1
|
Soh BW, Doyle PS. Deformation Response of Catenated DNA Networks in a Planar Elongational Field. ACS Macro Lett 2020; 9:944-949. [PMID: 35648605 DOI: 10.1021/acsmacrolett.0c00360] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A kinetoplast is a complex catenated DNA network that bears resemblance to a two-dimensional polymeric system. In this work, we use single-molecule experiments to study the transient and steady-state deformation of kinetoplasts in a planar elongational field. We demonstrate that kinetoplasts deform in a stagewise manner and undergo transient deformation at large strains, due to conformational rearrangements from an intermediate metastable state. Kinetoplasts in an elongational field achieve a steady-state deformation that depends on strain rate, akin to the deformation of linear polymers. We do not observe an abrupt transition between the nondeformed and deformed states of a kinetoplast, in contrast to the coil-stretch transition for a linear polymer.
Collapse
Affiliation(s)
- Beatrice W. Soh
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Patrick S. Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Marbach S, Yoshida H, Bocquet L. Local and global force balance for diffusiophoretic transport. JOURNAL OF FLUID MECHANICS 2020; 892:A6. [PMID: 32273625 PMCID: PMC7145454 DOI: 10.1017/jfm.2020.137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electro- and diffusio- phoresis of particles correspond respectively to the transport of particles under electric field and solute concentration gradients. Such interfacial transport phenomena take their origin in a diffuse layer close to the particle surface, and the motion of the particle is force-free. In the case of electrophoresis, it is further expected that the stress acting on the moving particle vanishes locally as a consequence of local electroneutrality. But the argument does not apply to diffusiophoresis, which takes its origin in solute concentration gradients. In this paper we investigate further the local and global force balance on a particle undergoing diffusiophoresis. We calculate the local tension applied on the particle surface and show that, counter-intuitively, the local force on the particle does not vanish for diffusiophoresis, in spite of the global force being zero as expected. Incidentally, our description allows to clarify the osmotic balance in diffusiophoresis, which has been a source of debates in the recent years. We explore various cases, including hard and soft interactions, as well as porous particles, and provide analytic predictions for the local force balance in these various systems. The existence of local stresses may induce deformation of soft particles undergoing diffusiophoresis, hence suggesting applications in terms of particle separation based on capillary diffusiophoresis.
Collapse
Affiliation(s)
- S. Marbach
- Ecole Normale Supérieure, PSL Research University, CNRS, 24 rue Lhomond, Paris, France
- Courant Institute of Mathematical Sciences, NYU, 251 Mercer Street, New York, NY, USA
| | - H. Yoshida
- Ecole Normale Supérieure, PSL Research University, CNRS, 24 rue Lhomond, Paris, France
- Toyota Central R&D Labs., Inc., Bunkyo-ku, Tokyo 112-0004, Japan
| | - L. Bocquet
- Ecole Normale Supérieure, PSL Research University, CNRS, 24 rue Lhomond, Paris, France
| |
Collapse
|
3
|
Qiao L, Ignacio M, Slater GW. Voltage-driven translocation: Defining a capture radius. J Chem Phys 2019; 151:244902. [DOI: 10.1063/1.5134076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Le Qiao
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Maxime Ignacio
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Gary W. Slater
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
4
|
Phimphachanh A, Chamieh J, Leclercq L, Harrisson S, Destarac M, Lacroix-Desmazes P, Gérardin C, In M, Cottet H. Characterization of Diblock Copolymers by Capillary Electrophoresis: From Electrophoretic Mobility Distribution to Distribution of Composition. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anthony Phimphachanh
- L2C, Univ Montpellier, CNRS, Montpellier, France
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Joseph Chamieh
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Simon Harrisson
- IMRCP, University of Toulouse, CNRS UMR5623, Toulouse, France
| | | | | | | | - Martin In
- L2C, Univ Montpellier, CNRS, Montpellier, France
| | - Hervé Cottet
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
5
|
Ashrafizadeh SN, Seifollahi Z, Ganjizade A, Sadeghi A. Electrophoresis of spherical soft particles in electrolyte solutions: A review. Electrophoresis 2019; 41:81-103. [DOI: 10.1002/elps.201900236] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 02/01/2023]
Affiliation(s)
- Seyed Nezameddin Ashrafizadeh
- Research Lab for Advanced Separation ProcessesDepartment of Chemical EngineeringIran University of Science and Technology Tehran Iran
| | - Zahra Seifollahi
- Research Lab for Advanced Separation ProcessesDepartment of Chemical EngineeringIran University of Science and Technology Tehran Iran
| | - Ardalan Ganjizade
- Research Lab for Advanced Separation ProcessesDepartment of Chemical EngineeringIran University of Science and Technology Tehran Iran
| | - Arman Sadeghi
- Department of Mechanical EngineeringUniversity of Kurdistan Sanandaj Iran
| |
Collapse
|
6
|
Nouri R, Tang Z, Guan W. Calibration-Free Nanopore Digital Counting of Single Molecules. Anal Chem 2019; 91:11178-11184. [DOI: 10.1021/acs.analchem.9b01924] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Reza Nouri
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zifan Tang
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Weihua Guan
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
7
|
Liu Z, Shi X, Wu H. Coarse-grained molecular dynamics study of wettability influence on protein translocation through solid nanopores. NANOTECHNOLOGY 2019; 30:165701. [PMID: 30634172 DOI: 10.1088/1361-6528/aafdd7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Protein translocation through nanopores is widely involved in molecular sensing and analyzing devices, whereby nanopore surface properties are crucial. However, fundamental understanding of how these properties affect protein motion inside nanopores remains lacking. In this work, we study the influence of nanopore surface wettability on voltage-driven protein translocation through nanopores with coarse-grained molecular dynamics simulations. The results show that the electrophoretic mobility of protein translocation increases as the contact angle of nanopore surface increases from 0° to 90°, but becomes almost constant as the contact angle is above 90°. This observation can be attributed to the variation of the friction coefficient of protein translocation through the nanopores with different nanopore contact angles. We further show that the interaction between nanopore and water, rather than that between the nanopore and protein, dominates the protein transport in nanopores. These findings provide new insights into protein translocation dynamics across nanopores and will be beneficial to the design of high-efficiency nanopore devices for single molecule protein sensing.
