1
|
Vegué M, Allard A, Desrosiers P. Firing rate distributions in plastic networks of spiking neurons. Netw Neurosci 2025; 9:447-474. [PMID: 40161997 PMCID: PMC11949577 DOI: 10.1162/netn_a_00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 01/05/2025] [Indexed: 04/02/2025] Open
Abstract
In recurrent networks of leaky integrate-and-fire neurons, the mean-field theory has been instrumental in capturing the statistical properties of neuronal activity, like firing rate distributions. This theory has been applied to networks with either homogeneous synaptic weights and heterogeneous connections per neuron or vice versa. Our work expands mean-field models to include networks with both types of structural heterogeneity simultaneously, particularly focusing on those with synapses that undergo plastic changes. The model introduces a spike trace for each neuron, a variable that rises with neuron spikes and decays without activity, influenced by a degradation rate r p and the neuron's firing rate ν. When the ratio α = ν/r p is significantly high, this trace effectively estimates the neuron's firing rate, allowing synaptic weights at equilibrium to be determined by the firing rates of connected neurons. This relationship is incorporated into our mean-field formalism, providing exact solutions for firing rate and synaptic weight distributions at equilibrium in the high α regime. However, the model remains accurate within a practical range of degradation rates, as demonstrated through simulations with networks of excitatory and inhibitory neurons. This approach sheds light on how plasticity modulates both activity and structure within neuronal networks, offering insights into their complex behavior.
Collapse
Affiliation(s)
- Marina Vegué
- Departament de Matemàtiques, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Antoine Allard
- Département de Physique, de Génie Physique et d’Optique, Université Laval, Québec, Canada
- Centre Interdisciplinaire en Modélisation Mathématique, Université Laval, Québec, Canada
| | - Patrick Desrosiers
- Département de Physique, de Génie Physique et d’Optique, Université Laval, Québec, Canada
- Centre Interdisciplinaire en Modélisation Mathématique, Université Laval, Québec, Canada
- CERVO Brain Research Center, Québec, Canada
| |
Collapse
|
2
|
Becker LA, Baccelli F, Taillefumier T. Subthreshold moment analysis of neuronal populations driven by synchronous synaptic inputs. ARXIV 2025:arXiv:2503.13702v1. [PMID: 40166746 PMCID: PMC11957229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Even when driven by the same stimulus, neuronal responses are well-known to exhibit a striking level of spiking variability. In-vivo electrophysiological recordings also reveal a surprisingly large degree of variability at the subthreshold level. In prior work, we considered biophysically relevant neuronal models to account for the observed magnitude of membrane voltage fluctuations. We found that accounting for these fluctuations requires weak but nonzero synchrony in the spiking activity, in amount that are consistent with experimentally measured spiking correlations. Here we investigate whether such synchrony can explain additional statistical features of the measured neural activity, including neuronal voltage covariability and voltage skewness. Addressing this question involves conducting a generalized moment analysis of conductance-based neurons in response to input drives modeled as correlated jump processes. Technically, we perform such an analysis using fixed-point techniques from queuing theory that are applicable in the stationary regime of activity. We found that weak but nonzero synchrony can consistently explain the experimentally reported voltage covariance and skewness. This confirms the role of synchrony as a primary driver of cortical variability and supports that physiological neural activity emerges as a population-level phenomenon, especially in the spontaneous regime.
Collapse
Affiliation(s)
- Logan A. Becker
- Center for Theoretical and Computational Neuroscience, The University of Texas at Austin, Texas, USA
- Department of Neuroscience, The University of Texas at Austin, Texas, USA
| | - François Baccelli
- Department of Mathematics, The University of Texas at Austin, Texas, USA
- Departement d’informatique, Ecole Normale Supérieure, Paris, France
- Institut national de recherche en sciences et technologies du numérique, Paris, France
| | - Thibaud Taillefumier
- Center for Theoretical and Computational Neuroscience, The University of Texas at Austin, Texas, USA
- Department of Neuroscience, The University of Texas at Austin, Texas, USA
- Department of Mathematics, The University of Texas at Austin, Texas, USA
| |
Collapse
|
3
|
Becker LA, Baccelli F, Taillefumier T. Subthreshold variability of neuronal populations driven by synchronous synaptic inputs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.16.643547. [PMID: 40161748 PMCID: PMC11952518 DOI: 10.1101/2025.03.16.643547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Even when driven by the same stimulus, neuronal responses are well-known to exhibit a striking level of spiking variability. In-vivo electrophysiological recordings also reveal a surprisingly large degree of variability at the subthreshold level. In prior work, we considered biophysically relevant neuronal models to account for the observed magnitude of membrane voltage fluctuations. We found that accounting for these fluctuations requires weak but nonzero synchrony in the spiking activity, in amount that are consistent with experimentally measured spiking correlations. Here we investigate whether such synchrony can explain additional statistical features of the measured neural activity, including neuronal voltage covariability and voltage skewness. Addressing this question involves conducting a generalized moment analysis of conductance-based neurons in response to input drives modeled as correlated jump processes. Technically, we perform such an analysis using fixed-point techniques from queuing theory that are applicable in the stationary regime of activity. We found that weak but nonzero synchrony can consistently explain the experimentally reported voltage covariance and skewness. This confirms the role of synchrony as a primary driver of cortical variability and supports that physiological neural activity emerges as a population-level phenomenon, especially in the spontaneous regime.
