1
|
Wang C, Fu P, Sun T, Wang Y, Li X, Lan S, Liu H, Gou Y, Shang Q, Li W. Identifying Candidate Genes Related to Soybean ( Glycine max) Seed Coat Color via RNA-Seq and Coexpression Network Analysis. Genes (Basel) 2025; 16:44. [PMID: 39858589 PMCID: PMC11764550 DOI: 10.3390/genes16010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND The quality of soybeans is reflected in the seed coat color, which indicates soybean quality and commercial value. Researchers have identified genes related to seed coat color in various plants. However, research on the regulation of genes related to seed coat color in soybeans is rare. METHODS In this study, four lines of seed coats with different colors (medium yellow 14, black, green, and brown) were selected from the F2:5 population, with Beinong 108 as the female parent and green bean as the male parent, and the dynamic changes in the anthocyanins in the seed coat were stained with 4-dimethylaminocinnamaldehyde (DMACA) during the grain maturation process (20 days from grain drum to seed harvest). Through RNA-seq of soybean lines with four different colored seed coats at 30 and 50 days after seeding, we can further understand the key pathways and gene regulation modules between soybean seed coats of different colors. RESULTS DMACA revealed that black seed coat soybeans produce anthocyanins first and have the deepest staining. Clustering and principal component analysis (PCA) of the RNA-seq data divided the eight samples into two groups, resulting in 16,456 DEGs, including 5359 TFs. GO and KEGG enrichment analyses revealed that the flavonoid biosynthesis, starch and sucrose metabolism, carotenoid biosynthesis, and circadian rhythm pathways were significantly enriched. We also conducted statistical and expression pattern analyses on the differentially expressed transcription factors. Based on weighted gene coexpression network analysis (WGCNA), we identified seven specific modules that were significantly related to the four soybean lines with different seed coat colors. The connectivity and functional annotation of genes within the modules were calculated, and 21 candidate genes related to soybean seed coat color were identified, including six transcription factor (TF) genes and three flavonoid pathway genes. CONCLUSIONS These findings provide a theoretical basis for an in-depth understanding of the molecular mechanisms underlying differences in soybean seed coat color and provide new genetic resources.
Collapse
Affiliation(s)
- Cheng Wang
- College of Plant Science and Technology, Beijing Key Laboratory of New Agricultural Technology in Agriculture Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China; (C.W.); (T.S.); (X.L.); (S.L.); (H.L.)
| | - Pingchun Fu
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs Beijing University of Agriculture, Beijing 102206, China; (P.F.); (Y.W.); (Y.G.)
| | - Tingting Sun
- College of Plant Science and Technology, Beijing Key Laboratory of New Agricultural Technology in Agriculture Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China; (C.W.); (T.S.); (X.L.); (S.L.); (H.L.)
| | - Yan Wang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs Beijing University of Agriculture, Beijing 102206, China; (P.F.); (Y.W.); (Y.G.)
| | - Xueting Li
- College of Plant Science and Technology, Beijing Key Laboratory of New Agricultural Technology in Agriculture Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China; (C.W.); (T.S.); (X.L.); (S.L.); (H.L.)
| | - Shulin Lan
- College of Plant Science and Technology, Beijing Key Laboratory of New Agricultural Technology in Agriculture Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China; (C.W.); (T.S.); (X.L.); (S.L.); (H.L.)
| | - Hui Liu
- College of Plant Science and Technology, Beijing Key Laboratory of New Agricultural Technology in Agriculture Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China; (C.W.); (T.S.); (X.L.); (S.L.); (H.L.)
| | - Yongji Gou
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs Beijing University of Agriculture, Beijing 102206, China; (P.F.); (Y.W.); (Y.G.)
| | - Qiaoxia Shang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs Beijing University of Agriculture, Beijing 102206, China; (P.F.); (Y.W.); (Y.G.)
| | - Weiyu Li
- College of Plant Science and Technology, Beijing Key Laboratory of New Agricultural Technology in Agriculture Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China; (C.W.); (T.S.); (X.L.); (S.L.); (H.L.)
