1
|
Soh JH, Jansen TLC, Palacino-González E. Controlling the nonadiabatic dynamics of the charge-transfer process with chirped pulses: Insights from a double-pump time-resolved fluorescence spectroscopy scheme. J Chem Phys 2024; 160:024110. [PMID: 38193559 DOI: 10.1063/5.0177073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
The manipulation of the ultrafast quantum dynamics of a molecular system can be achieved through the application of tailored light fields. This has been done in many ways in the past. In our present investigation, we show that it is possible to exert specific control over the nonadiabatic dynamics of a generic model system describing ultrafast charge-transfer within a condensed dissipative environment by using frequency-chirped pulses. By adjusting the external photoexcitation conditions, such as the chirp parameter, we show that the final population of the excitonic and charge-transfer states can be significantly altered, thereby influencing the elementary steps controlling the transfer process. In addition, we introduce an excitation scheme based on double-pump time-resolved fluorescence spectroscopy using chirped-pulse excitations. Here, our findings reveal that chirped excitations enhance the vibrational system dynamics as evidenced by the simulated spectra, where a substantial signal intensity dependence on the chirp is observed. Our simulations show that chirped pulses are a promising tool for steering the dynamics of the charge-transfer process toward a desired target outcome.
Collapse
Affiliation(s)
- Jia Hao Soh
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Thomas L C Jansen
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Elisa Palacino-González
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Avisar D, Tannor DJ. Excited-state wavepacket and potential reconstruction by coherent anti-Stokes Raman scattering. Phys Chem Chem Phys 2015; 17:2297-310. [DOI: 10.1039/c4cp03233k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We propose a methodology for reconstructing polyatomic excited-state molecular wavepackets and potential energy surfaces by multiple pulse optical spectroscopy.
Collapse
Affiliation(s)
- David Avisar
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - David J. Tannor
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| |
Collapse
|
3
|
Johnson AS, Yuen-Zhou J, Aspuru-Guzik A, Krich JJ. Practical witness for electronic coherences. J Chem Phys 2014; 141:244109. [DOI: 10.1063/1.4903982] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Allan S. Johnson
- Department of Physics, University of Ottawa, Ottawa K1N 6N5, Canada
- Department of Physics, Imperial College London, London, United Kingdom
| | - Joel Yuen-Zhou
- Center for Excitonics, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Alán Aspuru-Guzik
- Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Jacob J. Krich
- Department of Physics, University of Ottawa, Ottawa K1N 6N5, Canada
| |
Collapse
|
4
|
Yuen-Zhou J, Arias DH, Eisele DM, Steiner CP, Krich JJ, Bawendi MG, Nelson KA, Aspuru-Guzik A. Coherent exciton dynamics in supramolecular light-harvesting nanotubes revealed by ultrafast quantum process tomography. ACS NANO 2014; 8:5527-34. [PMID: 24724614 DOI: 10.1021/nn406107q] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Long-lived exciton coherences have been recently observed in photosynthetic complexes via ultrafast spectroscopy, opening exciting possibilities for the study and design of coherent exciton transport. Yet, ambiguity in the spectroscopic signals has led to arguments against interpreting them in terms of exciton dynamics, demanding more stringent tests. We propose a novel strategy, quantum process tomography (QPT), for ultrafast spectroscopy and apply it to reconstruct the evolving quantum state of excitons in double-walled supramolecular light-harvesting nanotubes at room temperature from eight narrowband transient grating experiments. Our analysis reveals the absence of nonsecular processes, unidirectional energy transfer from the outer to the inner wall exciton states, and coherence between those states lasting about 150 fs, indicating weak electronic coupling between the walls. Our work constitutes the first experimental QPT in a "warm" and complex system and provides an elegant scheme to maximize information from ultrafast spectroscopy experiments.
