1
|
Spada M, Pugliesi C, Fambrini M, Pecchia S. Challenges and Opportunities Arising from Host- Botrytis cinerea Interactions to Outline Novel and Sustainable Control Strategies: The Key Role of RNA Interference. Int J Mol Sci 2024; 25:6798. [PMID: 38928507 PMCID: PMC11203536 DOI: 10.3390/ijms25126798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The necrotrophic plant pathogenic fungus Botrytis cinerea (Pers., 1794), the causative agent of gray mold disease, causes significant losses in agricultural production. Control of this fungal pathogen is quite difficult due to its wide host range and environmental persistence. Currently, the management of the disease is still mainly based on chemicals, which can have harmful effects not only on the environment and on human health but also because they favor the development of strains resistant to fungicides. The flexibility and plasticity of B. cinerea in challenging plant defense mechanisms and its ability to evolve strategies to escape chemicals require the development of new control strategies for successful disease management. In this review, some aspects of the host-pathogen interactions from which novel and sustainable control strategies could be developed (e.g., signaling pathways, molecules involved in plant immune mechanisms, hormones, post-transcriptional gene silencing) were analyzed. New biotechnological tools based on the use of RNA interference (RNAi) are emerging in the crop protection scenario as versatile, sustainable, effective, and environmentally friendly alternatives to the use of chemicals. RNAi-based fungicides are expected to be approved soon, although they will face several challenges before reaching the market.
Collapse
Affiliation(s)
- Maria Spada
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Susanna Pecchia
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
2
|
Pietrykowska H, Alisha A, Aggarwal B, Watanabe Y, Ohtani M, Jarmolowski A, Sierocka I, Szweykowska-Kulinska Z. Conserved and non-conserved RNA-target modules in plants: lessons for a better understanding of Marchantia development. PLANT MOLECULAR BIOLOGY 2023; 113:121-142. [PMID: 37991688 PMCID: PMC10721683 DOI: 10.1007/s11103-023-01392-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/19/2023] [Indexed: 11/23/2023]
Abstract
A wide variety of functional regulatory non-coding RNAs (ncRNAs) have been identified as essential regulators of plant growth and development. Depending on their category, ncRNAs are not only involved in modulating target gene expression at the transcriptional and post-transcriptional levels but also are involved in processes like RNA splicing and RNA-directed DNA methylation. To fulfill their molecular roles properly, ncRNAs must be precisely processed by multiprotein complexes. In the case of small RNAs, DICER-LIKE (DCL) proteins play critical roles in the production of mature molecules. Land plant genomes contain at least four distinct classes of DCL family proteins (DCL1-DCL4), of which DCL1, DCL3 and DCL4 are also present in the genomes of bryophytes, indicating the early divergence of these genes. The liverwort Marchantia polymorpha has become an attractive model species for investigating the evolutionary history of regulatory ncRNAs and proteins that are responsible for ncRNA biogenesis. Recent studies on Marchantia have started to uncover the similarities and differences in ncRNA production and function between the basal lineage of bryophytes and other land plants. In this review, we summarize findings on the essential role of regulatory ncRNAs in Marchantia development. We provide a comprehensive overview of conserved ncRNA-target modules among M. polymorpha, the moss Physcomitrium patens and the dicot Arabidopsis thaliana, as well as Marchantia-specific modules. Based on functional studies and data from the literature, we propose new connections between regulatory pathways involved in Marchantia's vegetative and reproductive development and emphasize the need for further functional studies to understand the molecular mechanisms that control ncRNA-directed developmental processes.
Collapse
Affiliation(s)
- Halina Pietrykowska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Alisha Alisha
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Bharti Aggarwal
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Misato Ohtani
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192, Nara, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Chiba, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Kanagawa, Japan
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Izabela Sierocka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
3
|
Sang Q, Fan L, Liu T, Qiu Y, Du J, Mo B, Chen M, Chen X. MicroRNA156 conditions auxin sensitivity to enable growth plasticity in response to environmental changes in Arabidopsis. Nat Commun 2023; 14:1449. [PMID: 36949101 PMCID: PMC10033679 DOI: 10.1038/s41467-023-36774-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/14/2023] [Indexed: 03/24/2023] Open
Abstract
MicroRNAs (miRNAs) play diverse roles in plant development, but whether and how miRNAs participate in thermomorphogenesis remain ambiguous. Here we show that HYPONASTIC LEAVES 1 (HYL1)-a key component of miRNA biogenesis-acts downstream of the thermal regulator PHYTOCHROME INTERACTING FACTOR 4 in the temperature-dependent plasticity of hypocotyl growth in Arabidopsis. A hyl1-2 suppressor screen identified a dominant dicer-like1 allele that rescues hyl1-2's defects in miRNA biogenesis and thermoresponsive hypocotyl elongation. Genome-wide miRNA and transcriptome analysis revealed microRNA156 (miR156) and its target SQUAMOSA PROMOTER-BINDING-PROTEIN-LIKE 9 (SPL9) to be critical regulators of thermomorphogenesis. Surprisingly, perturbation of the miR156/SPL9 module disengages seedling responsiveness to warm temperatures by impeding auxin sensitivity. Moreover, miR156-dependent auxin sensitivity also operates in the shade avoidance response at lower temperatures. Thus, these results unveil the miR156/SPL9 module as a previously uncharacterized genetic circuit that enables plant growth plasticity in response to environmental temperature and light changes.
Collapse
Affiliation(s)
- Qing Sang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Lusheng Fan
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Tianxiang Liu
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Yongjian Qiu
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
- Department of Biology, University of Mississippi, Oxford, MS, 38677, USA
| | - Juan Du
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Meng Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.
- School of Life Sciences, Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
4
|
Independent parental contributions initiate zygote polarization in Arabidopsis thaliana. Curr Biol 2021; 31:4810-4816.e5. [PMID: 34496220 DOI: 10.1016/j.cub.2021.08.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/09/2021] [Accepted: 08/11/2021] [Indexed: 12/24/2022]
Abstract
Embryogenesis of flowering plants is initiated by polarization of the zygote, a prerequisite for correct axis formation in the embryo. The daughter cells of the asymmetric zygote division form the pro-embryo and the mostly extra-embryonic suspensor.1 The suspensor plays a pivotal role in nutrient and hormone transport and rapid growth of the embryo.2,3 Zygote polarization is controlled by a MITOGEN-ACTIVATING PROTEIN (MAP) kinase signaling pathway including the MAPKK kinase (MAP3K) YODA (YDA)4 and the upstream membrane-associated proteins BRASINOSTEROID SIGNALING KINASE 1 (BSK1) and BSK2.5,6 Furthermore, suspensor development is controlled by cysteine-rich peptides of the EMBRYO SURROUNDING FACTOR 1 (ESF1) family.7 While they act genetically upstream of YDA, the corresponding receptor to perceive these potential ligands is unknown. In other developmental processes, such as stomata development, YDA activity is controlled by receptor kinases of the ERECTA family (ERf).8-12 While the receptor kinases upstream of BSK1/2 in the embryo have so far not been identified,1 YDA is in part activated by the sperm cell-derived BSK family member SHORT SUSPENSOR (SSP) that represents a naturally occurring, constitutively active variant of BSK1.5,13 It has been speculated that SSP might be a paternal component of a parental tug-of-war controlling resource allocation toward the embryo.2,13 Here, we show that in addition to SSP, the receptor kinase ERECTA plays a crucial role in zygote polarization as a maternally contributed part of the embryonic YDA pathway. We conclude that two independent parental contributions initiate zygote polarization and control embryo development.
Collapse
|
5
|
Wei X, Ke H, Wen A, Gao B, Shi J, Feng Y. Structural basis of microRNA processing by Dicer-like 1. NATURE PLANTS 2021; 7:1389-1396. [PMID: 34593993 DOI: 10.1038/s41477-021-01000-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/02/2021] [Indexed: 05/22/2023]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that inhibit the expression of target genes by directly binding to their mRNAs. In animals, pri-miRNAs are cleaved by Drosha to generate pre-miRNAs, which are subsequently cleaved by Dicer to generate mature miRNAs. Instead of being cleaved by two different enzymes, both cleavages in plants are performed by Dicer-like 1 (DCL1). With a similar domain architecture as human Dicer, it is mysterious how DCL1 recognizes pri-miRNAs and performs two cleavages sequentially. Here, we report the single-particle cryo-electron microscopy structures of Arabidopsis DCL1 complexed with a pri-miRNA and a pre-miRNA, respectively, in cleavage-competent states. These structures uncover the plasticity of the PAZ domain, which is critical for the recognition of both pri-miRNA and pre-miRNA. These structures suggest that the helicase module serves as an engine that transfers the substrate between two sequential cleavage events. This study lays a foundation for dissecting the regulation mechanism of miRNA biogenesis in plants and provides insights into the dicing state of human Dicer.
Collapse
Affiliation(s)
- Xiaobin Wei
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huanhuan Ke
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Aijia Wen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Gao
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Shi
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Feng
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Key Laboratory of Immunity and Inflammatory diseases, Hangzhou, China.
| |
Collapse
|
6
|
Cai H, Liu L, Zhang M, Chai M, Huang Y, Chen F, Yan M, Su Z, Henderson I, Palanivelu R, Chen X, Qin Y. Spatiotemporal control of miR398 biogenesis, via chromatin remodeling and kinase signaling, ensures proper ovule development. THE PLANT CELL 2021; 33:1530-1553. [PMID: 33570655 PMCID: PMC8254498 DOI: 10.1093/plcell/koab056] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/02/2021] [Indexed: 05/11/2023]
Abstract
The coordinated development of sporophytic and gametophytic tissues is essential for proper ovule patterning and fertility. However, the mechanisms regulating their integrated development remain poorly understood. Here, we report that the Swi2/Snf2-Related1 (SWR1) chromatin-remodeling complex acts with the ERECTA receptor kinase-signaling pathway to control female gametophyte and integument growth in Arabidopsis thaliana by inhibiting transcription of the microRNA gene MIR398c in early-stage megagametogenesis. Moreover, pri-miR398c is transcribed in the female gametophyte but is then translocated to and processed in the ovule sporophytic tissues. Together, SWR1 and ERECTA also activate ARGONAUTE10 (AGO10) expression in the chalaza; AGO10 sequesters miR398, thereby ensuring the expression of three AGAMOUS-LIKE (AGL) genes (AGL51, AGL52, and AGL78) in the female gametophyte. In the context of sexual organ morphogenesis, these findings suggest that the spatiotemporal control of miRNA biogenesis, resulting from coordination between chromatin remodeling and cell signaling, is essential for proper ovule development in Arabidopsis.
