1
|
Mondal C, Xu S, Lan J, Zhao X, Li Y, Chakrabarti D, Vary JP. Proton structure from a light-front Hamiltonian. Int J Clin Exp Med 2020. [DOI: 10.1103/physrevd.102.016008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
2
|
Liu T, Sufian RS, de Téramond GF, Dosch HG, Brodsky SJ, Deur A. Unified Description of Polarized and Unpolarized Quark Distributions in the Proton. PHYSICAL REVIEW LETTERS 2020; 124:082003. [PMID: 32167366 DOI: 10.1103/physrevlett.124.082003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/22/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
We propose a unified new approach to describe polarized and unpolarized quark distributions in the proton based on the gauge-gravity correspondence, light-front holography, and the generalized Veneziano model. We find that the spin-dependent quark distributions are uniquely determined in terms of the unpolarized distributions by chirality separation without the introduction of additional free parameters. The predictions are consistent with existing experimental data and agree with perturbative QCD constraints at large longitudinal momentum x. In particular, we predict the sign reversal of the polarized down-quark distribution in the proton at x=0.8±0.03, a key property of nucleon substructure which will be tested very soon in upcoming experiments.
Collapse
Affiliation(s)
- Tianbo Liu
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - Raza Sabbir Sufian
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - Guy F de Téramond
- Laboratorio de Física Teórica y Computacional, Universidad de Costa Rica, 11501 San José, Costa Rica
| | - Hans Günter Dosch
- Institut für Theoretische Physik der Universität, D-69120 Heidelberg, Germany
| | - Stanley J Brodsky
- SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94309, USA
| | - Alexandre Deur
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| |
Collapse
|
3
|
Deur A, Brodsky SJ, de Téramond GF. The spin structure of the nucleon. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:076201. [PMID: 30818290 DOI: 10.1088/1361-6633/ab0b8f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We review the present understanding of the spin structure of protons and neutrons, the fundamental building blocks of nuclei collectively known as nucleons. The field of nucleon spin provides a critical window for testing Quantum Chromodynamics (QCD), the gauge theory of the strong interactions, since it involves fundamental aspects of hadron structure which can be probed in detail in experiments, particularly deep inelastic lepton scattering on polarized targets. QCD was initially probed in high energy deep inelastic lepton scattering with unpolarized beams and targets. With time, interest shifted from testing perturbative QCD to illuminating the nucleon structure itself. In fact, the spin degrees of freedom of hadrons provide an essential and detailed verification of both perturbative and nonperturbative QCD dynamics. Nucleon spin was initially thought of coming mostly from the spin of its quark constituents, based on intuition from the parton model. However, the first experiments showed that this expectation was incorrect. It is now clear that nucleon physics is much more complex, involving quark orbital angular momenta as well as gluonic and sea quark contributions. Thus, the nucleon spin structure remains a most active aspect of QCD research, involving important advances such as the developments of generalized parton distributions (GPD) and transverse momentum distributions (TMD). Elastic and inelastic lepton-proton scattering, as well as photoabsorption experiments provide various ways to investigate non-perturbative QCD. Fundamental sum rules-such as the Bjorken sum rule for polarized photoabsorption on polarized nucleons-are also in the non-perturbative domain. This realization triggered a vigorous program to link the low energy effective hadronic description of the strong interactions to fundamental quarks and gluon degrees of freedom of QCD. This has also led to advances in lattice gauge theory simulations of QCD and to the development of holographic QCD ideas based on the AdS/CFT or gauge/gravity correspondence, a novel approach providing a well-founded semiclassical approximation to QCD. Any QCD-based model of the nucleon's spin and dynamics must also successfully account for the observed spectroscopy of hadrons. Analytic calculations of the hadron spectrum, a long sought goal of QCD research, have now being realized using light-front holography and superconformal quantum mechanics, a formalism consistent with the results from nucleon spin studies. We begin this review with a phenomenological description of nucleon structure in general and of its spin structure in particular, aimed to engage non-specialist readers. Next, we discuss the nucleon spin structure at high energy, including topics such as Dirac's front form and light-front quantization which provide a frame-independent, relativistic description of hadron structure and dynamics, the derivation of spin sum rules, and a direct connection to the QCD Lagrangian. We then discuss experimental and theoretical advances in the nonperturbative domain-in particular the development of light-front holographic QCD and superconformal quantum mechanics, their predictions for the spin content of nucleons, the computation of PDFs and of hadron masses.
