1
|
Xu Y, Dai X, Yan P, Wang J, Wang S, Deng Y, Liu Y, He K, Wang T, Li C, Xu Y, He L. Antisymmetric Magnetoresistance in a CrTe 2/Bi 2Te 3/CrTe 2 van der Waals Heterostructure Grown by MBE. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10129-10135. [PMID: 39895113 DOI: 10.1021/acsami.4c19932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The magnetoresistance (MR) of spin valves usually displays a symmetric dependence on the magnetic field. An antisymmetric MR phenomenon has been discovered recently that breaks field symmetry and has the potential to realize polymorphic memory. In this work, centimeter-size and high-quality CrTe2/Bi2Te3/CrTe2 van der Waals (vdWs) heterostructure devices have been prepared using molecular beam epitaxy (MBE). By changing the magnetization direction of the top and bottom layers of CrTe2, an antisymmetric MR effect with high, intermediate, and low resistance states has been found and persists up to 75K. The emergence of this antisymmetric MR phenomenon is attributed to the spin Hall effect, which generates spin currents with both spin-up and spin-down orientations on the upper and lower surfaces of Bi2Te3. The spin currents diffuse or reflect at the Bi2Te3/CrTe2 interfaces alongside the additional charge currents induced by the inverse spin Hall effect (ISHE). Through theoretical calculations, the existence of the antisymmetric MR effect has also been confirmed. Our work emphasizes the use of the MBE technology to grow vdWs heterostructures to explore new physical phenomena and potential applications of spin electronic devices in polymorphic solid-state storage.
Collapse
Affiliation(s)
- Yongkang Xu
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210000, China
- State Key Laboratory of Spintronics, Nanjing University, Suzhou 210000, China
| | - Xingze Dai
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210000, China
- State Key Laboratory of Spintronics, Nanjing University, Suzhou 210000, China
| | - Pengfei Yan
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210000, China
- State Key Laboratory of Spintronics, Nanjing University, Suzhou 210000, China
| | - Jin Wang
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210000, China
- State Key Laboratory of Spintronics, Nanjing University, Suzhou 210000, China
| | - Shuanghai Wang
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210000, China
- State Key Laboratory of Spintronics, Nanjing University, Suzhou 210000, China
| | - Yafeng Deng
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210000, China
- State Key Laboratory of Spintronics, Nanjing University, Suzhou 210000, China
| | - Yu Liu
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210000, China
- State Key Laboratory of Spintronics, Nanjing University, Suzhou 210000, China
| | - Kun He
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210000, China
- State Key Laboratory of Spintronics, Nanjing University, Suzhou 210000, China
| | - Taikun Wang
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210000, China
- State Key Laboratory of Spintronics, Nanjing University, Suzhou 210000, China
| | - Caitao Li
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210000, China
- State Key Laboratory of Spintronics, Nanjing University, Suzhou 210000, China
| | - Yongbing Xu
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210000, China
- State Key Laboratory of Spintronics, Nanjing University, Suzhou 210000, China
| | - Liang He
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210000, China
- State Key Laboratory of Spintronics, Nanjing University, Suzhou 210000, China
| |
Collapse
|
2
|
Chi Z, Lee S, Yang H, Dolan E, Safeer CK, Ingla-Aynés J, Herling F, Ontoso N, Martín-García B, Gobbi M, Low T, Hueso LE, Casanova F. Control of Charge-Spin Interconversion in van der Waals Heterostructures with Chiral Charge Density Waves. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310768. [PMID: 38237911 DOI: 10.1002/adma.202310768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/10/2023] [Indexed: 01/28/2024]
Abstract
A charge density wave (CDW) represents an exotic state in which electrons are arranged in a long-range ordered pattern in low-dimensional materials. Although the understanding of the fundamental character of CDW is enriched after extensive studies, its practical application remains limited. Here, an unprecedented demonstration of a tunable charge-spin interconversion (CSI) in graphene/1T-TaS2 van der Waals heterostructures is shown by manipulating the distinct CDW phases in 1T-TaS2. Whereas CSI from spins polarized in all three directions is observed in the heterostructure when the CDW phase does not show commensurability, the output of one of the components disappears, and the other two are enhanced when the CDW phase becomes commensurate. The experimental observation is supported by first-principles calculations, which evidence that chiral CDW multidomains in the heterostructure are at the origin of the switching of CSI. The results uncover a new approach for on-demand CSI in low-dimensional systems, paving the way for advanced spin-orbitronic devices.