Collapse
Affiliation(s)
- Hanyang Cai
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liping Liu
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Man Zhang
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengnan Chai
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youmei Huang
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fangqian Chen
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Maokai Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Zhenxia Su
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ian Henderson
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom
| | | | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, United States
| | - Yuan Qin
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
- Author for correspondence:
| |
Collapse
|
7
|
Molecular Manipulation of the miR399/ PHO2 Expression Module Alters the Salt Stress Response of Arabidopsis thaliana. PLANTS 2020; 10:plants10010073. [PMID: 33396498 PMCID: PMC7824465 DOI: 10.3390/plants10010073] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022]
Abstract
In Arabidopsis thaliana (Arabidopsis), the microRNA399 (miR399)/PHOSPHATE2 (PHO2) expression module is central to the response of Arabidopsis to phosphate (PO4) stress. In addition, miR399 has been demonstrated to also alter in abundance in response to salt stress. We therefore used a molecular modification approach to alter miR399 abundance to investigate the requirement of altered miR399 abundance in Arabidopsis in response to salt stress. The generated transformant lines, MIM399 and MIR399 plants, with reduced and elevated miR399 abundance respectively, displayed differences in their phenotypic and physiological response to those of wild-type Arabidopsis (Col-0) plants following exposure to a 7-day period of salt stress. However, at the molecular level, elevated miR399 abundance, and therefore, altered PHO2 target gene expression in salt-stressed Col-0, MIM399 and MIR399 plants, resulted in significant changes to the expression level of the two PO4 transporter genes, PHOSPHATE TRANSPORTER1;4 (PHT1;4) and PHT1;9. Elevated PHT1;4 and PHT1;9 PO4 transporter levels in salt stressed Arabidopsis would enhance PO4 translocation from the root to the shoot tissue which would supply additional levels of this precious cellular resource that could be utilized by the aerial tissues of salt stressed Arabidopsis to either maintain essential biological processes or to mount an adaptive response to salt stress.
Collapse
|
8
|
Dolata J, Zielezinski A, Stepien A, Kruszka K, Bielewicz D, Pacak A, Jarmolowski A, Karlowski W, Szweykowska-Kulinska Z. Quantitative Analysis of Plant miRNA Primary Transcripts. Methods Mol Biol 2020; 2170:53-77. [PMID: 32797451 DOI: 10.1007/978-1-0716-0743-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
MicroRNAs control plant development and are key regulators of plant responses to biotic and abiotic stresses. Thus, their expression must be carefully controlled since both excess and deficiency of a given microRNA may be deleterious to plant cell. MicroRNA expression regulation can occur at several stages of their biogenesis pathway. One of the most important of these regulatory checkpoints is transcription efficiency. mirEX database is a tool for exploration and visualization of plant pri-miRNA expression profiles. It includes results obtained using high-throughput RT-qPCR platform designed to monitor pri-miRNA expression in different miRNA biogenesis mutants and developmental stages of Arabidopsis, barley, and Pellia plants. A step-by-step instruction for browsing the database and detailed protocol for high-throughput RT-qPCR experiments, including list of primers designed for the amplification of pri-miRNAs, are presented.
Collapse
Affiliation(s)
- Jakub Dolata
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poznań, Poland
| | - Andrzej Zielezinski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poznań, Poland
| | - Agata Stepien
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poznań, Poland
| | - Katarzyna Kruszka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poznań, Poland
| | - Dawid Bielewicz
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poznań, Poland
| | - Andrzej Pacak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poznań, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poznań, Poland
| | - Wojciech Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poznań, Poland.
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poznań, Poland.
| |
Collapse
|
9
|
Qiao L, Zheng L, Sheng C, Zhao H, Jin H, Niu D. Rice siR109944 suppresses plant immunity to sheath blight and impacts multiple agronomic traits by affecting auxin homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:948-964. [PMID: 31923320 DOI: 10.1111/tpj.14677] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 05/20/2023]
Abstract
Plant small RNAs (sRNAs) play significant roles in regulating various developmental processes and hormone signalling pathways involved in plant responses to a wide range of biotic and abiotic stresses. However, the functions of sRNAs in response to rice sheath blight remain unclear. We screened rice (Oryza sativa) sRNA expression patterns against Rhizoctonia solani and found that Tourist-miniature inverted-repeat transposable element (MITE)-derived small interfering RNA (siRNA) (here referred to as siR109944) expression was clearly suppressed upon R. solani infection. One potential target of siR109944 is the F-Box domain and LRR-containing protein 55 (FBL55), which encode the transport inhibitor response 1 (TIR1)-like protein. We found that rice had significantly enhanced susceptibility when siR109944 was overexpressed, while FBL55 OE plants showed resistance to R. solani challenge. Additionally, multiple agronomic traits of rice, including root length and flag leaf inclination, were affected by siR109944 expression. Auxin metabolism-related and signalling pathway-related genes were differentially expressed in the siR109944 OE and FBL55 OE plants. Importantly, pre-treatment with auxin enhanced sheath blight resistance by affecting endogenous auxin homeostasis in rice. Furthermore, transgenic Arabidopsis overexpressing siR109944 exhibited early flowering, increased tiller numbers, and increased susceptibility to R. solani. Our results demonstrate that siR109944 has a conserved function in interfering with plant immunity, growth, and development by affecting auxin homeostasis in planta. Thus, siR109944 provides a genetic target for plant breeding in the future. Furthermore, exogenous application of indole-3-acetic acid (IAA) or auxin analogues might effectively protect field crops against diseases.
Collapse
Affiliation(s)
- Lulu Qiao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Liyu Zheng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Cong Sheng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Hongwei Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Hailing Jin
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Dongdong Niu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| |
Collapse
|
10
|
Zumajo-Cardona C, Ambrose BA. Phylogenetic analyses of key developmental genes provide insight into the complex evolution of seeds. Mol Phylogenet Evol 2020; 147:106778. [PMID: 32165160 DOI: 10.1016/j.ympev.2020.106778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/06/2020] [Accepted: 02/26/2020] [Indexed: 11/30/2022]
Abstract
Gene duplication plays a decisive role in organismal diversification and in the appearance of novel structures. In plants the megagametophyte covered by the integuments, which after fertilization becomes the seed constitutes a novel structure: the ovule. In Arabidopsis thaliana, genetic mechanisms regulating ovule development, including the genetics underlying ovule initiation, ovule patterning and integument development, have been identified. Among seed plants, integuments are not only a novelty in evolution, but integuments also present an enormous morphological variation. This study is focused on the evolution of gene families that play a role in the proper morphological development of the integuments, BELL1 (BEL1), KANADIs (KAN1, KAN2, and KAN4/ATS), UNICORN (UCN) and SHORT INTEGUMENTS1 (SIN1). In Arabidopsis, BEL1 establishes the initiation of integument development. KAN1 and 2 act in the proper development of the outer integument. While ABERRANT TESTA SHAPE (ATS), is involved in the correct separation of both integuments. UCN acts in planar growth of the outer integument repressing ATS. SIN1 is involved in cell elongation in the integuments. The results of our analyses show that each of these genes has a different evolutionary history and that while gymnosperms appear to have a simpler ovule morphology, they have more homologues of these candidate genes than angiosperms. In addition, we present the conserved and novel motifs for each of these genes among seed plants and their selection constraints, which may be related to functional changes and to the diversity of ovule morphologies.
Collapse
Affiliation(s)
- Cecilia Zumajo-Cardona
- New York Botanical Garden, Bronx, NY 10458, USA; The Graduate Center, City University of New York, New York, NY 10016, USA
| | | |
Collapse
|
11
|
Gutbrod MJ, Martienssen RA. Conserved chromosomal functions of RNA interference. Nat Rev Genet 2020; 21:311-331. [PMID: 32051563 DOI: 10.1038/s41576-019-0203-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2019] [Indexed: 12/21/2022]
Abstract
RNA interference (RNAi), a cellular process through which small RNAs target and regulate complementary RNA transcripts, has well-characterized roles in post-transcriptional gene regulation and transposon repression. Recent studies have revealed additional conserved roles for RNAi proteins, such as Argonaute and Dicer, in chromosome function. By guiding chromatin modification, RNAi components promote chromosome segregation during both mitosis and meiosis and regulate chromosomal and genomic dosage response. Small RNAs and the RNAi machinery also participate in the resolution of DNA damage. Interestingly, many of these lesser-studied functions seem to be more strongly conserved across eukaryotes than are well-characterized functions such as the processing of microRNAs. These findings have implications for the evolution of RNAi since the last eukaryotic common ancestor, and they provide a more complete view of the functions of RNAi.
