1
|
Hu H. Topological origin of non-Hermitian skin effect in higher dimensions and uniform spectra. Sci Bull (Beijing) 2025; 70:51-57. [PMID: 39142943 DOI: 10.1016/j.scib.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/03/2024] [Accepted: 07/02/2024] [Indexed: 08/16/2024]
Abstract
The non-Hermitian skin effect is an iconic phenomenon characterized by the aggregation of eigenstates near the system boundaries in non-Hermitian systems. While extensively studied in one dimension, understanding the skin effect and extending the non-Bloch band theory to higher dimensions encounter a formidable challenge, primarily due to infinite lattice geometries or open boundary conditions. This work adopts a point-gap perspective and unveils that non-Hermitian skin effect in all spatial dimensions originates from point gaps. We introduce the concept of uniform spectra and reveal that regardless of lattice geometry, their energy spectra are universally given by the uniform spectra, even though their manifestations of skin modes may differ. Building on the uniform spectra, we demonstrate how to account for the skin effect with generic lattice cuts and establish the connections of skin modes across different geometric shapes via momentum-basis transformations. Our findings highlight the pivotal roles point gaps play, offering a unified understanding of the topological origin of non-Hermitian skin effect in all dimensions.
Collapse
Affiliation(s)
- Haiping Hu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Zhang L, Shen K, Yan Y, Sun K, Gelin MF, Zhao Y. Hamiltonian non-Hermicity: Accurate dynamics with the multiple Davydov D2Ansätze. J Chem Phys 2024; 161:194108. [PMID: 39560083 DOI: 10.1063/5.0243861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024] Open
Abstract
We examine the applicability of the numerically accurate method of time dependent variation with multiple Davydov Ansätze (mDA) to non-Hermitian systems. As illustrative examples, three systems of interest have been studied, a non-Hermitian system of dissipative Landau-Zener transitions, a non-Hermitian multimode Jaynes-Cummings model, and a dissipative Holstein-Tavis-Cummings model, all of which are shown to be effectively described by the mDA method. Our findings highlight the versatility of the mDA as a powerful numerical tool for investigating complex many-body non-Hermitian systems, which can be extended to explore diverse phenomena such as skin effects, excited-state dynamics, and spectral topology in the non-Hermitian field.
Collapse
Affiliation(s)
- Lixing Zhang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Kaijun Shen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yiying Yan
- School of Science, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Kewei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
3
|
Wang A, Chen CQ. Stress guides in generic static mechanical metamaterials. Natl Sci Rev 2024; 11:nwae110. [PMID: 39144739 PMCID: PMC11321258 DOI: 10.1093/nsr/nwae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/07/2024] [Accepted: 03/03/2024] [Indexed: 08/16/2024] Open
Abstract
The confinement of waves within a waveguide can enable directional transmission of signals, which has found wide applications in communication, imaging, and signal isolation. Extending this concept to static systems, where material deformation is piled up along a spatial trajectory, remains elusive due to the sensitivity of localized deformation to structural defects and impurities. Here, we propose a general framework to characterize localized static deformation responses in two-dimensional generic static mechanical metamaterials, by exploiting the duality between space in static systems and time in one-dimensional non-reciprocal wave systems. An internal time-reverse symmetry is developed by the space-time duality. Upon breaking this symmetry, quasi-static load-induced deformation can be guided to travel along a designated path, thereby realizing a stress guide. A combination of time-reverse and inversion symmetries discloses the parity-time symmetry inherent in static systems, which can be leveraged to achieve directional deformation shielding. The tailorable stress guides can find applications in various scenarios, ranging from stress shielding and energy harvesting in structural tasks to information processing in mechanical computing devices.
Collapse
Affiliation(s)
- Aoxi Wang
- Department of Engineering Mechanics, Center for Nano and Micromechanics and Key Laboratory of Applied Mechanics, Tsinghua University, Beijing 100084, China
| | - Chang Qing Chen
- Department of Engineering Mechanics, Center for Nano and Micromechanics and Key Laboratory of Applied Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Lin Z, Song W, Wang LW, Xin H, Sun J, Wu S, Huang C, Zhu S, Jiang JH, Li T. Observation of Topological Transition in Floquet Non-Hermitian Skin Effects in Silicon Photonics. PHYSICAL REVIEW LETTERS 2024; 133:073803. [PMID: 39213563 DOI: 10.1103/physrevlett.133.073803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/24/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
Non-Hermitian physics has greatly enriched our understanding of nonequilibrium phenomena and uncovered novel effects such as the non-Hermitian skin effect (NHSE) that has profoundly revolutionized the field. NHSE has been predicted in systems with nonreciprocal couplings which, however, are challenging to realize in experiments. Without nonreciprocal couplings, the NHSE can also emerge in systems with coexisting gauge fields and loss or gain (e.g., in Floquet non-Hermitian systems). However, such Floquet NHSE remains largely unexplored in experiments. Here, we realize the Floquet NHSEs in periodically modulated optical waveguides integrated on a silicon photonic platform. By engineering the artificial gauge fields induced by the periodical modulation, we observe various Floquet NHSE phases and unveil their rich topological transitions. Remarkably, we discover the transitions between the unipolar NHSE phases and an unconventional bipolar NHSE phase, which is accompanied by the directional reversal of the NHSEs. The underlying physics is revealed by the band winding in complex quasienergy space which undergoes a topology change from isolated loops with the same winding to linked loops with opposite windings. Our work unfolds a new route toward Floquet NHSEs originating from the interplay between gauge fields and dissipation effects, and thus offers fundamentally new ways for steering light and other waves.
