1
|
Yi XX, Chen R, Zhou B. Magnetic disorder induced Hall conductance fluctuation in the semi-magnetic topological insulator thin film. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2025; 37:175004. [PMID: 40085968 DOI: 10.1088/1361-648x/adc0d9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/14/2025] [Indexed: 03/16/2025]
Abstract
In this work, we investigate the effect of magnetic disorder on a magnetic topological insulator thin film that supports the semi-magnetic topological insulator, quantum anomalous Hall insulator, and axion insulator phases. Once the magnetic disorder is introduced, we find that the semi-magnetic topological insulator phase exhibits a significant fluctuation in the Hall conductance but its averaged value maintains the half-quantization. The scenario is distinct from that in the quantum anomalous Hall insulator and axion insulator phases, where the Hall conductance is stable and exhibits no fluctuation in the presence of weak magnetic disorder. We propose that the conductance fluctuation in the semi-magnetic topological insulator phase is attributed to the gapless surface state. The fluctuation arises because the system fluctuates between different quantized conductance plateaus, and its origin is different from the conventional conductance fluctuations caused by Anderson disorder.
Collapse
Affiliation(s)
- Xiao-Xia Yi
- Department of Physics, Hubei University, Wuhan 430062, People's Republic of China
| | - Rui Chen
- Department of Physics, Hubei University, Wuhan 430062, People's Republic of China
| | - Bin Zhou
- Department of Physics, Hubei University, Wuhan 430062, People's Republic of China
| |
Collapse
|
2
|
Fu B, Bai KZ, Shen SQ. Half-quantum mirror Hall effect. Nat Commun 2024; 15:6939. [PMID: 39138173 PMCID: PMC11519588 DOI: 10.1038/s41467-024-51215-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
We predict a half-quantized mirror Hall effect induced by mirror symmetry in strong topological insulator films. These films are known to host a pair of gapless Dirac cones in the first Brillouin zone associated with surface electrons. Our findings reveal that mirror symmetry assigns a unique mirror parity to each Dirac cone, resulting in a half-quantized Hall conductance of ± e 2 2 h for each cone. Despite the total electrical Hall conductance being null due to time-reversal invariance, the difference in the Hall conductance between the two cones yields a quantized Hall conductance ofe 2 h for the difference in mirror currents. The effect of helical edge mirror current - a crucial feature of this quantum effect - may, in principle, be determined by means of electrical measurements. The half-quantum mirror Hall effect reveals a type of mirror-symmetry induced quantum anomaly in a time-reversal invariant lattice system, giving rise to a topological metallic state of matter with time-reversal invariance.
Collapse
Affiliation(s)
- Bo Fu
- School of Sciences, Great Bay University, Dongguan, 523000, Guangdong Province, China
| | - Kai-Zhi Bai
- Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Shun-Qing Shen
- Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
- Quantum Science Center of Guangdong-Hong Kong-Macau Greater Bay Area, Shenzhen, China.
| |
Collapse
|
3
|
Li S, Gong M, Cheng S, Jiang H, Xie XC. Dissipationless layertronics in axion insulator MnBi 2Te 4. Natl Sci Rev 2024; 11:nwad262. [PMID: 38715704 PMCID: PMC11075771 DOI: 10.1093/nsr/nwad262] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 11/21/2024] Open
Abstract
Surface electrons in axion insulators are endowed with a topological layer degree of freedom followed by exotic transport phenomena, e.g., the layer Hall effect. Here, we propose that such a layer degree of freedom can be manipulated in a dissipationless way based on the antiferromagnetic [Formula: see text] with tailored domain structure. This makes [Formula: see text] a versatile platform to exploit the 'layertronics' to encode, process and store information. Importantly, the layer filter, layer valve and layer reverser devices can be achieved using the layer-locked chiral domain wall modes. The dissipationless nature of the domain wall modes makes the performance of the layertronic devices superior to those in spintronics and valleytronics. Specifically, the layer reverser, a layer version of the Datta-Das transistor, also fills up the blank in designing the valley reverser in valleytronics. Our work sheds light on constructing new generation electronic devices with high performance and low-energy consumption in the framework of layertronics.