| |
Collapse
|
2
|
Gachowska M, Dąbrowska A, Wilczyński B, Kuźnicki J, Sauer N, Szlasa W, Kobierzycki C, Łapińska Z, Kulbacka J. The Influence of Environmental Exposure to Xenoestrogens on the Risk of Cancer Development. Int J Mol Sci 2024; 25:12363. [PMID: 39596429 PMCID: PMC11594813 DOI: 10.3390/ijms252212363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Xenoestrogens (XEs) are a group of exogenous substances that may interfere with the functioning of the endocrine system. They may mimic the function of estrogens, and their sources are plants, water or dust, plastic, chemical agents, and some drugs. Thus, people are highly exposed to their actions. Together with the development of industry, the number of XEs in our environment increases. They interact directly with estrogen receptors, disrupting the transmission of cellular signals. It is proven that XEs exhibit clinical application in e.g., menopause hormone therapy, but some studies observed that intense exposure to XEs leads to the progression of various cancers. Moreover, these substances exhibit the ability to cross the placental barrier, therefore, prenatal exposure may disturb fetus development. Due to the wide range of effects resulting from the biological activity of these substances, there is a need for this knowledge to be systematized. This review aims to comprehensively assess the environmental sources of XEs and their role in increasing cancer risk, focusing on current evidence of their biological and pathological impacts.
Collapse
Affiliation(s)
- Martyna Gachowska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (M.G.); (A.D.); (B.W.); (J.K.)
| | - Alicja Dąbrowska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (M.G.); (A.D.); (B.W.); (J.K.)
| | - Bartosz Wilczyński
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (M.G.); (A.D.); (B.W.); (J.K.)
| | - Jacek Kuźnicki
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (M.G.); (A.D.); (B.W.); (J.K.)
| | - Natalia Sauer
- Department of Clinical Pharmacology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Wojciech Szlasa
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Christopher Kobierzycki
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Zofia Łapińska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| |
Collapse
|
3
|
Hazrati S, Mousavi Z, Nicola S. Harvest time optimization for medicinal and aromatic plant secondary metabolites. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108735. [PMID: 38781639 DOI: 10.1016/j.plaphy.2024.108735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/24/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Plant secondary metabolites (SMs) play a crucial role in shielding plants from pathogens and environmental stressors. These natural products find widespread applications across various industries, including pharmaceutical, food, cosmetic, and healthcare. However, the quantity and quality of these compounds in plants can be influenced by factors such as genetics, morphology, plant age, and the seasonal and daily variations. The timing of harvest holds particular significance for medicinal and aromatic plants (MAPs) as their active compounds peak at a specific moment during the plant growth cycle. Determining the optimal harvest time is essential to ensure the plants meet their intended cultivation goal. In this review, we analyzed how developmental and external factors impact the qualitative and quantitative effectiveness of SMs in MAPs. We examined recent studies on the effects of environmental and developmental factors on SMs of MAPs, compiling relevant data for analysis. The results of this review demonstrate how these factors influence the quantity and quality of plant SMs, underscoring the importance of determining the optimal harvest time (known as the balsamic time) to maximize the utilization of these compounds. Our findings offer crucial insights into the factors affecting SMs, serving as a tool for quality control in MAPs production. Moreover, this review can be a valuable resource for researchers, farmers, and industrial users aiming to optimize plant growth and harvest timing for maximum yield. Overall, our review provides valuable information for devising effective strategies to produce high-quality MAPs products.
Collapse
Affiliation(s)
- Saeid Hazrati
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, 53714-161, Iran.
| | - Zahra Mousavi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, 53714-161, Iran
| | - Silvana Nicola
- Department of Agricultural, Forest and Food Sciences, Horticultural Sciences - Inhortosanitas Lab, University of Turin, 10095, Grugliasco (TO), Italy.