Collapse
Affiliation(s)
- Zhiyuan Lin
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Wange Song
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Li-Wei Wang
- School of Physical Science and Technology & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 1 Shizi Street, Suzhou 215006, China
| | - Haoran Xin
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Jiacheng Sun
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Shengjie Wu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Chunyu Huang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Shining Zhu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Jian-Hua Jiang
- School of Physical Science and Technology & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 1 Shizi Street, Suzhou 215006, China
- School of Biomedical Engineering, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
- School of Physics, University of Science and Technology of China, Hefei 230026, China
| | - Tao Li
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| |
Collapse
|
5
|
Yang K, Li Z, König JLK, Rødland L, Stålhammar M, Bergholtz EJ. Homotopy, symmetry, and non-Hermitian band topology. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:078002. [PMID: 38957897 DOI: 10.1088/1361-6633/ad4e64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/21/2024] [Indexed: 07/04/2024]
Abstract
Non-Hermitian matrices are ubiquitous in the description of nature ranging from classical dissipative systems, including optical, electrical, and mechanical metamaterials, to scattering of waves and open quantum many-body systems. Seminal line-gap and point-gap classifications of non-Hermitian systems using K-theory have deepened the understanding of many physical phenomena. However, ample systems remain beyond this description; reference points and lines do not in general distinguish whether multiple non-Hermitian bands exhibit intriguing exceptional points, spectral braids and crossings. To address this we consider two different notions: non-Hermitian band gaps and separation gaps that crucially encompass a broad class of multi-band scenarios, enabling the description of generic band structures with symmetries. With these concepts, we provide a unified and comprehensive classification of both gapped and nodal systems in the presence of physically relevant parity-time (PT) and pseudo-Hermitian symmetries using homotopy theory. This uncovers new stable topology stemming from both eigenvalues and wave functions, and remarkably also implies distinct fragile topological phases. In particular, we reveal different Abelian and non-Abelian phases inPT-symmetric systems, described by frame and braid topology. The corresponding invariants are robust to symmetry-preserving perturbations that do not induce (exceptional) degeneracy, and they also predict the deformation rules of nodal phases. We further demonstrate that spontaneousPTsymmetry breaking is captured by Chern-Euler and Chern-Stiefel-Whitney descriptions, a fingerprint of unprecedented non-Hermitian topology previously overlooked. These results open the door for theoretical and experimental exploration of a rich variety of novel topological phenomena in a wide range of physical platforms.
Collapse
Affiliation(s)
- Kang Yang
- Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Zhi Li
- Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
| | - J Lukas K König
- Department of Physics, Stockholm University, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Lukas Rødland
- Department of Physics, Stockholm University, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Marcus Stålhammar
- Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12, SE-106 91 Stockholm, Sweden
| | - Emil J Bergholtz
- Department of Physics, Stockholm University, AlbaNova University Center, 106 91 Stockholm, Sweden
| |
Collapse
|
6
|
Wang C, Li N, Xie J, Ding C, Ji Z, Xiao L, Jia S, Yan B, Hu Y, Zhao Y. Exceptional Nexus in Bose-Einstein Condensates with Collective Dissipation. PHYSICAL REVIEW LETTERS 2024; 132:253401. [PMID: 38996274 DOI: 10.1103/physrevlett.132.253401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/01/2024] [Accepted: 05/20/2024] [Indexed: 07/14/2024]
Abstract
In multistate non-Hermitian systems, higher-order exceptional points and exotic phenomena with no analogues in two-level systems arise. A paradigm is the exceptional nexus (EX), a third-order EP as the cusp singularity of exceptional arcs (EAs), that has a hybrid topological nature. Using atomic Bose-Einstein condensates to implement a dissipative three-state system, we experimentally realize an EX within a two-parameter space, despite the absence of symmetry. The engineered dissipation exhibits density dependence due to the collective atomic response to resonant light. Based on extensive analysis of the system's decay dynamics, we demonstrate the formation of an EX from the coalescence of two EAs with distinct geometries. These structures arise from the different roles played by dissipation in the strong coupling limit and quantum Zeno regime. Our Letter paves the way for exploring higher-order exceptional physics in the many-body setting of ultracold atoms.
Collapse
Affiliation(s)
- Chenhao Wang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Nan Li
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Jin Xie
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Cong Ding
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Zhonghua Ji
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Liantuan Xiao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Suotang Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Bo Yan
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, and State Key Laboratory for Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou 310027, China
| | - Ying Hu
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Yanting Zhao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
7
|
Long Y, Wang Z, Zhang C, Xue H, Zhao YX, Zhang B. Non-Abelian Braiding of Topological Edge Bands. PHYSICAL REVIEW LETTERS 2024; 132:236401. [PMID: 38905662 DOI: 10.1103/physrevlett.132.236401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 06/23/2024]
Abstract
Braiding is a geometric concept that manifests itself in a variety of scientific contexts from biology to physics, and has been employed to classify bulk band topology in topological materials. Topological edge states can also form braiding structures, as demonstrated recently in a type of topological insulators known as Möbius insulators, whose topological edge states form two braided bands exhibiting a Möbius twist. While the formation of Möbius twist is inspiring, it belongs to the simple Abelian braid group B_{2}. The most fascinating features about topological braids rely on the non-Abelianness in the higher-order braid group B_{N} (N≥3), which necessitates multiple edge bands, but so far it has not been discussed. Here, based on the gauge enriched symmetry, we develop a scheme to realize non-Abelian braiding of multiple topological edge bands. We propose tight-binding models of topological insulators that are able to generate topological edge states forming non-Abelian braiding structures. Experimental demonstrations are conducted in two acoustic crystals, which carry three and four braided acoustic edge bands, respectively. The observed braiding structure can correspond to the topological winding in the complex eigenvalue space of projective translation operator, akin to the previously established point-gap winding topology in the bulk of the Hatano-Nelson model. Our Letter also constitutes the realization of non-Abelian braiding topology on an actual crystal platform, but not based on the "virtual" synthetic dimensions.