Collapse
Affiliation(s)
- Zhendong Chi
- CIC nanoGUNE BRTA, Donostia-San Sebastián, 20018, Basque Country, Spain
| | - Seungjun Lee
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Haozhe Yang
- CIC nanoGUNE BRTA, Donostia-San Sebastián, 20018, Basque Country, Spain
| | - Eoin Dolan
- CIC nanoGUNE BRTA, Donostia-San Sebastián, 20018, Basque Country, Spain
| | - C K Safeer
- CIC nanoGUNE BRTA, Donostia-San Sebastián, 20018, Basque Country, Spain
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, OX1 3PU, UK
| | - Josep Ingla-Aynés
- CIC nanoGUNE BRTA, Donostia-San Sebastián, 20018, Basque Country, Spain
| | - Franz Herling
- CIC nanoGUNE BRTA, Donostia-San Sebastián, 20018, Basque Country, Spain
| | - Nerea Ontoso
- CIC nanoGUNE BRTA, Donostia-San Sebastián, 20018, Basque Country, Spain
| | - Beatriz Martín-García
- CIC nanoGUNE BRTA, Donostia-San Sebastián, 20018, Basque Country, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Basque Country, Spain
| | - Marco Gobbi
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Basque Country, Spain
- Centro de Física de Materiales (CSIC-EHU/UPV) and Materials Physics Center (MPC), Donostia-San Sebastián, 20018, Basque Country, Spain
| | - Tony Low
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Physics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Luis E Hueso
- CIC nanoGUNE BRTA, Donostia-San Sebastián, 20018, Basque Country, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Basque Country, Spain
| | - Fèlix Casanova
- CIC nanoGUNE BRTA, Donostia-San Sebastián, 20018, Basque Country, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Basque Country, Spain
| |
Collapse
|
3
|
Xiao C, Wu W, Wang H, Huang YX, Feng X, Liu H, Guo GY, Niu Q, Yang SA. Time-Reversal-Even Nonlinear Current Induced Spin Polarization. PHYSICAL REVIEW LETTERS 2023; 130:166302. [PMID: 37154629 DOI: 10.1103/physrevlett.130.166302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 03/23/2023] [Indexed: 05/10/2023]
Abstract
We propose a time-reversal-even spin generation in second order of electric fields, which dominates the current induced spin polarization in a wide class of centrosymmetric nonmagnetic materials, and leads to a novel nonlinear spin-orbit torque in magnets. We reveal a quantum origin of this effect from the momentum space dipole of the anomalous spin polarizability. First-principles calculations predict sizable spin generations in several nonmagnetic hcp metals, in monolayer TiTe_{2}, and in ferromagnetic monolayer MnSe_{2}, which can be detected in experiment. Our work opens up the broad vista of nonlinear spintronics in both nonmagnetic and magnetic systems.
Collapse
Affiliation(s)
- Cong Xiao
- Department of Physics, The University of Hong Kong, Hong Kong, People's Republic of China
- HKU-UCAS Joint Institute of Theoretical and Computational Physics at Hong Kong, Hong Kong, China
| | - Weikang Wu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, People's Republic of China
| | - Hui Wang
- Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Yue-Xin Huang
- Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Xiaolong Feng
- Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Huiying Liu
- Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore
- School of Physics, Beihang University, Beijing 100191, China
| | - Guang-Yu Guo
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan, Republic of China
- Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan, Republic of China
| | - Qian Niu
- School of Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Shengyuan A Yang
- Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore
| |
Collapse
|
4
|
Xiao C, Liu H, Wu W, Wang H, Niu Q, Yang SA. Intrinsic Nonlinear Electric Spin Generation in Centrosymmetric Magnets. PHYSICAL REVIEW LETTERS 2022; 129:086602. [PMID: 36053706 DOI: 10.1103/physrevlett.129.086602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 06/14/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
We propose an intrinsic nonlinear electric spin generation effect, which can dominate in centrosymmetric magnets. We reveal the band geometric origin of this effect and clarify its symmetry characters. As an intrinsic effect, it is determined solely by the material's band structure and represents a material characteristic. Combining our theory with first-principle calculations, we predict sizable nonlinear spin generation in single-layer MnBi_{2}Te_{4}, which can be detected in experiment. Our theory opens a new route for all-electric controlled spintronics in centrosymmetric magnets which reside outside of the current paradigm based on linear spin response.