Collapse
Affiliation(s)
- Michael J Gutbrod
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Robert A Martienssen
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA. .,Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
12
|
Kao P, Nodine MD. Transcriptional Activation of Arabidopsis Zygotes Is Required for Initial Cell Divisions. Sci Rep 2019; 9:17159. [PMID: 31748673 PMCID: PMC6868190 DOI: 10.1038/s41598-019-53704-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/04/2019] [Indexed: 11/10/2022] Open
Abstract
Commonly referred to as the maternal-to-zygotic transition, the shift of developmental control from maternal-to-zygotic genomes is a key event during animal and plant embryogenesis. Together with the degradation of parental gene products, the increased transcriptional activities of the zygotic genome remodels the early embryonic transcriptome during this transition. Although evidence from multiple flowering plants suggests that zygotes become transcriptionally active soon after fertilization, the timing and developmental requirements of zygotic genome activation in Arabidopsis thaliana (Arabidopsis) remained a matter of debate until recently. In this report, we optimized an expansion microscopy technique for robust immunostaining of Arabidopsis ovules and seeds. This enabled the detection of marks indicative of active transcription in zygotes before the first cell division. Moreover, we employed a live-imaging culture system together with transcriptional inhibitors to demonstrate that such active transcription is physiologically required in zygotes and early embryos. Our results indicate that zygotic genome activation occurs soon after fertilization and is required for the initial zygotic divisions in Arabidopsis.
Collapse
Affiliation(s)
- Ping Kao
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Michael D Nodine
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria.
| |
Collapse
|
13
|
Abstract
The plant haploid generation is specified late in higher plant development, and post-meiotic haploid plant cells divide mitotically to produce a haploid gametophyte, in which a subset of cells differentiates into the gametes. The immediate mother of the angiosperm seed is the female gametophyte, also called the embryo sac. In most flowering plants the embryo sac is comprised of two kinds of gametes (egg and central cell) and two kinds of subsidiary cells (antipodals and synergids) all of which descend from a single haploid spore produced by meiosis. The embryo sac develops within a specialized organ of the flower called the ovule, which supports and controls many steps in the development of both the embryo sac and the seed. Double fertilization of the central cell and egg cell by the two sperm cells of a pollen grain produce the endosperm and embryo of the seed, respectively. The endosperm and embryo develop under the influence of their precursor gametes and the surrounding tissues of the ovule and the gametophyte. The final size and pattern of the angiosperm seed then is the result of complex interactions across multiple tissues of three different generations (maternal sporophyte, maternal gametophyte, and the fertilization products) and three different ploidies (haploid gametophyte, diploid parental sporophyte and embryo, and triploid endosperm).
Collapse
|
14
|
Yao X, Chen J, Zhou J, Yu H, Ge C, Zhang M, Gao X, Dai X, Yang ZN, Zhao Y. An Essential Role for miRNA167 in Maternal Control of Embryonic and Seed Development. PLANT PHYSIOLOGY 2019; 180:453-464. [PMID: 30867333 PMCID: PMC6501067 DOI: 10.1104/pp.19.00127] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/05/2019] [Indexed: 05/02/2023]
Abstract
Maternal cells play a critical role in ensuring the normal development of embryos, endosperms, and seeds. Mutations that disrupt the maternal control of embryogenesis and seed development are difficult to identify. Here, we completely deleted four MICRORNA167 (MIR167) genes in Arabidopsis (Arabidopsis thaliana) using a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein9 (Cas9) genome-editing technology. We found that plants with a deletion of MIR167A phenocopied plants overexpressing miRNA167-resistant versions of Auxin Response Factor6 (ARF6) or ARF8, two miRNA167 targets. Both the mir167a mutant and the ARF overexpression lines were defective in anther dehiscence and ovule development. Serendipitously, we found that the mir167a (♀) × wild type (♂) crosses failed to produce normal embryos and endosperms, despite the findings that embryos with either mir167a+/- or mir167a-/- genotypes developed normally when mir167a+/- plants were self-pollinated, revealing a central role of MIR167A in maternal control of seed development. The mir167a phenotype is 100% penetrant, providing a great genetic tool for studying the roles of miRNAs and auxin in maternal control. Moreover, we found that mir167a mutants flowered significantly later than wild-type plants, a phenotype that was not observed in the ARF overexpression lines. We show that the reproductive defects of mir167a mutants were suppressed by a decrease of activities of ARF6, ARF8, or both. Our results clearly demonstrate that MIR167A is the predominant MIR167 member in regulating Arabidopsis reproduction and that MIR167A acts as a maternal gene that functions largely through ARF6 and ARF8.
Collapse
Affiliation(s)
- Xiaozhen Yao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jilin Chen
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093-0116
| | - Jie Zhou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Hanchuanzhi Yu
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093-0116
| | - Chennan Ge
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093-0116
| | - Min Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiuhua Gao
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093-0116
| | - Xinhua Dai
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093-0116
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093-0116
| |
Collapse
|
15
|
Wang S, Quan L, Li S, You C, Zhang Y, Gao L, Zeng L, Liu L, Qi Y, Mo B, Chen X. The PROTEIN PHOSPHATASE4 Complex Promotes Transcription and Processing of Primary microRNAs in Arabidopsis. THE PLANT CELL 2019; 31:486-501. [PMID: 30674692 PMCID: PMC6447022 DOI: 10.1105/tpc.18.00556] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/28/2018] [Accepted: 01/16/2019] [Indexed: 05/02/2023]
Abstract
PROTEIN PHOSPHATASE4 (PP4) is a highly conserved Ser/Thr protein phosphatase found in yeast, plants, and animals. The composition and functions of PP4 in plants are poorly understood. Here, we uncovered the complexity of PP4 composition and function in Arabidopsis (Arabidopsis thaliana) and identified the composition of one form of PP4 containing the regulatory subunit PP4R3A. We show that PP4R3A, together with one of two redundant catalytic subunit genes, PROTEIN PHOSPHATASE X (PPX)1 and PPX2, promotes the biogenesis of microRNAs (miRNAs). PP4R3A is a chromatin-associated protein that interacts with RNA polymerase II and recruits it to the promoters of miRNA-encoding (MIR) genes to promote their transcription. PP4R3A likely also promotes the cotranscriptional processing of miRNA precursors, because it recruits the microprocessor component HYPONASTIC LEAVES1 to MIR genes and to nuclear dicing bodies. Finally, we show that hundreds of introns exhibit splicing defects in pp4r3a mutants. Together, this study reveals roles for Arabidopsis PP4 in transcription and nuclear RNA metabolism.
Collapse
Affiliation(s)
- Suikang Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Li Quan
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Shaofang Li
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chenjiang You
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Yong Zhang
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Lei Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Liping Zeng
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Lin Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yanhua Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| |
Collapse
|
16
|
Armenta-Medina A, Gillmor CS. Genetic, molecular and parent-of-origin regulation of early embryogenesis in flowering plants. Curr Top Dev Biol 2019; 131:497-543. [DOI: 10.1016/bs.ctdb.2018.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
17
|
Lepiniec L, Devic M, Roscoe TJ, Bouyer D, Zhou DX, Boulard C, Baud S, Dubreucq B. Molecular and epigenetic regulations and functions of the LAFL transcriptional regulators that control seed development. PLANT REPRODUCTION 2018; 31:291-307. [PMID: 29797091 DOI: 10.1007/s00497-018-0337-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/10/2018] [Indexed: 05/20/2023]
Abstract
The LAFL (i.e. LEC1, ABI3, FUS3, and LEC2) master transcriptional regulators interact to form different complexes that induce embryo development and maturation, and inhibit seed germination and vegetative growth in Arabidopsis. Orthologous genes involved in similar regulatory processes have been described in various angiosperms including important crop species. Consistent with a prominent role of the LAFL regulators in triggering and maintaining embryonic cell fate, their expression appears finely tuned in different tissues during seed development and tightly repressed in vegetative tissues by a surprisingly high number of genetic and epigenetic factors. Partial functional redundancies and intricate feedback regulations of the LAFL have hampered the elucidation of the underpinning molecular mechanisms. Nevertheless, genetic, genomic, cellular, molecular, and biochemical analyses implemented during the last years have greatly improved our knowledge of the LALF network. Here we summarize and discuss recent progress, together with current issues required to gain a comprehensive insight into the network, including the emerging function of LEC1 and possibly LEC2 as pioneer transcription factors.
Collapse
Affiliation(s)
- L Lepiniec
- IJPB (Institut Jean-Pierre Bourgin), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles, France.
| | - M Devic
- Régulations Epigénétiques et Développement de la Graine, ERL 5300 CNRS-IRD UMR DIADE, IRD centre de Montpellier, 911 Avenue Agropolis, BP 64501, 34394, Montpellier, France
- Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Sorbonne Universités, Université Pierre et Marie Curie (Paris 06) & Centre National pour la Recherche Scientifique CNRS UMR 7621, 66650, Banyuls-sur-Mer, France
| | - T J Roscoe
- Régulations Epigénétiques et Développement de la Graine, ERL 5300 CNRS-IRD UMR DIADE, IRD centre de Montpellier, 911 Avenue Agropolis, BP 64501, 34394, Montpellier, France
- Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Sorbonne Universités, Université Pierre et Marie Curie (Paris 06) & Centre National pour la Recherche Scientifique CNRS UMR 7621, 66650, Banyuls-sur-Mer, France
| | - D Bouyer
- Institut de Biologie de l'ENS, CNRS UMR8197, Ecole Normale Supérieure, 46 rue d'Ulm, 75230, Paris Cedex 05, France
| | - D-X Zhou
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris Sud 11, Université Paris-Saclay, 91405, Orsay, France
| | - C Boulard
- IJPB (Institut Jean-Pierre Bourgin), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles, France
| | - S Baud
- IJPB (Institut Jean-Pierre Bourgin), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles, France
| | - B Dubreucq
- IJPB (Institut Jean-Pierre Bourgin), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles, France
| |
Collapse
|
18
|
Coen O, Magnani E. Seed coat thickness in the evolution of angiosperms. Cell Mol Life Sci 2018; 75:2509-2518. [PMID: 29730767 PMCID: PMC6003975 DOI: 10.1007/s00018-018-2816-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 10/26/2022]
Abstract
The seed habit represents a remarkable evolutionary advance in plant sexual reproduction. Since the Paleozoic, seeds carry a seed coat that protects, nourishes and facilitates the dispersal of the fertilization product(s). The seed coat architecture evolved to adapt to different environments and reproductive strategies in part by modifying its thickness. Here, we review the great natural diversity observed in seed coat thickness among angiosperms and its molecular regulation in Arabidopsis.