Collapse
Affiliation(s)
- Yang Long
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Zihao Wang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Chen Zhang
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
| | - Haoran Xue
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Y X Zhao
- Department of Physics and HKU-UCAS Joint Institute for Theoretical and Computational Physics at Hong Kong, The University of Hong Kong, Hong Kong, China
- HK Institute of Quantum Science and Technology, The University of Hong Kong, Hong Kong, China
| | - Baile Zhang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
8
|
Yang Y, Yang B, Ma G, Li J, Zhang S, Chan CT. Non-Abelian physics in light and sound. Science 2024; 383:eadf9621. [PMID: 38386745 DOI: 10.1126/science.adf9621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
Non-Abelian phenomena arise when the sequence of operations on physical systems influences their behaviors. By possessing internal degrees of freedom such as polarization, light and sound can be subjected to various manipulations, including constituent materials, structured environments, and tailored source conditions. These manipulations enable the creation of a great variety of Hamiltonians, through which rich non-Abelian phenomena can be explored and observed. Recent developments have constituted a versatile testbed for exploring non-Abelian physics at the intersection of atomic, molecular, and optical physics; condensed matter physics; and mathematical physics. These fundamental endeavors could enable photonic and acoustic devices with multiplexing functionalities. Our review aims to provide a timely and comprehensive account of this emerging topic. Starting from the foundation of matrix-valued geometric phases, we address non-Abelian topological charges, non-Abelian gauge fields, non-Abelian braiding, non-Hermitian non-Abelian phenomena, and their realizations with photonics and acoustics and conclude with future prospects.
Collapse
Affiliation(s)
- Yi Yang
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong, China
- HK Institute of Quantum Science and Technology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Biao Yang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, China
- Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, China
| | - Guancong Ma
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jensen Li
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Shuang Zhang
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong, China
- HK Institute of Quantum Science and Technology, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
- New Cornerstone Science Laboratory, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - C T Chan
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
9
|
Wu Y, Wang Y, Ye X, Liu W, Niu Z, Duan CK, Wang Y, Rong X, Du J. Third-order exceptional line in a nitrogen-vacancy spin system. NATURE NANOTECHNOLOGY 2024; 19:160-165. [PMID: 38225359 DOI: 10.1038/s41565-023-01583-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/22/2023] [Indexed: 01/17/2024]
Abstract
Exceptional points (EPs) are singularities in non-Hermitian systems, where k (k ≥ 2) eigenvalues and eigenstates coalesce. High-order EPs exhibit richer topological characteristics and better sensing performance than second-order EPs. Theory predicts even richer non-Hermitian topological phases for high-order EP geometries, such as lines or rings formed entirely by high-order EPs. However, experimental exploration of high-order EP geometries has hitherto proved difficult due to the demand for more degrees of freedom in the Hamiltonian's parameter space or a higher level of symmetries. Here we observe a third-order exceptional line in an atomic-scale system. To this end, we use a nitrogen-vacancy spin in diamond and introduce multiple symmetries in the non-Hermitian Hamiltonian realized with the system. Furthermore, we show that the symmetries play an essential role in the occurrence of high-order EP geometries. Our approach can in future be further applied to explore high-order EP-related topological physics at the atomic scale and, potentially, for applications of high-order EPs in quantum technologies.
Collapse
Affiliation(s)
- Yang Wu
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China
| | - Yunhan Wang
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China
| | - Xiangyu Ye
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China
| | - Wenquan Liu
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China
- School of Science, Beijing University of Posts and Telecommunications, Beijing, China
| | - Zhibo Niu
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China
| | - Chang-Kui Duan
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, China
| | - Ya Wang
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, China
| | - Xing Rong
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, China.
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, China.
| | - Jiangfeng Du
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, China.
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, China.
- Institute of Quantum Sensing and School of Physics, Zhejiang University, Hangzhou, China.
| |
Collapse
|
10
|
Pang Z, Wong BTT, Hu J, Yang Y. Synthetic Non-Abelian Gauge Fields for Non-Hermitian Systems. PHYSICAL REVIEW LETTERS 2024; 132:043804. [PMID: 38335358 DOI: 10.1103/physrevlett.132.043804] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 11/27/2023] [Indexed: 02/12/2024]
Abstract
Non-Abelian gauge fields are versatile tools for synthesizing topological phenomena, but have so far been mostly studied in Hermitian systems, where gauge flux has to be defined from a closed loop in order for vector potentials, whether Abelian or non-Abelian, to become physically meaningful. We show that this condition can be relaxed in non-Hermitian systems by proposing and studying a generalized Hatano-Nelson model with imbalanced non-Abelian hopping. Despite lacking gauge flux in one dimension, non-Abelian gauge fields create rich non-Hermitian topological consequences. With SU(2) gauge fields, the braiding degrees that can be achieved are twice the highest hopping order of a lattice model, indicating the utility of spinful freedom to attain high-order nontrivial braiding. At both ends of an open chain, non-Abelian gauge fields lead to the simultaneous presence of non-Hermitian skin modes, whose population can be effectively tuned near the exceptional points. Generalizing to two dimensions, the gauge invariance of Wilson loops can also break down in non-Hermitian lattices dressed with non-Abelian gauge fields. Toward realization, we present a concrete experimental proposal for non-Abelian gauge fields in non-Hermitian systems via the synthetic frequency dimension of a polarization-multiplexed fiber ring resonator.