Collapse
Affiliation(s)
- Cong Xiao
- Department of Physics, The University of Hong Kong, Hong Kong, China
- HKU-UCAS Joint Institute of Theoretical and Computational Physics at Hong Kong, Hong Kong, China
| | - Huiying Liu
- Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Weikang Wu
- Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, Shandong 250061, China
| | - Hui Wang
- Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Qian Niu
- School of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shengyuan A Yang
- Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore
| |
Collapse
|
5
|
Calavalle F, Suárez-Rodríguez M, Martín-García B, Johansson A, Vaz DC, Yang H, Maznichenko IV, Ostanin S, Mateo-Alonso A, Chuvilin A, Mertig I, Gobbi M, Casanova F, Hueso LE. Gate-tuneable and chirality-dependent charge-to-spin conversion in tellurium nanowires. NATURE MATERIALS 2022; 21:526-532. [PMID: 35256792 DOI: 10.1038/s41563-022-01211-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Chiral materials are an ideal playground for exploring the relation between symmetry, relativistic effects and electronic transport. For instance, chiral organic molecules have been intensively studied to electrically generate spin-polarized currents in the last decade, but their poor electronic conductivity limits their potential for applications. Conversely, chiral inorganic materials such as tellurium have excellent electrical conductivity, but their potential for enabling the electrical control of spin polarization in devices remains unclear. Here, we demonstrate the all-electrical generation, manipulation and detection of spin polarization in chiral single-crystalline tellurium nanowires. By recording a large (up to 7%) and chirality-dependent unidirectional magnetoresistance, we show that the orientation of the electrically generated spin polarization is determined by the nanowire handedness and uniquely follows the current direction, while its magnitude can be manipulated by an electrostatic gate. Our results pave the way for the development of magnet-free chirality-based spintronic devices.
Collapse
Affiliation(s)
| | | | | | - Annika Johansson
- Institute of Physics, Martin Luther University Halle-Wittenberg, Halle, Germany
- Max Planck Institute of Microstructure Physics, Halle, Germany
| | - Diogo C Vaz
- CIC nanoGUNE BRTA, Donostia-San Sebastian, Spain
| | - Haozhe Yang
- CIC nanoGUNE BRTA, Donostia-San Sebastian, Spain
| | - Igor V Maznichenko
- Institute of Physics, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Sergey Ostanin
- Institute of Physics, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Aurelio Mateo-Alonso
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- POLYMAT, University of the Basque Country UPV/EHU, Donostia-San Sebastian, Spain
| | - Andrey Chuvilin
- CIC nanoGUNE BRTA, Donostia-San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Ingrid Mertig
- Institute of Physics, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Marco Gobbi
- CIC nanoGUNE BRTA, Donostia-San Sebastian, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Centro de Física de Materiales CSIC-UPV/EHU, Donostia-San Sebastian, Spain.