Collapse
Affiliation(s)
- Joel Yuen-Zhou
- Center for Excitonics, Research Laboratory of Electronics, Massachusetts Institute of Technology , Cambridge, Massachusetts, United States
| | | | | | | | | | | | | | | |
Collapse
|
5
|
De AK, Monahan D, Dawlaty JM, Fleming GR. Two-dimensional fluorescence-detected coherent spectroscopy with absolute phasing by confocal imaging of a dynamic grating and 27-step phase-cycling. J Chem Phys 2014; 140:194201. [DOI: 10.1063/1.4874697] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
6
|
Bredtmann T, Katsuki H, Manz J, Ohmori K, Stemmle C. Wavepacket interferometry for nuclear densities and flux densities. Mol Phys 2013. [DOI: 10.1080/00268976.2013.780103] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Timm Bredtmann
- a Institut für Chemie und Biochemie, Freie Universität Berlin , Berlin , Germany
| | - Hiroyuki Katsuki
- b Graduate School of Materials Science , Nara Institute of Science and Technology , Ikoma , Japan
| | - Jörn Manz
- a Institut für Chemie und Biochemie, Freie Universität Berlin , Berlin , Germany
- c Laser Spectroscopy Laboratory , Shanxi University , Taiyuan , People’s Republic of China
| | - Kenji Ohmori
- d Institute for Molecular Science, National Institutes of Natural Sciences , Okazaki , Japan
- e CREST, Japan Science and Technology Agency , Tokyo , Japan
| | - Christian Stemmle
- a Institut für Chemie und Biochemie, Freie Universität Berlin , Berlin , Germany
| |
Collapse
|
7
|
Yuen-Zhou J, Krich JJ, Aspuru-Guzik A. A witness for coherent electronic vs vibronic-only oscillations in ultrafast spectroscopy. J Chem Phys 2012; 136:234501. [DOI: 10.1063/1.4725498] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
8
|
Avisar D, Tannor DJ. Multi-dimensional wavepacket and potential reconstruction by resonant coherent anti-Stokes Raman scattering: Application to H2O and HOD. J Chem Phys 2012; 136:214107. [DOI: 10.1063/1.4722648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
9
|
Schubert A, Engel V. Two-dimensional vibronic spectroscopy of coherent wave-packet motion. J Chem Phys 2012; 134:104304. [PMID: 21405162 DOI: 10.1063/1.3560165] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We theoretically study two-dimensional (2D) spectroscopic signals obtained from femtosecond pulse interactions with diatomic molecules. The vibrational wave-packet dynamics is monitored in the signals. During the motion in anharmonic potentials the wave packets exhibit vibrational revivals and fractional revivals which are associated with particular quantum phases. The time-dependent phase changes are identified by inspection of the complex-valued 2D spectra. We use the Na(2) molecule as a numerical example and discuss various pulse sequences which yield information about vibrational level structure and phase relationships in different electronic states.
Collapse
Affiliation(s)
- Alexander Schubert
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Würzburg, Germany
| | | |
Collapse
|
10
|
HAN YONGCHANG, YUAN KAIJUN, CONG SHULIN. CONTROLLING WAVE PACKET INTERFERENCE OF DISSOCIATING MOLECULES BY SHAPING LASER PULSES IN FREQUENCY DOMAIN. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633608004453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The interference of dissociating wave packets for the Br 2 molecule in femtosecond laser field is studied theoretically using time-dependent quantum wave packet method. The interference of dissociating wave packets can be determined by the spectrum of laser field. By shaping laser pulses in frequency domain, the corresponding R- and v-dependent density functions can be effectively controlled. Compared with the 2-pulse excitation scheme, the resolution of the interference patterns can be improved by using 3- and 4-pulse excitation schemes. The dissociating velocity can be steered by varying laser parameters.
Collapse
Affiliation(s)
- YONG-CHANG HAN
- Department of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - KAI-JUN YUAN
- Department of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - SHU-LIN CONG
- Department of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China
| |
Collapse
|
11
|
Quantum state and process tomography of energy transfer systems via ultrafast spectroscopy. Proc Natl Acad Sci U S A 2011; 108:17615-20. [PMID: 21997214 DOI: 10.1073/pnas.1110642108] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The description of excited state dynamics in energy transfer systems constitutes a theoretical and experimental challenge in modern chemical physics. A spectroscopic protocol that systematically characterizes both coherent and dissipative processes of the probed chromophores is desired. Here, we show that a set of two-color photon-echo experiments performs quantum state tomography (QST) of the one-exciton manifold of a dimer by reconstructing its density matrix in real time. This possibility in turn allows for a complete description of excited state dynamics via quantum process tomography (QPT). Simulations of a noisy QPT experiment for an inhomogeneously broadened ensemble of model excitonic dimers show that the protocol distills rich information about dissipative excitonic dynamics, which appears nontrivially hidden in the signal monitored in single realizations of four-wave mixing experiments.