Collapse
Affiliation(s)
- Zehai Pang
- Department of Physics and HK Institute of Quantum Science and Technology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Bengy Tsz Tsun Wong
- Department of Physics and HK Institute of Quantum Science and Technology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jinbing Hu
- Department of Physics and HK Institute of Quantum Science and Technology, The University of Hong Kong, Pokfulam, Hong Kong, China
- College of Optical-Electrical Information and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yi Yang
- Department of Physics and HK Institute of Quantum Science and Technology, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
11
|
Qian L, Zhang W, Sun H, Zhang X. Non-Abelian Topological Bound States in the Continuum. PHYSICAL REVIEW LETTERS 2024; 132:046601. [PMID: 38335357 DOI: 10.1103/physrevlett.132.046601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/03/2024] [Indexed: 02/12/2024]
Abstract
Bound states in the continuum (BICs), which are spatially localized states with energies lying in the continuum of extended modes, have been widely investigated in both quantum and classical systems. Recently, the combination of topological band theory with BICs has led to the creation of topological BICs that exhibit extraordinary robustness against disorder. However, the previously proposed topological BICs are only limited in systems with Abelian gauge fields. Whether non-Abelian gauge fields can induce topological BICs and how to experimentally explore these phenomena remains unresolved. Here, we report the theoretical and experimental realization of non-Abelian topological BICs, which are generated by the interplay between two inseparable pseudospins and can coexist in each pseudospin subspace. This unique characteristic necessitates non-Abelian couplings that lack any Abelian counterparts. Furthermore, the non-Abelian couplings can also offer a new avenue for constructing topological subspace-induced BICs at bulk dislocations. Those exotic phenomena are observed by non-Abelian topolectrical circuits. Our results establish the connection between topological BICs and non-Abelian gauge fields, and serve as the catalyst for future investigations on non-Abelian topological BICs across different platforms.
Collapse
Affiliation(s)
- Long Qian
- Key Laboratory of advanced optoelectronic quantum architecture and measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Weixuan Zhang
- Key Laboratory of advanced optoelectronic quantum architecture and measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Houjuan Sun
- Beijing Key Laboratory of Millimeter wave and Terahertz Techniques, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Xiangdong Zhang
- Key Laboratory of advanced optoelectronic quantum architecture and measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
12
|
Cui X, Zhang RY, Wang X, Wang W, Ma G, Chan CT. Experimental Realization of Stable Exceptional Chains Protected by Non-Hermitian Latent Symmetries Unique to Mechanical Systems. PHYSICAL REVIEW LETTERS 2023; 131:237201. [PMID: 38134766 DOI: 10.1103/physrevlett.131.237201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/20/2023] [Accepted: 11/08/2023] [Indexed: 12/24/2023]
Abstract
Lines of exceptional points are robust in the three-dimensional non-Hermitian parameter space without requiring any symmetry. However, when more elaborate exceptional structures are considered, the role of symmetry becomes critical. One such case is the exceptional chain (EC), which is formed by the intersection or osculation of multiple exceptional lines (ELs). In this Letter, we investigate a non-Hermitian classical mechanical system and reveal that a symmetry intrinsic to second-order dynamical equations, in combination with the source-free principle of ELs, guarantees the emergence of ECs. This symmetry can be understood as a non-Hermitian generalized latent symmetry, which is absent in prevailing formalisms rooted in first-order Schrödinger-like equations and has largely been overlooked so far. We experimentally confirm and characterize the ECs using an active mechanical oscillator system. Moreover, by measuring eigenvalue braiding around the ELs meeting at a chain point, we demonstrate the source-free principle of directed ELs that underlies the mechanism for EC formation. Our Letter not only enriches the diversity of non-Hermitian exceptional point configurations, but also highlights the new potential for non-Hermitian physics in second-order dynamical systems.
Collapse
Affiliation(s)
- Xiaohan Cui
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ruo-Yang Zhang
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xulong Wang
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Wei Wang
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Guancong Ma
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - C T Chan
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
13
|
Li T, Hu H. Floquet non-Abelian topological insulator and multifold bulk-edge correspondence. Nat Commun 2023; 14:6418. [PMID: 37828030 PMCID: PMC10570273 DOI: 10.1038/s41467-023-42139-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
Topological phases characterized by non-Abelian charges are beyond the scope of the paradigmatic tenfold way and have gained increasing attention recently. Here we investigate topological insulators with multiple tangled gaps in Floquet settings and identify uncharted Floquet non-Abelian topological insulators without any static or Abelian analog. We demonstrate that the bulk-edge correspondence is multifold and follows the multiplication rule of the quaternion group Q8. The same quaternion charge corresponds to several distinct edge-state configurations that are fully determined by phase-band singularities of the time evolution. In the anomalous non-Abelian phase, edge states appear in all bandgaps despite trivial quaternion charge. Furthermore, we uncover an exotic swap effect-the emergence of interface modes with swapped driving, which is a signature of the non-Abelian dynamics and absent in Floquet Abelian systems. Our work, for the first time, presents Floquet topological insulators characterized by non-Abelian charges and opens up exciting possibilities for exploring the rich and uncharted territory of non-equilibrium topological phases.