Collapse
Affiliation(s)
- Logan A. Becker
- Center for Theoretical and Computational Neuroscience, The University of Texas at Austin, Texas, USA
- Department of Neuroscience, The University of Texas at Austin, Texas, USA
| | - François Baccelli
- Department of Mathematics, The University of Texas at Austin, Texas, USA
- Departement d’informatique, Ecole Normale Supérieure, Paris, France
- Institut national de recherche en sciences et technologies du numérique, Paris, France
| | - Thibaud Taillefumier
- Center for Theoretical and Computational Neuroscience, The University of Texas at Austin, Texas, USA
- Department of Neuroscience, The University of Texas at Austin, Texas, USA
- Department of Mathematics, The University of Texas at Austin, Texas, USA
| |
Collapse
|
4
|
Amsalem O, Inagaki H, Yu J, Svoboda K, Darshan R. Sub-threshold neuronal activity and the dynamical regime of cerebral cortex. Nat Commun 2024; 15:7958. [PMID: 39261492 PMCID: PMC11390892 DOI: 10.1038/s41467-024-51390-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/05/2024] [Indexed: 09/13/2024] Open
Abstract
Cortical neurons exhibit temporally irregular spiking patterns and heterogeneous firing rates. These features arise in model circuits operating in a 'fluctuation-driven regime', in which fluctuations in membrane potentials emerge from the network dynamics. However, it is still debated whether the cortex operates in such a regime. We evaluated the fluctuation-driven hypothesis by analyzing spiking and sub-threshold membrane potentials of neurons in the frontal cortex of mice performing a decision-making task. We showed that while standard fluctuation-driven models successfully account for spiking statistics, they fall short in capturing the heterogeneity in sub-threshold activity. This limitation is an inevitable outcome of bombarding single-compartment neurons with a large number of pre-synaptic inputs, thereby clamping the voltage of all neurons to more or less the same average voltage. To address this, we effectively incorporated dendritic morphology into the standard models. Inclusion of dendritic morphology in the neuronal models increased neuronal selectivity and reduced error trials, suggesting a functional role for dendrites during decision-making. Our work suggests that, during decision-making, cortical neurons in high-order cortical areas operate in a fluctuation-driven regime.
Collapse
Affiliation(s)
- Oren Amsalem
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Jianing Yu
- School of Life Sciences, Peking University, Beijing, China
| | - Karel Svoboda
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Ran Darshan
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
- The School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel.
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
5
|
Qi Y. Moment neural network and an efficient numerical method for modeling irregular spiking activity. Phys Rev E 2024; 110:024310. [PMID: 39295055 DOI: 10.1103/physreve.110.024310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 09/21/2024]
Abstract
Continuous rate-based neural networks have been widely applied to modeling the dynamics of cortical circuits. However, cortical neurons in the brain exhibit irregular spiking activity with complex correlation structures that cannot be captured by mean firing rate alone. To close this gap, we consider a framework for modeling irregular spiking activity, called the moment neural network, which naturally generalizes rate models to second-order moments and can accurately capture the firing statistics of spiking neural networks. We propose an efficient numerical method that allows for rapid evaluation of moment mappings for neuronal activations without solving the underlying Fokker-Planck equation. This allows simulation of coupled interactions of mean firing rate and firing variability of large-scale neural circuits while retaining the advantage of analytical tractability of continuous rate models. We demonstrate how the moment neural network can explain a range of phenomena including diverse Fano factor in networks with quenched disorder and the emergence of irregular oscillatory dynamics in excitation-inhibition networks with delay.