Collapse
Affiliation(s)
- Alexandre Deur
- Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, United States of America
| | | | | |
Collapse
|
4
|
Abstract
This article reviews the physics and technology of producing large quantities of highly spin-polarized 3He nuclei using spin-exchange (SEOP) and metastability-exchange (MEOP) optical pumping. Both technical developments and deeper understanding of the physical processes involved have led to substantial improvements in the capabilities of both methods. For SEOP, the use of spectrally narrowed lasers and K-Rb mixtures has substantially increased the achievable polarization and polarizing rate. For MEOP nearly lossless compression allows for rapid production of polarized 3He and operation in high magnetic fields has likewise significantly increased the pressure at which this method can be performed, and revealed new phenomena. Both methods have benefitted from development of storage methods that allow for spin-relaxation times of hundreds of hours, and specialized precision methods for polarimetry. SEOP and MEOP are now widely applied for spin-polarized targets, neutron spin filters, magnetic resonance imaging, and precision measurements.
Collapse
Affiliation(s)
- T. R. Gentile
- National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, USA
| | - P. J. Nacher
- Laboratoire Kastler Brossel, ENS-PSL Research University, CNRS, UPMC-Sorbonne Universités, Collège de France, Paris, France
| | - B. Saam
- Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, USA
| | - T. G. Walker
- Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
5
|
Wilfert M. Results on longitudinal spin physics at COMPASS. EPJ WEB OF CONFERENCES 2016. [DOI: 10.1051/epjconf/201611201023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
6
|
Zhang YW, Long E, Mihovilovič M, Jin G, Allada K, Anderson B, Annand JRM, Averett T, Ayerbe-Gayoso C, Boeglin W, Bradshaw P, Camsonne A, Canan M, Cates GD, Chen C, Chen JP, Chudakov E, De Leo R, Deng X, Deur A, Dutta C, El Fassi L, Flay D, Frullani S, Garibaldi F, Gao H, Gilad S, Gilman R, Glamazdin O, Golge S, Gomez J, Hansen O, Higinbotham DW, Holmstrom T, Huang J, Ibrahim H, de Jager CW, Jensen E, Jiang X, St John J, Jones M, Kang H, Katich J, Khanal HP, King P, Korsch W, LeRose J, Lindgren R, Lu HJ, Luo W, Markowitz P, Meziane M, Michaels R, Moffit B, Monaghan P, Muangma N, Nanda S, Norum BE, Pan K, Parno D, Piasetzky E, Posik M, Punjabi V, Puckett AJR, Qian X, Qiang Y, Qiu X, Riordan S, Ron G, Saha A, Sawatzky B, Schiavilla R, Schoenrock B, Shabestari M, Shahinyan A, Širca S, Subedi R, Sulkosky V, Tobias WA, Tireman W, Urciuoli GM, Wang D, Wang K, Wang Y, Watson J, Wojtsekhowski B, Ye Z, Zhan X, Zhang Y, Zheng X, Zhao B, Zhu L. Measurement of the Target-Normal Single-Spin Asymmetry in Quasielastic Scattering from the Reaction (3)He(↑)(e,e'). PHYSICAL REVIEW LETTERS 2015; 115:172502. [PMID: 26551107 DOI: 10.1103/physrevlett.115.172502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Indexed: 06/05/2023]
Abstract
We report the first measurement of the target single-spin asymmetry, A(y), in quasielastic scattering from the inclusive reaction (3)He(↑)(e,e') on a (3)He gas target polarized normal to the lepton scattering plane. Assuming time-reversal invariance, this asymmetry is strictly zero for one-photon exchange. A nonzero A(y) can arise from the interference between the one- and two-photon exchange processes which is sensitive to the details of the substructure of the nucleon. An experiment recently completed at Jefferson Lab yielded asymmetries with high statistical precision at Q(2)=0.13, 0.46, and 0.97 GeV(2). These measurements demonstrate, for the first time, that the (3)He asymmetry is clearly nonzero and negative at the 4σ-9σ level. Using measured proton-to-(3)He cross-section ratios and the effective polarization approximation, neutron asymmetries of -(1-3)% were obtained. The neutron asymmetry at high Q(2) is related to moments of the generalized parton distributions (GPDs). Our measured neutron asymmetry at Q(2)=0.97 GeV(2) agrees well with a prediction based on two-photon exchange using a GPD model and thus provides a new, independent constraint on these distributions.
