incident beam with its tangential wave vector being at the K point in reciprocal space is effectively localized at sublattice B with weaker absorption, namely, the commonly seen power exchange between adjacent channels in photonic lattices is effectively prohibited. The current work unlocks a new capability from non-Hermitian two-dimensional photonic lattices and provides an alternative route for engineering tunable local flat bands in photonic structures.
Collapse
Affiliation(s)
- Yuan Feng
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhenzhi Liu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Fu Liu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiawei Yu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shun Liang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Feng Li
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yanpeng Zhang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Min Xiao
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
- National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
| | - Zhaoyang Zhang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
37
|
Han Y, Meng C, Pan H, Qian J, Rao Z, Zhu L, Gui Y, Hu CM, An Z. Bound chiral magnonic polariton states for ideal microwave isolation. SCIENCE ADVANCES 2023; 9:eadg4730. [PMID: 37418518 PMCID: PMC11801365 DOI: 10.1126/sciadv.adg4730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/05/2023] [Indexed: 07/09/2023]
Abstract
Bound states in the continuum (BICs) present a unique solution for eliminating radiation loss. So far, most reported BICs are observed in transmission spectra, with only a few exceptions being in reflection spectra. The correlation between reflection BICs (r-BICs) and transmission BICs (t-BICs) remains unclear. Here, we report the presence of both r-BICs and t-BICs in a three-mode cavity magnonics. We develop a generalized framework of non-Hermitian scattering Hamiltonians to explain the observed bidirectional r-BICs and unidirectional t-BICs. In addition, we find the emergence of an ideal isolation point in the complex frequency plane, where the isolation direction can be switched by fine frequency detuning, thanks to chiral symmetry protection. Our results demonstrate the potential of cavity magnonics and also extend the conventional BICs theory through the application of a more generalized effective Hamiltonians theory. This work offers an alternative idea for designing functional devices in general wave optics.
Collapse
Affiliation(s)
- Youcai Han
- State Key Laboratory of Surface Physics, Institute of Nanoelectronic Devices and Quantum Computing, Department of Physics, Fudan University, Shanghai 200433, China
| | - Changhao Meng
- State Key Laboratory of Surface Physics, Institute of Nanoelectronic Devices and Quantum Computing, Department of Physics, Fudan University, Shanghai 200433, China
| | - Hong Pan
- State Key Laboratory of Surface Physics, Institute of Nanoelectronic Devices and Quantum Computing, Department of Physics, Fudan University, Shanghai 200433, China
| | - Jie Qian
- State Key Laboratory of Surface Physics, Institute of Nanoelectronic Devices and Quantum Computing, Department of Physics, Fudan University, Shanghai 200433, China
| | - Zejin Rao
- State Key Laboratory of Surface Physics, Institute of Nanoelectronic Devices and Quantum Computing, Department of Physics, Fudan University, Shanghai 200433, China
| | - Liping Zhu
- State Key Laboratory of Surface Physics, Institute of Nanoelectronic Devices and Quantum Computing, Department of Physics, Fudan University, Shanghai 200433, China
| | - Yongsheng Gui
- Department of Physics and Astronomy, University of Manitoba, Winnipeg R3T 2N2, Canada
| | - Can-Ming Hu
- Department of Physics and Astronomy, University of Manitoba, Winnipeg R3T 2N2, Canada
| | - Zhenghua An
- State Key Laboratory of Surface Physics, Institute of Nanoelectronic Devices and Quantum Computing, Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, 41st Floor, AI Tower, No. 701 Yunjin Road, Xuhui District, Shanghai, 200232, China
- Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201210, China
- Yiwu Research Institute of Fudan University, Chengbei Road, Yiwu City, 322000 Zhejiang, China
| |
Collapse
|
38
|
Yan Q, Zhao B, Zhou R, Ma R, Lyu Q, Chu S, Hu X, Gong Q. Advances and applications on non-Hermitian topological photonics. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:2247-2271. [PMID: 39633755 PMCID: PMC11501638 DOI: 10.1515/nanoph-2022-0775] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/28/2023] [Indexed: 12/07/2024]
Abstract
Non-Hermitian photonics and topological photonics, as new research fields in optics, have attracted much attention in recent years, accompanying by a great deal of new physical concepts and novel effects emerging. The two fields are gradually crossed during the development process and the non-Hermitian topological photonics was born. Non-Hermitian topological photonics not only constantly produces various novel physical effects, but also shows great potential in optical device applications. It becomes an important part of the modern physics and optics, penetrating into different research fields. On one hand, photonics system can introduce artificially-constructed gain and loss to study non-Hermitian physics. Photonics platform is an important methods and ways to verify novel physical phenomena and promote the development of non-Hermitian physics. On the other hand, the non-Hermitian topological photonics provides a new