Collapse
Affiliation(s)
- Tianyu Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
| | - Haiping Hu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
14
|
Li CA, Trauzettel B, Neupert T, Zhang SB. Enhancement of Second-Order Non-Hermitian Skin Effect by Magnetic Fields. PHYSICAL REVIEW LETTERS 2023; 131:116601. [PMID: 37774272 DOI: 10.1103/physrevlett.131.116601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 07/03/2023] [Accepted: 08/16/2023] [Indexed: 10/01/2023]
Abstract
The non-Hermitian skin effect is a unique phenomenon in which an extensive number of eigenstates are localized at the boundaries of a non-Hermitian system. Recent studies show that the non-Hermitian skin effect is significantly suppressed by magnetic fields. In contrast, we demonstrate that the second-order skin effect (SOSE) is robust and can even be enhanced by magnetic fields. Remarkably, SOSE can also be induced by magnetic fields from a trivial non-Hermitian system that does not experience any skin effect at zero field. These properties are intimately related to to the persistence and emergence of topological line gaps in the complex energy spectrum in the presence of magnetic fields. Moreover, we show that a magnetic field can drive a non-Hermitian system from a hybrid skin effect, where the first-order skin effect and SOSE coexist, to pure SOSE. Our results describe a qualitatively new magnetic field behavior of the non-Hermitian skin effect.
Collapse
Affiliation(s)
- Chang-An Li
- Institute for Theoretical Physics and Astrophysics, University of Würzburg, 97074 Würzburg, Germany
| | - Björn Trauzettel
- Institute for Theoretical Physics and Astrophysics, University of Würzburg, 97074 Würzburg, Germany
| | - Titus Neupert
- Department of Physics, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Song-Bo Zhang
- Department of Physics, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
15
|
Yin S, Alù A. Dispersion braiding and band knots in plasmonic arrays with broken symmetries. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:2963-2971. [PMID: 39635474 PMCID: PMC11614336 DOI: 10.1515/nanoph-2023-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/17/2023] [Indexed: 12/07/2024]
Abstract
Periodic arrays can support highly nontrivial modal dispersion, stemming from the interplay between localized resonances of the array elements and distributed resonances supported by the lattice. Recently, intentional defects in the periodicity, i.e., broken in situ symmetries, have been attracting significant attention as a powerful degree of freedom for dispersion control. Here we explore highly nontrivial dispersion features in the resonant response of linear arrays of plasmonic particles, including the emergence of braiding and band knots caused by band folding. We show that these phenomena can be achieved within simple dipolar arrays for which we can derive closed-form expressions for the dispersion relation. These phenomena showcase powerful opportunities stemming from broken symmetries for extreme dispersion engineering, with a wide range of applications, from plasma physics to topological wave phenomena. Our theoretical model can also be generalized to higher dimensions to explore higher-order symmetries, e.g., glide symmetry and quasi-periodicity.
Collapse
Affiliation(s)
- Shixiong Yin
- Department of Electrical Engineering, City College of The City University of New York, New York10031, USA
- Photonics Initiative, Advanced Science Research Center, The City University of New York, New York10031, USA
| | - Andrea Alù
- Department of Electrical Engineering, City College of The City University of New York, New York10031, USA
- Photonics Initiative, Advanced Science Research Center, The City University of New York, New York10031, USA
- Physics Program, Graduate Center, City University of New York, New York10016, USA
| |
Collapse
|
16
|
Zhang X, Zangeneh-Nejad F, Chen ZG, Lu MH, Christensen J. A second wave of topological phenomena in photonics and acoustics. Nature 2023; 618:687-697. [PMID: 37344649 DOI: 10.1038/s41586-023-06163-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 05/03/2023] [Indexed: 06/23/2023]
Abstract
Light and sound are the most ubiquitous forms of waves, associated with a variety of phenomena and physical effects such as rainbows and echoes. Light and sound, both categorized as classical waves, have lately been brought into unexpected connections with exotic topological phases of matter. We are currently witnessing the onset of a second wave of active research into this topic. The past decade has been marked by fundamental advances comprising two-dimensional quantum Hall insulators and quantum spin and valley Hall insulators, whose topological properties are characterized using linear band topology. Here, going beyond these conventional topological systems, we focus on the latest frontiers, including non-Hermitian, nonlinear and non-Abelian topology as well as topological defects, for which the characterization of the topological features goes beyond the standard band-topology language. In addition to an overview of the current state of the art, we also survey future research directions for valuable applications.
Collapse
Affiliation(s)
- Xiujuan Zhang
- National Laboratory of Solid State Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| | | | - Ze-Guo Chen
- School of Materials Science and Intelligent Engineering, Nanjing University, Suzhou, China
| | - Ming-Hui Lu
- National Laboratory of Solid State Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing, China.
| | | |
Collapse
|
17
|
Yan Q, Zhao B, Zhou R, Ma R, Lyu Q, Chu S, Hu X, Gong Q. Advances and applications on non-Hermitian topological photonics. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:2247-2271. [PMID: 39633755 PMCID: PMC11501638 DOI: 10.1515/nanoph-2022-0775] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/28/2023] [Indexed: 12/07/2024]
Abstract
Non-Hermitian photonics and topological photonics, as new research fields in optics, have attracted much attention in recent years, accompanying by a great deal of new physical concepts and novel effects emerging. The two fields are gradually crossed during the development process and the non-Hermitian topological photonics was born. Non-Hermitian topological photonics not only constantly produces various novel physical effects, but also shows great potential in optical device applications. It becomes an important part of the modern physics and optics, penetrating into different research fields. On one hand, photonics system can introduce artificially-constructed gain and loss to study non-Hermitian physics. Photonics platform is an important methods and ways to verify novel physical phenomena and promote the development of non-Hermitian physics. On the other hand, the non-Hermitian topological photonics provides a new dimension for manipulating topological states. Active and dissipate materials are common in photonic systems; therefore, by using light pump and dissipation of photonic systems, it is expected to promote further development of topological photonics in device applications. In this review article, we focus on the recent advances and applications on non-Hermitian topological photonics, including the non-Hermitian topological phase transition and skin effect, as well as the applications emerging prosperously in reconfigurable, nonlinear and quantum optical systems. The possible future research directions of non-Hermitian topological photonics are also discussed at the end. Non-Hermitian topological photonics can have great potential in technological revolution and have the capacity of leading the development of both physics and technology industry.