| | - Fèlix Casanova
- CIC nanoGUNE BRTA, Donostia-San Sebastian, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | - Luis E Hueso
- CIC nanoGUNE BRTA, Donostia-San Sebastian, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
6
|
Zhao B, Karpiak B, Khokhriakov D, Johansson A, Hoque AM, Xu X, Jiang Y, Mertig I, Dash SP. Unconventional Charge-Spin Conversion in Weyl-Semimetal WTe 2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000818. [PMID: 32776352 DOI: 10.1002/adma.202000818] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/08/2020] [Indexed: 05/17/2023]
Abstract
An outstanding feature of topological quantum materials is their novel spin topology in the electronic band structures with an expected large charge-to-spin conversion efficiency. Here, a charge-current-induced spin polarization in the type-II Weyl semimetal candidate WTe2 and efficient spin injection and detection in a graphene channel up to room temperature are reported. Contrary to the conventional spin Hall and Rashba-Edelstein effects, the measurements indicate an unconventional charge-to-spin conversion in WTe2 , which is primarily forbidden by the crystal symmetry of the system. Such a large spin polarization can be possible in WTe2 due to a reduced crystal symmetry combined with its large spin Berry curvature, spin-orbit interaction with a novel spin-texture of the Fermi states. A robust and practical method is demonstrated for electrical creation and detection of such a spin polarization using both charge-to-spin conversion and its inverse phenomenon and utilized it for efficient spin injection and detection in the graphene channel up to room temperature. These findings open opportunities for utilizing topological Weyl materials as nonmagnetic spin sources in all-electrical van der Waals spintronic circuits and for low-power and high-performance nonvolatile spintronic technologies.
Collapse
Affiliation(s)
- Bing Zhao
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Göteborg, SE-41296, Sweden
| | - Bogdan Karpiak
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Göteborg, SE-41296, Sweden
| | - Dmitrii Khokhriakov
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Göteborg, SE-41296, Sweden
| | - Annika Johansson
- Institute of Physics, Martin Luther University Halle-Wittenberg, Halle, 06099, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany
| | - Anamul Md Hoque
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Göteborg, SE-41296, Sweden
| | - Xiaoguang Xu
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yong Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ingrid Mertig
- Institute of Physics, Martin Luther University Halle-Wittenberg, Halle, 06099, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany
| | - Saroj P Dash
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Göteborg, SE-41296, Sweden
- Graphene Center, Chalmers University of Technology, Göteborg, SE-41296, Sweden
| |
Collapse
|
7
|
Safeer CK, Ontoso N, Ingla-Aynés J, Herling F, Pham VT, Kurzmann A, Ensslin K, Chuvilin A, Robredo I, Vergniory MG, de Juan F, Hueso LE, Calvo MR, Casanova F. Large Multidirectional Spin-to-Charge Conversion in Low-Symmetry Semimetal MoTe 2 at Room Temperature. NANO LETTERS 2019; 19:8758-8766. [PMID: 31661967 DOI: 10.1021/acs.nanolett.9b03485] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Efficient and versatile spin-to-charge current conversion is crucial for the development of spintronic applications, which strongly rely on the ability to electrically generate and detect spin currents. In this context, the spin Hall effect has been widely studied in heavy metals with strong spin-orbit coupling. While the high crystal symmetry in these materials limits the conversion to the orthogonal configuration, unusual configurations are expected in low-symmetry transition-metal dichalcogenide semimetals, which could add flexibility to the electrical injection and detection of pure spin currents. Here, we report the observation of spin-to-charge conversion in MoTe2 flakes, which are stacked in graphene lateral spin valves. We detect two distinct contributions arising from the conversion of two different spin orientations. In addition to the conventional conversion where the spin polarization is orthogonal to the charge current, we also detect a conversion where the spin polarization and the charge current are parallel. Both contributions, which could arise either from bulk spin Hall effect or surface Edelstein effect, show large efficiencies comparable to the best spin Hall metals and topological insulators. Our finding enables the simultaneous conversion of spin currents with any in-plane spin polarization in one single experimental configuration.