dimension for manipulating topological states. Active and dissipate materials are common in photonic systems; therefore, by using light pump and dissipation of photonic systems, it is expected to promote further development of topological photonics in device applications. In this review article, we focus on the recent advances and applications on non-Hermitian topological photonics, including the non-Hermitian topological phase transition and skin effect, as well as the applications emerging prosperously in reconfigurable, nonlinear and quantum optical systems. The possible future research directions of non-Hermitian topological photonics are also discussed at the end. Non-Hermitian topological photonics can have great potential in technological revolution and have the capacity of leading the development of both physics and technology industry.
Collapse
Affiliation(s)
- Qiuchen Yan
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-Optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing100871, P. R. China
| | - Boheng Zhao
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-Optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing100871, P. R. China
| | - Rong Zhou
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing100081, P. R. China
| | - Rui Ma
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-Optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing100871, P. R. China
| | - Qinghong Lyu
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-Optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing100871, P. R. China
| | - Saisai Chu
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-Optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing100871, P. R. China
| | - Xiaoyong Hu
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-Optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing100871, P. R. China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu226010, P. R. China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi030006, P. R. China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-Optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing100871, P. R. China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu226010, P. R. China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi030006, P. R. China
| |
Collapse
|
39
|
Wan LL, Lü XY. Quantum-Squeezing-Induced Point-Gap Topology and Skin Effect. PHYSICAL REVIEW LETTERS 2023; 130:203605. [PMID: 37267552 DOI: 10.1103/physrevlett.130.203605] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/21/2023] [Indexed: 06/04/2023]
Abstract
We theoretically predict the squeezing-induced point-gap topology together with a symmetry-protected Z_{2} "skin effect" in a one-dimensional (1D) quadratic-bosonic system. Protected by a time-reversal symmetry, such a topology is associated with a novel Z_{2} invariant (similar to quantum spin-Hall insulators), which is fully capable of characterizing the occurrence of the Z_{2} skin effect. Focusing on zero energy, the parameter regime of this skin effect in the phase diagram just corresponds to a "real- and point-gap coexisting topological phase." Moreover, this phase associated with the symmetry-protected Z_{2} skin effect is experimentally observable by detecting the steady-state power spectral density. Our Letter is of fundamental interest in enriching non-Bloch topological physics by introducing quantum squeezing and has potential applications for the engineering of symmetry-protected sensors based on the Z_{2} skin effect.
Collapse
Affiliation(s)
- Liang-Liang Wan
- School of Physics and Institute for Quantum Science and Engineering, Huzhong University of Science and Technology, Wuhan 430074, China and Wuhan Institute of Quantum Technology, Wuhan 430074, China
| | - Xin-You Lü
- School of Physics and Institute for Quantum Science and Engineering, Huzhong University of Science and Technology, Wuhan 430074, China and Wuhan Institute of Quantum Technology, Wuhan 430074, China
| |
Collapse
|
40
|
Higher rank chirality and non-Hermitian skin effect in a topolectrical circuit. Nat Commun 2023; 14:720. [PMID: 36759623 PMCID: PMC9911780 DOI: 10.1038/s41467-023-36130-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
While chirality imbalances are forbidden in conventional lattice systems, non-Hermiticity can effectively avoid the chiral-doubling theorem to facilitate 1D chiral dynamics. Indeed, such systems support unbalanced unidirectional flows that can lead to the localization of an extensive number of states at the boundary, known as the non-Hermitian skin effect (NHSE). Recently, a generalized (rank-2) chirality describing a 2D robust gapless mode with dispersion ω = kxky has been introduced in crystalline systems. Here we demonstrate that rank-2 chirality imbalances can be established in a non-Hermitian (NH) lattice system leading to momentum-resolved chiral dynamics, and a rank-2 NHSE where there are both edge- and corner-localized skin modes. We then experimentally test this phenomenology in a 2-dimensional topolectric circuit that implements a NH Hamiltonian with a long-lived rank-2 chiral mode. Using impedance measurements, we confirm the rank-2 NHSE in this system, and its manifestation in the predicted skin modes and a highly unusual momentum-position locking response. Our investigation demonstrates a circuit-based path to exploring higher-rank chiral physics, with potential applications in systems where momentum resolution is necessary, e.g., in beamformers and non-reciprocal devices.