Collapse
Affiliation(s)
- Shuai Li
- School of Physical Science and Technology, Soochow University, Suzhou 215006, China
- Institute for Advanced Study, Soochow University, Suzhou 215006, China
| | - Ming Gong
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Shuguang Cheng
- Department of Physics, Northwest University, Xi’an 710069, China
| | - Hua Jiang
- Institute for Advanced Study, Soochow University, Suzhou 215006, China
- Interdisciplinary Center for Theoretical Physics and Information Sciences, Fudan University, Shanghai 200433, China
| | - X C Xie
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Interdisciplinary Center for Theoretical Physics and Information Sciences, Fudan University, Shanghai 200433, China
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
4
|
Li S, Liu T, Liu C, Wang Y, Lu HZ, Xie XC. Progress on the antiferromagnetic topological insulator MnBi 2Te 4. Natl Sci Rev 2024; 11:nwac296. [PMID: 38213528 PMCID: PMC10776361 DOI: 10.1093/nsr/nwac296] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/18/2022] [Accepted: 11/09/2022] [Indexed: 01/13/2024] Open
Abstract
Topological materials, which feature robust surface and/or edge states, have now been a research focus in condensed matter physics. They represent a new class of materials exhibiting nontrivial topological phases, and provide a platform for exploring exotic transport phenomena, such as the quantum anomalous Hall effect and the quantum spin Hall effect. Recently, magnetic topological materials have attracted considerable interests due to the possibility to study the interplay between topological and magnetic orders. In particular, the quantum anomalous Hall and axion insulator phases can be realized in topological insulators with magnetic order. MnBi2Te4, as the first intrinsic antiferromagnetic topological insulator discovered, allows the examination of existing theoretical predictions; it has been extensively studied, and many new discoveries have been made. Here we review the progress made on MnBi2Te4 from both experimental and theoretical aspects. The bulk crystal and magnetic structures are surveyed first, followed by a review of theoretical calculations and experimental probes on the band structure and surface states, and a discussion of various exotic phases that can be realized in MnBi2Te4. The properties of MnBi2Te4 thin films and the corresponding transport studies are then reviewed, with an emphasis on the edge state transport. Possible future research directions in this field are also discussed.
Collapse
Affiliation(s)
- Shuai Li
- Department of Physics, Harbin Institute of Technology, Harbin 150001, China
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen 518045, China
- Shenzhen Key Laboratory of Quantum Science and Engineering, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
| | - Tianyu Liu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen 518045, China
- Shenzhen Key Laboratory of Quantum Science and Engineering, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
| | - Chang Liu
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China
| | - Yayu Wang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
- Hefei National Laboratory, Hefei 230088, China
| | - Hai-Zhou Lu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen 518045, China
- Shenzhen Key Laboratory of Quantum Science and Engineering, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
| | - X C Xie
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
5
|
Leng P, Qian Y, Cao X, Joseph NB, Zhang Y, Banerjee A, Li Z, Liu F, Jia Z, Ai L, Zhang Y, Xie X, Guo S, Xi C, Pi L, Zhang J, Narayan A, Xiu F. Nondegenerate Integer Quantum Hall Effect from Topological Surface States in Ag 2Te Nanoplates. NANO LETTERS 2023; 23:9026-9033. [PMID: 37767914 DOI: 10.1021/acs.nanolett.3c02703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
The quantum Hall effect is one of the exclusive properties displayed by Dirac Fermions in topological insulators, which propagates along the chiral edge state and gives rise to quantized electron transport. However, the quantum Hall effect formed by the nondegenerate Dirac surface states has been elusive so far. Here, we demonstrate the nondegenerate integer quantum Hall effect from the topological surface states in three-dimensional (3D) topological insulator β-Ag2Te nanostructures. Surface-state dominant conductance renders quantum Hall conductance plateaus with a step of e2/h, along with typical thermopower behaviors of two-dimensional (2D) massless Dirac electrons. The 2D nature of the topological surface states is proven by the electrical and thermal transport responses under tilted magnetic fields. Moreover, the degeneracy of the surface states is removed by structure inversion asymmetry (SIA). The evidenced SIA-induced nondegenerate integer quantum Hall effect in low-symmetry β-Ag2Te has implications for both fundamental study and the realization of topological magneto-electric effects.