Collapse
Affiliation(s)
- Y-W Zhang
- Rutgers University, New Brunswick, New Jersey 08901, USA
- University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - E Long
- Kent State University, Kent, Ohio 44242, USA
| | | | - G Jin
- University of Virginia, Charlottesville, Virginia 22908, USA
| | - K Allada
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - B Anderson
- Kent State University, Kent, Ohio 44242, USA
| | - J R M Annand
- Glasgow University, Glasgow G12 8QQ Scotland, United Kingdom
| | - T Averett
- The College of William and Mary, Williamsburg, Virginia 23187, USA
| | - C Ayerbe-Gayoso
- The College of William and Mary, Williamsburg, Virginia 23187, USA
| | - W Boeglin
- Florida International University, Miami, Florida 33181, USA
| | - P Bradshaw
- The College of William and Mary, Williamsburg, Virginia 23187, USA
| | - A Camsonne
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - M Canan
- Old Dominion University, Norfolk, Virginia 23529, USA
| | - G D Cates
- University of Virginia, Charlottesville, Virginia 22908, USA
| | - C Chen
- Hampton University, Hampton, Virginia 23669, USA
| | - J P Chen
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - E Chudakov
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - R De Leo
- Università degli studi di Bari Aldo Moro, I-70121 Bari, Italy
| | - X Deng
- University of Virginia, Charlottesville, Virginia 22908, USA
| | - A Deur
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - C Dutta
- University of Kentucky, Lexington, Kentucky 40506, USA
| | - L El Fassi
- Rutgers University, New Brunswick, New Jersey 08901, USA
| | - D Flay
- Temple University, Philadelphia, Pennsylvania 19122, USA
| | - S Frullani
- Istituto Nazionale Di Fisica Nucleare, INFN/Sanita, 00161 Roma, Italy
| | - F Garibaldi
- Istituto Nazionale Di Fisica Nucleare, INFN/Sanita, 00161 Roma, Italy
| | - H Gao
- Duke University, Durham, North Carolina 27708, USA
| | - S Gilad
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - R Gilman
- Rutgers University, New Brunswick, New Jersey 08901, USA
| | - O Glamazdin
- Kharkov Institute of Physics and Technology, Kharkov 61108, Ukraine
| | - S Golge
- Old Dominion University, Norfolk, Virginia 23529, USA
| | - J Gomez
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - O Hansen
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - D W Higinbotham
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - T Holmstrom
- Longwood University, Farmville, Virginia 23909, USA
| | - J Huang
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - H Ibrahim
- Cairo University, Cairo, Giza 12613, Egypt
| | - C W de Jager
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - E Jensen
- Christopher Newport University, Newport News, Virginia 23606, USA
| | - X Jiang
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - J St John
- Longwood University, Farmville, Virginia 23909, USA
| | - M Jones
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - H Kang
- Seoul National University, Seoul 151-742, Korea
| | - J Katich
- The College of William and Mary, Williamsburg, Virginia 23187, USA
| | - H P Khanal
- Florida International University, Miami, Florida 33181, USA
| | - P King
- Ohio University, Athens, Ohio 45701, USA
| | - W Korsch
- University of Kentucky, Lexington, Kentucky 40506, USA
| | - J LeRose