Collapse
|
41
|
Zhang ZQ, Liu H, Liu H, Jiang H, Xie XC. Bulk-boundary correspondence in disordered non-Hermitian systems. Sci Bull (Beijing) 2023; 68:157-164. [PMID: 36653216 DOI: 10.1016/j.scib.2023.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/15/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023]
Abstract
The bulk-boundary correspondence (BBC) refers to the consistency between eigenvalues calculated under open and periodic boundary conditions. This consistency can be destroyed in systems with non-Hermitian skin effect (NHSE). In spite of the great success of the generalized Brillouin zone (GBZ) theory in clean non-Hermitian systems, the applicability of GBZ theory is questionable when the translational symmetry is broken. Thus, it is of great value to rebuild the BBC for disordered samples, which extends the application of GBZ theory in non-Hermitian systems. Here, we propose a scheme to reconstruct BBC, which can be regarded as the solution of an optimization problem. By solving the optimization problem analytically, we reconstruct the BBC and obtain the modified GBZ theory in several prototypical disordered non-Hermitian models. The modified GBZ theory provides a precise description of the fantastic NHSE, which predicts the asynchronous-disorder-reversed NHSE's directions.
Collapse
Affiliation(s)
- Zhi-Qiang Zhang
- School of Physical Science and Technology, Soochow University, Suzhou 215006, China; Institute for Advanced Study, Soochow University, Suzhou 215006, China
| | - Hongfang Liu
- School of Physical Science and Technology, Soochow University, Suzhou 215006, China; Institute for Advanced Study, Soochow University, Suzhou 215006, China
| | - Haiwen Liu
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Hua Jiang
- School of Physical Science and Technology, Soochow University, Suzhou 215006, China; Institute for Advanced Study, Soochow University, Suzhou 215006, China.
| | - X C Xie
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China; CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
42
|
Soori A, Sivakumar M, Subrahmanyam V. Transmission across non-HermitianPT-symmetric quantum dots and ladders. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 35:055301. [PMID: 36395507 DOI: 10.1088/1361-648x/aca3ec] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
A non-Hermitian (NH) region connected to semi-infinite Hermitian lattices acts either as a source or as a sink and the probability current is not conserved in a scattering typically. Even aPT-symmetric region that contains both a source and a sink does not lead to current conservation plainly. We propose a model and study the scattering across a NHPT-symmetric two-level quantum dot (QD) connected to two semi-infinite one-dimensional lattices in a special way so that the probability current is conserved. Aharonov-Bohm type phases are included in the model, which arise from magnetic fluxes (ℏϕL/e, ℏϕR/e) through two loops in the system. We show that whenϕL=ϕR, the probability current is conserved. We find that the transmission across the QD can be perfect in thePT-unbroken phase (corresponding to real eigenenergies of the isolated QD) whereas the transmission is never perfect in thePT-broken phase (corresponding to purely imaginary eigenenergies of the QD). The two transmission peaks have the same width only for special values of the fluxes (being odd multiples ofπℏ/2e). In the broken phase, the transmission peak is surprisingly not at zero energy. We give an insight into this feature through a four-site toy model. We extend the model to aPT-symmetric ladder connected to two semi-infinite lattices. We show that the transmission is perfect in unbroken phase of the ladder due to Fabry-Pérot type interference, that can be controlled by tuning the chemical potential. In the broken phase of the ladder, the transmission is substantially suppressed.