Collapse
Affiliation(s)
- Qiuchen Yan
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-Optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing100871, P. R. China
| | - Boheng Zhao
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-Optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing100871, P. R. China
| | - Rong Zhou
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing100081, P. R. China
| | - Rui Ma
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-Optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing100871, P. R. China
| | - Qinghong Lyu
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-Optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing100871, P. R. China
| | - Saisai Chu
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-Optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing100871, P. R. China
| | - Xiaoyong Hu
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-Optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing100871, P. R. China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu226010, P. R. China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi030006, P. R. China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-Optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing100871, P. R. China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu226010, P. R. China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi030006, P. R. China
| |
Collapse
|
18
|
Cao MM, Li K, Zhao WD, Guo WX, Qi BX, Chang XY, Zhou ZC, Xu Y, Duan LM. Probing Complex-Energy Topology via Non-Hermitian Absorption Spectroscopy in a Trapped Ion Simulator. PHYSICAL REVIEW LETTERS 2023; 130:163001. [PMID: 37154650 DOI: 10.1103/physrevlett.130.163001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/31/2023] [Indexed: 05/10/2023]
Abstract
Non-Hermitian systems generically have complex energies, which may host topological structures, such as links or knots. While there has been great progress in experimentally engineering non-Hermitian models in quantum simulators, it remains a significant challenge to experimentally probe complex energies in these systems, thereby making it difficult to directly diagnose complex-energy topology. Here, we experimentally realize a two-band non-Hermitian model with a single trapped ion whose complex eigenenergies exhibit the unlink, unknot, or Hopf link topological structures. Based on non-Hermitian absorption spectroscopy, we couple one system level to an auxiliary level through a laser beam and then experimentally measure the population of the ion on the auxiliary level after a long period of time. Complex eigenenergies are then extracted, illustrating the unlink, unknot, or Hopf link topological structure. Our work demonstrates that complex energies can be experimentally measured in quantum simulators via non-Hermitian absorption spectroscopy, thereby opening the door for exploring various complex-energy properties in non-Hermitian quantum systems, such as trapped ions, cold atoms, superconducting circuits, or solid-state spin systems.
Collapse
Affiliation(s)
- M-M Cao
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| | - K Li
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| | - W-D Zhao
- HYQ Co., Ltd., Beijing 100176, People's Republic of China
| | - W-X Guo
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| | - B-X Qi
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| | - X-Y Chang
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| | - Z-C Zhou
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, People's Republic of China
- Hefei National Laboratory, Hefei 230088, People's Republic of China
| | - Y Xu
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, People's Republic of China
- Hefei National Laboratory, Hefei 230088, People's Republic of China
| | - L-M Duan
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, People's Republic of China
- Hefei National Laboratory, Hefei 230088, People's Republic of China
| |
Collapse
|
19
|
Guo CX, Chen S, Ding K, Hu H. Exceptional Non-Abelian Topology in Multiband Non-Hermitian Systems. PHYSICAL REVIEW LETTERS 2023; 130:157201. [PMID: 37115861 DOI: 10.1103/physrevlett.130.157201] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Defective spectral degeneracy, known as exceptional point (EP), lies at the heart of various intriguing phenomena in optics, acoustics, and other nonconservative systems. Despite extensive studies in the past two decades, the collective behaviors (e.g., annihilation, coalescence, braiding, etc.) involving multiple exceptional points or lines and their interplay have been rarely understood. Here we put forward a universal non-Abelian conservation rule governing these collective behaviors in generic multiband non-Hermitian systems and uncover several counterintuitive phenomena. We demonstrate that two EPs with opposite charges (even the pairwise created) do not necessarily annihilate, depending on how they approach each other. Furthermore, we unveil that the conservation rule imposes strict constraints on the permissible exceptional-line configurations. It excludes structures like Hopf link yet permits novel staggered rings composed of noncommutative exceptional lines. These intriguing phenomena are illustrated by concrete models which could be readily implemented in platforms like coupled acoustic cavities, optical waveguides, and ring resonators. Our findings lay the cornerstone for a comprehensive understanding of the exceptional non-Abelian topology and shed light on the versatile manipulations and applications based on exceptional degeneracies in nonconservative systems.
Collapse
Affiliation(s)
- Cui-Xian Guo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shu Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Yangtze River Delta Physics Research Center, Liyang, Jiangsu 213300, China
| | - Kun Ding
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200438, China
| | - Haiping Hu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Zhang Q, Li Y, Sun H, Liu X, Zhao L, Feng X, Fan X, Qiu C. Observation of Acoustic Non-Hermitian Bloch Braids and Associated Topological Phase Transitions. PHYSICAL REVIEW LETTERS 2023; 130:017201. [PMID: 36669209 DOI: 10.1103/physrevlett.130.017201] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Topological features embedded in ancient braiding and knotting arts endow significant impacts on our daily life and even cutting-edge science. Recently, fast growing efforts are invested to the braiding topology of complex Bloch bands in non-Hermitian systems. This new classification of band topology goes far beyond those established in Hermitian counterparts. Here, we present the first acoustic realization of the topological non-Hermitian Bloch braids, based on a two-band model easily accessible for realizing any desired knot structure. The non-Hermitian bands are synthesized by a simple binary cavity-tube system, where the long-range, complex-valued, and momentum-resolved couplings are accomplished by a well-controlled unidirectional coupler. In addition to directly visualizing various two-band braiding patterns, we unambiguously observe the highly elusive topological phase transitions between them. Not only do our results provide a direct demonstration for the non-Hermitian band topology, but also the experimental techniques open new avenues for designing unconventional acoustic metamaterials.