Collapse
Affiliation(s)
- Olivier Coen
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026, Versailles Cedex, France
- Ecole Doctorale 567 Sciences du Végétal, University Paris-Sud, University of Paris-Saclay, bat 360, 91405, Orsay Cedex, France
| | - Enrico Magnani
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026, Versailles Cedex, France.
| |
Collapse
|
19
|
Arabidopsis thaliana miRNAs promote embryo pattern formation beginning in the zygote. Dev Biol 2017; 431:145-151. [DOI: 10.1016/j.ydbio.2017.09.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 11/20/2022]
|
20
|
The entangled history of animal and plant microRNAs. Funct Integr Genomics 2016; 17:127-134. [PMID: 27549410 DOI: 10.1007/s10142-016-0513-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 07/29/2016] [Accepted: 08/03/2016] [Indexed: 01/22/2023]
Abstract
MicroRNAs (miRNAs) are small RNAs (sRNAs) that regulate gene expression in development and adaptive responses to the environment. The early days in the sRNA field was one of the most exciting and promising moments in modern biology, attracting large investments to the understanding of the underlining mechanisms and their applications, such as in gene therapy. miRNAs and other sRNAs have since been extensively studied in animals and plants, and are currently well established as an important part of most gene regulatory processes in animals and as master regulators in plants. Here, this review presents the critical discoveries and early misconceptions that shaped our current understanding of RNA silencing by miRNAs in most eukaryotes, with a focus on plant miRNAs. The presentation and language used are simple to facilitate a clear comprehension by researchers and students from various backgrounds. Hence, this is a valuable teaching tool and should also draw attention to the discovery processes themselves, such that scientists from various fields can gain insights from the successful and rapidly evolving miRNA field.
Collapse
|
21
|
Abstract
Flowering plants, like placental mammals, have an extensive maternal contribution toward progeny development. Plants are distinguished from animals by a genetically active haploid phase of growth and development between meiosis and fertilization, called the gametophyte. Flowering plants are further distinguished by the process of double fertilization that produces sister progeny, the endosperm and the embryo, of the seed. Because of this, there is substantial gene expression in the female gametophyte that contributes to the regulation of growth and development of the seed. A primary function of the endosperm is to provide growth support to its sister embryo. Several mutations in Zea mays subsp. mays have been identified that affect the contribution of the mother gametophyte to the seed. The majority affect both the endosperm and the embryo, although some embryo-specific effects have been observed. Many alter the pattern of expression of a marker for the basal endosperm transfer layer, a tissue that transports nutrients from the mother plant to the developing seed. Many of them cause abnormal development of the female gametophyte prior to fertilization, revealing potential cellular mechanisms of maternal control of seed development. These effects include reduced central cell size, abnormal architecture of the central cell, abnormal numbers and morphology of the antipodal cells, and abnormal egg cell morphology. These mutants provide insight into the logic of seed development, including necessary features of the gametes and supporting cells prior to fertilization, and set up future studies on the mechanisms regulating maternal contributions to the seed.
Collapse
|
22
|
Tsuzuki M, Nishihama R, Ishizaki K, Kurihara Y, Matsui M, Bowman JL, Kohchi T, Hamada T, Watanabe Y. Profiling and Characterization of Small RNAs in the Liverwort, Marchantia polymorpha, Belonging to the First Diverged Land Plants. PLANT & CELL PHYSIOLOGY 2016; 57:359-72. [PMID: 26589267 DOI: 10.1093/pcp/pcv182] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/13/2015] [Indexed: 05/04/2023]
Abstract
MicroRNAs (miRNAs) have important roles in gene regulation during plant development. Previous studies revealed that some miRNAs are highly shared by most land plants. Recently, the liverwort, Marchantia polymorpha, has been studied by molecular genetic approaches, and sequencing of its genome is currently underway. The expression pattern and the detailed functions of miRNAs during Marchantia development are unknown. Here, we profiled the small RNAs expressed in thalli, antheridiophores and archegoniophores of M. polymorpha using high-throughput RNA sequencing. We revealed that a limited number of miRNAs are shared between M. polymorpha and the moss, Physcomitrella patens, and that a number of miRNAs are M. polymorpha specific. Like other land plants, cognate target genes corresponding to conserved miRNAs could be found in the genome database and were experimentally confirmed to guide cleavage of target mRNAs. The results suggested that two genes in the SPL (SQUAMOSA PROMOTER BINDING-LIKE) transcription factor family, which are regulated by miR156 in most land plants, were instead targeted by two distinct miRNAs in M. polymorpha. In order to demonstrate the physiological roles of miRNAs in M. polymorpha, we constructed an miRNA ectopic expression system to establish overexpression transformants for conserved miRNAs, miR166 and miR319. Ectopic expression of these miRNAs induced abnormal development of the thallus and gemma cups, suggesting that balanced expression of miRNA/target mRNAs has a crucial role in developmental regulation in M. polymorpha. Profiling data on miRNA together with the ectopic expression system would provide new information on the liverwort small RNA world and evolutionary divergence/conservation of small RNA function among land plants.
Collapse
Affiliation(s)
- Masayuki Tsuzuki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902 Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | | | - Yukio Kurihara
- Synthetic Genomics Research Team, Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045 Japan
| | - Minami Matsui
- Synthetic Genomics Research Team, Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045 Japan
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia Department of Plant Biology, UC Davis, Davis, CA 95616, USA
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Takahiro Hamada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902 Japan
| | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902 Japan
| |
Collapse
|
23
|
Abstract
RNA silencing at the transcriptional and posttranscriptional levels regulates endogenous gene expression, controls invading transposable elements (TEs), and protects the cell against viruses. Key components of the mechanism are small RNAs (sRNAs) of 21-24 nt that guide the silencing machinery to their nucleic acid targets in a nucleotide sequence-specific manner. Transcriptional gene silencing is associated with 24-nt sRNAs and RNA-directed DNA methylation (RdDM) at cytosine residues in three DNA sequence contexts (CG, CHG, and CHH). We previously demonstrated that 24-nt sRNAs are mobile from shoot to root in Arabidopsis thaliana and confirmed that they mediate DNA methylation at three sites in recipient cells. In this study, we extend this finding by demonstrating that RdDM of thousands of loci in root tissues is dependent upon mobile sRNAs from the shoot and that mobile sRNA-dependent DNA methylation occurs predominantly in non-CG contexts. Mobile sRNA-dependent non-CG methylation is largely dependent on the DOMAINS REARRANGED METHYLTRANSFERASES 1/2 (DRM1/DRM2) RdDM pathway but is independent of the CHROMOMETHYLASE (CMT)2/3 DNA methyltransferases. Specific superfamilies of TEs, including those typically found in gene-rich euchromatic regions, lose DNA methylation in a mutant lacking 22- to 24-nt sRNAs (dicer-like 2, 3, 4 triple mutant). Transcriptome analyses identified a small number of genes whose expression in roots is associated with mobile sRNAs and connected to DNA methylation directly or indirectly. Finally, we demonstrate that sRNAs from shoots of one accession move across a graft union and target DNA methylation de novo at normally unmethylated sites in the genomes of root cells from a different accession.
Collapse
|
24
|
ClRTL1 Encodes a Chinese Fir RNase III-Like Protein Involved in Regulating Shoot Branching. Int J Mol Sci 2015; 16:25691-710. [PMID: 26516842 PMCID: PMC4632822 DOI: 10.3390/ijms161025691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 01/05/2023] Open
Abstract
Identification of genes controlling shoot branching is crucial for improving plant architecture and increasing crop yield or biomass. A branching mutant of Chinese fir named “Dugansha” (Cunninghamia lanceolata var. dugan.) has been isolated in our laboratory. We chose the cDNA-AFLP technique and an effective strategy to screen genes that potentially regulate shoot branching in Chinese fir using this mutant. An RNase III-like1 cDNA fragment named ClRTL1 was identified as a potential positive regulator. To investigate the function of ClRTL1 in regulating shoot branching, we cloned the full-length cDNA sequence from C. lanceolata (Lamb.) Hook, deduced its secondary structure and function, and overexpressed the coding sequence in Arabidopsis. The ClRTL1 cDNA is 1045 bp and comprises an open reading frame of 705 bp. It encodes a protein of 235 amino acids. The deduced secondary structure of the ClRTL1 indicates that it is a mini-RNase III-like protein. The expression analysis and phenotypes of 35S: ClRTL1 in A. thaliana implies that ClRTL1 plays a role in promoting shoot branching in Chinese fir.
Collapse
|
25
|
Baroux C, Grossniklaus U. The Maternal-to-Zygotic Transition in Flowering Plants: Evidence, Mechanisms, and Plasticity. Curr Top Dev Biol 2015; 113:351-71. [PMID: 26358878 DOI: 10.1016/bs.ctdb.2015.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The maternal-to-zygotic transition (MZT) defines a developmental phase during which the embryo progressively emancipates itself from a developmental control relying largely on maternal information. The MZT is a functional readout of two processes: the clearance of maternally derived information and the de novo expression of the inherited, parental alleles enabled by zygotic genome activation (ZGA). In plants, for many years the debate about whether the MZT exists at all focused on the ZGA alone. However, several recent studies provide evidence for a progressive alleviation of the maternal control over embryogenesis that is correlated with a gradual ZGA, a process that is itself maternally controlled. Yet, several examples of zygotic genes that are expressed and/or functionally required early in embryogenesis demonstrate a certain flexibility in the dynamics and kinetics of the MZT among plant species and also intraspecific hybrids.