Collapse
Affiliation(s)
- Abhiram Soori
- School of Physics, University of Hyderabad, C. R. Rao Road, Gachibowli, Hyderabad 500046, India
| | - M Sivakumar
- School of Physics, University of Hyderabad, C. R. Rao Road, Gachibowli, Hyderabad 500046, India
| | - V Subrahmanyam
- School of Physics, University of Hyderabad, C. R. Rao Road, Gachibowli, Hyderabad 500046, India
| |
Collapse
|
43
|
Li Y, Cao Y, Chen Y, Yang X. Universal characteristics of one-dimensional non-Hermitian superconductors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 35:055401. [PMID: 36410037 DOI: 10.1088/1361-648x/aca4b4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
We establish a non-Bloch band theory for one-dimensional(1D) non-Hermitian topological superconductors. The universal physical properties of non-Hermitian topological superconductors are revealed based on the theory. According to the particle-hole symmetry, there exist reciprocal particle and hole loops of generalized Brillouin zone. The critical point of quantum phase transition, where the energy gap closes, appears when the particle and hole loops intersect at Bloch points. If the non-Hermitian system has non-Hermitian skin effects, the non-Hermitian skin effect should be theZ2skin effect: the corresponding eigenstates of particle and hole localize at opposite ends of an open chain, respectively. The non-Bloch band theory is applied to two examples, non-Hermitianp- ands-wave topological superconductors. In terms of Majorana Pfaffian, aZ2non-Bloch topological invariant is defined to establish the non-Hermitian bulk-boundary correspondence for the non-Hermitian topological superconductors.
Collapse
Affiliation(s)
- Yang Li
- Department of Physics, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yang Cao
- Department of Physics, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yuanping Chen
- Department of Physics, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xiaosen Yang
- Department of Physics, Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
44
|
Shang C, Liu S, Shao R, Han P, Zang X, Zhang X, Salama KN, Gao W, Lee CH, Thomale R, Manchon A, Zhang S, Cui TJ, Schwingenschlögl U. Experimental Identification of the Second-Order Non-Hermitian Skin Effect with Physics-Graph-Informed Machine Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202922. [PMID: 36372546 PMCID: PMC9799024 DOI: 10.1002/advs.202202922] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/13/2022] [Indexed: 06/16/2023]
Abstract
Topological phases of matter are conventionally characterized by the bulk-boundary correspondence in Hermitian systems. The topological invariant of the bulk in d dimensions corresponds to the number of (d - 1)-dimensional boundary states. By extension, higher-order topological insulators reveal a bulk-edge-corner correspondence, such that nth order topological phases feature (d - n)-dimensional boundary states. The advent of non-Hermitian topological systems sheds new light on the emergence of the non-Hermitian skin effect (NHSE) with an extensive number of boundary modes under open boundary conditions. Still, the higher-order NHSE remains largely unexplored, particularly in the experiment. An unsupervised approach-physics-graph-informed machine learning (PGIML)-to enhance the data mining ability of machine learning with limited domain knowledge is introduced. Through PGIML, the second-order NHSE in a 2D non-Hermitian topoelectrical circuit is experimentally demonstrated. The admittance spectra of the circuit exhibit an extensive number of corner skin modes and extreme sensitivity of the spectral flow to the boundary conditions. The violation of the conventional bulk-boundary correspondence in the second-order NHSE implies that modification of the topological band theory is inevitable in higher dimensional non-Hermitian systems.