Collapse
Affiliation(s)
- Yang Qi
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai 200433, China; and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
6
|
Becker MP, Idiart MAP. Mean-field method for generic conductance-based integrate-and-fire neurons with finite timescales. Phys Rev E 2024; 109:024406. [PMID: 38491595 DOI: 10.1103/physreve.109.024406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/08/2023] [Indexed: 03/18/2024]
Abstract
The construction of transfer functions in theoretical neuroscience plays an important role in determining the spiking rate behavior of neurons in networks. These functions can be obtained through various fitting methods, but the biological relevance of the parameters is not always clear. However, for stationary inputs, such functions can be obtained without the adjustment of free parameters by using mean-field methods. In this work, we expand current Fokker-Planck approaches to account for the concurrent influence of colored and multiplicative noise terms on generic conductance-based integrate-and-fire neurons. We reduce the resulting stochastic system through the application of the diffusion approximation to a one-dimensional Langevin equation. An effective Fokker-Planck is then constructed using Fox Theory, which is solved numerically using a newly developed double integration procedure to obtain the transfer function and the membrane potential distribution. The solution is capable of reproducing the transfer function and the stationary voltage distribution of simulated neurons across a wide range of parameters. The method can also be easily extended to account for different sources of noise with various multiplicative terms, and it can be used in other types of problems in principle.
Collapse
Affiliation(s)
- Marcelo P Becker
- Bernstein Center for Computational Neuroscience, 10115 Berlin, Germany
| | - Marco A P Idiart
- Department of Physics, Institute of Physics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
7
|
Richardson MJE. Linear and nonlinear integrate-and-fire neurons driven by synaptic shot noise with reversal potentials. Phys Rev E 2024; 109:024407. [PMID: 38491664 DOI: 10.1103/physreve.109.024407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/18/2023] [Indexed: 03/18/2024]
Abstract
The steady-state firing rate and firing-rate response of the leaky and exponential integrate-and-fire models receiving synaptic shot noise with excitatory and inhibitory reversal potentials is examined. For the particular case where the underlying synaptic conductances are exponentially distributed, it is shown that the master equation for a population of such model neurons can be reduced from an integrodifferential form to a more tractable set of three differential equations. The system is nevertheless more challenging analytically than for current-based synapses: where possible, analytical results are provided with an efficient numerical scheme and code provided for other quantities. The increased tractability of the framework developed supports an ongoing critical comparison between models in which synapses are treated with and without reversal potentials, such as recently in the context of networks with balanced excitatory and inhibitory conductances.
Collapse
Affiliation(s)
- Magnus J E Richardson
- Warwick Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
8
|
Becker LA, Li B, Priebe NJ, Seidemann E, Taillefumier T. Exact Analysis of the Subthreshold Variability for Conductance-Based Neuronal Models with Synchronous Synaptic Inputs. PHYSICAL REVIEW. X 2024; 14:011021. [PMID: 38911939 PMCID: PMC11194039 DOI: 10.1103/physrevx.14.011021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The spiking activity of neocortical neurons exhibits a striking level of variability, even when these networks are driven by identical stimuli. The approximately Poisson firing of neurons has led to the hypothesis that these neural networks operate in the asynchronous state. In the asynchronous state, neurons fire independently from one another, so that the probability that a neuron experience synchronous synaptic inputs is exceedingly low. While the models of asynchronous neurons lead to observed spiking variability, it is not clear whether the asynchronous state can also account for the level of subthreshold membrane potential variability. We propose a new analytical framework to rigorously quantify the subthreshold variability of a single conductance-based neuron in response to synaptic inputs with prescribed degrees of synchrony. Technically, we leverage the theory of exchangeability to model input synchrony via jump-process-based synaptic drives; we then perform a moment analysis of the stationary response of a neuronal model with all-or-none conductances that neglects postspiking reset. As a result, we produce exact, interpretable closed forms for the first two stationary moments of the membrane voltage, with explicit dependence on the input synaptic numbers, strengths, and synchrony. For biophysically relevant parameters, we find that the asynchronous regime yields realistic subthreshold variability (voltage variance ≃4-9 mV2) only when driven by a restricted number of large synapses, compatible with strong thalamic drive. By contrast, we find that achieving realistic subthreshold variability with dense cortico-cortical inputs requires including weak but nonzero input synchrony, consistent with measured pairwise spiking correlations. We also show that, without synchrony, the neural variability averages out to zero for all scaling limits with vanishing synaptic weights, independent of any balanced state hypothesis. This result challenges the theoretical basis for mean-field theories of the asynchronous state.