| |
Collapse
|
4
|
Chavda VP, Chaudhari AZ, Balar PC, Gholap A, Vora LK. Phytoestrogens: Chemistry, potential health benefits, and their medicinal importance. Phytother Res 2024; 38:3060-3079. [PMID: 38602108 DOI: 10.1002/ptr.8196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/27/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
Phytoestrogens, also known as xenoestrogens, are secondary metabolites derived from plants that have similar structures and biological effects as human estrogens. These compounds do not directly affect biological functions but can act as agonists or antagonists depending on the level of endogenous estrogen in the body. Phytoestrogens may have an epigenetic mechanism of action independent of estrogen receptors. These compounds are found in more than 300 plant species and are synthesized through the phenylpropanoid pathway, with specific enzymes leading to various chemical structures. Phytoestrogens, primarily phenolic compounds, include isoflavonoids, flavonoids, stilbenes, and lignans. Extensive research in animals and humans has demonstrated the protective effects of phytoestrogens on estrogen-dependent diseases. Clinical trials have also shown their potential benefits in conditions such as osteoporosis, Parkinson's disease, and certain types of cancer. This review provides a concise overview of phytoestrogen classification, chemical diversity, and biosynthesis and discusses the potential therapeutic effects of phytoestrogens, as well as their preclinical and clinical development.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India
| | - Amit Z Chaudhari
- Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Pankti C Balar
- Pharmacy section, L.M. College of Pharmacy, Ahmedabad, India
| | - Amol Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | | |
Collapse
|
5
|
Shea Z, Ogando do Granja M, Fletcher EB, Zheng Y, Bewick P, Wang Z, Singer WM, Zhang B. A Review of Bioactive Compound Effects from Primary Legume Protein Sources in Human and Animal Health. Curr Issues Mol Biol 2024; 46:4203-4233. [PMID: 38785525 PMCID: PMC11120442 DOI: 10.3390/cimb46050257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
The global demand for sustainable and nutritious food sources has catalyzed interest in legumes, known for their rich repertoire of health-promoting compounds. This review delves into the diverse array of bioactive peptides, protein subunits, isoflavones, antinutritional factors, and saponins found in the primary legume protein sources-soybeans, peas, chickpeas, and mung beans. The current state of research on these compounds is critically evaluated, with an emphasis on the potential health benefits, ranging from antioxidant and anticancer properties to the management of chronic diseases such as diabetes and hypertension. The extensively studied soybean is highlighted and the relatively unexplored potential of other legumes is also included, pointing to a significant, underutilized resource for developing health-enhancing foods. The review advocates for future interdisciplinary research to further unravel the mechanisms of action of these bioactive compounds and to explore their synergistic effects. The ultimate goal is to leverage the full spectrum of benefits offered by legumes, not only to advance human health but also to contribute to the sustainability of food systems. By providing a comprehensive overview of the nutraceutical potential of legumes, this manuscript sets a foundation for future investigations aimed at optimizing the use of legumes in the global pursuit of health and nutritional security.
Collapse
Affiliation(s)
- Zachary Shea
- United States Department of Agriculture–Agricultural Research Service, Raleigh Agricultural Research Station, Raleigh, NC 27606, USA;
| | - Matheus Ogando do Granja
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| | - Elizabeth B. Fletcher
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| | - Yaojie Zheng
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| | - Patrick Bewick
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| | - Zhibo Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
- Donald Danforth Plant Science Center, Olivette, MO 63132, USA
| | - William M. Singer
- Center for Advanced Innovation in Agriculture, Virginia Tech, Blacksburg, VA 24061, USA;
| | - Bo Zhang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| |
Collapse
|
6
|
Liang C, Wang P, Li M, Li R, Lai KP, Chen J. Anti-cancer mechanisms of natural isoflavones against melanoma. Heliyon 2024; 10:e28616. [PMID: 38586368 PMCID: PMC10998210 DOI: 10.1016/j.heliyon.2024.e28616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
The incidence of skin-related neoplasms has generally increased in recent years. Melanoma arises from malignant mutations in melanocytes in the basal layer of the epidermis and is a fatal skin cancer that seriously threatens human health. Isoflavones are polyphenolic compounds widely present in legumes and have drawn scientists' attention, because they have good efficacy against a variety of cancers, including melanoma, without significant toxic side effects and resistance. In this review article, we summarize the research progress of isoflavones in melanoma, including anti-melanoma roles and mechanisms of isoflavones via inhibition of tyrosinase activity, melanogenesis, melanoma cell growth, invasion of melanoma cells, and induction of apoptosis in melanoma cells. This information is important for the prevention, clinical treatment, and prognosis and survival of melanoma.