Collapse
Affiliation(s)
- Qicheng Zhang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Yitong Li
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Huanfa Sun
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xun Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Luekai Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xiling Feng
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xiying Fan
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Chunyin Qiu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
21
|
Tang W, Ding K, Ma G. Experimental realization of non-Abelian permutations in a three-state non-Hermitian system. Natl Sci Rev 2022; 9:nwac010. [PMID: 36523566 PMCID: PMC9746695 DOI: 10.1093/nsr/nwac010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 07/31/2023] Open
Abstract
Eigenstates of a non-Hermitian system exist on complex Riemannian manifolds, with multiple sheets connecting at branch cuts and exceptional points (EPs). These eigenstates can evolve across different sheets-a process that naturally corresponds to state permutation. Here, we report the first experimental realization of non-Abelian permutations in a three-state non-Hermitian system. Our approach relies on the stroboscopic encircling of two different exceptional arcs (EAs), which are smooth trajectories of order-2 EPs appearing from the coalescence of two adjacent states. The non-Abelian characteristics are confirmed by encircling the EAs in opposite sequences. A total of five non-trivial permutations are experimentally realized, which together comprise a non-Abelian group. Our approach provides a reliable way of investigating non-Abelian state permutations and the related exotic winding effects in non-Hermitian systems.
Collapse
Affiliation(s)
- Weiyuan Tang
- Department of Physics, Hong Kong Baptist University, Hong Kong, China
| | - Kun Ding
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai200438, China
| | - Guancong Ma
- Department of Physics, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
22
|
Patil YSS, Höller J, Henry PA, Guria C, Zhang Y, Jiang L, Kralj N, Read N, Harris JGE. Measuring the knot of non-Hermitian degeneracies and non-commuting braids. Nature 2022; 607:271-275. [PMID: 35831605 DOI: 10.1038/s41586-022-04796-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/25/2022] [Indexed: 11/10/2022]
Abstract
Any system of coupled oscillators may be characterized by its spectrum of resonance frequencies (or eigenfrequencies), which can be tuned by varying the system's parameters. The relationship between control parameters and the eigenfrequency spectrum is central to a range of applications1-3. However, fundamental aspects of this relationship remain poorly understood. For example, if the controls are varied along a path that returns to its starting point (that is, around a 'loop'), the system's spectrum must return to itself. In systems that are Hermitian (that is, lossless and reciprocal), this process is trivial and each resonance frequency returns to its original value. However, in non-Hermitian systems, where the eigenfrequencies are complex, the spectrum may return to itself in a topologically non-trivial manner, a phenomenon known as spectral flow. The spectral flow is determined by how the control loop encircles degeneracies, and this relationship is well understood for [Formula: see text] (where [Formula: see text] is the number of oscillators in the system)4,5. Here we extend this description to arbitrary [Formula: see text]. We show that control loops generically produce braids of eigenfrequencies, and for [Formula: see text] these braids form a non-Abelian group that reflects the non-trivial geometry of the space of degeneracies. We demonstrate these features experimentally for [Formula: see text] using a cavity optomechanical system.
Collapse
Affiliation(s)
| | - Judith Höller
- Department of Physics, Yale University, New Haven, CT, USA.,Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| | - Parker A Henry
- Department of Applied Physics, Yale University, New Haven, CT, USA
| | - Chitres Guria
- Department of Physics, Yale University, New Haven, CT, USA
| | - Yiming Zhang
- Department of Physics, Yale University, New Haven, CT, USA
| | - Luyao Jiang
- Department of Physics, Yale University, New Haven, CT, USA
| | - Nenad Kralj
- Department of Physics, Yale University, New Haven, CT, USA.,Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Nicholas Read
- Department of Physics, Yale University, New Haven, CT, USA.,Department of Applied Physics, Yale University, New Haven, CT, USA.,Yale Quantum Institute, Yale University, New Haven, CT, USA
| | - Jack G E Harris
- Department of Physics, Yale University, New Haven, CT, USA. .,Department of Applied Physics, Yale University, New Haven, CT, USA. .,Yale Quantum Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
23
|
Rui WB, Zheng Z, Wang C, Wang ZD. Non-Hermitian Spatial Symmetries and Their Stabilized Normal and Exceptional Topological Semimetals. PHYSICAL REVIEW LETTERS 2022; 128:226401. [PMID: 35714264 DOI: 10.1103/physrevlett.128.226401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/18/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
We study non-Hermitian spatial symmetries-a class of symmetries that have no counterparts in Hermitian systems-and study how normal and exceptional semimetals can be stabilized by these symmetries. Different from internal ones, spatial symmetries act nonlocally in momentum space and enforce global constraints on both band degeneracies and topological quantities at different locations. In deriving general constraints on band degeneracies and topological invariants, we demonstrate that non-Hermitian spatial symmetries are on an equal footing with, but are essentially different from Hermitian ones. First, we discover the nonlocal Hermitian conjugate pair of exceptional or normal band degeneracies that are enforced by non-Hermitian spatial symmetries. Remarkably, we find that these pairs lead to the symmetry-enforced violation of the Fermion doubling theorem in the long-time limit. Second, with the topological constraints, we unravel that a certain exceptional manifold is only compatible with and stabilized by non-Hermitian spatial symmetries but is intrinsically incompatible with Hermitian spatial symmetries. We illustrate these findings using two three-dimensional models of a non-Hermitian Weyl semimetal and an exceptional unconventional Weyl semimetal. Experimental cold-atom realizations of both models are also proposed.