Collapse
Affiliation(s)
- Logan A. Becker
- Center for Theoretical and Computational Neuroscience, The University of Texas at Austin, Austin, Texas 78712, USA
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Baowang Li
- Center for Theoretical and Computational Neuroscience, The University of Texas at Austin, Austin, Texas 78712, USA
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas 78712, USA
- Center for Perceptual Systems, The University of Texas at Austin, Austin, Texas 78712, USA
- Center for Learning and Memory, The University of Texas at Austin, Austin, Texas 78712, USA
- Department of Psychology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Nicholas J. Priebe
- Center for Theoretical and Computational Neuroscience, The University of Texas at Austin, Austin, Texas 78712, USA
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas 78712, USA
- Center for Learning and Memory, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Eyal Seidemann
- Center for Theoretical and Computational Neuroscience, The University of Texas at Austin, Austin, Texas 78712, USA
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas 78712, USA
- Center for Perceptual Systems, The University of Texas at Austin, Austin, Texas 78712, USA
- Department of Psychology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Thibaud Taillefumier
- Center for Theoretical and Computational Neuroscience, The University of Texas at Austin, Austin, Texas 78712, USA
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas 78712, USA
- Department of Mathematics, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
9
|
Becker LA, Li B, Priebe NJ, Seidemann E, Taillefumier T. Exact analysis of the subthreshold variability for conductance-based neuronal models with synchronous synaptic inputs. ARXIV 2023:arXiv:2304.09280v3. [PMID: 37131877 PMCID: PMC10153295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The spiking activity of neocortical neurons exhibits a striking level of variability, even when these networks are driven by identical stimuli. The approximately Poisson firing of neurons has led to the hypothesis that these neural networks operate in the asynchronous state. In the asynchronous state neurons fire independently from one another, so that the probability that a neuron experience synchronous synaptic inputs is exceedingly low. While the models of asynchronous neurons lead to observed spiking variability, it is not clear whether the asynchronous state can also account for the level of subthreshold membrane potential variability. We propose a new analytical framework to rigorously quantify the subthreshold variability of a single conductance-based neuron in response to synaptic inputs with prescribed degrees of synchrony. Technically we leverage the theory of exchangeability to model input synchrony via jump-process-based synaptic drives; we then perform a moment analysis of the stationary response of a neuronal model with all-or-none conductances that neglects post-spiking reset. As a result, we produce exact, interpretable closed forms for the first two stationary moments of the membrane voltage, with explicit dependence on the input synaptic numbers, strengths, and synchrony. For biophysically relevant parameters, we find that the asynchronous regime only yields realistic subthreshold variability (voltage variance ≃ 4 - 9 m V 2 ) when driven by a restricted number of large synapses, compatible with strong thalamic drive. By contrast, we find that achieving realistic subthreshold variability with dense cortico-cortical inputs requires including weak but nonzero input synchrony, consistent with measured pairwise spiking correlations. We also show that without synchrony, the neural variability averages out to zero for all scaling limits with vanishing synaptic weights, independent of any balanced state hypothesis. This result challenges the theoretical basis for mean-field theories of the asynchronous state.
Collapse
Affiliation(s)
- Logan A. Becker
- Center for Theoretical and Computational Neuroscience, The University of Texas at Austin
- Department of Neuroscience, The University of Texas at Austin
| | - Baowang Li
- Center for Theoretical and Computational Neuroscience, The University of Texas at Austin
- Department of Neuroscience, The University of Texas at Austin
- Center for Perceptual Systems, The University of Texas at Austin
- Center for Learning and Memory, The University of Texas at Austin
- Department of Psychology, The University of Texas at Austin
| | - Nicholas J. Priebe
- Center for Theoretical and Computational Neuroscience, The University of Texas at Austin
- Department of Neuroscience, The University of Texas at Austin
- Center for Learning and Memory, The University of Texas at Austin
| | - Eyal Seidemann
- Center for Theoretical and Computational Neuroscience, The University of Texas at Austin
- Department of Neuroscience, The University of Texas at Austin
- Center for Perceptual Systems, The University of Texas at Austin
- Department of Psychology, The University of Texas at Austin
| | - Thibaud Taillefumier
- Center for Theoretical and Computational Neuroscience, The University of Texas at Austin
- Department of Neuroscience, The University of Texas at Austin
- Department of Mathematics, The University of Texas at Austin
| |
Collapse
|