Collapse
Affiliation(s)
- Zhenyu Liu
- School of Mechanical Engineering, Shanghai Jiao Tong University, 200240, People's Republic of China
| | | | | |
Collapse
|
8
|
Conformation and Dynamics of Long-Chain End-Tethered Polymers in Microchannels. Polymers (Basel) 2019; 11:polym11030488. [PMID: 30960472 PMCID: PMC6473708 DOI: 10.3390/polym11030488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/14/2022] Open
Abstract
Polyelectrolytes constitute an important group of materials, used for such different purposes as the stabilization of emulsions and suspensions or oil recovery. They are also studied and utilized in the field of microfluidics. With respect to the latter, a part of the interest in polyelectrolytes inside microchannels stems from genetic analysis, considering that deoxyribonucleic acid (DNA) molecules are polyelectrolytes. This review summarizes the single-molecule experimental and molecular dynamics simulation-based studies of end-tethered polyelectrolytes, especially addressing their relaxation dynamics and deformation characteristics under various external forces in micro-confined environments. In most of these studies, DNA is considered as a model polyelectrolyte. Apart from summarizing the results obtained in that area, the most important experimental and simulation techniques are explained.
Collapse
|
9
|
Socol M, Ranchon H, Chami B, Lesage A, Victor JM, Manghi M, Bancaud A. Contraction and Tumbling Dynamics of DNA in Shear Flows under Confinement Induced by Transverse Viscoelastic Forces. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marius Socol
- LAAS-CNRS, Université de Toulouse, CNRS, F-31400 Toulouse, France
| | - Hubert Ranchon
- LAAS-CNRS, Université de Toulouse, CNRS, F-31400 Toulouse, France
| | - Bayan Chami
- LAAS-CNRS, Université de Toulouse, CNRS, F-31400 Toulouse, France
| | - Antony Lesage
- Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Jean-Marc Victor
- Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Manoel Manghi
- Laboratoire de Physique Théorique (IRSAMC), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Aurélien Bancaud
- LAAS-CNRS, Université de Toulouse, CNRS, F-31400 Toulouse, France
| |
Collapse
|
10
|
Marbach S, Bocquet L. Osmosis, from molecular insights to large-scale applications. Chem Soc Rev 2019; 48:3102-3144. [PMID: 31114820 DOI: 10.1039/c8cs00420j] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Osmosis is a universal phenomenon occurring in a broad variety of processes and fields. It is the archetype of entropic forces, both trivial in its fundamental expression - the van 't Hoff perfect gas law - and highly subtle in its physical roots. While osmosis is intimately linked with transport across membranes, it also manifests itself as an interfacial transport phenomenon: the so-called diffusio-osmosis and -phoresis, whose consequences are presently actively explored for example for the manipulation of colloidal suspensions or the development of active colloidal swimmers. Here we give a global and unifying view of the phenomenon of osmosis and its consequences with a multi-disciplinary perspective. Pushing the fundamental understanding of osmosis allows one to propose new perspectives for different fields and we highlight a number of examples along these lines, for example introducing the concepts of osmotic diodes, active separation and far from equilibrium osmosis, raising in turn fundamental questions in the thermodynamics of separation. The applications of osmosis are also obviously considerable and span very diverse fields. Here we discuss a selection of phenomena and applications where osmosis shows great promises: osmotic phenomena in membrane science (with recent developments in separation, desalination, reverse osmosis for water purification thanks in particular to the emergence of new nanomaterials); applications in biology and health (in particular discussing the kidney filtration process); osmosis and energy harvesting (in particular, osmotic power and blue energy as well as capacitive mixing); applications in detergency and cleaning, as well as for oil recovery in porous media.
Collapse
Affiliation(s)
- Sophie Marbach
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.
| | | |
Collapse
|
11
|
Nomidis SK, Hooyberghs J, Maglia G, Carlon E. DNA capture into the ClyA nanopore: diffusion-limited versus reaction-limited processes. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:304001. [PMID: 29893712 DOI: 10.1088/1361-648x/aacc01] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The capture and translocation of biomolecules through nanometer-scale pores are processes with a potentially large number of applications, and hence they have been intensively studied in recent years. The aim of this paper is to review existing models of the capture process by a nanopore, together with some recent experimental data of short single- and double-stranded DNA captured by the Cytolysin A (ClyA) nanopore. ClyA is a transmembrane protein of bacterial origin which has been recently engineered through site-specific mutations, to allow the translocation of double- and single-stranded DNA. A comparison between theoretical estimations and experiments suggests that for both cases the capture is a reaction-limited process. This is corroborated by the observed salt dependence of the capture rate, which we find to be in quantitative agreement with the theoretical predictions.
Collapse
Affiliation(s)
- Stefanos K Nomidis
- KU Leuven, Institute for Theoretical Physics, Celestijnenlaan 200D, 3001 Leuven, Belgium. Flemish Institute for Technological Research (VITO), Boeretang 200, B-2400 Mol, Belgium
| | | | | | | |
Collapse
|
12
|
Abstract
Long-read genomic applications, such as genome mapping in nanochannels, require long DNA that is free of small-DNA impurities. We have developed a chip-based system based on entropic trapping that can simultaneously concentrate and purify a long DNA sample under the alternating application of an applied pressure (for sample injection) and an electric field (for filtration and concentration). In contrast, short DNA tends to pass through the filter owing to its comparatively weak entropic penalty for entering the nanoslit. The single-stage prototype developed here, which operates in a continuous pulsatile manner, achieves selectivities of up to 3.5 for λ-phage DNA (48.5 kilobase pairs) compared to a 2 kilobase pair standard based on experimental data for the fraction filtered using pure samples of each species. The device is fabricated in fused silica using standard clean-room methods, making it compatible for integration with long-read genomics technologies.