Collapse
|
12
|
Yuen-Zhou J, Aspuru-Guzik A. Quantum process tomography of excitonic dimers from two-dimensional electronic spectroscopy. I. General theory and application to homodimers. J Chem Phys 2011; 134:134505. [PMID: 21476762 DOI: 10.1063/1.3569694] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Is it possible to infer the time evolving quantum state of a multichromophoric system from a sequence of two-dimensional electronic spectra (2D-ES) as a function of waiting time? Here we provide a positive answer for a tractable model system: a coupled dimer. After exhaustively enumerating the Liouville pathways associated to each peak in the 2D-ES, we argue that by judiciously combining the information from a series of experiments varying the polarization and frequency components of the pulses, detailed information at the amplitude level about the input and output quantum states at the waiting time can be obtained. This possibility yields a quantum process tomography (QPT) of the single-exciton manifold, which completely characterizes the open quantum system dynamics through the reconstruction of the process matrix. In this manuscript, we present the general theory as well as specific and numerical results for a homodimer, for which we prove that signals stemming from coherence to population transfer and vice versa vanish upon isotropic averaging, therefore, only allowing for a partial QPT in such case. However, this fact simplifies the spectra, and it follows that only two polarization controlled experiments (and no pulse-shaping requirements) suffice to yield the elements of the process matrix, which survive under isotropic averaging. Redundancies in the 2D-ES amplitudes allow for the angle between the two site transition dipole moments to be self-consistently obtained, hence simultaneously yielding structural and dynamical information of the dimer. Model calculations are presented, as well as an error analysis in terms of the angle between the dipoles and peak amplitude extraction. In the second article accompanying this study, we numerically exemplify the theory for heterodimers and carry out a detailed error analysis for such case. This investigation reveals an exciting quantum information processing (QIP) approach to spectroscopic experiments of excitonic systems, and hence, bridges an important gap between theoretical studies on excitation energy transfer from the QIP standpoint and experimental methods to study such systems in the chemical physics community.
Collapse
Affiliation(s)
- Joel Yuen-Zhou
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
13
|
Segale D, Apkarian VA. Dissipative quantum coherent dynamics probed in phase-space: Electronically resonant 5-color 4-wave mixing on I2(B) in solid Kr. J Chem Phys 2011; 135:024203. [DOI: 10.1063/1.3598959] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- D. Segale
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA
| | - V. A. Apkarian
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA
| |
Collapse
|
14
|
Avisar D, Tannor DJ. Wavepacket and potential reconstruction by four-wave mixing spectroscopy: preliminary application to polyatomic molecules. Faraday Discuss 2011; 153:131-48; discussion 189-212. [DOI: 10.1039/c1fd00048a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Katsuki H, Chiba H, Meier C, Girard B, Ohmori K. Wave packet interferometry with attosecond precision and picometric structure. Phys Chem Chem Phys 2010; 12:5189-98. [PMID: 20405071 DOI: 10.1039/b927518e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Wave packet (WP) interferometry is applied to the vibrational WPs of the iodine molecule. Interference fringes of quantum waves weave highly regular space-time images called "quantum carpets." The structure of the carpet has picometre and femtosecond resolutions, and changes drastically depending on the amplitudes and phases of the vibrational eigenstates composing the WP. In this review, we focus on the situation where quantum carpets are created by two counter-propagating nuclear vibrational WPs. Such WPs can be prepared with either a single or double femtosecond (fs) laser pulse. In the single pulse scheme, the relevant situation appears around the half revival time. Similar situations can be generated with a pair of fs laser pulses whose relative phase is stabilized on the attosecond time scale. In the latter case we can design the quantum carpet by controlling the timing between the phase-locked pulses. We demonstrate this carpet design and visualize the designed carpets by the fs pump-probe measurements, tuning the probe wavelength to resolve the WP density-distribution along the internuclear axis with ~3 pm spatial resolution and ~100 fs temporal resolution.