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - R Lindgren
- University of Virginia, Charlottesville, Virginia 22908, USA
| | - H-J Lu
- Huangshan University, Tunxi, Huangshan City, Anhui Province 245041, People's Republic of China
| | - W Luo
- Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - P Markowitz
- Florida International University, Miami, Florida 33181, USA
| | - M Meziane
- The College of William and Mary, Williamsburg, Virginia 23187, USA
| | - R Michaels
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - B Moffit
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - P Monaghan
- Hampton University, Hampton, Virginia 23669, USA
| | - N Muangma
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - S Nanda
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - B E Norum
- University of Virginia, Charlottesville, Virginia 22908, USA
| | - K Pan
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - D Parno
- Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | - M Posik
- Temple University, Philadelphia, Pennsylvania 19122, USA
| | - V Punjabi
- Norfolk State University, Norfolk, Virginia 23504, USA
| | - A J R Puckett
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - X Qian
- Duke University, Durham, North Carolina 27708, USA
| | - Y Qiang
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - X Qiu
- Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - S Riordan
- University of Virginia, Charlottesville, Virginia 22908, USA
| | - G Ron
- Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - A Saha
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - B Sawatzky
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - R Schiavilla
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
- Old Dominion University, Norfolk, Virginia 23529, USA
| | - B Schoenrock
- Northern Michigan University, Marquette, Michigan 49855, USA
| | - M Shabestari
- University of Virginia, Charlottesville, Virginia 22908, USA
| | - A Shahinyan
- Yerevan Physics Institute, Yerevan 375036, Armenia
| | - S Širca
- Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
- University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - R Subedi
- George Washington University, Washington, D.C. 20052, USA
| | - V Sulkosky
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - W A Tobias
- University of Virginia, Charlottesville, Virginia 22908, USA
| | - W Tireman
- Northern Michigan University, Marquette, Michigan 49855, USA
| | - G M Urciuoli
- Istituto Nazionale Di Fisica Nucleare, INFN/Sanita, 00161 Roma, Italy
| | - D Wang
- University of Virginia, Charlottesville, Virginia 22908, USA
| | - K Wang
- University of Virginia, Charlottesville, Virginia 22908, USA
| | - Y Wang
- University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - J Watson
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - B Wojtsekhowski
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - Z Ye
- Hampton University, Hampton, Virginia 23669, USA
| | - X Zhan
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Y Zhang
- Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - X Zheng
- University of Virginia, Charlottesville, Virginia 22908, USA
| | - B Zhao
- The College of William and Mary, Williamsburg, Virginia 23187, USA
| | - L Zhu
- Hampton University, Hampton, Virginia 23669, USA
| |
Collapse
|
7
|
