1
|
Barotta JW, Pucci G, Silver E, Hooshanginejad A, Harris DM. Synchronization of wave-propelled capillary spinners. Phys Rev E 2025; 111:035105. [PMID: 40247534 DOI: 10.1103/physreve.111.035105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/26/2025] [Indexed: 04/19/2025]
Abstract
When a millimetric body is placed atop a vibrating liquid bath, the relative motion between the object and the interface generates outward-propagating waves with an associated momentum flux. Prior work has shown that isolated chiral objects, referred to as spinners, can thus rotate steadily in response to their self-generated wavefield. Here, we consider the case of two cochiral spinners held at a fixed spacing from one another but otherwise free to interact hydrodynamically through their shared fluid substrate. Two identical spinners are able to synchronize their rotation, with their equilibrium phase difference sensitive to their spacing and initial conditions, and even cease to rotate when the coupling becomes sufficiently strong. Nonidentical spinners can also find synchrony provided their intrinsic differences are not too disparate. A hydrodynamic wave model of the spinner interaction is proposed, recovering all salient features of the experiment. In all cases, the spatially periodic nature of the capillary wave coupling is directly reflected in the emergent equilibrium behaviors.
Collapse
Affiliation(s)
- Jack-William Barotta
- Brown University, School of Engineering, Center for Fluid Mechanics, 184 Hope Street, Providence, Rhode Island 02912, USA
| | - Giuseppe Pucci
- Consiglio Nazionale delle Ricerche, -Istituto di Nanotecnologia (CNR-Nanotec), Via P. Bucci 33C, 87036 Rende, Italy
- INFN, Sezione di Lecce, Via per Monteroni, Lecce 73100, Italy
| | - Eli Silver
- Brown University, School of Engineering, Center for Fluid Mechanics, 184 Hope Street, Providence, Rhode Island 02912, USA
| | - Alireza Hooshanginejad
- Brown University, School of Engineering, Center for Fluid Mechanics, 184 Hope Street, Providence, Rhode Island 02912, USA
| | - Daniel M Harris
- Brown University, School of Engineering, Center for Fluid Mechanics, 184 Hope Street, Providence, Rhode Island 02912, USA
| |
Collapse
|
2
|
Tătulea-Codrean M, Lauga E. Physical mechanism reveals bacterial slowdown above a critical number of flagella. J R Soc Interface 2024; 21:20240283. [PMID: 39503268 PMCID: PMC11539103 DOI: 10.1098/rsif.2024.0283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 11/09/2024] Open
Abstract
Numerous studies have explored the link between bacterial swimming and the number of flagella, a distinguishing feature of motile multi-flagellated bacteria. We revisit this open question using augmented slender-body theory simulations, in which we resolve the full hydrodynamic interactions within a bundle of helical filaments rotating and translating in synchrony. Unlike previous studies, our model considers the full torque-speed relationship of the bacterial flagellar motor, revealing its significant impact on multi-flagellated swimming. Because the viscous load per motor decreases with the flagellar number, the bacterial flagellar motor transitions from the high-load to the low-load regime at a critical number of filaments, leading to bacterial slowdown as further flagella are added to the bundle. We explain the physical mechanism behind the observed slowdown as an interplay between the load-dependent generation of torque by the motor, and the load-reducing cooperativity between flagella, which consists of both hydrodynamic and non-hydrodynamic components. The theoretically predicted critical number of flagella is remarkably close to the values reported for the model organism Escherichia coli. Our model further predicts that the critical number of flagella increases with viscosity, suggesting that bacteria can enhance their swimming capacity by growing more flagella in more viscous environments, consistent with empirical observations.
Collapse
Affiliation(s)
- Maria Tătulea-Codrean
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CambridgeCB3 0WA, UK
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CambridgeCB3 0WA, UK
| |
Collapse
|
3
|
Bozuyuk U, Wrede P, Yildiz E, Sitti M. Roadmap for Clinical Translation of Mobile Microrobotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311462. [PMID: 38380776 DOI: 10.1002/adma.202311462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Medical microrobotics is an emerging field to revolutionize clinical applications in diagnostics and therapeutics of various diseases. On the other hand, the mobile microrobotics field has important obstacles to pass before clinical translation. This article focuses on these challenges and provides a roadmap of medical microrobots to enable their clinical use. From the concept of a "magic bullet" to the physicochemical interactions of microrobots in complex biological environments in medical applications, there are several translational steps to consider. Clinical translation of mobile microrobots is only possible with a close collaboration between clinical experts and microrobotics researchers to address the technical challenges in microfabrication, safety, and imaging. The clinical application potential can be materialized by designing microrobots that can solve the current main challenges, such as actuation limitations, material stability, and imaging constraints. The strengths and weaknesses of the current progress in the microrobotics field are discussed and a roadmap for their clinical applications in the near future is outlined.