Collapse
Affiliation(s)
- Hiroyuki Katsuki
- Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki 444-8585, Japan.
| | | | | | | | | |
Collapse
|
16
|
Biggs JD, Cina JA. Using wave-packet interferometry to monitor the external vibrational control of electronic excitation transfer. J Chem Phys 2010; 131:224101. [PMID: 20001018 DOI: 10.1063/1.3257596] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate the control of electronic energy transfer in molecular dimers through the preparation of specific vibrational coherences prior to electronic excitation, and its observation by nonlinear wave-packet interferometry (nl-WPI). Laser-driven coherent nuclear motion can affect the instantaneous resonance between site-excited electronic states and thereby influence short-time electronic excitation transfer (EET). We first illustrate this control mechanism with calculations on a dimer whose constituent monomers undergo harmonic vibrations. We then consider the use of nl-WPI experiments to monitor the nuclear dynamics accompanying EET in general dimer complexes following impulsive vibrational excitation by a subresonant control pulse (or control pulse sequence). In measurements of this kind, two pairs of polarized phase-related femtosecond pulses following the control pulse generate superpositions of coherent nuclear wave packets in optically accessible electronic states. Interference contributions to the time- and frequency-integrated fluorescence signals due to overlaps among the superposed wave packets provide amplitude-level information on the nuclear and electronic dynamics. We derive the basic expression for a control-pulse-dependent nl-WPI signal. The electronic transition moments of the constituent monomers are assumed to have a fixed relative orientation, while the overall orientation of the complex is distributed isotropically. We include the limiting case of coincident arrival by pulses within each phase-related pair in which control-influenced nl-WPI reduces to a fluorescence-detected pump-probe difference experiment. Numerical calculations of pump-probe signals based on these theoretical expressions are presented in the following paper [J. D. Biggs and J. A. Cina, J. Chem. Phys. 131, 224302 (2009)].
Collapse
Affiliation(s)
- Jason D Biggs
- Department of Chemistry and Oregon Center for Optics, University of Oregon, Eugene, Oregon 97403, USA
| | | |
Collapse
|
17
|
Abstract
This review summarizes progress in coherent control as well as relevant recent achievements, highlighting, among several different schemes of coherent control, wave-packet interferometry (WPI). WPI is a fundamental and versatile scenario used to control a variety of quantum systems with a sequence of short laser pulses whose relative phase is finely adjusted to control the interference of electronic or nuclear wave packets (WPs). It is also useful in retrieving quantum information such as the amplitudes and phases of eigenfunctions superposed to generate a WP. Experimental and theoretical efforts to retrieve both the amplitude and phase information are recounted. This review also discusses information processing based on the eigenfunctions of atoms and molecules as one of the modern and future applications of coherent control. The ultrafast coherent control of ultracold atoms and molecules and the coherent control of complex systems are briefly discussed as future perspectives.
Collapse
Affiliation(s)
- Kenji Ohmori
- Institute for Molecular Science, National Institutes of Natural Sciences; The Graduate University for Advanced Studies (SOKENDAI); and CREST, Japan Science and Technology Agency, Myodaiji, Okazaki 444-8585, Japan
| |
Collapse
|
18
|
Katsuki H, Chiba H, Meier C, Girard B, Ohmori K. Actively tailored spatiotemporal images of quantum interference on the picometer and femtosecond scales. PHYSICAL REVIEW LETTERS 2009; 102:103602. [PMID: 19392112 DOI: 10.1103/physrevlett.102.103602] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Indexed: 05/27/2023]
Abstract
Interference fringes of quantum waves weave highly regular space-time images, which could be seen in various wave systems such as wave packets in atoms and molecules, Bose-Einstein condensates, and fermions in a box potential. We have experimentally designed and visualized spatiotemporal images of dynamical quantum interferences of two counterpropagating nuclear wave packets in the iodine molecule; the wave packets are generated with a pair of femtosecond laser pulses whose relative phase is locked within the attosecond time scale. The design of the image has picometer and femtosecond resolutions, and changes drastically as we change the relative phase of the laser pulses, providing a direct spatiotemporal control of quantum interferences.