Huang J, Allada K, Dutta C, Katich J, Qian X, Wang Y, Zhang Y, Aniol K, Annand JRM, Averett T, Benmokhtar F, Bertozzi W, Bradshaw PC, Bosted P, Camsonne A, Canan M, Cates GD, Chen C, Chen JP, Chen W, Chirapatpimol K, Chudakov E, Cisbani E, Cornejo JC, Cusanno F, Dalton MM, Deconinck W, de Jager CW, De Leo R, Deng X, Deur A, Ding H, Dolph PAM, Dutta D, El Fassi L, Frullani S, Gao H, Garibaldi F, Gaskell D, Gilad S, Gilman R, Glamazdin O, Golge S, Guo L, Hamilton D, Hansen O, Higinbotham DW, Holmstrom T, Huang M, Ibrahim HF, Iodice M, Jiang X, Jin G, Jones MK, Kelleher A, Kim W, Kolarkar A, Korsch W, Lerose JJ, Li X, Li Y, Lindgren R, Liyanage N, Long E, Lu HJ, Margaziotis DJ, Markowitz P, Marrone S, McNulty D, Meziani ZE, Michaels R, Moffit B, Muñoz Camacho C, Nanda S, Narayan A, Nelyubin V, Norum B, Oh Y, Osipenko M, Parno D, Peng JC, Phillips SK, Posik M, Puckett AJR, Qiang Y, Rakhman A, Ransome RD, Riordan S, Saha A, Sawatzky B, Schulte E, Shahinyan A, Shabestari MH, Sirca S, Stepanyan S, Subedi R, Sulkosky V, Tang LG, Tobias A, Urciuoli GM, et alHuang J, Allada K, Dutta C, Katich J, Qian X, Wang Y, Zhang Y, Aniol K, Annand JRM, Averett T, Benmokhtar F, Bertozzi W, Bradshaw PC, Bosted P, Camsonne A, Canan M, Cates GD, Chen C, Chen JP, Chen W, Chirapatpimol K, Chudakov E, Cisbani E, Cornejo JC, Cusanno F, Dalton MM, Deconinck W, de Jager CW, De Leo R, Deng X, Deur A, Ding H, Dolph PAM, Dutta D, El Fassi L, Frullani S, Gao H, Garibaldi F, Gaskell D, Gilad S, Gilman R, Glamazdin O, Golge S, Guo L, Hamilton D, Hansen O, Higinbotham DW, Holmstrom T, Huang M, Ibrahim HF, Iodice M, Jiang X, Jin G, Jones MK, Kelleher A, Kim W, Kolarkar A, Korsch W, Lerose JJ, Li X, Li Y, Lindgren R, Liyanage N, Long E, Lu HJ, Margaziotis DJ, Markowitz P, Marrone S, McNulty D, Meziani ZE, Michaels R, Moffit B, Muñoz Camacho C, Nanda S, Narayan A, Nelyubin V, Norum B, Oh Y, Osipenko M, Parno D, Peng JC, Phillips SK, Posik M, Puckett AJR, Qiang Y, Rakhman A, Ransome RD, Riordan S, Saha A, Sawatzky B, Schulte E, Shahinyan A, Shabestari MH, Sirca S, Stepanyan S, Subedi R, Sulkosky V, Tang LG, Tobias A, Urciuoli GM, Vilardi I, Wang K, Wojtsekhowski B, Yan X, Yao H, Ye Y, Ye Z, Yuan L, Zhan X, Zhang YW, Zhao B, Zheng X, Zhu L, Zhu X, Zong X. Beam-target double-spin asymmetry A{LT} in charged pion production from deep inelastic scattering on a transversely polarized {3}He target at 1.4<Q{2}<2.7 GeV{2}. PHYSICAL REVIEW LETTERS 2012; 108:052001. [PMID: 22400926 DOI: 10.1103/physrevlett.108.052001] [Show More Authors] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Indexed: 05/31/2023]
Abstract
We report the first measurement of the double-spin asymmetry A{LT} for charged pion electroproduction in semi-inclusive deep-inelastic electron scattering on a transversely polarized {3}He target. The kinematics focused on the valence quark region, 0.16<x<0.35 with 1.4<Q{2}<2.7 GeV{2}. The corresponding neutron A{LT} asymmetries were extracted from the measured {3}He asymmetries and proton over {3}He cross section ratios using the effective polarization approximation. These new data probe the transverse momentum dependent parton distribution function g{1T}{q} and therefore provide access to quark spin-orbit correlations. Our results indicate a positive azimuthal asymmetry for π{-} production on {3}He and the neutron, while our π{+} asymmetries are consistent with zero.