Collapse
Affiliation(s)
- Ugur Bozuyuk
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Paul Wrede
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Erdost Yildiz
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- School of Medicine and College of Engineering, Koc University, Istanbul, 34450, Turkey
| |
Collapse
|
4
|
Hu S, Meng F. Multiflagellate Swimming Controlled by Hydrodynamic Interactions. PHYSICAL REVIEW LETTERS 2024; 132:204002. [PMID: 38829103 DOI: 10.1103/physrevlett.132.204002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/18/2024] [Accepted: 04/16/2024] [Indexed: 06/05/2024]
Abstract
Many eukaryotic microorganisms propelled by multiple flagella can swim very rapidly with distinct gaits. Here, we model a three-dimensional mutiflagellate swimmer, resembling the microalgae. When the flagella are actuated synchronously, the swimming efficiency can be enhanced or reduced by interflagella hydrodynamic interactions (HIs), determined by the intrinsic tilting angle of the flagella. The asynchronous gait with a phase difference between neighboring flagella can reduce oscillatory motion via the basal mechanical coupling. In the presence of a spherical body, simulations taking into account the flagella-body interactions reveal the advantage of anterior configuration compared with posterior configuration, where in the latter case an optimal flagella number arises. Apart from understanding the role of HIs in the multiflagellate microorganisms, this work could also guide laboratory fabrications of novel microswimmers.
Collapse
Affiliation(s)
- Shiyuan Hu
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Fanlong Meng
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
5
|
von Kenne A, Bär M, Niedermayer T. Hydrodynamic synchronization of elastic cilia: How surface effects determine the characteristics of metachronal waves. Phys Rev E 2024; 109:054407. [PMID: 38907471 DOI: 10.1103/physreve.109.054407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/11/2024] [Indexed: 06/24/2024]
Abstract
Cilia are hairlike microactuators whose cyclic motion is specialized to propel extracellular fluids at low Reynolds numbers. Clusters of these organelles can form synchronized beating patterns, called metachronal waves, which presumably arise from hydrodynamic interactions. We model hydrodynamically interacting cilia by microspheres elastically bound to circular orbits, whose inclinations with respect to a no-slip wall model the ciliary power and recovery stroke, resulting in an anisotropy of the viscous flow. We derive a coupled phase-oscillator description by reducing the microsphere dynamics to the slow timescale of synchronization and determine analytical metachronal wave solutions and their stability in a periodic chain setting. In this framework, a simple intuition for the hydrodynamic coupling between phase oscillators is established by relating the geometry of flow near the surface of a cell or tissue to the directionality of the hydrodynamic coupling functions. This intuition naturally explains the properties of the linear stability of metachronal waves. The flow near the surface stabilizes metachronal waves with long wavelengths propagating in the direction of the power stroke and, moreover, metachronal waves with short wavelengths propagating perpendicularly to the power stroke. Performing simulations of phase-oscillator chains with periodic boundary conditions, we indeed find that both wave types emerge with a variety of linearly stable wave numbers. In open chains of phase oscillators, the dynamics of metachronal waves is fundamentally different. Here the elasticity of the model cilia controls the wave direction and selects a particular wave number: At large elasticity, waves traveling in the direction of the power stroke are stable, whereas at smaller elasticity waves in the opposite direction are stable. For intermediate elasticity both wave directions coexist. In this regime, waves propagating towards both ends of the chain form, but only one wave direction prevails, depending on the elasticity and initial conditions.