Collapse
Affiliation(s)
- Hiroyuki Katsuki
- Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki 444-8585, Japan
| | | | | | | | | |
Collapse
|
19
|
Marquetand P, Nuernberger P, Brixner T, Engel V. Molecular dump processes induced by chirped laser pulses. J Chem Phys 2008; 129:074303. [DOI: 10.1063/1.2960581] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Cina JA. Wave-Packet Interferometry and Molecular State Reconstruction: Spectroscopic Adventures on the Left-Hand Side of the Schrödinger Equation. Annu Rev Phys Chem 2008; 59:319-42. [DOI: 10.1146/annurev.physchem.59.032607.093753] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jeffrey A. Cina
- Department of Chemistry and Oregon Center for Optics, University of Oregon, Eugene, Oregon 97403;
| |
Collapse
|
21
|
Han YC, Yuan KJ, Hu WH, Yan TM, Cong SL. Steering dissociation of Br2 molecules with two femtosecond pulses via wave packet interference. J Chem Phys 2008; 128:134303. [DOI: 10.1063/1.2844792] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
22
|
Tekavec PF, Lott GA, Marcus AH. Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation. J Chem Phys 2008; 127:214307. [PMID: 18067357 DOI: 10.1063/1.2800560] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Two-dimensional electronic coherence spectroscopy (ECS) is an important method to study the coupling between distinct optical modes of a material system. Such studies often involve excitation using a sequence of phased ultrashort laser pulses. In conventional approaches, the delays between pulse temporal envelopes must be precisely monitored or maintained. Here, we introduce a new experimental scheme for phase-selective nonlinear ECS, which combines acousto-optic phase modulation with ultrashort laser excitation to produce intensity modulated nonlinear fluorescence signals. We isolate specific nonlinear signal contributions by synchronous detection, with respect to appropriately constructed references. Our method effectively decouples the relative temporal phases from the pulse envelopes of a collinear train of four sequential pulses. We thus achieve a robust and high signal-to-noise scheme for phase-selective ECS to investigate the resonant nonlinear optical response of photoluminescent systems. We demonstrate the validity of our method using a model quantum three-level system-atomic Rb vapor. Moreover, we show how our measurements determine the resonant complex-valued third-order susceptibility.
Collapse
Affiliation(s)
- Patrick F Tekavec
- Department of Physics, University of Oregon, Eugene, Oregon 97403, USA
| | | | | |
Collapse
|
23
|
Rhee H, Ha JH, Jeon SJ, Cho M. Femtosecond spectral interferometry of optical activity: Theory. J Chem Phys 2008; 129:094507. [DOI: 10.1063/1.2968130] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
24
|
Ohmori K. Development of ultrahigh-precision coherent control and its applications. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2008; 84:167-75. [PMID: 18941296 PMCID: PMC3665367 DOI: 10.2183/pjab.84.167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 03/31/2008] [Indexed: 05/26/2023]
Abstract
Coherent control is based on optical manipulation of the amplitudes and phases of wave functions. It is expected to be a key technique to develop novel quantum technologies such as bond-selective chemistry and quantum computing, and to better understand the quantum worldview founded on wave-particle duality. We have developed high-precision coherent control by imprinting optical amplitudes and phases of ultrashort laser pulses on the quantum amplitudes and phases of molecular wave functions. The history and perspective of coherent control and our recent achievements are described.
Collapse
Affiliation(s)
- Kenji Ohmori
- Institute for Molecular Science, National Institutes of Natural Sciences, Aichi, Japan.
| |
Collapse
|
25
|
|
26
|
Kilin DS, Prezhdo OV, Schreiber M. Photoinduced Vibrational Coherence Transfer in Molecular Dimers. J Phys Chem A 2007; 111:10212-9. [PMID: 17850116 DOI: 10.1021/jp0709050] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
At short times that are faster than dephasing, photoinduced evolution of the vibrational subsystem in an electron-phonon molecular structure depends strongly on the electronic evolution. As the electronic population shifts between the donor and acceptor states, in the diabatic description the state with the largest population determines the equilibrium positions and frequencies of the vibrational modes, which oscillate continuously and without loss of coherence. The vibrational coherence transfer between the electronic states detected recently in a number of systems is described theoretically by application of the quantized Hamiltonian dynamics (QHD) formalism [J. Chem. Phys. 2000, 113, 6557] to the coupled electronic and vibrational degrees of freedom of a model heterodimer. The observed coherent modulation of the frequency of the probe signal is represented with simple analytic and numeric QHD models.