Collapse
Affiliation(s)
- Célia Baroux
- Institute of Plant Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Ueli Grossniklaus
- Institute of Plant Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
26
|
Zhang F, Dong W, Huang L, Song A, Wang H, Fang W, Chen F, Teng N. Identification of MicroRNAs and their Targets Associated with Embryo Abortion during Chrysanthemum Cross Breeding via High-Throughput Sequencing. PLoS One 2015; 10:e0124371. [PMID: 25909659 PMCID: PMC4409343 DOI: 10.1371/journal.pone.0124371] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/27/2015] [Indexed: 12/22/2022] Open
Abstract
Background MicroRNAs (miRNAs) are important regulators in plant development. They post-transcriptionally regulate gene expression during various biological and metabolic processes by binding to the 3’-untranslated region of target mRNAs to facilitate mRNA degradation or inhibit translation. Chrysanthemum (Chrysanthemum morifolium) is one of the most important ornamental flowers with increasing demand each year. However, embryo abortion is the main reason for chrysanthemum cross breeding failure. To date, there have been no experiments examining the expression of miRNAs associated with chrysanthemum embryo development. Therefore, we sequenced three small RNA libraries to identify miRNAs and their functions. Our results will provide molecular insights into chrysanthemum embryo abortion. Results Three small RNA libraries were built from normal chrysanthemum ovules at 12 days after pollination (DAP), and normal and abnormal chrysanthemum ovules at 18 DAP. We validated 228 miRNAs with significant changes in expression frequency during embryonic development. Comparative profiling revealed that 69 miRNAs exhibited significant differential expression between normal and abnormal embryos at 18 DAP. In addition, a total of 1037 miRNA target genes were predicted, and their annotations were defined by transcriptome data. Target genes associated with metabolic pathways were most highly represented according to the annotation. Moreover, 52 predicted target genes were identified to be associated with embryonic development, including 31 transcription factors and 21 additional genes. Gene ontology (GO) annotation also revealed that high-ranking miRNA target genes related to cellular processes and metabolic processes were involved in transcription regulation and the embryo developmental process. Conclusions The present study generated three miRNA libraries and gained information on miRNAs and their targets in the chrysanthemum embryo. These results enrich the growing database of new miRNAs and lay the foundation for the further understanding of miRNA biological function in the regulation of chrysanthemum embryo abortion.
Collapse
Affiliation(s)
- Fengjiao Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & Equipment, Nanjing, China
| | - Wen Dong
- China Rural Technology Development Center, Beijing, China
| | - Lulu Huang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Aiping Song
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Haibin Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Nianjun Teng
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & Equipment, Nanjing, China
- * E-mail:
| |
Collapse
|
27
|
Teotia S, Tang G. To bloom or not to bloom: role of microRNAs in plant flowering. MOLECULAR PLANT 2015; 8:359-77. [PMID: 25737467 DOI: 10.1016/j.molp.2014.12.018] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/01/2014] [Accepted: 12/15/2014] [Indexed: 05/02/2023]
Abstract
During the course of their life cycles, plants undergo various morphological and physiological changes underlying juvenile-to-adult and adult-to-flowering phase transitions. To flower or not to flower is a key step of plasticity of a plant toward the start of its new life cycle. In addition to the previously revealed intrinsic genetic programs, exogenous cues, and endogenous cues, a class of small non-coding RNAs, microRNAs (miRNAs), plays a key role in plants making the decision to flower by integrating into the known flowering pathways. This review highlights the age-dependent flowering pathway with a focus on a number of timing miRNAs in determining such a key process. The contributions of other miRNAs which exist mainly outside the age pathway are also discussed. Approaches to study the flowering-determining miRNAs, their interactions, and applications are presented.
Collapse
Affiliation(s)
- Sachin Teotia
- Provincial State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China; School of Biotechnology, Gautam Buddha University, Greater Noida, U.P. 201312, India; Department of Biological Sciences and Biotechnology Research Center (BRC), Michigan Technological University, Houghton, MI 49931, USA
| | - Guiliang Tang
- Provincial State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China; Department of Biological Sciences and Biotechnology Research Center (BRC), Michigan Technological University, Houghton, MI 49931, USA.
| |
Collapse
|
28
|
Luo A, Shi C, Zhang L, Sun MX. The expression and roles of parent-of-origin genes in early embryogenesis of angiosperms. FRONTIERS IN PLANT SCIENCE 2014; 5:729. [PMID: 25566300 PMCID: PMC4267172 DOI: 10.3389/fpls.2014.00729] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/01/2014] [Indexed: 05/03/2023]
Abstract
Uniparental transcripts during embryogenesis may arise due to gamete delivery during fertilization or genomic imprinting. Such transcripts have been found in a number of plant species and appear critical for the early development of embryo or endosperm in seeds. Although the regulatory expression mechanism and function of these genes in embryogenesis require further elucidation, recent studies suggest stage-specific and highly dynamic features that might be essential for critical developmental events such as zygotic division and cell fate determination during embryogenesis. Here, we summarize the current work in this field and discuss future research directions.
Collapse
Affiliation(s)
- An Luo
- State Key Laboratory of Hybrid Rice, Department of Cell and Developmental Biology, College of Life Sciences, Wuhan UniversityWuhan, China
- College of Life Sciences, Yangtze UniversityJingzhou, China
| | - Ce Shi
- State Key Laboratory of Hybrid Rice, Department of Cell and Developmental Biology, College of Life Sciences, Wuhan UniversityWuhan, China
| | - Liyao Zhang
- State Key Laboratory of Hybrid Rice, Department of Cell and Developmental Biology, College of Life Sciences, Wuhan UniversityWuhan, China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, Department of Cell and Developmental Biology, College of Life Sciences, Wuhan UniversityWuhan, China
- *Correspondence: Meng-Xiang Sun, State Key Laboratory of Hybrid Rice, Department of Cell and Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China e-mail:
| |
Collapse
|
29
|
Eamens AL, McHale M, Waterhouse PM. The use of artificial microRNA technology to control gene expression in Arabidopsis thaliana. Methods Mol Biol 2014; 1062:211-24. [PMID: 24057368 DOI: 10.1007/978-1-62703-580-4_11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In plants, double-stranded RNA (dsRNA) is an effective trigger of RNA silencing, and several classes of endogenous small RNA (sRNA), processed from dsRNA substrates by DICER-like (DCL) endonucleases, are essential in controlling gene expression. One such sRNA class, the microRNAs (miRNAs) control the expression of closely related genes to regulate all aspects of plant development, including the determination of leaf shape, leaf polarity, flowering time, and floral identity. A single miRNA sRNA silencing signal is processed from a long precursor transcript of nonprotein-coding RNA, termed the primary miRNA (pri-miRNA). A region of the pri-miRNA is partially self-complementary allowing the transcript to fold back onto itself to form a stem-loop structure of imperfectly dsRNA. Artificial miRNA (amiRNA) technology uses endogenous pri-miRNAs, in which the miRNA and miRNA* (passenger strand of the miRNA duplex) sequences have been replaced with corresponding amiRNA/amiRNA* sequences that direct highly efficient RNA silencing of the targeted gene. Here, we describe the rules for amiRNA design, as well as outline the PCR and bacterial cloning procedures involved in the construction of an amiRNA plant expression vector to control target gene expression in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Andrew L Eamens
- School of Molecular Sciences, University of Sydney, Sydney, NSW, Australia
| | | | | |
Collapse
|
30
|
Plant microRNAs and development. J Genet Genomics 2013; 40:217-30. [PMID: 23706297 DOI: 10.1016/j.jgg.2013.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 03/15/2013] [Accepted: 04/02/2013] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) are a class of about 20-24 nt small non-coding RNAs that can regulate their target gene expression transcriptionally and posttranscriptionally. There are an increasing number of studies describing the identification of new components and regulatory mechanisms involved in the miRNA biogenesis and effector pathway as well as new functions of miRNAs in plant development. This review mainly focuses on the components involved in this pathway, and the developmental defects associated with the corresponding mutations. Some functions of important miRNAs in plant development, together with the modes of miRNA action, are also discussed in this review to describe the recent advance in this area.
Collapse
|
31
|
Rogers K, Chen X. microRNA biogenesis and turnover in plants. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2013; 77:183-94. [PMID: 23439913 DOI: 10.1101/sqb.2013.77.014530] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
microRNAs (miRNAs) are short RNAs that regulate gene expression in eukaryotes. The biogenesis and turnover of miRNAs determine their spatiotemporal accumulation within tissues. miRNA biogenesis is a multistep process that entails transcription, processing, nuclear export, and formation of the miRNA-ARGONAUTE complex. Factors that perform each of these steps have been identified. Generation of mature miRNAs from primary transcripts, i.e., miRNA processing, is a key step in miRNA biogenesis. Our understanding of miRNA processing has expanded beyond the enzyme that performs the reactions, as more and more additional factors that impact the efficiency and accuracy of miRNA processing are uncovered. In contrast to miRNA biogenesis, miRNA turnover is an important but poorly understood process that contributes to the steady-state levels of miRNAs. Enzymes responsible for miRNA degradation have only recently been identified. This review describes the processes of miRNA maturation and degradation in plants.