Collapse
Affiliation(s)
- Ce Shang
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division (PSE), Thuwal, 23955-6900, Saudi Arabia
| | - Shuo Liu
- State Key Laboratory of Millimeter Waves, Southeast University, Nanjing, 210096, China
| | - Ruiwen Shao
- State Key Laboratory of Millimeter Waves, Southeast University, Nanjing, 210096, China
| | - Peng Han
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE), Thuwal, 23955-6900, Saudi Arabia
| | - Xiaoning Zang
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division (PSE), Thuwal, 23955-6900, Saudi Arabia
| | - Xiangliang Zhang
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE), Thuwal, 23955-6900, Saudi Arabia
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Khaled Nabil Salama
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE), Thuwal, 23955-6900, Saudi Arabia
| | - Wenlong Gao
- Paderborn University, Department of Physics, Warburger Str. 100, 33098, Paderborn, Germany
| | - Ching Hua Lee
- Department of Physics, National University of Singapore, Singapore, 117551, Republic of Singapore
| | - Ronny Thomale
- Institut für Theoretische Physik und Astrophysik, Universität Würzburg, 97074, Würzburg, Germany
| | | | - Shuang Zhang
- Department of Physics, The University of Hong Kong, Hong Kong, China
| | - Tie Jun Cui
- State Key Laboratory of Millimeter Waves, Southeast University, Nanjing, 210096, China
| | - Udo Schwingenschlögl
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division (PSE), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
45
|
Liu YGN, Wei Y, Hemmatyar O, Pyrialakos GG, Jung PS, Christodoulides DN, Khajavikhan M. Complex skin modes in non-Hermitian coupled laser arrays. LIGHT, SCIENCE & APPLICATIONS 2022; 11:336. [PMID: 36443286 PMCID: PMC9705320 DOI: 10.1038/s41377-022-01030-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
From biological ecosystems to spin glasses, connectivity plays a crucial role in determining the function, dynamics, and resiliency of a network. In the realm of non-Hermitian physics, the possibility of complex and asymmetric exchange interactions ([Formula: see text]) between a network of oscillators has been theoretically shown to lead to novel behaviors like delocalization, skin effect, and bulk-boundary correspondence. An archetypical lattice exhibiting the aforementioned properties is that proposed by Hatano and Nelson in a series of papers in late 1990s. While the ramifications of these theoretical works in optics have been recently pursued in synthetic dimensions, the Hatano-Nelson model has yet to be realized in real space. What makes the implementation of these lattices challenging is the difficulty in establishing the required asymmetric exchange interactions in optical platforms. In this work, by using active optical oscillators featuring non-Hermiticity and nonlinearity, we introduce an anisotropic exchange between the resonant elements in a lattice, an aspect that enables us to observe the non-Hermitian skin effect, phase locking, and near-field beam steering in a Hatano-Nelson laser array. Our work opens up new regimes of phase-locking in lasers while shedding light on the fundamental physics of non-Hermitian systems.
Collapse
Affiliation(s)
- Yuzhou G N Liu
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yunxuan Wei
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Omid Hemmatyar
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Georgios G Pyrialakos
- CREOL, The College of Optics & Photonics, University of Central Florida, Orlando, FL, 32816-2700, USA
| | - Pawel S Jung
- CREOL, The College of Optics & Photonics, University of Central Florida, Orlando, FL, 32816-2700, USA
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| | - Demetrios N Christodoulides
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- CREOL, The College of Optics & Photonics, University of Central Florida, Orlando, FL, 32816-2700, USA
| | - Mercedeh Khajavikhan
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Physics & Astronomy, Dornsife College of Letters, Arts, & Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
46
|
Gong Z, Bello M, Malz D, Kunst FK. Anomalous Behaviors of Quantum Emitters in Non-Hermitian Baths. PHYSICAL REVIEW LETTERS 2022; 129:223601. [PMID: 36493450 DOI: 10.1103/physrevlett.129.223601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
Both non-Hermitian systems and the behavior of emitters coupled to structured baths have been studied intensely in recent years. Here, we study the interplay of these paradigmatic settings. In a series of examples, we show that a single quantum emitter coupled to a non-Hermitian bath displays a number of unconventional behaviors, many without Hermitian counterpart. We first consider a unidirectional hopping lattice whose complex dispersion forms a loop. We identify peculiar bound states inside the loop as a manifestation of the non-Hermitian skin effect. In the same setting, emitted photons may display spatial amplification markedly distinct from free propagation, which can be understood with the help of the generalized Brillouin zone. We then consider a nearest-neighbor lattice with alternating loss. We find that the long-time emitter decay always follows a power law, which is usually invisible for Hermitian baths. Our Letter points toward a rich landscape of anomalous quantum emitter dynamics induced by non-Hermitian baths.