Collapse
Affiliation(s)
- Pranav Agrawal
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
13
|
Zhou J, Wang Y, Menard LD, Panyukov S, Rubinstein M, Ramsey JM. Enhanced nanochannel translocation and localization of genomic DNA molecules using three-dimensional nanofunnels. Nat Commun 2017; 8:807. [PMID: 28993619 PMCID: PMC5634460 DOI: 10.1038/s41467-017-00951-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 08/08/2017] [Indexed: 12/13/2022] Open
Abstract
The ability to precisely control the transport of single DNA molecules through a nanoscale channel is critical to DNA sequencing and mapping technologies that are currently under development. Here we show how the electrokinetically driven introduction of DNA molecules into a nanochannel is facilitated by incorporating a three-dimensional nanofunnel at the nanochannel entrance. Individual DNA molecules are imaged as they attempt to overcome the entropic barrier to nanochannel entry through nanofunnels with various shapes. Theoretical modeling of this behavior reveals the pushing and pulling forces that result in up to a 30-fold reduction in the threshold electric field needed to initiate nanochannel entry. In some cases, DNA molecules are stably trapped and axially positioned within a nanofunnel at sub-threshold electric field strengths, suggesting the utility of nanofunnels as force spectroscopy tools. These applications illustrate the benefit of finely tuning nanoscale conduit geometries, which can be designed using the theoretical model developed here.Forcing a DNA molecule into a nanoscale channel requires overcoming the free energy barrier associated with confinement. Here, the authors show that DNA injected through a funnel-shaped entrance more efficiently enters the nanochannel, thanks to facilitating forces generated by the nanofunnel geometry.
Collapse
Affiliation(s)
- Jinsheng Zhou
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Yanqian Wang
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Laurent D Menard
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Sergey Panyukov
- PN Lebedev Physical Institute, Russian Academy of Sciences, Moscow, 117924, Russia
| | - Michael Rubinstein
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - J Michael Ramsey
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
14
|
Roy T, Szuttor K, Smiatek J, Holm C, Hardt S. Electric-field-induced stretching of surface-tethered polyelectrolytes in a microchannel. Phys Rev E 2017; 96:032503. [PMID: 29346871 DOI: 10.1103/physreve.96.032503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Indexed: 06/07/2023]
Abstract
We study the stretching of a surface-tethered polyelectrolyte confined between parallel surfaces under the application of a dc electric field. We explore the influence of the electric-field strength, the length of the polyelectrolyte, and the degree of confinement on the conformation of the polyelectrolyte by single-molecule experiments and coarse-grained coupled lattice-Boltzmann molecular-dynamics simulations. The fractional extension of the polyelectrolyte is found to be a universal function of the product of the applied electric field and the molecular contour length, which is explained by simple scaling arguments. The degree of confinement does not have any significant influence on the stretching. We also confirm that an electrohydrodynamic equivalence principle relating the stretching in an electric field to that in a flow field is applicable.
Collapse
Affiliation(s)
- Tamal Roy
- Institute for Nano- and Microfluidics, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Kai Szuttor
- Institut für Computerphysik, Universität Stuttgart, 70569 Stuttgart, Germany
| | - Jens Smiatek
- Institut für Computerphysik, Universität Stuttgart, 70569 Stuttgart, Germany
| | - Christian Holm
- Institut für Computerphysik, Universität Stuttgart, 70569 Stuttgart, Germany
| | - Steffen Hardt
- Institute for Nano- and Microfluidics, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
15
|
Viefhues M, Eichhorn R. DNA dielectrophoresis: Theory and applications a review. Electrophoresis 2017; 38:1483-1506. [PMID: 28306161 DOI: 10.1002/elps.201600482] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 01/24/2023]
Abstract
Dielectrophoresis is the migration of an electrically polarizable particle in an inhomogeneous electric field. This migration can be exploited for several applications with (bio)molecules or cells. Dielectrophoresis is a noninvasive technique; therefore, it is very convenient for (selective) manipulation of (bio)molecules or cells. In this review, we will focus on DNA dielectrophoresis as this technique offers several advantages in trapping and immobilization, separation and purification, and analysis of DNA molecules. We present and discuss the underlying theory of the most important forces that have to be considered for applications with dielectrophoresis. Moreover, a review of DNA dielectrophoresis applications is provided to present the state-of-the-art and to offer the reader a perspective of the advances and current limitations of DNA dielectrophoresis.
Collapse
Affiliation(s)
- Martina Viefhues
- Experimental Biophysics and Applied Nanoscience, Faculty of Physics, Bielefeld University, Bielefeld, Germany
| | - Ralf Eichhorn
- Nordita, Royal Institute of Technology and Stockholm University, Stockholm, Sweden
| |
Collapse
|
16
|
Chakravorty A, Jia Z, Li L, Alexov E. A New DelPhi Feature for Modeling Electrostatic Potential around Proteins: Role of Bound Ions and Implications for Zeta-Potential. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2283-2295. [PMID: 28181811 PMCID: PMC9831612 DOI: 10.1021/acs.langmuir.6b04430] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A new feature of the popular software DelPhi is developed and reported, allowing for computing the surface averaged electrostatic potential (SAEP) of macromolecules. The user is given the option to specify the distance from the van der Waals surface where the electrostatic potential will be outputted. In conjunction with DelPhiPKa and the BION server, the user can adjust the charges of titratable groups according to specific pH values, and add explicit ions bound to the macromolecular surface. This approach is applied to a set of four proteins with "experimentally" delivered zeta (ζ)-potentials at different pH values and salt concentrations. It has been demonstrated that the protocol is capable of predicting ζ-potentials in the case of proteins with relatively large net charges. This protocol has been less successful for proteins with low net charges. The work demonstrates that in the case of proteins with large net charges, the electrostatic potential should be collected at distances about 4 Å away from the vdW surface and explicit ions should be added at a binding energy cutoff larger than 1-2kT, in order to accurately predict ζ-potentials. The low salt conditions substantiate this effect of ions on SAEP.