Collapse
Affiliation(s)
- J Huang
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Riordan S, Abrahamyan S, Craver B, Kelleher A, Kolarkar A, Miller J, Cates GD, Liyanage N, Wojtsekhowski B, Acha A, Allada K, Anderson B, Aniol KA, Annand JRM, Arrington J, Averett T, Beck A, Bellis M, Boeglin W, Breuer H, Calarco JR, Camsonne A, Chen JP, Chudakov E, Coman L, Crowe B, Cusanno F, Day D, Degtyarenko P, Dolph PAM, Dutta C, Ferdi C, Fernández-Ramírez C, Feuerbach R, Fraile LM, Franklin G, Frullani S, Fuchs S, Garibaldi F, Gevorgyan N, Gilman R, Glamazdin A, Gomez J, Grimm K, Hansen JO, Herraiz JL, Higinbotham DW, Holmes R, Holmstrom T, Howell D, de Jager CW, Jiang X, Jones MK, Katich J, Kaufman LJ, Khandaker M, Kelly JJ, Kiselev D, Korsch W, LeRose J, Lindgren R, Markowitz P, Margaziotis DJ, Beck SMT, Mayilyan S, McCormick K, Meziani ZE, Michaels R, Moffit B, Nanda S, Nelyubin V, Ngo T, Nikolenko DM, Norum B, Pentchev L, Perdrisat CF, Piasetzky E, Pomatsalyuk R, Protopopescu D, Puckett AJR, Punjabi VA, Qian X, Qiang Y, Quinn B, Rachek I, Ransome RD, Reimer PE, Reitz B, Roche J, Ron G, Rondon O, Rosner G, Saha A, Sargsian MM, Sawatzky B, Segal J, Shabestari M, Shahinyan A, Shestakov Y, Singh J, et alRiordan S, Abrahamyan S, Craver B, Kelleher A, Kolarkar A, Miller J, Cates GD, Liyanage N, Wojtsekhowski B, Acha A, Allada K, Anderson B, Aniol KA, Annand JRM, Arrington J, Averett T, Beck A, Bellis M, Boeglin W, Breuer H, Calarco JR, Camsonne A, Chen JP, Chudakov E, Coman L, Crowe B, Cusanno F, Day D, Degtyarenko P, Dolph PAM, Dutta C, Ferdi C, Fernández-Ramírez C, Feuerbach R, Fraile LM, Franklin G, Frullani S, Fuchs S, Garibaldi F, Gevorgyan N, Gilman R, Glamazdin A, Gomez J, Grimm K, Hansen JO, Herraiz JL, Higinbotham DW, Holmes R, Holmstrom T, Howell D, de Jager CW, Jiang X, Jones MK, Katich J, Kaufman LJ, Khandaker M, Kelly JJ, Kiselev D, Korsch W, LeRose J, Lindgren R, Markowitz P, Margaziotis DJ, Beck SMT, Mayilyan S, McCormick K, Meziani ZE, Michaels R, Moffit B, Nanda S, Nelyubin V, Ngo T, Nikolenko DM, Norum B, Pentchev L, Perdrisat CF, Piasetzky E, Pomatsalyuk R, Protopopescu D, Puckett AJR, Punjabi VA, Qian X, Qiang Y, Quinn B, Rachek I, Ransome RD, Reimer PE, Reitz B, Roche J, Ron G, Rondon O, Rosner G, Saha A, Sargsian MM, Sawatzky B, Segal J, Shabestari M, Shahinyan A, Shestakov Y, Singh J, Sirca S, Souder P, Stepanyan S, Stibunov V, Sulkosky V, Tajima S, Tobias WA, Udias JM, Urciuoli GM, Vlahovic B, Voskanyan H, Wang K, Wesselmann FR, Vignote JR, Wood SA, Wright J, Yao H, Zhu X. Measurements of the electric form factor of the neutron up to Q2=3.4 GeV2 using the reaction 3He(e,e'n)pp. PHYSICAL REVIEW LETTERS 2010; 105:262302. [PMID: 21231649 DOI: 10.1103/physrevlett.105.262302] [Show More Authors] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Indexed: 02/05/2023]
Abstract
The electric form factor of the neutron was determined from studies of the reaction 3He(e,e'n)pp in quasielastic kinematics in Hall A at Jefferson Lab. Longitudinally polarized electrons were scattered off a polarized target in which the nuclear polarization was oriented perpendicular to the momentum transfer. The scattered electrons were detected in a magnetic spectrometer in coincidence with neutrons that were registered in a large-solid-angle detector. More than doubling the Q2 range over which it is known, we find G(E)(n)=0.0236±0.0017(stat)±0.0026(syst), 0.0208±0.0024±0.0019, and 0.0147±0.0020±0.0014 for Q(2)=1.72, 2.48, and 3.41 GeV2, respectively.