Collapse
Affiliation(s)
- Cheng Liang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Ping Wang
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Mengzhen Li
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Rong Li
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Jian Chen
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| |
Collapse
|
7
|
Anuranjana P, Beegum F, K.P D, George KT, Viswanatha G, Nayak PG, Kanwal A, Kishore A, Shenoy RR, Nandakumar K. Mechanisms Behind the Pharmacological Application of Biochanin-A: A review. F1000Res 2023; 12:107. [PMID: 38106650 PMCID: PMC10725524 DOI: 10.12688/f1000research.126059.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 12/19/2023] Open
Abstract
This review was aimed at summarizing the cellular and molecular mechanisms behind the various pharmacological actions of biochanin-A. Many studies have been reported claiming its application in cancers, metabolic disorders, airway hyperresponsiveness, cardiac disorders, neurological disorders, etc. With regard to hormone-dependent cancers like breast, prostate, and other malignancies like pancreatic, colon, lung, osteosarcoma, glioma that has limited treatment options, biochanin-A revealed agreeable results in arresting cancer development. Biochanin-A has also shown therapeutic benefits when administered for neurological disorders, diabetes, hyperlipidaemia, and other chronic diseases/disorders. Isoflavones are considered phenomenal due to their high efficiency in modifying the physiological functions of the human body. Biochanin-A is one among the prominent isoflavones found in soy (glycine max), red clover (Trifolium pratense), and alfalfa sprouts, etc., with proven potency in modulating vital cellular mechanisms in various diseases. It has been popular for ages among menopausal women in controlling symptoms. In view of the multi-targeted functions of biochanin-A, it is essential to summarize it's mechanism of action in various disorders. The safety and efficacy of biochanin-A needs to be established in clinical trials involving human subjects. Biochanin-A might be able to modify various systems of the human body like the cardiovascular system, CNS, respiratory system, etc. It has shown a remarkable effect on hormonal cancers and other cancers. Many types of research on biochanin-A, particularly in breast, lung, colon, prostate, and pancreatic cancers, have shown a positive impact. Through modulating oxidative stress, SIRT-1 expression, PPAR gamma receptors, and other multiple mechanisms biochanin-A produces anti-diabetic action. The diverse molecular mechanistic pathways involved in the pharmacological ability of biochanin-A indicate that it is a very promising molecule and can play a major impact in modifying several physiological functions.
Collapse
Affiliation(s)
- P.V. Anuranjana
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Fathima Beegum
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Divya K.P
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krupa Thankam George
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | | | - Pawan G. Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Abhinav Kanwal
- Department of Pharmacology, All India Institute of Medical Sciences, Bathinda, Punjab, India
| | - Anoop Kishore
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Rekha R. Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - K. Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
8
|
Şahin TÖ, Yılmaz B, Yeşilyurt N, Cicia D, Szymanowska A, Amero P, Ağagündüz D, Capasso R. Recent insights into the nutritional immunomodulation of cancer-related microRNAs. Phytother Res 2023; 37:4375-4397. [PMID: 37434291 DOI: 10.1002/ptr.7937] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/13/2023]
Abstract
Cancer is the most common cause of death worldwide, following cardiovascular diseases. Cancer is a multifactorial disease and many reasons such as physical, chemical, biological, and lifestyle-related factors. Nutrition, which is one of the various factors that play a role in the prevention, development, and treatment of many types of cancer, affects the immune system, which is characterized by disproportionate pro-inflammatory signaling in cancer. Studies investigating the molecular mechanisms of this effect have shown that foods rich in bioactive compounds, such as green tea, olive oil, turmeric, and soybean play a significant role in positively changing the expression of miRNAs involved in the regulation of genes associated with oncogenic/tumor-suppressing pathways. In addition to these foods, some diet models may change the expression of specific cancer-related miRNAs in different ways. While Mediterranean diet has been associated with anticancer effects, a high-fat diet, and a methyl-restricted diet are considered to have negative effects. This review aims to discuss the effects of specific foods called "immune foods," diet models, and bioactive components on cancer by changing the expression of miRNAs in the prevention and treatment of cancer.