Collapse
Affiliation(s)
- Arghya Chakravorty
- Computational Biophysics and Bioinformatics, Department of Physics and Astronomy, Clemson University , Clemson, South Carolina 29634, United States
| | - Zhe Jia
- Computational Biophysics and Bioinformatics, Department of Physics and Astronomy, Clemson University , Clemson, South Carolina 29634, United States
| | - Lin Li
- Computational Biophysics and Bioinformatics, Department of Physics and Astronomy, Clemson University , Clemson, South Carolina 29634, United States
| | - Emil Alexov
- Computational Biophysics and Bioinformatics, Department of Physics and Astronomy, Clemson University , Clemson, South Carolina 29634, United States
| |
Collapse
|
17
|
Grosberg AY, Joanny JF, Srinin W, Rabin Y. Scale-Dependent Viscosity in Polymer Fluids. J Phys Chem B 2016; 120:6383-90. [DOI: 10.1021/acs.jpcb.6b03339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexander Y. Grosberg
- Department
of Physics and Center for Soft Matter Research, New York University, New York, New York 10003, United States
- Physico-Chimie
Curie UMR 168, Institut Curie, PSL Research University, 26 rue d’Ulm, 75248 Paris Cedex 05, France
| | - Jean-François Joanny
- ESPCI-ParisTech, 10 rue Vauquelin 75005 Paris, France
- Physico-Chimie
Curie UMR 168, Institut Curie, PSL Research University, 26 rue d’Ulm, 75248 Paris Cedex 05, France
| | - Watee Srinin
- Department
of Physics and Center for Soft Matter Research, New York University, New York, New York 10003, United States
| | - Yitzhak Rabin
- Department
of Physics and Institute for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| |
Collapse
|
18
|
Klepinger AC, Greenier MK, Levy SL. Stretching DNA Molecules in Strongly Confining Nanofluidic Slits. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01712] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Madeline K. Greenier
- Department
of Physics, Binghamton University, Binghamton, New York 13902, United States
| | - Stephen L. Levy
- Department
of Physics, Binghamton University, Binghamton, New York 13902, United States
| |
Collapse
|
19
|
Muthukumar M. Communication: Charge, diffusion, and mobility of proteins through nanopores. J Chem Phys 2015; 141:081104. [PMID: 25172998 DOI: 10.1063/1.4894401] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Implementation of Einstein's law connecting charge, diffusion coefficient, and mobility to interpret experimental data on proteins from single molecule electrophoresis through nanopores faces serious difficulties. The protein charge and diffusion coefficient, inferred with the Einstein law, can be orders of magnitude smaller than their bare values depending on the electrolyte concentration, pore diameter, chemical nature of the pore wall, and the externally applied voltage. The main contributors to the discrepancies are the coupled dynamics of the protein and its counterion cloud, confinement effects inside the pore, and the protein-pore-surface interaction. We have addressed these ingredients by harking on classical theories of electrophoresis of macroions and hydrodynamics inside pores, and deriving new results for pore-protein interactions. Putting together various components, we present approximate analytical formulas for the effective charge, diffusion coefficient, and mobility of a protein in the context of single molecule electrophoresis experiments. For the omnipresent pore-protein interactions, nonlinear dependence of the velocity of protein on voltage sets in readily and analytical formulas for this effect are presented. The derived formulas enable the determination of the bare charge and size of a protein from the experimentally measured apparent values.
Collapse
Affiliation(s)
- M Muthukumar
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| |
Collapse
|
20
|
Shendruk TN, Bertrand M, Slater GW. Electrophoretic Mobility of Polyelectrolytes within a Confining Well. ACS Macro Lett 2015; 4:472-476. [PMID: 35596316 DOI: 10.1021/acsmacrolett.5b00076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We present a numerical study of polyelectrolytes electrophoresing in free solution while squeezed by an axisymmetric confinement force transverse to their net displacement. Hybrid multiparticle collision dynamics and molecular dynamics simulations with mean-field finite Debye layers show that even though the polyelectrolyte chains remain "free-draining" their electrophoretic mobility increases with confinement in nanoconfining potential wells. The primary mechanism leading to the increase in mobility above the free-solution value, despite long-range hydrodynamic screening by counterion layers, is the orientation of polymer segments within Debye layers. The observed length dependence of the electrophoretic mobility arises due to secondary effects of counterion condensation related to confinement compactification.
Collapse
Affiliation(s)
- Tyler N. Shendruk
- The
Rudolf Peierls Centre for Theoretical Physics, Department of Physics,
Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| | - Martin Bertrand
- Department
of Physics, University of Ottawa, 150 Louis-Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Gary W. Slater
- Department
of Physics, University of Ottawa, 150 Louis-Pasteur, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
21
|
Lepoitevin M, Coulon PE, Bechelany M, Cambedouzou J, Janot JM, Balme S. Influence of nanopore surface charge and magnesium ion on polyadenosine translocation. NANOTECHNOLOGY 2015; 26:144001. [PMID: 25785663 DOI: 10.1088/0957-4484/26/14/144001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We investigate the influence of a nanopore surface state and the addition of Mg(2+) on poly-adenosine translocation. To do so, two kinds of nanopores with a low aspect ratio (diameter ∼3-5 nm, length 30 nm) were tailored: the first one with a negative charge surface and the second one uncharged. It was shown that the velocity and the energy barrier strongly depend on the nanopore surface. Typically if the nanopore and polyA exhibit a similar charge, the macromolecule velocity increases and its global energy barrier of entrance in the nanopore decreases, as opposed to the non-charged nanopore. Moreover, the addition of a divalent chelating cation induces an increase of energy barrier of entrance, as expected. However, for a negative nanopore, this effect is counterbalanced by the inversion of the surface charge induced by the adsorption of divalent cations.
Collapse
Affiliation(s)
- Mathilde Lepoitevin
- Institut Européen des Membranes, UMR5635 CNRS-UM2-ENSCM, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | | | | | | | | | | |
Collapse
|
22
|
Maffeo C, Yoo J, Comer J, Wells DB, Luan B, Aksimentiev A. Close encounters with DNA. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:413101. [PMID: 25238560 PMCID: PMC4207370 DOI: 10.1088/0953-8984/26/41/413101] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Over the past ten years, the all-atom molecular dynamics method has grown in the scale of both systems and processes amenable to it and in its ability to make quantitative predictions about the behavior of experimental systems. The field of computational DNA research is no exception, witnessing a dramatic increase in the size of systems simulated with atomic resolution, the duration of individual simulations and the realism of the simulation outcomes. In this topical review, we describe the hallmark physical properties of DNA from the perspective of all-atom simulations. We demonstrate the amazing ability of such simulations to reveal the microscopic physical origins of experimentally observed phenomena. We also discuss the frustrating limitations associated with imperfections of present atomic force fields and inadequate sampling. The review is focused on the following four physical properties of DNA: effective electric charge, response to an external mechanical force, interaction with other DNA molecules and behavior in an external electric field.