Collapse
Affiliation(s)
- S Riordan
- Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Solvignon P, Liyanage N, Chen JP, Choi S, Aniol K, Averett T, Boeglin W, Camsonne A, Cates GD, Chang CC, Chudakov E, Craver B, Cusanno F, Deur A, Dutta D, Ent R, Feuerbach R, Frullani S, Gao H, Garibaldi F, Gilman R, Glashausser C, Gorbenko V, Hansen O, Higinbotham DW, Ibrahim H, Jiang X, Jones M, Kelleher A, Kelly J, Keppel C, Kim W, Korsch W, Kramer K, Kumbartzki G, Lerose JJ, Lindgren R, Ma B, Margaziotis DJ, Markowitz P, McCormick K, Meziani ZE, Michaels R, Moffit B, Monaghan P, Munoz Camacho C, Paschke K, Reitz B, Saha A, Sheyor R, Singh J, Slifer K, Sulkosky V, Tobias A, Urciuoli GM, Wang K, Wijesooriya K, Wojtsekhowski B, Woo S, Yang JC, Zheng X, Zhu L. Quark-hadron duality in neutron (3He) spin structure. PHYSICAL REVIEW LETTERS 2008; 101:182502. [PMID: 18999823 DOI: 10.1103/physrevlett.101.182502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Indexed: 05/27/2023]
Abstract
We present experimental results of the first high-precision test of quark-hadron duality in the spin-structure function g_{1} of the neutron and 3He using a polarized 3He target in the four-momentum-transfer-squared range from 0.7 to 4.0 (GeV/c);{2}. Global duality is observed for the spin-structure function g_{1} down to at least Q;{2}=1.8 (GeV/c);{2} in both targets. We have also formed the photon-nucleon asymmetry A1 in the resonance region for 3He and found no strong Q2 dependence above 2.2 (GeV/c);{2}.
Collapse
Affiliation(s)
- P Solvignon
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Avakian H, Brodsky SJ, Deur A, Yuan F. Effect of orbital angular momentum on valence-quark helicity distributions. PHYSICAL REVIEW LETTERS 2007; 99:082001. [PMID: 17930941 DOI: 10.1103/physrevlett.99.082001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Indexed: 05/25/2023]
Abstract
We study the quark helicity distributions at large x in perturbative QCD, taking into account contributions from the valence Fock states of the nucleon which have nonzero orbital angular momentum. We find that the quark orbital angular momentum contributes a large logarithm to the negative helicity quark distributions in addition to its power behavior, scaling as (1-x){5}log{2}(1-x) in the limit of x-->1. Our analysis shows that the ratio of the polarized over unpolarized down quark distributions, Deltad/d, will still approach 1 in this limit. By comparing with the experimental data, we find that this ratio should cross zero at x approximately 0.75.
Collapse
Affiliation(s)
- Harut Avakian
- Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA
| | | | | | | |
Collapse
|
11
|
Sidorov AV, Weiss C. Higher twists in polarized DIS and the size of the constituent quark. Int J Clin Exp Med 2006. [DOI: 10.1103/physrevd.73.074016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|