Collapse
Affiliation(s)
- C K Safeer
- CIC nanoGUNE , 20018 Donostia-San Sebastian , Basque Country , Spain
| | - Nerea Ontoso
- CIC nanoGUNE , 20018 Donostia-San Sebastian , Basque Country , Spain
| | - Josep Ingla-Aynés
- CIC nanoGUNE , 20018 Donostia-San Sebastian , Basque Country , Spain
| | - Franz Herling
- CIC nanoGUNE , 20018 Donostia-San Sebastian , Basque Country , Spain
| | - Van Tuong Pham
- CIC nanoGUNE , 20018 Donostia-San Sebastian , Basque Country , Spain
| | - Annika Kurzmann
- Solid State Physics Laboratory , ETH Zurich , 8093 Zurich , Switzerland
| | - Klaus Ensslin
- Solid State Physics Laboratory , ETH Zurich , 8093 Zurich , Switzerland
| | - Andrey Chuvilin
- CIC nanoGUNE , 20018 Donostia-San Sebastian , Basque Country , Spain
- IKERBASQUE, Basque Foundation for Science , 48013 Bilbao , Basque Country , Spain
| | - Iñigo Robredo
- Donostia International Physics Center (DIPC) , 20018 Donostia-San Sebastian , Basque Country , Spain
- Department of Condensed Matter Physics , University of the Basque Country (UPV/EHU) , 48080 Bilbao , Basque Country , Spain
| | - Maia G Vergniory
- IKERBASQUE, Basque Foundation for Science , 48013 Bilbao , Basque Country , Spain
- Donostia International Physics Center (DIPC) , 20018 Donostia-San Sebastian , Basque Country , Spain
| | - Fernando de Juan
- IKERBASQUE, Basque Foundation for Science , 48013 Bilbao , Basque Country , Spain
- Donostia International Physics Center (DIPC) , 20018 Donostia-San Sebastian , Basque Country , Spain
| | - Luis E Hueso
- CIC nanoGUNE , 20018 Donostia-San Sebastian , Basque Country , Spain
- IKERBASQUE, Basque Foundation for Science , 48013 Bilbao , Basque Country , Spain
| | - M Reyes Calvo
- CIC nanoGUNE , 20018 Donostia-San Sebastian , Basque Country , Spain
- IKERBASQUE, Basque Foundation for Science , 48013 Bilbao , Basque Country , Spain
- Departamento de Física Aplicada , Universidad de Alicante , 03690 Alicante , Spain
| | - Fèlix Casanova
- CIC nanoGUNE , 20018 Donostia-San Sebastian , Basque Country , Spain
- IKERBASQUE, Basque Foundation for Science , 48013 Bilbao , Basque Country , Spain
| |
Collapse
|
8
|
Albarakati S, Tan C, Chen ZJ, Partridge JG, Zheng G, Farrar L, Mayes ELH, Field MR, Lee C, Wang Y, Xiong Y, Tian M, Xiang F, Hamilton AR, Tretiakov OA, Culcer D, Zhao YJ, Wang L. Antisymmetric magnetoresistance in van der Waals Fe 3GeTe 2/graphite/Fe 3GeTe 2 trilayer heterostructures. SCIENCE ADVANCES 2019; 5:eaaw0409. [PMID: 31281884 PMCID: PMC6611684 DOI: 10.1126/sciadv.aaw0409] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/29/2019] [Indexed: 05/24/2023]
Abstract
With no requirements for lattice matching, van der Waals (vdW) ferromagnetic materials are rapidly establishing themselves as effective building blocks for next-generation spintronic devices. We report a hitherto rarely seen antisymmetric magnetoresistance (MR) effect in vdW heterostructured Fe3GeTe2 (FGT)/graphite/FGT devices. Unlike conventional giant MR (GMR), which is characterized by two resistance states, the MR in these vdW heterostructures features distinct high-, intermediate-, and low-resistance states. This unique characteristic is suggestive of underlying physical mechanisms that differ from those observed before. After theoretical calculations, the three-resistance behavior was attributed to a spin momentum locking induced spin-polarized current at the graphite/FGT interface. Our work reveals that ferromagnetic heterostructures assembled from vdW materials can exhibit substantially different properties to those exhibited by similar heterostructures grown in vacuum. Hence, it highlights the potential for new physics and new spintronic applications to be discovered using vdW heterostructures.