Collapse
Affiliation(s)
- C Maffeo
- Department of Physics, University of Illinois, Urbana, IL, USA
| | | | | | | | | | | |
Collapse
|
23
|
Hickey OA, Holm C, Smiatek J. Lattice-Boltzmann simulations of the electrophoretic stretching of polyelectrolytes: The importance of hydrodynamic interactions. J Chem Phys 2014; 140:164904. [DOI: 10.1063/1.4872366] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Raafatnia S, Hickey OA, Sega M, Holm C. Computing the electrophoretic mobility of large spherical colloids by combining explicit ion simulations with the standard electrokinetic model. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:1758-1767. [PMID: 24460102 DOI: 10.1021/la4039528] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The electrophoretic mobility of large spherical colloids in different salt solutions of varying valency and concentration is studied via a combination approach of numerically solving the standard electrokinetic model with a ζ potential that has been obtained from explicit ion simulations of the restricted primitive model, thus going beyond the standard mean-field treatment. We compare our theoretical mobility curves to two distinct sets of experimental results and obtain good agreement for monovalent and divalent salt solutions. For the case of the trivalent La(3+) salt, the experimentally obtained mobility reversal at high ionic strengths can be obtained only by adding an additional attractive interaction of 4k(B)T to the potential between the colloid and La(3+), hinting at the presence of a nonelectrostatic binding term for this ion. It is also shown that, contrary to intuition, charge inversion does not necessarily result in mobility reversal.
Collapse
Affiliation(s)
- Shervin Raafatnia
- Institut für Computerphysik, Universität Stuttgart , Allmandring 3, D-70569 Stuttgart, Germany
| | | | | | | |
Collapse
|
25
|
Laohakunakorn N, Ghosal S, Otto O, Misiunas K, Keyser UF. DNA interactions in crowded nanopores. NANO LETTERS 2013; 13:2798-802. [PMID: 23611491 DOI: 10.1021/nl401050m] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The motion of DNA in crowded environments is a common theme in physics and biology. Examples include gel electrophoresis and the self-interaction of DNA within cells and viral capsids. Here we study the interaction of multiple DNA molecules within a nanopore by tethering the DNA to a bead held in a laser optical trap to produce a "molecular tug-of-war". We measure this tether force as a function of the number of DNA molecules in the pore and show that the force per molecule decreases with the number of molecules. A simple scaling argument based on a mean field theory of the hydrodynamic interactions between multiple DNA strands explains our observations. At high salt concentrations, when the Debye length approaches the size of the counterions, the force per molecule becomes essentially independent of the number of molecules. We attribute this to a sharp decrease in electroosmotic flow which makes the hydrodynamic interactions ineffective.
Collapse
|
26
|
Hickey OA, Holm C. Electrophoretic mobility reversal of polyampholytes induced by strong electric fields or confinement. J Chem Phys 2013; 138:194905. [PMID: 23697439 DOI: 10.1063/1.4804620] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate the mobility of polyampholytes consisting of both negatively and positively charged sections. The simulations are carried out using molecular dynamics simulations with electrohydrodynamical effects taken into account via a simple coupling scheme to a lattice-Boltzmann fluid. Our results show a previously predicted mobility reversal of the polyampholytes as the applied electric field is increased due to stretching of the polyampholytes. Further, we show that a similar mobility reversal can be induced due to confinement between parallel plates. At high electric field strengths, the polyampholytes' electrophoretic mobility is a non-monotonic function of the distance between the plates. These results help to clarify the role of deformation and confinement on the electrophoretic mobility of polyampholytes.
Collapse
Affiliation(s)
- Owen A Hickey
- Institute for Computational Physics, Universität Stuttgart, Allmandring 3, 70569 Stuttgart, Germany
| | | |
Collapse
|
27
|
Dorfman KD, King SB, Olson DW, Thomas JDP, Tree DR. Beyond gel electrophoresis: microfluidic separations, fluorescence burst analysis, and DNA stretching. Chem Rev 2013; 113:2584-667. [PMID: 23140825 PMCID: PMC3595390 DOI: 10.1021/cr3002142] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kevin D. Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota — Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455, Phone: 1-612-624-5560. Fax: 1-612-626-7246
| | - Scott B. King
- Department of Chemical Engineering and Materials Science, University of Minnesota — Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455, Phone: 1-612-624-5560. Fax: 1-612-626-7246
| | - Daniel W. Olson
- Department of Chemical Engineering and Materials Science, University of Minnesota — Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455, Phone: 1-612-624-5560. Fax: 1-612-626-7246
| | - Joel D. P. Thomas
- Department of Chemical Engineering and Materials Science, University of Minnesota — Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455, Phone: 1-612-624-5560. Fax: 1-612-626-7246
| | - Douglas R. Tree
- Department of Chemical Engineering and Materials Science, University of Minnesota — Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455, Phone: 1-612-624-5560. Fax: 1-612-626-7246
| |
Collapse
|
28
|
Rowghanian P, Grosberg AY. Electrophoresis of a DNA coil near a nanopore. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:042723. [PMID: 23679465 DOI: 10.1103/physreve.87.042723] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Indexed: 06/02/2023]
Abstract
Motivated by DNA electrophoresis near a nanopore, we consider the flow field around an "elongated jet," a long thin source which injects momentum into a liquid. This solution qualitatively describes the electro-osmotic flow around a long rigid polymer, where due to electrohydrodynamic coupling, the solvent receives momentum from the electric field. Based on the qualitative behavior of the elongated jet solution, we develop a coarse-grained scheme which reproduces the known theoretical results regarding the electrophoretic behavior of a long rigid polymer and a polymer coil in a uniform field, which we then exploit to analyze the electrophoresis of a polymer coil in the nonuniform field near a nanopore.
