1
|
Kraus D, Rips J, Schörner M, Stevenson MG, Vorberger J, Ranjan D, Lütgert J, Heuser B, Eggert JH, Liermann HP, Oleynik II, Pandolfi S, Redmer R, Sollier A, Strohm C, Volz TJ, Albertazzi B, Ali SJ, Antonelli L, Bähtz C, Ball OB, Banerjee S, Belonoshko AB, Bolme CA, Bouffetier V, Briggs R, Buakor K, Butcher T, Cerantola V, Chantel J, Coleman AL, Collier J, Collins GW, Comley AJ, Cowan TE, Cristoforetti G, Cynn H, Descamps A, Di Cicco A, Di Dio Cafiso S, Dorchies F, Duff MJ, Dwivedi A, Edwards C, Errandonea D, Galitskiy S, Galtier E, Ginestet H, Gizzi L, Gleason A, Göde S, Gonzalez JM, Gorman MG, Harmand M, Hartley NJ, Heighway PG, Hernandez-Gomez C, Higginbotham A, Höppner H, Husband RJ, Hutchinson TM, Hwang H, Keen DA, Kim J, Koester P, Konôpková Z, Krygier A, Labate L, Laso Garcia A, Lazicki AE, Lee Y, Mason P, Masruri M, Massani B, McBride EE, McHardy JD, McGonegle D, McGuire C, McWilliams RS, Merkel S, Morard G, Nagler B, Nakatsutsumi M, Nguyen-Cong K, Norton AM, Ozaki N, Otzen C, Peake DJ, Pelka A, Pereira KA, Phillips JP, Prescher C, Preston TR, Randolph L, Ravasio A, Santamaria-Perez D, Savage DJ, Schölmerich M, Schwinkendorf JP, Singh S, et alKraus D, Rips J, Schörner M, Stevenson MG, Vorberger J, Ranjan D, Lütgert J, Heuser B, Eggert JH, Liermann HP, Oleynik II, Pandolfi S, Redmer R, Sollier A, Strohm C, Volz TJ, Albertazzi B, Ali SJ, Antonelli L, Bähtz C, Ball OB, Banerjee S, Belonoshko AB, Bolme CA, Bouffetier V, Briggs R, Buakor K, Butcher T, Cerantola V, Chantel J, Coleman AL, Collier J, Collins GW, Comley AJ, Cowan TE, Cristoforetti G, Cynn H, Descamps A, Di Cicco A, Di Dio Cafiso S, Dorchies F, Duff MJ, Dwivedi A, Edwards C, Errandonea D, Galitskiy S, Galtier E, Ginestet H, Gizzi L, Gleason A, Göde S, Gonzalez JM, Gorman MG, Harmand M, Hartley NJ, Heighway PG, Hernandez-Gomez C, Higginbotham A, Höppner H, Husband RJ, Hutchinson TM, Hwang H, Keen DA, Kim J, Koester P, Konôpková Z, Krygier A, Labate L, Laso Garcia A, Lazicki AE, Lee Y, Mason P, Masruri M, Massani B, McBride EE, McHardy JD, McGonegle D, McGuire C, McWilliams RS, Merkel S, Morard G, Nagler B, Nakatsutsumi M, Nguyen-Cong K, Norton AM, Ozaki N, Otzen C, Peake DJ, Pelka A, Pereira KA, Phillips JP, Prescher C, Preston TR, Randolph L, Ravasio A, Santamaria-Perez D, Savage DJ, Schölmerich M, Schwinkendorf JP, Singh S, Smith J, Smith RF, Spear J, Spindloe C, Suer TA, Tang M, Toncian M, Toncian T, Tracy SJ, Trapananti A, Vennari CE, Vinci T, Tyldesley M, Vogel SC, Walsh JPS, Wark JS, Willman JT, Wollenweber L, Zastrau U, Brambrink E, Appel K, McMahon MI. The structure of liquid carbon elucidated by in situ X-ray diffraction. Nature 2025:10.1038/s41586-025-09035-6. [PMID: 40399671 DOI: 10.1038/s41586-025-09035-6] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/16/2025] [Indexed: 05/23/2025]
Abstract
Carbon has a central role in biology and organic chemistry, and its solid allotropes provide the basis of much of our modern technology1. However, the liquid form of carbon remains nearly uncharted2, and the structure of liquid carbon and most of its physical properties are essentially unknown3. But liquid carbon is relevant for modelling planetary interiors4,5 and the atmospheres of white dwarfs6, as an intermediate state for the synthesis of advanced carbon materials7,8, inertial confinement fusion implosions9, hypervelocity impact events on carbon materials10 and our general understanding of structured fluids at extreme conditions11. Here we present a precise structure measurement of liquid carbon at pressures of around 1 million atmospheres obtained by in situ X-ray diffraction at an X-ray free-electron laser. Our results show a complex fluid with transient bonding and approximately four nearest neighbours on average, in agreement with quantum molecular dynamics simulations. The obtained data substantiate the understanding of the liquid state of one of the most abundant elements in the universe and can test models of the melting line. The demonstrated experimental abilities open the path to performing similar studies of the structure of liquids composed of light elements at extreme conditions.