Collapse
Affiliation(s)
| | - Birsen Yılmaz
- Department of Nutrition and Dietetics, Cukurova University, Adana, Turkey
| | | | - Donatella Cicia
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Anna Szymanowska
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Gazi University, Ankara, Turkey
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
9
|
Song J, Xu R, Guo Q, Wu C, Li Y, Wang X, Wang J, Qiu LJ. An omics strategy increasingly improves the discovery of genetic loci and genes for seed-coat color formation in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:71. [PMID: 37663546 PMCID: PMC10471558 DOI: 10.1007/s11032-023-01414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/13/2023] [Indexed: 09/05/2023]
Abstract
The phenotypic color of seeds is a complex agronomic trait and has economic and biological significance. The genetic control and molecular regulation mechanisms have been extensively studied. Here, we used a multi-omics strategy to explore the color formation in soybean seeds at a big data scale. We identified 13 large quantitative trait loci (QTL) for color with bulk segregating analysis in recombinant inbreeding lines. GWAS analysis of colors and decomposed attributes in 763 germplasms revealed associated SNP sites perfectly falling in five major QTL, suggesting inherited regulation on color during natural selection. Further transcriptomics analysis before and after color accumulation revealed 182 differentially expression genes (DEGs) in the five QTL, including known genes CHS, MYB, and F3'H involved in pigment accumulation. More DEGs with consistently upregulation or downregulation were identified as shared regulatory genes for two or more color formations while some DEGs were only for a specific color formation. For example, five upregulated DEGs in QTL qSC-3 were in flavonoid biosynthesis responsible for black and brown seed. The DEG (Glyma.08G085400) was identified in the purple seed only, which encodes gibberellin 2-beta-dioxygenase in the metabolism of colorful terpenoids. The candidate genes are involved in flavonoid biosynthesis, transcription factor regulation, gibberellin and terpenoid metabolism, photosynthesis, ascorbate and aldarate metabolism, and lipid metabolism. Seven differentially expressed transcription factors were also speculated that may regulate color formation, including a known MYB. The finds expand QTL and gene candidates for color formation, which could guide to breed better cultivars with designed colors. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01414-z.
Collapse
Affiliation(s)
- Jian Song
- Yangtze University, Jingzhou, 434025 Hubei P.R. China
| | - Ruixin Xu
- Yangtze University, Jingzhou, 434025 Hubei P.R. China
| | - Qingyuan Guo
- Yangtze University, Jingzhou, 434025 Hubei P.R. China
| | - Caiyu Wu
- Yangtze University, Jingzhou, 434025 Hubei P.R. China
| | - Yinghui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA)/Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, GA 30602 USA
| | - Jun Wang
- Yangtze University, Jingzhou, 434025 Hubei P.R. China
| | - Li-Juan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA)/Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
10
|
Wang J, Li L, Wang Z, Feng A, Li H, Qaseem MF, Liu L, Deng X, Wu AM. Integrative analysis of the metabolome and transcriptome reveals the molecular regulatory mechanism of isoflavonoid biosynthesis in Ormosia henryi Prain. Int J Biol Macromol 2023; 246:125601. [PMID: 37392916 DOI: 10.1016/j.ijbiomac.2023.125601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Flavonoids are important components of many phytopharmaceuticals, however, most studies on flavonoids and isoflavonoids have been conducted on herbaceous plants of the family Leguminosae, such as soybean, and less attention has been paid to woody plants. To fill this gap, we characterized the metabolome and transcriptome of five plant organs of Ormosia henryi Prain (OHP), a woody Leguminosae plant with great pharmaceutical value. Our results indicate that OHP possesses a relatively high content of isoflavonoids as well as significant diversity, with greater diversity of isoflavonoids in the roots. Combined with transcriptome data, the pattern of isoflavonoid accumulation was found to be highly correlated with differential expression genes. Furthermore, the use of trait-WGCNA network analysis identified OhpCHSs as a probable hub enzyme that directs the downstream isoflavonoid synthesis pathway. Transcription factors, such as MYB26, MYB108, WRKY53, RAV1 and ZFP3, were found to be involved in the regulation of isoflavonoid biosynthesis in OHP. Our findings will be beneficial for the biosynthesis and utilization of woody isoflavonoids.