Collapse
Affiliation(s)
- Zongping Gong
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, D-85748 Garching, Germany
- Munich Center for Quantum Science and Technology, Schellingstraße 4, 80799 München, Germany
| | - Miguel Bello
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, D-85748 Garching, Germany
- Munich Center for Quantum Science and Technology, Schellingstraße 4, 80799 München, Germany
| | - Daniel Malz
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, D-85748 Garching, Germany
- Munich Center for Quantum Science and Technology, Schellingstraße 4, 80799 München, Germany
| | - Flore K Kunst
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, D-85748 Garching, Germany
- Munich Center for Quantum Science and Technology, Schellingstraße 4, 80799 München, Germany
- Max Planck Institute for the Science of Light, Staudtstraße 2, 91058 Erlangen, Germany
| |
Collapse
|
47
|
Yang R, Tan JW, Tai T, Koh JM, Li L, Longhi S, Lee CH. Designing non-Hermitian real spectra through electrostatics. Sci Bull (Beijing) 2022; 67:1865-1873. [PMID: 36546300 DOI: 10.1016/j.scib.2022.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/29/2022] [Accepted: 07/29/2022] [Indexed: 01/07/2023]
Abstract
Non-hermiticity presents a vast newly opened territory that harbors new physics and applications such as lasing and sensing. However, only non-Hermitian systems with real eigenenergies are stable, and great efforts have been devoted in designing them through enforcing parity-time (PT) symmetry. In this work, we exploit a lesser-known dynamical mechanism for enforcing real-spectra, and develop a comprehensive and versatile approach for designing new classes of parent Hamiltonians with real spectra. Our design approach is based on a new electrostatics analogy for modified non-Hermitian bulk-boundary correspondence, where electrostatic charge corresponds to density of states and electric fields correspond to complex spectral flow. As such, Hamiltonians of any desired spectra and state localization profile can be reverse-engineered, particularly those without any guiding symmetry principles. By recasting the diagonalization of non-Hermitian Hamiltonians as a Poisson boundary value problem, our electrostatics analogy also transcends the gain/loss-induced compounding of floating-point errors in traditional numerical methods, thereby allowing access to far larger system sizes.
Collapse
Affiliation(s)
- Russell Yang
- Department of Physics, National University of Singapore, Singapore 117551, Singapore; Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK
| | - Jun Wei Tan
- Department of Physics, National University of Singapore, Singapore 117551, Singapore
| | - Tommy Tai
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Jin Ming Koh
- Division of Physics, Mathematics and Astronomy, Caltech, Pasadena, CA 91125, USA
| | - Linhu Li
- Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing & School of Physics and Astronomy, Sun Yat-Sen University (Zhuhai Campus), Zhuhai 519082, China
| | - Stefano Longhi
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy; IFISC (UIB-CSIC), Instituto de Fisica Interdisciplinary Sistemas Complejos, Palma de Mallorca E-07122, Spain
| | - Ching Hua Lee
- Department of Physics, National University of Singapore, Singapore 117551, Singapore.
| |
Collapse
|
48
|
Li K, Xu Y. Non-Hermitian Absorption Spectroscopy. PHYSICAL REVIEW LETTERS 2022; 129:093001. [PMID: 36083662 DOI: 10.1103/physrevlett.129.093001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/14/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
While non-Hermitian Hamiltonians have been experimentally realized in cold atom systems, it remains an outstanding open question of how to experimentally measure their complex energy spectra in momentum space for a realistic system with boundaries. The existence of non-Hermitian skin effects may make the question even more difficult to address given the fact that energy spectra for a system with open boundaries are dramatically different from those in momentum space; the fact may even lead to the notion that momentum-space band structures are not experimentally accessible for a system with open boundaries. Here, we generalize the widely used radio-frequency spectroscopy to measure both real and imaginary parts of complex energy spectra of a non-Hermitian quantum system for either bosonic or fermionic atoms. By weakly coupling the energy levels of a non-Hermitian system to auxiliary energy levels, we theoretically derive a formula showing that the decay of atoms on the auxiliary energy levels reflects the real and imaginary parts of energy spectra in momentum space. We further prove that measurement outcomes are independent of boundary conditions in the thermodynamic limit, providing strong evidence that the energy spectrum in momentum space is experimentally measurable. We finally apply our non-Hermitian absorption spectroscopy protocol to the Hatano-Nelson model and non-Hermitian Weyl semimetals to demonstrate its feasibility.