Collapse
Affiliation(s)
- D Kraus
- Institut für Physik, Universität Rostock, Rostock, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.
| | - J Rips
- Institut für Physik, Universität Rostock, Rostock, Germany
| | - M Schörner
- Institut für Physik, Universität Rostock, Rostock, Germany
| | - M G Stevenson
- Institut für Physik, Universität Rostock, Rostock, Germany
| | - J Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - D Ranjan
- Institut für Physik, Universität Rostock, Rostock, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - J Lütgert
- Institut für Physik, Universität Rostock, Rostock, Germany
| | - B Heuser
- Institut für Physik, Universität Rostock, Rostock, Germany
| | - J H Eggert
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - H-P Liermann
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - I I Oleynik
- Department of Physics, University of South Florida, Tampa, FL, USA
| | - S Pandolfi
- Sorbonne Université, Muséum National d'Histoire Naturelle, Insitut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - R Redmer
- Institut für Physik, Universität Rostock, Rostock, Germany
| | - A Sollier
- CEA DAM Île-de-France, Arpajon, France
- Laboratoire Matière en Conditions Extrêmes, Université Paris-Saclay, CEA, Bruyères-le-Châtel, France
| | - C Strohm
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - T J Volz
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - B Albertazzi
- Laboratoire pour l'utilisation des lasers intenses (LULI), Ecole Polytechnique, Palaiseau, France
| | - S J Ali
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - L Antonelli
- York Plasma Institute, School of Physics, Engineering and Technology, University of York, Heslington, UK
| | - C Bähtz
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - O B Ball
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh, UK
| | - S Banerjee
- Central Laser Facility (CLF), STFC Rutherford Appleton Laboratory, Didcot, UK
| | - A B Belonoshko
- Frontiers Science Center for Critical Earth Material Cycling, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
| | - C A Bolme
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | - R Briggs
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - K Buakor
- European XFEL, Schenefeld, Germany
| | - T Butcher
- Central Laser Facility (CLF), STFC Rutherford Appleton Laboratory, Didcot, UK
| | - V Cerantola
- Dipartimento di Scienze dell'Ambiente e della Terra, Università degli Studi di Milano Bicocca, Milano, Italy
| | - J Chantel
- Université de Lille, CNRS, INRAE, Centrale Lille, Lille, France
| | - A L Coleman
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - J Collier
- Central Laser Facility (CLF), STFC Rutherford Appleton Laboratory, Didcot, UK
| | - G W Collins
- Laboratory for Laser Energetics, University of Rochester, Rochester, NY, USA
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, USA
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, USA
| | | | - T E Cowan
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - G Cristoforetti
- Istituto Nazionale di Ottica, CNR - Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - H Cynn
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - A Descamps
- School of Mathematics and Physics, Queen's University Belfast, Belfast, UK
| | - A Di Cicco
- School of Science and Technology, Physics Division, Università di Camerino, Camerino, Italy
| | - S Di Dio Cafiso
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - F Dorchies
- CELIA, Université de Bordeaux, CNRS, CEA, Talence, France
| | - M J Duff
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh, UK
| | | | - C Edwards
- Central Laser Facility (CLF), STFC Rutherford Appleton Laboratory, Didcot, UK
| | - D Errandonea
- Departamento de Fisica Aplicada, Universidad de Valencia, Valencia, Spain
| | - S Galitskiy
- Department of Physics, University of South Florida, Tampa, FL, USA
| | - E Galtier
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - H Ginestet