Collapse
Affiliation(s)
- Jiaqi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Lu Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Zhihua Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Anran Feng
- Department of Plant Biology, Michigan State University, MI 48824, USA
| | - Huiling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Mirza Faisal Qaseem
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Liting Liu
- Jiangxi Academy of Forestry Sciences, Nanchang 330032, China
| | - Xiaomei Deng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
11
|
Yang Y, Zhao T, Wang F, Liu L, Liu B, Zhang K, Qin J, Yang C, Qiao Y. Identification of candidate genes for soybean seed coat-related traits using QTL mapping and GWAS. FRONTIERS IN PLANT SCIENCE 2023; 14:1190503. [PMID: 37384360 PMCID: PMC10293793 DOI: 10.3389/fpls.2023.1190503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/17/2023] [Indexed: 06/30/2023]
Abstract
Seed coat color is a typical morphological trait that can be used to reveal the evolution of soybean. The study of seed coat color-related traits in soybeans is of great significance for both evolutionary theory and breeding practices. In this study, 180 F10 recombinant inbred lines (RILs) derived from the cross between the yellow-seed coat cultivar Jidou12 (ZDD23040, JD12) and the wild black-seed coat accession Y9 (ZYD02739) were used as materials. Three methods, single-marker analysis (SMA), interval mapping (IM), and inclusive composite interval mapping (ICIM), were used to identify quantitative trait loci (QTLs) controlling seed coat color and seed hilum color. Simultaneously, two genome-wide association study (GWAS) models, the generalized linear model (GLM) and mixed linear model (MLM), were used to jointly identify seed coat color and seed hilum color QTLs in 250 natural populations. By integrating the results from QTL mapping and GWAS analysis, we identified two stable QTLs (qSCC02 and qSCC08) associated with seed coat color and one stable QTL (qSHC08) related to seed hilum color. By combining the results of linkage analysis and association analysis, two stable QTLs (qSCC02, qSCC08) for seed coat color and one stable QTL (qSHC08) for seed hilum color were identified. Upon further investigation using Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, we validated the previous findings that two candidate genes (CHS3C and CHS4A) reside within the qSCC08 region and identified a new QTL, qSCC02. There were a total of 28 candidate genes in the interval, among which Glyma.02G024600, Glyma.02G024700, and Glyma.02G024800 were mapped to the glutathione metabolic pathway, which is related to the transport or accumulation of anthocyanin. We considered the three genes as potential candidate genes for soybean seed coat-related traits. The QTLs and candidate genes detected in this study provide a foundation for further understanding the genetic mechanisms underlying soybean seed coat color and seed hilum color and are of significant value in marker-assisted breeding.
Collapse
Affiliation(s)
- Yue Yang
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Tiantian Zhao
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Fengmin Wang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Luping Liu
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Bingqiang Liu
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Kai Zhang
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jun Qin
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Chunyan Yang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Yake Qiao
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| |
Collapse
|
12
|
Han T, Shao Y, Gao R, Gao J, Jiang Y, Yang Y, Wang Y, Yang S, Gao X, Wang L, Li Y. Functional Characterization of a ( E)-β-Ocimene Synthase Gene Contributing to the Defense against Spodoptera litura. Int J Mol Sci 2023; 24:ijms24087182. [PMID: 37108345 PMCID: PMC10139113 DOI: 10.3390/ijms24087182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Soybean is a worldwide crop that offers valuable proteins, fatty acids, and phytonutrients to humans but is always damaged by insect pests or pathogens. Plants have captured sophisticated defense mechanisms in resisting the attack of insects and pathogens. How to protect soybean in an environment- or human-friendly way or how to develop plant-based pest control is a hotpot. Herbivore-induced plant volatiles that are released by multiple plant species have been assessed in multi-systems against various insects, of which (E)-β-ocimene has been reported to show anti-insect function in a variety of plants, including soybean. However, the responsible gene in soybean is unknown, and its mechanism of synthesis and anti-insect properties lacks comprehensive assessment. In this study, (E)-β-ocimene was confirmed to be induced by Spodoptera litura treatment. A plastidic localized monoterpene synthase gene, designated as GmOCS, was identified to be responsible for the biosynthesis of (E)-β-ocimene through genome-wide gene family screening and in vitro and in vivo assays. Results from transgenic soybean and tobacco confirmed that (E)-β-ocimene catalyzed by GmOCS had pivotal roles in repelling a S. litura attack. This study advances the understanding of (E)-β-ocimene synthesis and its function in crops, as well as provides a good candidate for further anti-insect soybean improvement.