Collapse
Affiliation(s)
- Payam Rowghanian
- Department of Physics and Center for Soft Matter Research, New York University, 4 Washington Place, New York, New York 10003, USA.
| | | |
Collapse
|
29
|
Rowghanian P, Grosberg AY. Electrophoretic capture of a DNA chain into a nanopore. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:042722. [PMID: 23679464 DOI: 10.1103/physreve.87.042722] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Indexed: 05/28/2023]
Abstract
Based on our formulation of the DNA electrophoresis near a pore [Rowghanian and Grosberg, Phys. Rev. E (to be published)], we address the electrophoretic DNA capture into a nanopore as a steady-state process of particle absorption to a sink placed on top of an energy barrier. Reproducing the previously observed diffusion-limited and barrier-limited regimes as two different limits of the particle absorption process and matching the data, our model suggests a slower growth of the capture rate with the DNA length for very large DNA molecules than the previous model, motivating more experiments beyond the current range of electric field and DNA length. At moderately weak electric fields, our model predicts a different effect, stating that the DNA length dependence of the capture rate first disappears as the field is reduced and eventually reverses to a decreasing trend with N.
Collapse
Affiliation(s)
- Payam Rowghanian
- Department of Physics and Center for Soft Matter Research, New York University, 4 Washington Place, New York, New York 10003, USA.
| | | |
Collapse
|
30
|
Tseng S, Lin CY, Hsu JP, Yeh LH. Electrophoresis of deformable polyelectrolytes in a nanofluidic channel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:2446-2454. [PMID: 23379259 DOI: 10.1021/la304842x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The influence of the shape of a polyelectrolyte (PE) on its electrophoretic behavior in a nanofluidic channel is investigated by considering the translocation of a deformable ellipsoidal PE along the axis of a cylindrical nanochannel. A continuum model comprising a Poisson equation for the electric potential, Nernst-Planck equations for the ionic concentrations, and modified Stokes equations for the flow field is adopted. The effects of the PE shape, boundary, bulk ionic concentration, counterion condensation, electroosmotic retardation flow, and electroosmotic flow (EOF) on the PE mobility are discussed. Several interesting behaviors are observed. For example, if the nanochannel is uncharged and the double layer is thick, then the PE mobility increases (decreases) with increasing double-layer thickness for a smaller (larger) boundary, which has not been reported previously. If the nanochannel is negatively charged and the double layer is thick, then a negatively charged PE moves in the direction of the applied electric field. The results gathered provide necessary information for both the interpretation of experimental data and the design of nanochannel-based sensing devices.
Collapse
Affiliation(s)
- Shiojenn Tseng
- Department of Mathematics, Tamkang University, Tamsui, Taipei 25137, Taiwan
| | | | | | | |
Collapse
|
31
|
Luan B, Wang D, Zhou R, Harrer S, Peng H, Stolovitzky G. Dynamics of DNA translocation in a solid-state nanopore immersed in aqueous glycerol. NANOTECHNOLOGY 2012; 23:455102. [PMID: 23064727 DOI: 10.1088/0957-4484/23/45/455102] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Nanopore-based technologies have attracted much attention recently for their promising use in low-cost and high-throughput genome sequencing. To achieve single-base resolution of DNA sequencing, it is critical to slow and control the translocation of DNA, which has been achieved in a protein nanopore but not yet in a solid-state nanopore. Using all-atom molecular dynamics simulations, we investigated the dynamics of a single-stranded DNA (ssDNA) molecule in an aqueous glycerol solution confined in a SiO(2) nanopore. The friction coefficient ξ of the ssDNA molecule is found to be approximately 18 times larger in glycerol than in water, which can dramatically slow the motion of ssDNA. The electrophoretic mobility μ of ssDNA in glycerol, however, decreases by almost the same factor, yielding the effective charge (ξμ) of ssDNA being roughly the same as in water. This is counterintuitive since the ssDNA effective charge predicted from the counterion condensation theory varies with the dielectric constant of a solvent. Due to the larger friction coefficient of ssDNA in glycerol, we further show that glycerol can improve trapping of ssDNA in the DNA transistor, a nanodevice that can be used to control the motion of ssDNA in a solid-state nanopore. Simulation results of slowing ssDNA translocation were confirmed in our nanopore experiment.
Collapse
Affiliation(s)
- Binquan Luan
- IBM T J Watson Research Center, Yorktown Heights, 10598, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Drummond C. Electric-field-induced friction reduction and control. PHYSICAL REVIEW LETTERS 2012; 109:154302. [PMID: 23102313 DOI: 10.1103/physrevlett.109.154302] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Indexed: 06/01/2023]
Abstract
Friction is always present when surfaces in contact are set in motion. In this work I describe how a precise, active control of the global friction is possible by adjusting the local molecular conformation of a polyelectrolyte coating via the application of an alternating electric field. The intensity of the applied field determines the degree of interpenetration between polymer brushes in contact, regulating chain stretching while sliding, which is the process at the origin of the global friction. The dynamics of the problem is controlled by the relaxation times of the polyelectrolyte.
Collapse
Affiliation(s)
- Carlos Drummond
- CNRS, Centre de Recherche Paul Pascal (CRPP), UPR 8641, F-33600 Pessac, France.
| |
Collapse
|
33
|
Hickey OA, Shendruk TN, Harden JL, Slater GW. Simulations of free-solution electrophoresis of polyelectrolytes with a finite Debye length using the Debye-Hückel approximation. PHYSICAL REVIEW LETTERS 2012; 109:098302. [PMID: 23002891 DOI: 10.1103/physrevlett.109.098302] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 07/04/2012] [Indexed: 06/01/2023]
Abstract
We introduce a mesoscale simulation method based on multiparticle collision dynamics (MPCD) for the electrohydrodynamics of polyelectrolytes with finite Debye lengths. By applying the Debye-Hückel approximation to assign an effective charge to MPCD particles near charged monomers, our simulations are able to reproduce the rapid rise in the electrophoretic mobility with respect to the degree of polymerization for the shortest polymer lengths followed by a small decrease for longer polymers due to charge condensation. Moreover, these simulations demonstrate the importance of a finite Debye length in accurately determining the mobility of uniformly charged polyelectrolytes and net neutral polyampholytes.