Collapse
Affiliation(s)
- K Rogers
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | | |
Collapse
|
32
|
Role of RNA interference (RNAi) in the Moss Physcomitrella patens. Int J Mol Sci 2013; 14:1516-40. [PMID: 23344055 PMCID: PMC3565333 DOI: 10.3390/ijms14011516] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/09/2012] [Accepted: 12/10/2012] [Indexed: 01/21/2023] Open
Abstract
RNA interference (RNAi) is a mechanism that regulates genes by either transcriptional (TGS) or posttranscriptional gene silencing (PTGS), required for genome maintenance and proper development of an organism. Small non-coding RNAs are the key players in RNAi and have been intensively studied in eukaryotes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs are synthesized from a short hairpin structure while siRNAs are derived from long double-stranded RNAs (dsRNA). Both miRNA and siRNAs control the expression of cognate target RNAs by binding to reverse complementary sequences mediating cleavage or translational inhibition of the target RNA. They also act on the DNA and cause epigenetic changes such as DNA methylation and histone modifications. In the last years, the analysis of plant RNAi pathways was extended to the bryophyte Physcomitrella patens, a non-flowering, non-vascular ancient land plant that diverged from the lineage of seed plants approximately 450 million years ago. Based on a number of characteristic features and its phylogenetic key position in land plant evolution P. patens emerged as a plant model species to address basic as well as applied topics in plant biology. Here we summarize the current knowledge on the role of RNAi in P. patens that shows functional overlap with RNAi pathways from seed plants, and also unique features specific to this species.
Collapse
|
33
|
Wu L. DICER-LIKE1 processed trans-acting siRNAs mediate DNA methylation: case study of complex small RNA biogenesis and action pathways in plants. PLANT SIGNALING & BEHAVIOR 2013; 8:e22476. [PMID: 23104109 PMCID: PMC3745553 DOI: 10.4161/psb.22476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 10/08/2012] [Indexed: 05/18/2023]
Abstract
Small non-coding RNAs (sRNAs) emerge as exquisite molecules that are guided for transcriptional and posttranscriptional gene regulation in eukaryotes. As one class of most important sRNAs in plants, trans-acting small interfering RNAs (ta-siRNAs) initiate from microRNA (miRNA) - mediated cleavage of TAS gene transcripts and subsequently are stabilized by SUPPRESSOR OF GENE SILENCING3 (SGS3) and converted to double-stranded RNA (dsRNA) by the actions of RNA-DEPENDENT RNA POLYMERASE6 (RDR6). Generally, these dsRNAs are processed by DICER-LIKE4 (DCL4) and recruited into ARGONAUTE 1 (AGO1) complexes to posttranscriptionally regulate target genes by mRNA cleavage in trans. In a recent study, we discovered a non-canonical ta-siRNAs pathway: Starting from the miRNA-guided cleavage site, the dsRNAs are processed by DCL1 into 21-nt siRNAs, which associate with AGO4/6 complexes to direct DNA methylation in cis. Together with previous results that miRNAs can be produced by DCL3, loaded into AGO4 and trigger epigenetically regulation of target genes, these findings indicate much complex biogenesis, effector and action pathways exist in plant sRNAs kingdom.
Collapse
|
34
|
Grant-Downton R, Rodriguez-Enriquez J. Emerging Roles for Non-Coding RNAs in Male Reproductive Development in Flowering Plants. Biomolecules 2012; 2:608-21. [PMID: 24970151 PMCID: PMC4030863 DOI: 10.3390/biom2040608] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 11/19/2012] [Accepted: 11/23/2012] [Indexed: 01/07/2023] Open
Abstract
Knowledge of sexual reproduction systems in flowering plants is essential to humankind, with crop fertility vitally important for food security. Here, we review rapidly emerging new evidence for the key importance of non-coding RNAs in male reproductive development in flowering plants. From the commitment of somatic cells to initiating reproductive development through to meiosis and the development of pollen—containing the male gametes (sperm cells)—in the anther, there is now overwhelming data for a diversity of non-coding RNAs and emerging evidence for crucial roles for them in regulating cellular events at these developmental stages. A particularly exciting development has been the association of one example of cytoplasmic male sterility, which has become an unparalleled breeding tool for producing new crop hybrids, with a non-coding RNA locus.
Collapse
Affiliation(s)
- Robert Grant-Downton
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| | - Josefina Rodriguez-Enriquez
- Instituto de Bioorgánica Antonio González (IUBO) University of La Laguna, Avenida Astrofísico Francisco Sánchez, 38206 La Laguna Tenerife, Spain.
| |
Collapse
|
35
|
Havecker ER, Wallbridge LM, Fedito P, Hardcastle TJ, Baulcombe DC. Metastable differentially methylated regions within Arabidopsis inbred populations are associated with modified expression of non-coding transcripts. PLoS One 2012; 7:e45242. [PMID: 23028873 PMCID: PMC3447930 DOI: 10.1371/journal.pone.0045242] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 08/17/2012] [Indexed: 01/26/2023] Open
Abstract
Individual plants within a population may vary at both genetic and epigenetic levels. The rate of genetic divergence and its underlying mechanisms is well understood. Less is known about the factors contributing to epigenetic divergence among isogenic populations except that, despite the presence of mechanisms that faithfully maintain epigenetic marks, epigenetic differences are more frequent than genetic variation. Epigenetically divergent stretches of isogenic DNA sequence are called epialleles. Currently, it is not clear why certain regions exhibit variable epigenetic status. We identified and characterised two long RNA transcripts with altered expression and DNA methylation in an ago5 mutant. However, further investigation revealed that these changes were not dependent upon AGO5. Rather, the variable transcription of these loci in Arabidopsis mutant and wild-type populations corresponds to spontaneous differential methylated regions (DMRs) or epialleles. These two DMRs are delineated by RNAs which are highly expressed when the DMR is hypomethylated. Furthermore, they control the expression of 5′ transcriptional start site mRNA variants of nearby protein coding genes. Our data support the recent observations that meiotically stable DMRs exist within inbred populations. We further demonstrate that DMR boundaries can be defined by putative non-coding promoter-associated transcripts.
Collapse
Affiliation(s)
- Ericka R. Havecker
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Laura M. Wallbridge
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Paola Fedito
- BIOMAA, University Mediterranea of Reggio Calabria, Reggio Calabria, Italy
| | - Thomas J. Hardcastle
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - David C. Baulcombe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Kinoshita N, Wang H, Kasahara H, Liu J, Macpherson C, Machida Y, Kamiya Y, Hannah MA, Chua NH. IAA-Ala Resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress. THE PLANT CELL 2012; 24:3590-602. [PMID: 22960911 PMCID: PMC3480289 DOI: 10.1105/tpc.112.097006] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The functions of microRNAs and their target mRNAs in Arabidopsis thaliana development have been widely documented; however, roles of stress-responsive microRNAs and their targets are not as well understood. Using small RNA deep sequencing and ATH1 microarrays to profile mRNAs, we identified IAA-Ala Resistant3 (IAR3) as a new target of miR167a. As expected, IAR3 mRNA was cleaved at the miR167a complementary site and under high osmotic stress miR167a levels decreased, whereas IAR3 mRNA levels increased. IAR3 hydrolyzes an inactive form of auxin (indole-3-acetic acid [IAA]-alanine) and releases bioactive auxin (IAA), a central phytohormone for root development. In contrast with the wild type, iar3 mutants accumulated reduced IAA levels and did not display high osmotic stress-induced root architecture changes. Transgenic plants expressing a cleavage-resistant form of IAR3 mRNA accumulated high levels of IAR3 mRNAs and showed increased lateral root development compared with transgenic plants expressing wild-type IAR3. Expression of an inducible noncoding RNA to sequester miR167a by target mimicry led to an increase in IAR3 mRNA levels, further confirming the inverse relationship between the two partners. Sequence comparison revealed the miR167 target site on IAR3 mRNA is conserved in evolutionarily distant plant species. Finally, we showed that IAR3 is required for drought tolerance.
Collapse
MESH Headings
- Amidohydrolases/genetics
- Amidohydrolases/metabolism
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis/physiology
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Biological Evolution
- Droughts
- Gene Expression Profiling
- Gene Expression Regulation, Plant/genetics
- High-Throughput Nucleotide Sequencing
- Hydroponics
- Indoleacetic Acids/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Models, Biological
- Oligonucleotide Array Sequence Analysis
- Osmosis
- Phenotype
- Plant Growth Regulators/metabolism
- Plant Leaves/genetics
- Plant Leaves/growth & development
- Plant Leaves/physiology
- Plant Roots/genetics
- Plant Roots/growth & development
- Plant Roots/physiology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Sequence Analysis, DNA
- Stress, Physiological/genetics
Collapse
Affiliation(s)
- Natsuko Kinoshita
- Laboratory of Plant Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Motomura K, Le QT, Kumakura N, Fukaya T, Takeda A, Watanabe Y. The role of decapping proteins in the miRNA accumulation in Arabidopsis thaliana. RNA Biol 2012; 9:644-52. [PMID: 22614834 DOI: 10.4161/rna.19877] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Decapping 1 (DCP1), Decapping 2 (DCP2) and VARICOSE (VCS) are components of the decapping complex that removes the 7-methyl-guanosine 5'-diphosphate from the 5' end of mRNAs. In animals, the decapping proteins are involved in miRNA-mediated gene silencing, whereas in plants the roles of the decapping proteins in the miRNA pathway are not well understood. Here we demonstrated that the accumulation of miRNAs decreased in dcp1, dcp2 and vcs mutants, indicating that DCP1, DCP2 and VCS are important for the miRNA pathway in Arabidopsis thaliana. The primary miRNAs (pri-miRNAs) did not increase and miRNA biogenesis components did not decrease in these mutants, suggesting that the miRNA decrease in decapping mutants is not due to the defect of pri-miRNA processing. We showed that the accumulation of miRNA targets increased concomitantly with the decrease of miRNA in the decapping mutants. Our results suggested that the seedling lethal phenotypes in the dcp1, dcp2 and vcs mutants are caused not only by the defect in decapping, but also by the disruption of miRNA-mediated gene regulation.