Collapse
Affiliation(s)
- Taotao Han
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Yan Shao
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Ruifang Gao
- College of Plant Science, Jilin University, Changchun 130024, China
| | - Jinshan Gao
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yu Jiang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yue Yang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yanan Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Siqi Yang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Li Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Yueqing Li
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
13
|
Fan R, Zhu C, Qiu D, Mao G, Mueller-Roeber B, Zeng J. Integrated transcriptomic and metabolomic analyses reveal key genes controlling flavonoid biosynthesis in Citrus grandis 'Tomentosa' fruits. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:210-221. [PMID: 36724705 DOI: 10.1016/j.plaphy.2023.01.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/01/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
As a well-recognized traditional Chinese medicine (TCM), immature fruits of Citrus grandis 'Tomentosa' (CGT) serve to cure chronic cough in humans. Specialized metabolites including flavonoids may have contribute to this curing effect. Knowledge about the molecular mechanisms underlying flavonoid biosynthesis in 'Tomentosa' fruits will, therefore, support the breeding of varieties with improved medicinal properties. Hence, we profiled the transcriptomes and metabolites of the fruits of two contrasting C. grandis varieties, namely 'Zheng-Mao' ('ZM') used in TCM production, and a locally cultivated pomelo, namely 'Guang-Qing' ('GQ'), at four developmental stages. A total of 39 flavonoids, including 14 flavanone/flavone, 5 isoflavonoids, 12 flavonols, and 6 anthocyanins, were identified, and 16 of which were quantitatively determined in the fruits of the two varieties. We found that 'ZM' fruits contain more flavonoids than 'GQ'. Specifically, rhoifolin levels were significantly higher in 'ZM' than in 'GQ'. We annotated 31,510 genes, including 1,387 previously unknown ones, via transcriptome sequencing of 'ZM' and 'GQ.' A total of 646 genes were found to be differentially expressed between 'ZM' and 'GQ' throughout at all four fruit developmental stages, indicating that they are robust expression markers for future breeding programs. Weighted gene co-expression network analysis identified 18 modules. Combined transcriptional and metabolic analysis revealed 25 genes related to flavonoid biosynthesis and 16 transcriptional regulators (MYBs, bHLHs, WD40) that may be involved in the flavonoids biosynthesis in C. grandis 'Tomentosa' fruits.
Collapse
Affiliation(s)
- Ruiyi Fan
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, 510640, China.
| | - Congyi Zhu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, 510640, China.
| | - Diyang Qiu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, 510640, China.
| | - Genlin Mao
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, 510640, China.
| | - Bernd Mueller-Roeber
- Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Golm, Germany; Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Golm, Germany; Center of Plant Systems Biology and Biotechnology (CPSBB), 139 Ruski Blvd., 4000, Plovdiv, Bulgaria.
| | - Jiwu Zeng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, 510640, China.
| |
Collapse
|
14
|
Role of Cytochrome P450 Enzyme in Plant Microorganisms' Communication: A Focus on Grapevine. Int J Mol Sci 2023; 24:ijms24054695. [PMID: 36902126 PMCID: PMC10003686 DOI: 10.3390/ijms24054695] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
Cytochromes P450 are ancient enzymes diffused in organisms belonging to all kingdoms of life, including viruses, with the largest number of P450 genes found in plants. The functional characterization of cytochromes P450 has been extensively investigated in mammals, where these enzymes are involved in the metabolism of drugs and in the detoxification of pollutants and toxic chemicals. The aim of this work is to present an overview of the often disregarded role of the cytochrome P450 enzymes in mediating the interaction between plants and microorganisms. Quite recently, several research groups have started to investigate the role of P450 enzymes in the interactions between plants and (micro)organisms, focusing on the holobiont Vitis vinifera. Grapevines live in close association with large numbers of microorganisms and interact with each other, regulating several vine physiological functions, from biotic and abiotic stress tolerance to fruit quality at harvest.