Collapse
Affiliation(s)
- W B Rui
- Department of Physics and HKU-UCAS Joint Institute for Theoretical and Computational Physics at Hong Kong, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zhen Zheng
- Department of Physics and HKU-UCAS Joint Institute for Theoretical and Computational Physics at Hong Kong, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chenjie Wang
- Department of Physics and HKU-UCAS Joint Institute for Theoretical and Computational Physics at Hong Kong, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Z D Wang
- Department of Physics and HKU-UCAS Joint Institute for Theoretical and Computational Physics at Hong Kong, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
24
|
Longhi S. Selective and tunable excitation of topological non-Hermitian quasi-edge modes. Proc Math Phys Eng Sci 2022. [DOI: 10.1098/rspa.2021.0927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Non-Hermitian lattices under semi-infinite boundary conditions sustain an extensive number of exponentially localized states, dubbed non-Hermitian quasi-edge modes. Quasi-edge states arise rather generally in systems displaying the non-Hermitian skin effect and can be predicted from the non-trivial topology of the energy spectrum under periodic boundary conditions via a bulk-edge correspondence. However, the selective excitation of the system in one among the infinitely many topological quasi-edge states is challenging both from practical and conceptual viewpoints. In fact, in any realistic system with a finite lattice size most of the quasi-edge states collapse and become metastable states. Here we suggest a route toward the selective and tunable excitation of topological quasi-edge states that avoids the collapse problem by emulating semi-infinite lattice boundaries via tailored on-site potentials at the edges of a finite lattice. We illustrate such a strategy by considering a non-Hermitian topological interface obtained by connecting two Hatano–Nelson chains with opposite imaginary gauge fields, which is amenable for a full analytical treatment.
Collapse
Affiliation(s)
- Stefano Longhi
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
- IFISC (UIB-CSIC), Instituto de Fisica Interdisciplinar y Sistemas Complejos, Palma de Mallorca 07122, Spain
| |
Collapse
|
25
|
Longhi S. Self-Healing of Non-Hermitian Topological Skin Modes. PHYSICAL REVIEW LETTERS 2022; 128:157601. [PMID: 35499878 DOI: 10.1103/physrevlett.128.157601] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/21/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
A unique feature of non-Hermitian (NH) systems is the NH skin effect, i.e., the edge localization of an extensive number of bulk-band eigenstates in a lattice with open or semi-infinite boundaries. Unlike extended Bloch waves in Hermitian systems, the skin modes are normalizable eigenstates of the Hamiltonian that originate from the intrinsic non-Hermitian point-gap topology of the Bloch band energy spectra. Here, we unravel a fascinating property of NH skin modes, namely self-healing, i.e., the ability to self-reconstruct their shape after being scattered off by a space-time potential.
Collapse
Affiliation(s)
- Stefano Longhi
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy and IFISC (UIB-CSIC), Instituto de Fisica Interdisciplinar y Sistemas Complejos, E-07122 Palma de Mallorca, Spain
| |
Collapse
|
26
|
Topological complex-energy braiding of non-Hermitian bands. Nature 2021; 598:59-64. [PMID: 34616054 DOI: 10.1038/s41586-021-03848-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/21/2021] [Indexed: 11/08/2022]
Abstract
Effects connected with the mathematical theory of knots1 emerge in many areas of science, from physics2,3 to biology4. Recent theoretical work discovered that the braid group characterizes the topology of non-Hermitian periodic systems5, where the complex band energies can braid in momentum space. However, such braids of complex-energy bands have not been realized or controlled experimentally. Here, we introduce a tight-binding lattice model that can achieve arbitrary elements in the braid group of two strands 𝔹2. We experimentally demonstrate such topological complex-energy braiding of non-Hermitian bands in a synthetic dimension6,7. Our experiments utilize frequency modes in two coupled ring resonators, one of which undergoes simultaneous phase and amplitude modulation. We observe a wide variety of two-band braiding structures that constitute representative instances of links and knots, including the unlink, the unknot, the Hopf link and the trefoil. We also show that the handedness of braids can be changed. Our results provide a direct demonstration of the braid-group characterization of non-Hermitian topology and open a pathway for designing and realizing topologically robust phases in open classical and quantum systems.
Collapse
|
27
|
Sun XQ, Zhu P, Hughes TL. Geometric Response and Disclination-Induced Skin Effects in Non-Hermitian Systems. PHYSICAL REVIEW LETTERS 2021; 127:066401. [PMID: 34420349 DOI: 10.1103/physrevlett.127.066401] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
We study the geometric response of three-dimensional non-Hermitian crystalline systems with nontrivial point-gap topology. For systems with fourfold rotation symmetry, we show that in the presence of disclination lines with a total Frank angle, which is an integer multiple of 2π, there can be nontrivial one-dimensional point-gap topology along the direction of the disclination lines. This results in disclination-induced non-Hermitian skin effects. By doubling a non-Hermitian Hamiltonian to a Hermitian three-dimensional chiral topological insulator, we show that the disclination-induced skin modes are zero modes of the effective surface Dirac fermion(s) in the presence of a pseudomagnetic flux induced by disclinations. Furthermore, we find that our results have a field theoretic description, and the corresponding geometric response actions (e.g., the Euclidean Wen-Zee action) enrich the topological field theory of non-Hermitian systems.
Collapse
Affiliation(s)
- Xiao-Qi Sun
- Department of Physics and Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Penghao Zhu
- Department of Physics and Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Taylor L Hughes
- Department of Physics and Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|