Collapse
Affiliation(s)
- Kai Li
- Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yong Xu
- Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, People's Republic of China
- Shanghai Qi Zhi Institute, Shanghai 200030, People's Republic of China
| |
Collapse
|
49
|
Guo GF, Wang Y, Bao XX, Tan L. Floquet topological properties in the non-Hermitian long-range system with complex hopping amplitudes. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:435401. [PMID: 35973417 DOI: 10.1088/1361-648x/ac8a37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Non-equilibrium phases of matter have attracted much attention in recent years, among which the Floquet phase is a hot point. In this work, based on the periodic driving non-Hermitian model, we reveal that the winding number calculated in the framework of the Bloch band theory has a direct connection with the number of edge states even though the non-Hermiticity is present. Further, we find that the change of the phase of the hopping amplitude can induce the topological phase transitions. Precisely speaking, the increase in the value of the phase can bring the system into a topological phase with a large topological number. Moreover, it can be unveiled that the introduction of the purely imaginary hopping term brings an extremely rich phase diagram. In addition, we can select the even topological invariant exactly from the unlimited winding numbers if we only consider the next-nearest neighbor hopping term. Here, the results obtained may be useful for understanding the periodic driving non-Hermitian theory.
Collapse
Affiliation(s)
- Gang-Feng Guo
- Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yan Wang
- Cuiying Honors College, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xi-Xi Bao
- Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Lei Tan
- Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, People's Republic of China
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
50
|
Liang Q, Xie D, Dong Z, Li H, Li H, Gadway B, Yi W, Yan B. Dynamic Signatures of Non-Hermitian Skin Effect and Topology in Ultracold Atoms. PHYSICAL REVIEW LETTERS 2022; 129:070401. [PMID: 36018690 DOI: 10.1103/physrevlett.129.070401] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
The non-Hermitian skin effect (NHSE), the accumulation of eigen-wave functions at boundaries of open systems, underlies a variety of exotic properties that defy conventional wisdom. While the NHSE and its intriguing impact on band topology and dynamics have been observed in classical or photonic systems, their demonstration in a quantum gas system remains elusive. Here we report the experimental realization of a dissipative Aharonov-Bohm chain-non-Hermitian topological model with NHSE-in the momentum space of a two-component Bose-Einstein condensate. We identify signatures of the NHSE in the condensate dynamics, and perform Bragg spectroscopy to resolve topological edge states against a background of localized bulk states. Our Letter sets the stage for further investigation on the interplay of many-body statistics and interactions with the NHSE, and is a significant step forward in the quantum control and simulation of non-Hermitian physics.
Collapse
Affiliation(s)
- Qian Liang
- Interdisciplinary Center of Quantum Information, State Key Laboratory of Modern Optical Instrumentation, Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Dizhou Xie
- Interdisciplinary Center of Quantum Information, State Key Laboratory of Modern Optical Instrumentation, Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Zhaoli Dong
- Interdisciplinary Center of Quantum Information, State Key Laboratory of Modern Optical Instrumentation, Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Haowei Li
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, Hefei 230026, China
| | - Hang Li
- Interdisciplinary Center of Quantum Information, State Key Laboratory of Modern Optical Instrumentation, Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Bryce Gadway
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3080, USA
| | - Wei Yi
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, Hefei 230026, China
| | - Bo Yan
- Interdisciplinary Center of Quantum Information, State Key Laboratory of Modern Optical Instrumentation, Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|