Collapse
Affiliation(s)
- Owen A Hickey
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
34
|
Abstract
Much more than ever, nucleic acids are recognized as key building blocks in many of life's processes, and the science of studying these molecular wonders at the single-molecule level is thriving. A new method of doing so has been introduced in the mid 1990's. This method is exceedingly simple: a nanoscale pore that spans across an impermeable thin membrane is placed between two chambers that contain an electrolyte, and voltage is applied across the membrane using two electrodes. These conditions lead to a steady stream of ion flow across the pore. Nucleic acid molecules in solution can be driven through the pore, and structural features of the biomolecules are observed as measurable changes in the trans-membrane ion current. In essence, a nanopore is a high-throughput ion microscope and a single-molecule force apparatus. Nanopores are taking center stage as a tool that promises to read a DNA sequence, and this promise has resulted in overwhelming academic, industrial, and national interest. Regardless of the fate of future nanopore applications, in the process of this 16-year-long exploration, many studies have validated the indispensability of nanopores in the toolkit of single-molecule biophysics. This review surveys past and current studies related to nucleic acid biophysics, and will hopefully provoke a discussion of immediate and future prospects for the field.
Collapse
Affiliation(s)
- Meni Wanunu
- Department of Physics, Northeastern University, Boston, MA, United States.
| |
Collapse
|
35
|
Shendruk T, Hickey O, Slater G, Harden J. Electrophoresis: When hydrodynamics matter. Curr Opin Colloid Interface Sci 2012. [DOI: 10.1016/j.cocis.2011.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
36
|
Nanopores: Single-Molecule Sensors of Nucleic Acid-Based Complexes. ADVANCES IN CHEMICAL PHYSICS 2012. [DOI: 10.1002/9781118180396.ch6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
|
37
|
Viero Y, He Q, Bancaud A. Hydrodynamic manipulation of DNA in nanopost arrays: unhooking dynamics and size separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:3508-3518. [PMID: 22021039 DOI: 10.1002/smll.201101345] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/10/2011] [Indexed: 05/31/2023]
Abstract
Micro- or nanofabricated obstacle arrays are widely used as model matrices to perform fast DNA separations by electrophoresis. In this report, a gallery of obstacles of radii spanning from 40 to 250 nm are used to investigate the dynamics of hydrodynamic-field-driven DNA-nanopost collisions at the single-molecule level. The data shows that DNA disengagement dynamics are reasonably well described by conventional electrophoretic models in the limit of a large spacing between obstacles and for moderate migration velocities. It is also demonstrated that the use of hydrodynamic flow fields to convey DNA molecules is associated with changes in the configurational space of hooking events, and to altered relaxation dynamics between consecutive collisions. This study defines experimental conditions for the efficient separation of DNA fragments of tens of base pairs, and provides a complete framework by which to understand the behavior of DNA in the course of hydrodynamic-driven migrations through nanopost arrays.
Collapse
Affiliation(s)
- Yannick Viero
- CNRS, LAAS, 7 Avenue du Colonel Roche, F-31077 Toulouse Cedex 4, France
| | | | | |
Collapse
|
38
|
|
39
|
Hickey OA, Holm C, Harden JL, Slater GW. Influence of Charged Polymer Coatings on Electro-Osmotic Flow: Molecular Dynamics Simulations. Macromolecules 2011. [DOI: 10.1021/ma201995q] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Owen A. Hickey
- Institute for Computational Physics, Universität Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany
- Department of Physics, University of Ottawa, 150 Louis-Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Christian Holm
- Institute for Computational Physics, Universität Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany
| | - James L. Harden
- Department of Physics, University of Ottawa, 150 Louis-Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Gary W. Slater
- Department of Physics, University of Ottawa, 150 Louis-Pasteur, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
40
|
Mengarelli V, Auvray L, Pastré D, Zeghal M. Charge inversion, condensation and decondensation of DNA and polystyrene sulfonate by polyethylenimine. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2011; 34:127. [PMID: 22113400 DOI: 10.1140/epje/i2011-11127-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 09/26/2011] [Indexed: 05/31/2023]
Abstract
We study the formation and structure of stable electrostatic complexes between polyanions (DNA and poly(styrene-sulfonate)) and linear polyethylenimine. The charge ratio x of the mixture is tuned by varying the concentration of the polycation at constant concentration of polyanion. In agreement with recent theories, dynamic light scattering and electrophoretic mobility measurements show two distinct regimes of weak and strong complexation. At low polycation concentration, negatively charged small complexes involving a few polyanion chains are observed first. By further increasing x, these small complexes condense at a precise charge ratio x(c) < 1 to form large anionic aggregates. The inversion of the charge of the condensed complexes coincides with the maximum of complexation and precedes the dissolution of the aggregates which occurs at a well-defined decondensation threshold x(d) > 1. Above x(d), positively charged complexes containing again a few overcharged polyanion chains are observed. The macroscopic phase diagram is qualitatively well corroborated by AFM observation of the complexes. The influence of entropic effects is probed by varying parameters like concentration, polycation molecular weight and ionic strength. Structure of stable negatively charged complexes is investigated at higher concentration using Small Angle Neutron Scattering. In the condensed regime, we observe large soluble bundles with sharp interfaces where the local structure of the polyanions is preserved.
Collapse
Affiliation(s)
- V Mengarelli
- Laboratoire de Physique des Solides, UMR CNRS 8502, Université Paris-sud, Orsay, France
| | | | | | | |
Collapse
|
41
|
Spiering A, Getfert S, Sischka A, Reimann P, Anselmetti D. Nanopore translocation dynamics of a single DNA-bound protein. NANO LETTERS 2011; 11:2978-2982. [PMID: 21667921 DOI: 10.1021/nl201541y] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We study the translocation dynamics of a single protein molecule attached to a double-stranded DNA that is threaded through a solid-state nanopore by optical tweezers and an electric field (nanopore force spectroscopy). We find distinct asymmetric and retarded force signals that depend on the protein charge, the DNA elasticity and its counterionic screening in the buffer. A theoretical model where an isolated charge on an elastic, polyelectrolyte strand is experiencing an anharmonic nanopore potential was developed. Its results compare very well with the measured force curves and explain the experimental findings that the force depends linearly on the applied electric field and exhibits a small hysteresis during back and forth translocation cycles. Moreover, the translocation dynamics reflects the stochastic nature of the thermally activated hopping between two adjacent states in the nanopore that can be adequately described by Kramers rate theory.