Collapse
Affiliation(s)
- Kazuki Motomura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Zhang JE, Luo A, Xin HP, Zhao J, Li SS, Qu LH, Ma LG, Scholten S, Sun MX. Genes of both parental origins are differentially involved in early embryogenesis of a tobacco interspecies hybrid. PLoS One 2011; 6:e23153. [PMID: 21829711 PMCID: PMC3150392 DOI: 10.1371/journal.pone.0023153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 07/12/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In animals, early embryonic development is largely dependent on maternal transcripts synthesized during gametogenesis. However, in higher plants, the extent of maternal control over zygote development and early embryogenesis is not fully understood yet. Nothing is known about the activity of the parental genomes during seed formation of interspecies hybrids. METHODOLOGY/PRINCIPAL FINDINGS Here, we report that an interspecies hybridization system between SR1 (Nicotiana tabacum) and Hamayan (N. rustica) has been successfully established. Based on the system we selected 58 genes that have polymorphic sites between SR1 and Hamayan, and analyzed the allele-specific expression of 28 genes in their hybrid zygotes (Hamayan x SR1). Finally the allele-specific expressions of 8 genes in hybrid zygotes were repeatedly confirmed. Among them, 4 genes were of paternal origin, 1 gene was of maternal origin and 3 genes were of biparental origin. These results revealed obvious biparental involvement and differentially contribution of parental-origin genes to zygote development in the interspecies hybrid. We further detected the expression pattern of the genes at 8-celled embryo stage found that the involvement of the parental-origin genes may change at different stages of embryogenesis. CONCLUSIONS/SIGNIFICANCE We reveal that genes of both parental origins are differentially involved in early embryogenesis of a tobacco interspecies hybrid and functions in a developmental stage-dependent manner. This finding may open a window to seek for the possible molecular mechanism of hybrid vigor.
Collapse
Affiliation(s)
- Jun-E Zhang
- Key Laboratory of Ministry of Education for Plant Development Biology, College of Life Science, Wuhan University, Wuhan, China
- College of Life Science, Jiangxi Normal University, Nanchang, China
| | - An Luo
- Key Laboratory of Ministry of Education for Plant Development Biology, College of Life Science, Wuhan University, Wuhan, China
| | - Hai-Ping Xin
- Key Laboratory of Ministry of Education for Plant Development Biology, College of Life Science, Wuhan University, Wuhan, China
| | - Jing Zhao
- Key Laboratory of Ministry of Education for Plant Development Biology, College of Life Science, Wuhan University, Wuhan, China
| | - Shi-Sheng Li
- Key Laboratory of Ministry of Education for Plant Development Biology, College of Life Science, Wuhan University, Wuhan, China
| | - Liang-Huan Qu
- Key Laboratory of Ministry of Education for Plant Development Biology, College of Life Science, Wuhan University, Wuhan, China
| | - Li-Gang Ma
- Key Laboratory of Ministry of Education for Plant Development Biology, College of Life Science, Wuhan University, Wuhan, China
| | - Stefan Scholten
- Biocenter Klein Flottbek, Developmental Biology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Meng-Xiang Sun
- Key Laboratory of Ministry of Education for Plant Development Biology, College of Life Science, Wuhan University, Wuhan, China
| |
Collapse
|
40
|
Blevins T, Rajeswaran R, Aregger M, Borah BK, Schepetilnikov M, Baerlocher L, Farinelli L, Meins F, Hohn T, Pooggin MM. Massive production of small RNAs from a non-coding region of Cauliflower mosaic virus in plant defense and viral counter-defense. Nucleic Acids Res 2011; 39:5003-14. [PMID: 21378120 PMCID: PMC3130284 DOI: 10.1093/nar/gkr119] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
To successfully infect plants, viruses must counteract small RNA-based host defense responses. During infection of Arabidopsis, Cauliflower mosaic pararetrovirus (CaMV) is transcribed into pregenomic 35S and subgenomic 19S RNAs. The 35S RNA is both reverse transcribed and also used as an mRNA with highly structured 600 nt leader. We found that this leader region is transcribed into long sense- and antisense-RNAs and spawns a massive quantity of 21, 22 and 24 nt viral small RNAs (vsRNAs), comparable to the entire complement of host-encoded small-interfering RNAs and microRNAs. Leader-derived vsRNAs were detected bound to the Argonaute 1 (AGO1) effector protein, unlike vsRNAs from other viral regions. Only negligible amounts of leader-derived vsRNAs were bound to AGO4. Genetic evidence showed that all four Dicer-like (DCL) proteins mediate vsRNA biogenesis, whereas the RNA polymerases Pol IV, Pol V, RDR1, RDR2 and RDR6 are not required for this process. Surprisingly, CaMV titers were not increased in dcl1/2/3/4 quadruple mutants that accumulate only residual amounts of vsRNAs. Ectopic expression of CaMV leader vsRNAs from an attenuated geminivirus led to increased accumulation of this chimeric virus. Thus, massive production of leader-derived vsRNAs does not restrict viral replication but may serve as a decoy diverting the silencing machinery from viral promoter and coding regions.
Collapse
Affiliation(s)
- Todd Blevins
- Institute of Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Analysis of stunter1, a maize mutant with reduced gametophyte size and maternal effects on seed development. Genetics 2011; 187:1085-97. [PMID: 21270392 DOI: 10.1534/genetics.110.125286] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Many higher eukaryotes have evolved strategies for the maternal control of growth and development of their offspring. In higher plants this is achieved in part by postmeiotic gene activity controlling the development of the haploid female gametophyte. stunter1 (stt1) is a novel, recessive, maternal effect mutant in maize that displays viable, miniature kernels. Maternal inheritance of stt1 results in seeds with reduced but otherwise normal endosperms and embryos. The stt1 mutation displays reduced transmission through the male and female parents and causes significant changes in the sizes of both male and female gametophytes. stt1 pollen grains are smaller than wild type, have reduced germination efficiency, and reduced pollen tube growth. stt1 embryo sacs have smaller central cells and abnormal antipodal cells that are larger, more vacuolated, and fewer in number than wild type. Embryos and endosperms produced by fertilization of stt1 embryo sacs develop and grow more slowly than wild type. The data suggest that the morphology of mutant embryo sacs influences endosperm development, leading to the production of miniature kernels in stt1. Analysis of seeds carrying a mutant maternal allele of stt1 over a deletion of the paternal allele demonstrates that both parental alleles are active after fertilization in both the endosperm and embryo. This analysis also indicates that embryo development until the globular stage in maize can proceed without endosperm development and is likely supported directly by the diploid mother plant.
Collapse
|
42
|
The asymmetric division of the Arabidopsis zygote: from cell polarity to an embryo axis. ACTA ACUST UNITED AC 2011; 24:161-9. [PMID: 21225434 DOI: 10.1007/s00497-010-0160-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/22/2010] [Indexed: 12/29/2022]
Abstract
During plant embryogenesis, a simple body plan consisting of shoot and root meristem that are connected by the embryo axis is set up by the first few rounds of cell divisions after fertilization. Postembryonically, the elaborate architecture of plants is created from stem cell populations of both meristems. Here, we address how the main axis (apical-basal) of the plant embryo is established from the single-celled zygote and the role that the asymmetric division of the zygote plays in this process. We will mainly draw on examples from the model plant Arabidopsis, for which several key regulators have been identified during the last years.
Collapse
|
43
|
Kinoshita-Tsujimura K, Kakimoto T. Cytokinin receptors in sporophytes are essential for male and female functions in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2011; 6:66-71. [PMID: 21301212 PMCID: PMC3122008 DOI: 10.4161/psb.6.1.13999] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Arabidopsis has three cytokinin receptors genes: CRE1, AHK2, and AHK3. Availability of plants that are homozygous mutant for these three genes indicates that cytokinin receptors in the haploid cells are dispensable for the development of male and female gametophytes. The triple mutants form a few flowers but never set seed, indicating that reproductive growth is impaired. We investigated which reproductive processes are affected in the triple mutants. Anthers of mutant plants contained fewer pollen grains and did not dehisce. Pollen in the anthers completed the formation of the one vegetative nucleus and the two sperm nuclei, as seen in wild type. The majority of the ovules were abnormal: 78% lacked the embryo sac, 10% carried a female gametophyte that terminated its development before completing three rounds of nuclear division, and about 12% completed three rounds of nuclear division but the gametophytes were smaller than those of the wild type. Reciprocal crosses between the wild type and the triple mutants indicated that pollen from mutant plants did not germinate on wild-type stigmas, and wild-type pollen did not germinate on mutant stigmas. These results suggest that cytokinin receptors in the sporophyte are indispensable for anther dehiscence, pollen maturation, induction of pollen germination by the stigma, and female gametophyte formation and maturation.
Collapse
Affiliation(s)
- Kaori Kinoshita-Tsujimura
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | | |
Collapse
|
44
|
Nonogaki H. MicroRNA Gene Regulation Cascades During Early Stages of Plant Development. ACTA ACUST UNITED AC 2010; 51:1840-6. [DOI: 10.1093/pcp/pcq154] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
45
|
Varkonyi-Gasic E, Gould N, Sandanayaka M, Sutherland P, MacDiarmid RM. Characterisation of microRNAs from apple (Malus domestica 'Royal Gala') vascular tissue and phloem sap. BMC PLANT BIOLOGY 2010. [PMID: 20682080 DOI: 10.1186/1471-222910-159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND Plant microRNAs (miRNAs) are a class of small, non-coding RNAs that play an important role in development and environmental responses. Hundreds of plant miRNAs have been identified to date, mainly from the model species for which there are available genome sequences. The current challenge is to characterise miRNAs from plant species with agricultural and horticultural importance, to aid our understanding of important regulatory mechanisms in crop species and enable improvement of crops and rootstocks. RESULTS Based on the knowledge that many miRNAs occur in large gene families and are highly conserved among distantly related species, we analysed expression of twenty-one miRNA sequences in different tissues of apple (Malus x domestica 'Royal Gala'). We identified eighteen sequences that are expressed in at least one of the tissues tested. Some, but not all, miRNAs expressed in apple tissues including the phloem tissue were also detected in the phloem sap sample derived from the stylets of woolly apple aphids. Most of the miRNAs detected in apple phloem sap were also abundant in the phloem sap of herbaceous species. Potential targets for apple miRNAs were identified that encode putative proteins shown to be targets of corresponding miRNAs in a number of plant species. Expression patterns of potential targets were analysed and correlated with expression of corresponding miRNAs. CONCLUSIONS This study validated tissue-specific expression of apple miRNAs that target genes responsible for plant growth, development, and stress response. A subset of characterised miRNAs was also present in the apple phloem translocation stream. A comparative analysis of phloem miRNAs in herbaceous species and woody perennials will aid our understanding of non-cell autonomous roles of miRNAs in plants.