Collapse
Affiliation(s)
- Pengliang Leng
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, 41st Floor, AI Tower, No. 701 Yunjin Road, Xuhui District, Shanghai 200232, China
| | - Yingcai Qian
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Xiangyu Cao
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, 41st Floor, AI Tower, No. 701 Yunjin Road, Xuhui District, Shanghai 200232, China
| | - Nesta Benno Joseph
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Yuda Zhang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, 41st Floor, AI Tower, No. 701 Yunjin Road, Xuhui District, Shanghai 200232, China
| | - Ayan Banerjee
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Zihan Li
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Fengshuo Liu
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Zehao Jia
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, 41st Floor, AI Tower, No. 701 Yunjin Road, Xuhui District, Shanghai 200232, China
| | - Linfeng Ai
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, 41st Floor, AI Tower, No. 701 Yunjin Road, Xuhui District, Shanghai 200232, China
| | - Yong Zhang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Xiaoyi Xie
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, 41st Floor, AI Tower, No. 701 Yunjin Road, Xuhui District, Shanghai 200232, China
| | - Shengbing Guo
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Chuanying Xi
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Li Pi
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Jinglei Zhang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Awadhesh Narayan
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Faxian Xiu
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, 41st Floor, AI Tower, No. 701 Yunjin Road, Xuhui District, Shanghai 200232, China
- Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China
- Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201210, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| |
Collapse
|
6
|
Lin W, Feng Y, Wang Y, Zhu J, Lian Z, Zhang H, Li H, Wu Y, Liu C, Wang Y, Zhang J, Wang Y, Chen CZ, Zhou X, Shen J. Direct visualization of edge state in even-layer MnBi 2Te 4 at zero magnetic field. Nat Commun 2022; 13:7714. [PMID: 36513662 PMCID: PMC9747779 DOI: 10.1038/s41467-022-35482-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Being the first intrinsic antiferromagnetic (AFM) topological insulator (TI), MnBi2Te4 is argued to be a topological axion state in its even-layer form due to the antiparallel magnetization between the top and bottom layers. Here we combine both transport and scanning microwave impedance microscopy (sMIM) to investigate such axion state in atomically thin MnBi2Te4 with even-layer thickness at zero magnetic field. While transport measurements show a zero Hall plateau signaturing the axion state, sMIM uncovers an unexpected edge state raising questions regarding the nature of the "axion state". Based on our model calculation, we propose that the edge state of even-layer MnBi2Te4 at zero field is derived from gapped helical edge states of the quantum spin Hall effect with time-reversal-symmetry breaking, when a crossover from a three-dimensional TI MnBi2Te4 to a two-dimensional TI occurs. Our finding thus signifies the richness of topological phases in MnB2Te4 that has yet to be fully explored.
Collapse
Affiliation(s)
- Weiyan Lin
- State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai, China
| | - Yang Feng
- Department of Physics, Fudan University, Shanghai, China
| | - Yongchao Wang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, China
- Beijing Innovation Center for Future Chips, Tsinghua University, Beijing, China
| | - Jinjiang Zhu
- Department of Physics, Fudan University, Shanghai, China
| | - Zichen Lian
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, China
| | - Huanyu Zhang
- Department of Physics, Fudan University, Shanghai, China
| | - Hao Li
- School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Tsinghua-Foxconn Nanotechnology Research Center, Department of Physics, Tsinghua University, Beijing, China
| | - Yang Wu
- Tsinghua-Foxconn Nanotechnology Research Center, Department of Physics, Tsinghua University, Beijing, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Chang Liu
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, China
- Beijing Academy of Quantum Information Science, Beijing, China
| | - Yihua Wang
- Department of Physics, Fudan University, Shanghai, China
- Shanghai Research Center for Quantum Sciences, Shanghai, China
| | - Jinsong Zhang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, China
- Frontier Science Center for Quantum Information, Beijing, China
| | - Yayu Wang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, China
- Frontier Science Center for Quantum Information, Beijing, China
| | - Chui-Zhen Chen
- School of Physical Science and Technology, Soochow University, Suzhou, China
- Institute for Advanced Study, Soochow University, Suzhou, China
| | - Xiaodong Zhou
- State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai, China.
- Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China.
- Shanghai Qi Zhi Institute, Shanghai, China.
| | - Jian Shen
- State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai, China.
- Department of Physics, Fudan University, Shanghai, China.
- Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China.
- Shanghai Qi Zhi Institute, Shanghai, China.
- Collaborative Innovation Center of Advanced Microstructures, Nanjing, China.
| |
Collapse
|