Collapse
Affiliation(s)
- Andre Spiering
- Fakultät für Physik, Universität Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | | | | | | | | |
Collapse
|
42
|
Mayer P, Bibette J, Viovy JL. Separation of DNA Using Ferrofluid Array Electrophoresis. ACTA ACUST UNITED AC 2011. [DOI: 10.1557/proc-463-57] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
ABSTRACTWe present a new method for electrophoretic separation of DNA, Ferro fluid Array Electrophoresis (FAE). The method uses a stabilized suspension of an hydrophobic ferrofluid in aqueous buffer as the separating medium. When this suspension is placed in a slab cell and submitted to a magnetic field perpendicular to the slab plane, it organizes into a regular array of columns with micron-sized spacing. DNA migrating in this maze leads to size-fractionation. Resolution of lambda phage (48.5 kbp) and T4 (140 kbp) DNA molecules in 30 mn is achieved. The motion of individual DNA molecules during FAE is observed using fluorescence videomicroscopy, and the molecular mechanisms responsible for separation are discussed in the light of recent computer simulations. During migration, large DNA molecules temporarily wrap around the impenetrable ferrofluid columns. They disengage by slippage, like a rope on a pulley, and the dependence of the disengagement time upon DNA size is responsible for the size-fractionation.
Collapse
|
43
|
Grosberg AY, Rabin Y. DNA capture into a nanopore: Interplay of diffusion and electrohydrodynamics. J Chem Phys 2010; 133:165102. [DOI: 10.1063/1.3495481] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
44
|
|
45
|
Hickey OA, Holm C, Harden JL, Slater GW. Implicit method for simulating electrohydrodynamics of polyelectrolytes. PHYSICAL REVIEW LETTERS 2010; 105:148301. [PMID: 21230872 DOI: 10.1103/physrevlett.105.148301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Indexed: 05/30/2023]
Abstract
We introduce a novel method to couple Lennard-Jones beads to a lattice-Boltzmann fluid by adding a term which represents the slip within the Debye layer with respect to the surrounding fluid. The method produces realistic electrophoretic dynamics of charged free chains, as well as the correct stall force in the limit of a thin Debye layer. Our simulations also demonstrate how a net-neutral polyampholyte can have a nonzero net force due to hydrodynamic interactions. This method represents an efficient way to simulate a wide variety of complex problems in electrohydrodynamics.
Collapse
Affiliation(s)
- Owen A Hickey
- Institute for Computational Physics, Universität Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany
| | | | | | | |
Collapse
|
46
|
Speer D, Eichhorn R, Reimann P. Exploiting lattice potentials for sorting chiral particles. PHYSICAL REVIEW LETTERS 2010; 105:090602. [PMID: 20868147 DOI: 10.1103/physrevlett.105.090602] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Indexed: 05/29/2023]
Abstract
Several ways are demonstrated of how periodic potentials can be exploited for sorting molecules or other small objects which only differ by their chirality. With the help of a static bias force, the two chiral partners can be made to move along orthogonal directions. Time-periodic external forces even lead to motion into exactly opposite directions.
Collapse
Affiliation(s)
- David Speer
- Universität Bielefeld, Fakultät für Physik, 33615 Bielefeld, Germany
| | | | | |
Collapse
|
47
|
Abstract
The translocation of macromolecules through a nanopore requires the impingement of the molecules at the pore followed by threading through the pore. While most of the discussion on the translocation phenomenon focused so far on the threading process, the phenomenology on the frequency of encounters between the polymer and the pore exhibits diverse features in terms of polymer length, solution conditions, driving force, and pore geometry. We derive a general theory for the capture rate of polyelectrolyte molecules and the probability of successful translocation through a nanopore, under an externally imposed electric field. By considering the roles of entropic barrier at the pore entrance and drift of the polyelectrolyte under the electric field, we delineate two regimes: (a) entropic barrier regime and (b) drift regime. In the first regime dominated by the entropic barrier for the polyelectrolyte, the capture rate is an increasing nonlinear function in the electric field and chain length. In the drift regime, where the electric field dwarfs the role of entropic barriers, the capture rate is independent of chain length and linear in electric field. An analytical formula is derived for the crossover behavior between these regimes, and the general results are consistent with various experimentally observed trends.
Collapse
Affiliation(s)
- M Muthukumar
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| |
Collapse
|
48
|
Cho J, Dorfman KD. Brownian dynamics simulations of electrophoretic DNA separations in a sparse ordered post array. J Chromatogr A 2010; 1217:5522-8. [DOI: 10.1016/j.chroma.2010.06.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 06/17/2010] [Accepted: 06/21/2010] [Indexed: 10/19/2022]
|
49
|
Smiatek J, Schmid F. Polyelectrolyte Electrophoresis in Nanochannels: A Dissipative Particle Dynamics Simulation. J Phys Chem B 2010; 114:6266-72. [DOI: 10.1021/jp100128p] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jens Smiatek
- Institut für Physikalische Chemie, Universität Münster, Corrensstrasse 30, D-48149 Münster, Germany and Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, D-55099 Mainz, Germany
| | - Friederike Schmid
- Institut für Physikalische Chemie, Universität Münster, Corrensstrasse 30, D-48149 Münster, Germany and Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, D-55099 Mainz, Germany
| |
Collapse
|
50
|
Aksimentiev A. Deciphering ionic current signatures of DNA transport through a nanopore. NANOSCALE 2010; 2:468-83. [PMID: 20644747 PMCID: PMC2909628 DOI: 10.1039/b9nr00275h] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Within just a decade from the pioneering work demonstrating the utility of nanopores for molecular sensing, nanopores have emerged as versatile systems for single-molecule manipulation and analysis. In a typical setup, a gradient of the electrostatic potential captures charged solutes from the solution and forces them to move through a single nanopore, across an otherwise impermeable membrane. The ionic current blockades resulting from the presence of a solute in a nanopore can reveal the type of the solute, for example, the nucleotide makeup of a DNA strand. Despite great success, the microscopic mechanisms underlying the functionality of such stochastic sensors remain largely unknown, as it is not currently possible to characterize the microscopic conformations of single biomolecules directly in a nanopore and thereby unequivocally establish the causal relationship between the observables and the microscopic events. Such a relationship can be determined using molecular dynamics-a computational method that can accurately predict the time evolution of a molecular system starting from a given microscopic state. This article describes recent applications of this method to the process of DNA transport through biological and synthetic nanopores.
Collapse
Affiliation(s)
- Aleksei Aksimentiev
- Department of Physics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA.
| |
Collapse
|