Collapse
Affiliation(s)
| | - Cheng Tan
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Zhong-Jia Chen
- Department of Physics, South China University of Technology, Guangzhou, Guangdong 510640, China
| | | | - Guolin Zheng
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Lawrence Farrar
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | | | - Matthew R. Field
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Changgu Lee
- Center for Quantum Materials and Superconductivity (CQMS) and Department of Physics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yihao Wang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Yiming Xiong
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Mingliang Tian
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Feixiang Xiang
- School of Physics and ARC Centre of Excellence in Future Low-Energy Electronics Technologies, UNSW Node, University of New South Wales, Sydney, NSW 2052, Australia
| | - Alex R. Hamilton
- School of Physics and ARC Centre of Excellence in Future Low-Energy Electronics Technologies, UNSW Node, University of New South Wales, Sydney, NSW 2052, Australia
| | - Oleg A. Tretiakov
- School of Physics and ARC Centre of Excellence in Future Low-Energy Electronics Technologies, UNSW Node, University of New South Wales, Sydney, NSW 2052, Australia
- National University of Science and Technology “MISiS,” Moscow 119049, Russia
| | - Dimitrie Culcer
- School of Physics and ARC Centre of Excellence in Future Low-Energy Electronics Technologies, UNSW Node, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yu-Jun Zhao
- Department of Physics, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Lan Wang
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
9
|
Jungfleisch MB, Zhang Q, Zhang W, Pearson JE, Schaller RD, Wen H, Hoffmann A. Control of Terahertz Emission by Ultrafast Spin-Charge Current Conversion at Rashba Interfaces. PHYSICAL REVIEW LETTERS 2018; 120:207207. [PMID: 29864340 DOI: 10.1103/physrevlett.120.207207] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/01/2017] [Indexed: 05/06/2023]
Abstract
We show that a femtosecond spin-current pulse can generate terahertz (THz) transients at Rashba interfaces between two nonmagnetic materials. Our results unambiguously demonstrate the importance of the interface in this conversion process that we interpret in terms of the inverse Rashba Edelstein effect, in contrast to the THz emission in the bulk conversion process via the inverse spin-Hall effect. Furthermore, we show that at Rashba interfaces the THz-field amplitude can be controlled by the helicity of the light. The optical generation of electric photocurrents by these interfacial effects in the femtosecond regime will open up new opportunities in ultrafast spintronics.
Collapse
Affiliation(s)
- Matthias B Jungfleisch
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - Qi Zhang
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Wei Zhang
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
- Department of Physics, Oakland University, Rochester, Michigan 48309, USA
| | - John E Pearson
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Richard D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Haidan Wen
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Axel Hoffmann
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| |
Collapse
|
10
|
Qing L, Song Y, Dery H. Proximity effects of a symmetry-breaking interface on spins of photoexcited electrons. PHYSICAL REVIEW LETTERS 2011; 107:107202. [PMID: 21981523 DOI: 10.1103/physrevlett.107.107202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Indexed: 05/31/2023]
Abstract
We study reflection of optically spin-oriented hot electrons as a means to probe the semiconductor crystal symmetry and its intimate relation with the spin-orbit coupling. The symmetry breaking by reflection manifests itself by tipping the net-spin vector of the photoexcited electrons out of the light propagation direction. The tipping angle and the pointing direction of the net-spin vector are set by the crystal-induced spin precession, momentum alignment, and spin-momentum correlation of the initial photoexcited electron population. We examine nonmagnetic semiconductor heterostructures and semiconductor-ferromagnet systems and show the unique signatures of these effects.
Collapse
Affiliation(s)
- Lan Qing
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA.
| | | | | |
Collapse
|
11
|
Wang J, Zhu BF, Liu RB. Proposal for direct measurement of a pure spin current by a polarized light beam. PHYSICAL REVIEW LETTERS 2008; 100:086603. [PMID: 18352646 DOI: 10.1103/physrevlett.100.086603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Indexed: 05/26/2023]
Abstract
The photon helicity may be mapped to a spin-1/2, whereby we put forward an intrinsic interaction between a polarized light beam as a "photon spin current" and a pure spin current in a semiconductor, which arises from the spin-orbit coupling in valence bands as a pure relativity effect without involving the Rashba or the Dresselhaus effect due to inversion asymmetries. The interaction leads to linear and circular optical birefringence, which are similar to the Voigt effect and the Faraday rotation in magneto-optics but nevertheless involve no net magnetization. The birefringence effects provide a direct, nondemolition measurement of pure spin currents.
Collapse
Affiliation(s)
- Jing Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | | | | |
Collapse
|