Collapse
Affiliation(s)
- Erika Varkonyi-Gasic
- The New Zealand Institute for Plant & Food Research Limited, Plant & Food Research, Auckland Mail Centre, Mt Albert, Private Bag 92169, Auckland 1142, New Zealand.
| | | | | | | | | |
Collapse
|
46
|
Varkonyi-Gasic E, Gould N, Sandanayaka M, Sutherland P, MacDiarmid RM. Characterisation of microRNAs from apple (Malus domestica 'Royal Gala') vascular tissue and phloem sap. BMC PLANT BIOLOGY 2010; 10:159. [PMID: 20682080 PMCID: PMC3095296 DOI: 10.1186/1471-2229-10-159] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 08/04/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plant microRNAs (miRNAs) are a class of small, non-coding RNAs that play an important role in development and environmental responses. Hundreds of plant miRNAs have been identified to date, mainly from the model species for which there are available genome sequences. The current challenge is to characterise miRNAs from plant species with agricultural and horticultural importance, to aid our understanding of important regulatory mechanisms in crop species and enable improvement of crops and rootstocks. RESULTS Based on the knowledge that many miRNAs occur in large gene families and are highly conserved among distantly related species, we analysed expression of twenty-one miRNA sequences in different tissues of apple (Malus x domestica 'Royal Gala'). We identified eighteen sequences that are expressed in at least one of the tissues tested. Some, but not all, miRNAs expressed in apple tissues including the phloem tissue were also detected in the phloem sap sample derived from the stylets of woolly apple aphids. Most of the miRNAs detected in apple phloem sap were also abundant in the phloem sap of herbaceous species. Potential targets for apple miRNAs were identified that encode putative proteins shown to be targets of corresponding miRNAs in a number of plant species. Expression patterns of potential targets were analysed and correlated with expression of corresponding miRNAs. CONCLUSIONS This study validated tissue-specific expression of apple miRNAs that target genes responsible for plant growth, development, and stress response. A subset of characterised miRNAs was also present in the apple phloem translocation stream. A comparative analysis of phloem miRNAs in herbaceous species and woody perennials will aid our understanding of non-cell autonomous roles of miRNAs in plants.
Collapse
Affiliation(s)
- Erika Varkonyi-Gasic
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Nick Gould
- Plant & Food Research Ruakura, Private Bag 3123, Waikato Mail Centre, Hamilton 3240, New Zealand
| | - Manoharie Sandanayaka
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Paul Sutherland
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Robin M MacDiarmid
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| |
Collapse
|
47
|
Shi J, Zhen Y, Zheng RH. Proteome profiling of early seed development in Cunninghamia lanceolata (Lamb.) Hook. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2367-81. [PMID: 20363864 PMCID: PMC2877891 DOI: 10.1093/jxb/erq066] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 03/03/2010] [Accepted: 03/03/2010] [Indexed: 05/06/2023]
Abstract
Knowledge of the proteome of the early gymnosperm embryo could provide important information for optimizing plant cloning procedures and for establishing platforms for research into plant development/regulation and in vitro transgenic studies. Compared with angiosperms, it is more difficult to induce somatic embryogenesis in gymnosperms; success in this endeavour could be increased, however, if proteomic information was available on the complex, dynamic, and multistage processes of gymnosperm embryogenesis in vivo. A proteomic analysis of Chinese fir seeds in six developmental stages was carried out during early embryogenesis. Proteins were extracted from seeds dissected from immature cones and separated by two-dimensional difference gel electrophoresis. Analysis with DeCyder 6.5 software revealed 136 spots that differed in kinetics of appearance. Analysis by liquid chromatography coupled to tandem mass spectrometry and MALDI-TOF mass spectrometry identified proteins represented by 71 of the spots. Functional annotation of these seed proteins revealed their involvement in programmed cell death and chromatin modification, indicating that the proteins may play a central role in determining the number of zygotic embryos generated and controlling embryo patterning and shape remodelling. The analysis also revealed other proteins involved in carbon metabolism, methionine metabolism, energy production, protein storage, synthesis and stabilization, disease/defence, the cytoskeleton, and embryo development. The comprehensive protein expression profiles generated by our study provide new insights into the complex developmental processes in the seeds of the Chinese fir.
Collapse
Affiliation(s)
- Jisen Shi
- Key Laboratory of Forest Genetics and Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China.
| | | | | |
Collapse
|
48
|
Lackey E, Ng DWK, Chen ZJ. RNAi-mediated down-regulation of DCL1 and AGO1 induces developmental changes in resynthesized Arabidopsis allotetraploids. THE NEW PHYTOLOGIST 2010; 186:207-15. [PMID: 20409179 PMCID: PMC2859461 DOI: 10.1111/j.1469-8137.2010.03187.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Both natural and newly synthesized allopolyploids display nonadditive gene expression changes through genetic and epigenetic mechanisms. The nonadditively expressed genes include many microRNA (miRNA) targets, suggesting a role for miRNAs and their targets in morphological variation in the allopolyploids and their progenitors. We produced dominant-negative transgenic allotetraploid plants in Arabidopsis using RNA interference (RNAi) that downregulates the expression of miRNA biogenesis genes, including DCL1 and AGO1. RNAi of DCL1 and AGO1 led to dominant negative phenotypes and decreased accumulation of several miRNAs and a tasiRNA tested in the transgenic resynthesized allotetraploids. The results demonstrated that miRNA biogenesis genes are effectively downregulated in the resynthesized allotetraploids containing redundant homoeologous genes that are difficult to be manipulated by conventional mutation screens. These lines will be useful for studying the effects of miRNA biogenesis genes on growth and developmental variation in the allopolyploids.
Collapse
Affiliation(s)
- Erika Lackey
- Section of Molecular Cell and Developmental Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Danny W-K. Ng
- Section of Molecular Cell and Developmental Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Z. Jeffrey Chen
- Section of Molecular Cell and Developmental Biology, The University of Texas at Austin, Austin, TX 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
- Section of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
49
|
Alvarez-Buylla ER, Benítez M, Corvera-Poiré A, Chaos Cador Á, de Folter S, Gamboa de Buen A, Garay-Arroyo A, García-Ponce B, Jaimes-Miranda F, Pérez-Ruiz RV, Piñeyro-Nelson A, Sánchez-Corrales YE. Flower development. THE ARABIDOPSIS BOOK 2010; 8:e0127. [PMID: 22303253 PMCID: PMC3244948 DOI: 10.1199/tab.0127] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Flowers are the most complex structures of plants. Studies of Arabidopsis thaliana, which has typical eudicot flowers, have been fundamental in advancing the structural and molecular understanding of flower development. The main processes and stages of Arabidopsis flower development are summarized to provide a framework in which to interpret the detailed molecular genetic studies of genes assigned functions during flower development and is extended to recent genomics studies uncovering the key regulatory modules involved. Computational models have been used to study the concerted action and dynamics of the gene regulatory module that underlies patterning of the Arabidopsis inflorescence meristem and specification of the primordial cell types during early stages of flower development. This includes the gene combinations that specify sepal, petal, stamen and carpel identity, and genes that interact with them. As a dynamic gene regulatory network this module has been shown to converge to stable multigenic profiles that depend upon the overall network topology and are thus robust, which can explain the canalization of flower organ determination and the overall conservation of the basic flower plan among eudicots. Comparative and evolutionary approaches derived from Arabidopsis studies pave the way to studying the molecular basis of diverse floral morphologies.
Collapse
Affiliation(s)
- Elena R. Alvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Mariana Benítez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Adriana Corvera-Poiré
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Álvaro Chaos Cador
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Stefan de Folter
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Alicia Gamboa de Buen
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Fabiola Jaimes-Miranda
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Rigoberto V. Pérez-Ruiz
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Alma Piñeyro-Nelson
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Yara E. Sánchez-Corrales
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| |
Collapse
|
50
|
Khraiwesh B, Arif MA, Seumel GI, Ossowski S, Weigel D, Reski R, Frank W. Transcriptional control of gene expression by microRNAs. Cell 2010; 140:111-22. [PMID: 20085706 DOI: 10.1016/j.cell.2009.12.023] [Citation(s) in RCA: 321] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 07/30/2009] [Accepted: 11/28/2009] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) control gene expression in animals and plants. Like another class of small RNAs, siRNAs, they affect gene expression posttranscriptionally. While siRNAs in addition act in transcriptional gene silencing, a role of miRNAs in transcriptional regulation has been less clear. We show here that in moss Physcomitrella patens mutants without a DICER-LIKE1b gene, maturation of miRNAs is normal but cleavage of target RNAs is abolished and levels of these transcripts are drastically reduced. These mutants accumulate miRNA:target-RNA duplexes and show hypermethylation of the genes encoding target RNAs, leading to gene silencing. This pathway occurs also in the wild-type upon hormone treatment. We propose that initiation of epigenetic silencing by DNA methylation depends on the ratio of the miRNA and its target RNA.
Collapse
Affiliation(s)
- Basel Khraiwesh
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|