- Université de Lille, CNRS, INRAE, Centrale Lille, Lille, France
| | - L Gizzi
- Istituto Nazionale di Ottica, CNR - Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - A Gleason
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - S Göde
- European XFEL, Schenefeld, Germany
| | - J M Gonzalez
- Department of Physics, University of South Florida, Tampa, FL, USA
| | - M G Gorman
- Lawrence Livermore National Laboratory, Livermore, CA, USA
- First Light Fusion, Oxford, UK
| | - M Harmand
- Institut Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université UMR CNRS, Paris, France
- PIMM, Arts et Metiers Institute of Technology, CNRS, Cnam, HESAM University, Paris, France
| | - N J Hartley
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - P G Heighway
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK
| | - C Hernandez-Gomez
- Central Laser Facility (CLF), STFC Rutherford Appleton Laboratory, Didcot, UK
| | - A Higginbotham
- York Plasma Institute, School of Physics, Engineering and Technology, University of York, Heslington, UK
| | - H Höppner
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - R J Husband
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - T M Hutchinson
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - H Hwang
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Department of Environment and Energy Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - D A Keen
- ISIS Facility, STFC Rutherford Appleton Laboratory, Didcot, UK
| | - J Kim
- Department of Physics, Hanyang University, Seoul, South Korea
| | - P Koester
- CNR - Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, (CNR - INO), Florence, Italy
| | | | - A Krygier
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - L Labate
- CNR - Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, (CNR - INO), Florence, Italy
| | - A Laso Garcia
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - A E Lazicki
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Y Lee
- Department of Earth System Sciences, Yonsei University, Seoul, South Korea
| | - P Mason
- Central Laser Facility (CLF), STFC Rutherford Appleton Laboratory, Didcot, UK
| | - M Masruri
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - B Massani
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh, UK
| | - E E McBride
- School of Mathematics and Physics, Queen's University Belfast, Belfast, UK
| | - J D McHardy
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh, UK
| | | | - C McGuire
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - R S McWilliams
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh, UK
| | - S Merkel
- Université de Lille, CNRS, INRAE, Centrale Lille, Lille, France
| | - G Morard
- University of Grenoble Alpes, University of Savoie Mont Blanc, CNRS, IRD, University of Gustave Eiffel, ISTerre, Grenoble, France
| | - B Nagler
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | | | - K Nguyen-Cong
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - A-M Norton
- York Plasma Institute, School of Physics, Engineering and Technology, University of York, Heslington, UK
| | - N Ozaki
- Graduate School of Engineering, University of Osaka, Suita, Osaka, Japan
| | - C Otzen
- Institut für Geo- und Umweltnaturwissenschaften, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - D J Peake
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK
| | - A Pelka
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - K A Pereira
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA
| | - J P Phillips
- Central Laser Facility (CLF), STFC Rutherford Appleton Laboratory, Didcot, UK
| | - C Prescher
- Institut für Geo- und Umweltnaturwissenschaften, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | | | | | - A Ravasio
- Laboratoire pour l'utilisation des lasers intenses (LULI), Ecole Polytechnique, Palaiseau, France
| | - D Santamaria-Perez
- Departamento de Fisica Aplicada, Universidad de Valencia, Valencia, Spain
| | - D J Savage
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | | | - S Singh