Collapse
Affiliation(s)
- Dmitri S Kilin
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | | | | |
Collapse
|
27
|
Humble TS, Cina JA. Nonlinear wave-packet interferometry and molecular state reconstruction in a vibrating and rotating diatomic molecule. J Phys Chem B 2007; 110:18879-92. [PMID: 16986879 DOI: 10.1021/jp0567669] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We formulate two-color nonlinear wave-packet interferometry (WPI) for application to a diatomic molecule in the gas phase and show that this form of heterodyne-detected multidimensional electronic spectroscopy will permit the reconstruction of photoinduced rovibrational wave packets from experimental data. Using two phase-locked pulse pairs, each resonant with a different electronic transition, nonlinear WPI detects the quadrilinear interference contributions to the population of an excited electronic state. Combining measurements taken with different phase-locking angles isolates various quadrilinear interference terms. One such term gives the complex overlap between a propagated one-pulse target wave packet and a variable three-pulse reference wave packet. The two-dimensional interferogram in the time domain specifies the complex-valued overlap of the given target state with a collection of variable reference states. An inversion procedure based on singular-value decomposition enables reconstruction of the target wave packet from the interferogram without prior detailed characterization of the nuclear Hamiltonian under which the target propagates. With numerically calculated nonlinear WPI signals subject to Gaussian noise, we demonstrate the reconstruction of a rovibrational wave packet launched from the A state and propagated in the E state of Li2.
Collapse
Affiliation(s)
- Travis S Humble
- Department of Chemistry and Oregon Center for Optics, University of Oregon, Eugene, Oregon 97403-1253, USA
| | | |
Collapse
|
28
|
Tekavec PF, Dyke TR, Marcus AH. Wave packet interferometry and quantum state reconstruction by acousto-optic phase modulation. J Chem Phys 2006; 125:194303. [PMID: 17129099 DOI: 10.1063/1.2386159] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Studies of wave packet dynamics often involve phase-selective measurements of coherent optical signals generated from sequences of ultrashort laser pulses. In wave packet interferometry (WPI), the separation between the temporal envelopes of the pulses must be precisely monitored or maintained. Here we introduce a new (and easy to implement) experimental scheme for phase-selective measurements that combines acousto-optic phase modulation with ultrashort laser excitation to produce an intensity-modulated fluorescence signal. Synchronous detection, with respect to an appropriately constructed reference, allows the signal to be simultaneously measured at two phases differing by 90 degrees. Our method effectively decouples the relative temporal phase from the pulse envelopes of a collinear train of optical pulse pairs. We thus achieve a robust and high signal-to-noise scheme for WPI applications, such as quantum state reconstruction and electronic spectroscopy. The validity of the method is demonstrated, and state reconstruction is performed, on a model quantum system--atomic Rb vapor. Moreover, we show that our measurements recover the correct separation between the absorptive and dispersive contributions to the system susceptibility.
Collapse
Affiliation(s)
- Patrick F Tekavec
- Department of Physics, University of Oregon, Eugene, Oregon 97403, USA
| | | | | |
Collapse
|
29
|
Cina JA, Fleming GR. Vibrational Coherence Transfer and Trapping as Sources for Long-Lived Quantum Beats in Polarized Emission from Energy Transfer Complexes. J Phys Chem A 2004. [DOI: 10.1021/jp047015u] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jeffrey A. Cina
- Department of Chemistry and Oregon Center for Optics, University of Oregon, Eugene, Oregon 97403, and Department of Chemistry, University of California, Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Graham R. Fleming
- Department of Chemistry and Oregon Center for Optics, University of Oregon, Eugene, Oregon 97403, and Department of Chemistry, University of California, Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|