Collapse
Affiliation(s)
- Albert von Kenne
- Department of Mathematical Modelling and Data Analysis, Physikalisch-Technische Bundesanstalt, Berlin 10587, Germany
| | - Markus Bär
- Department of Mathematical Modelling and Data Analysis, Physikalisch-Technische Bundesanstalt, Berlin 10587, Germany
| | - Thomas Niedermayer
- Department of Mathematical Modelling and Data Analysis, Physikalisch-Technische Bundesanstalt, Berlin 10587, Germany
| |
Collapse
|
6
|
Kamdar S, Ghosh D, Lee W, Tătulea-Codrean M, Kim Y, Ghosh S, Kim Y, Cheepuru T, Lauga E, Lim S, Cheng X. Multiflagellarity leads to the size-independent swimming speed of peritrichous bacteria. Proc Natl Acad Sci U S A 2023; 120:e2310952120. [PMID: 37991946 PMCID: PMC10691209 DOI: 10.1073/pnas.2310952120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023] Open
Abstract
To swim through a viscous fluid, a flagellated bacterium must overcome the fluid drag on its body by rotating a flagellum or a bundle of multiple flagella. Because the drag increases with the size of bacteria, it is expected theoretically that the swimming speed of a bacterium inversely correlates with its body length. Nevertheless, despite extensive research, the fundamental size-speed relation of flagellated bacteria remains unclear with different experiments reporting conflicting results. Here, by critically reviewing the existing evidence and synergizing our own experiments of large sample sizes, hydrodynamic modeling, and simulations, we demonstrate that the average swimming speed of Escherichia coli, a premier model of peritrichous bacteria, is independent of their body length. Our quantitative analysis shows that such a counterintuitive relation is the consequence of the collective flagellar dynamics dictated by the linear correlation between the body length and the number of flagella of bacteria. Notably, our study reveals how bacteria utilize the increasing number of flagella to regulate the flagellar motor load. The collective load sharing among multiple flagella results in a lower load on each flagellar motor and therefore faster flagellar rotation, which compensates for the higher fluid drag on the longer bodies of bacteria. Without this balancing mechanism, the swimming speed of monotrichous bacteria generically decreases with increasing body length, a feature limiting the size variation of the bacteria. Altogether, our study resolves a long-standing controversy over the size-speed relation of flagellated bacteria and provides insights into the functional benefit of multiflagellarity in bacteria.
Collapse
Affiliation(s)
- Shashank Kamdar
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN55455
| | - Dipanjan Ghosh
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN55455
| | - Wanho Lee
- National Institute for Mathematical Sciences, Daejeon34047, Republic of Korea
| | - Maria Tătulea-Codrean
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CambridgeCB3 0WA, United Kingdom
| | - Yongsam Kim
- Department of Mathematics, Chung-Ang University, Seoul06974, Republic of Korea
| | - Supriya Ghosh
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN55455
| | - Youngjun Kim
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN55455
| | - Tejesh Cheepuru
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN55455
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CambridgeCB3 0WA, United Kingdom
| | - Sookkyung Lim
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH45221
| | - Xiang Cheng
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN55455
| |
Collapse
|
7
|
Lim S, Yadunandan A, Khalid Jawed M. Bacteria-inspired robotic propulsion from bundling of soft helical filaments at low Reynolds number. SOFT MATTER 2023; 19:2254-2264. [PMID: 36916641 DOI: 10.1039/d2sm01398c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The bundling of flagella is known to create a "run" phase, where the bacteria moves in a nearly straight line rather than making changes in direction. Historically, mechanical explanations for the bundling phenomenon intrigued many researchers, and significant advances were made in physical models and experimental methods. Contributing to the field of research, we present a bacteria-inspired centimeter-scale soft robotic hardware platform and a computational framework for a physically plausible simulation model of the multi-flagellated robot under low Reynolds number (∼10-1). The fluid-structure interaction simulation couples the discrete elastic rods algorithm with the method of regularized Stokeslet segments. Contact between two flagella is handled by a penalty-based method. We present a comparison between our experimental and simulation results and verify that the simulation tool can capture the essential physics of this problem. Preliminary findings on robustness to buckling provided by the bundling phenomenon and the efficiency of a multi-flagellated soft robot are compared with the single-flagellated counterparts. Observations were made on the coupling between geometry and elasticity, which manifests itself in the propulsion of the robot by nonlinear dependency on the rotational speed of the flagella.
Collapse
Affiliation(s)
- Sangmin Lim
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California, 90095, USA.
| | - Achyuta Yadunandan
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California, 90095, USA
| | - M Khalid Jawed
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California, 90095, USA.
| |
Collapse
|