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - J Smith
- Central Laser Facility (CLF), STFC Rutherford Appleton Laboratory, Didcot, UK
| | - R F Smith
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - J Spear
- Central Laser Facility (CLF), STFC Rutherford Appleton Laboratory, Didcot, UK
| | - C Spindloe
- Central Laser Facility (CLF), STFC Rutherford Appleton Laboratory, Didcot, UK
| | - T-A Suer
- Laboratory for Laser Energetics, University of Rochester, Rochester, NY, USA
| | - M Tang
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - M Toncian
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - T Toncian
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - S J Tracy
- Earth and Planets Laboratory, Carnegie Science, Washington, DC, USA
| | - A Trapananti
- School of Science and Technology, Physics Division, Università di Camerino, Camerino, Italy
| | - C E Vennari
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - T Vinci
- Laboratoire pour l'utilisation des lasers intenses (LULI), Ecole Polytechnique, Palaiseau, France
| | - M Tyldesley
- Central Laser Facility (CLF), STFC Rutherford Appleton Laboratory, Didcot, UK
| | - S C Vogel
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - J P S Walsh
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA
| | - J S Wark
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK
| | - J T Willman
- Department of Physics, University of South Florida, Tampa, FL, USA
| | | | | | | | - K Appel
- European XFEL, Schenefeld, Germany
| | - M I McMahon
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Riffe EJ, Bernal F, Kamal C, Mizuno H, Lindsey RK, Hamel S, Raj SL, Hull CJ, Kwon S, Park SH, Cooper JK, Yang F, Liu YS, Guo J, Nordlund D, Drisdell WS, Zuerch MW, Whitley HD, Odelius M, Schwartz CP, J Saykally R. Time-Resolved X-ray Emission Spectroscopy and Resonant Inelastic X-ray Scattering Spectroscopy of Laser Irradiated Carbon. J Phys Chem B 2024; 128:6422-6433. [PMID: 38906826 DOI: 10.1021/acs.jpcb.4c02862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
The existence of liquid carbon as an intermediate phase preceding the formation of novel carbon materials has been a point of contention for several decades. Experimental observation of such a liquid state requires nonthermal melting of solid carbon materials at various laser fluences and pulse properties. Reflectivity experiments performed in the mid-1980s reached opposing conclusions regarding the metallic or insulating properties of the purported liquid state. Time-resolved X-ray absorption studies showed shortening of C-C bonds and increasing diffraction densities, thought to evidence a liquid or glassy carbon state, respectively. Nevertheless, none of these experiments provided information on the electronic structure of the proposed liquid state. Herein, we report the results of time-resolved resonant inelastic X-ray scattering (RIXS) and time-resolved X-ray emission spectroscopy (XES) studies on amorphous carbon (a-C) and ultrananocrystalline diamond (UNCD) as a function of delay time between the irradiating pulse and X-ray probe. For both a-C and UNCD, we attribute decreases in RIXS or XES signals to transition blocking, relaxation, and finally, ablation. Increased signal at 20 ps following the irradiation of the UNCD is attributed to the probable formation of nanoscale structures in the ablation plume. Differences in the amount of signal observed between a-C and UNCD are explained by the difference in sample thickness and, specifically, incomplete melting of the UNCD film. Comparisons to spectral simulations based on MD trajectories at extreme conditions indicate that the carbon state in our experiments is crystalline. Normal mode analysis confirmed that symmetrical bending or stretching of the C-C bonds in the diamond lattice results in XES spectra with small intensity differences. Overall, we observed no evidence of melting to a liquid state, as determined by the lack of changes in the spectral properties for up to 100 ps delays following the melting pulses.
Collapse
Affiliation(s)
- Erika J Riffe
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Franky Bernal
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Chinnathambi Kamal
- Theory and Simulations Laboratory, Theoretical and Computational Physics Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 400094, India
| | - Hikaru Mizuno
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rebecca K Lindsey
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sebastien Hamel
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Sumana L Raj
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Christopher J Hull
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Soonnam Kwon
- PAL-XFEL, Pohang Accelerator Laboratory, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| | - Sang Han Park
- PAL-XFEL, Pohang Accelerator Laboratory, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| | - Jason K Cooper
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Feipeng Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yi-Sheng Liu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Dennis Nordlund
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Walter S Drisdell
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Michael W Zuerch
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Science Division, Lawerence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Heather D Whitley
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Michael Odelius
- Department of Physics, Stockholm University, 10691 Stockholm, Sweden
| | - Craig P Schwartz
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Nevada Extreme Conditions Laboratory, University of Nevada, Las Vegas, Las Vegas, Nevada 89154, United States
| | - Richard J Saykally
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Hoffmann L, Jamnuch S, Schwartz CP, Helk T, Raj SL, Mizuno H, Mincigrucci R, Foglia L, Principi E, Saykally RJ, Drisdell WS, Fatehi S, Pascal TA, Zuerch M. Saturable Absorption of Free-Electron Laser Radiation by Graphite near the Carbon K-Edge. J Phys Chem Lett 2022; 13:8963-8970. [PMID: 36165491 PMCID: PMC9549516 DOI: 10.1021/acs.jpclett.2c01020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
The interaction of intense light with matter gives rise to competing nonlinear responses that can dynamically change material properties. Prominent examples are saturable absorption (SA) and two-photon absorption (TPA), which dynamically increase and decrease the transmission of a sample depending on pulse intensity, respectively. The availability of intense soft X-ray pulses from free-electron lasers (FELs) has led to observations of SA and TPA in separate experiments, leaving open questions about the possible interplay between and relative strength of the two phenomena. Here, we systematically study both phenomena in one experiment by exposing graphite films to soft X-ray FEL pulses of varying intensity. By applying real-time electronic structure calculations, we find that for lower intensities the nonlinear contribution to the absorption is dominated by SA attributed to ground-state depletion; our model suggests that TPA becomes more dominant for larger intensities (>1014 W/cm2). Our results demonstrate an approach of general utility for interpreting FEL spectroscopies.
Collapse
Affiliation(s)
- Lars Hoffmann
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Fritz
Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Sasawat Jamnuch
- ATLAS
Materials Science Laboratory, Department of Nano Engineering and Chemical
Engineering, University of California San
Diego, La Jolla, California 92023, United States
| | - Craig P. Schwartz
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Nevada
Extreme Conditions Laboratory, University
of Nevada, Las Vegas, Las Vegas, Nevada 89154, United States
| | - Tobias Helk
- Institute
of Optics and Quantum Electronics, Abbe Center of Photonics, Friedrich-Schiller University, 07743 Jena, Germany
- Helmholtz
Institute Jena, 07743 Jena, Germany
| | - Sumana L. Raj
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Hikaru Mizuno
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | | | - Laura Foglia
- Elettra-Sincrotrone
Trieste S.C.p.A., Strada Statale 14, 34149 Trieste, Italy
| | - Emiliano Principi
- Elettra-Sincrotrone
Trieste S.C.p.A., Strada Statale 14, 34149 Trieste, Italy
| | - Richard J. Saykally
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Walter S. Drisdell
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Joint
Center for Artificial Photosynthesis, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Shervin Fatehi
- Department
of Chemistry, The University of Texas Rio
Grande Valley, Edinburg, Texas 78539, United States
| | - Tod A. Pascal
- ATLAS
Materials Science Laboratory, Department of Nano Engineering and Chemical
Engineering, University of California San
Diego, La Jolla, California 92023, United States
- Materials
Science and Engineering, University of California
San Diego, La Jolla, California 92023, United States
- Sustainable
Power and Energy Center, University of California
San Diego, La Jolla, California 92023, United States
| | - Michael Zuerch
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Fritz
Haber Institute of the Max Planck Society, 14195 Berlin, Germany
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|