Collapse
|
15
|
Chaudhary N, Walia S, Kumar R. Functional composition, physiological effect and agronomy of future food quinoa (Chenopodium quinoa Willd.): A review. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Mhalhel K, Sicari M, Pansera L, Chen J, Levanti M, Diotel N, Rastegar S, Germanà A, Montalbano G. Zebrafish: A Model Deciphering the Impact of Flavonoids on Neurodegenerative Disorders. Cells 2023; 12:252. [PMID: 36672187 PMCID: PMC9856690 DOI: 10.3390/cells12020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/17/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Over the past century, advances in biotechnology, biochemistry, and pharmacognosy have spotlighted flavonoids, polyphenolic secondary metabolites that have the ability to modulate many pathways involved in various biological mechanisms, including those involved in neuronal plasticity, learning, and memory. Moreover, flavonoids are known to impact the biological processes involved in developing neurodegenerative diseases, namely oxidative stress, neuroinflammation, and mitochondrial dysfunction. Thus, several flavonoids could be used as adjuvants to prevent and counteract neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Zebrafish is an interesting model organism that can offer new opportunities to study the beneficial effects of flavonoids on neurodegenerative diseases. Indeed, the high genome homology of 70% to humans, the brain organization largely similar to the human brain as well as the similar neuroanatomical and neurochemical processes, and the high neurogenic activity maintained in the adult brain makes zebrafish a valuable model for the study of human neurodegenerative diseases and deciphering the impact of flavonoids on those disorders.
Collapse
Affiliation(s)
- Kamel Mhalhel
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Mirea Sicari
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Lidia Pansera
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Jincan Chen
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Maria Levanti
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Nicolas Diotel
- Université de la Réunion, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Plateforme CYROI, F-97490 Sainte-Clotilde, France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| |
Collapse
|
17
|
New dual functional CYP450 gene involves in isoflavone biosynthesis in Glycine max L. Synth Syst Biotechnol 2023; 8:157-167. [PMID: 36714060 PMCID: PMC9860299 DOI: 10.1016/j.synbio.2023.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Glycine max L. accumulates a large amount of isoflavonoid compounds, which is beneficial for plant defense, plant-microbe symbiotic interactions, and human health. Several CYP450 subfamily genes are involved in the flavonoid biosynthetic pathway in plants. In the present study, we found 24 CYP82 subfamily genes were differentially expressed in various tissues of soybean, in Phytophthora sojae-infected soybean varieties and in soybean hairy roots treated with cell wall glucan elicitor. Six of them (GmCYP82A2, GmCYP82A3, GmCYP82A4, GmCYP82A23, GmCYP82C20 and GmCYP82D26) were co-expressed with other known isoflavonoid pathway genes in soybean. Their enzymatic activity in yeast feeding assays showed that only GmCYP82D26 was able to convert naringenin to daidzein with both aryl migration and dehydration function. When GmCYP82D26 was over-expressed in soybean hairy roots, the contents of the two major isoflavonoid aglycones in soybean (daidzein and genistein) were reduced, but total flavonoids were not affected. When GmCYP82D26 was suppressed by RNAi in the hairy roots, daidzein content was decreased but genistein content was increased, with unchanged total flavonoid content. GmCYP82D26 was found to be localized in the endoplasmic reticulum at subcellular level when transiently expressed in tobacco leaf epidermis. GmCYP82D26 gene was preferentially expressed in roots, with low expression level in other tissues in soybean. Homology modeling and molecular docking showed that GmCYP82D26 could form hydrogen bond with both HEM and naringenin at C5-OH and C4 carbonyl. All these results indicated that GmCYP82D26 possesses new and dual enzymatic activity, which bridges the two branches (daidzein and genistein branch) of isoflavonoid pathway in soybean.
Collapse
|
18
|
The protein conformational basis of isoflavone biosynthesis. Commun Biol 2022; 5:1249. [PMID: 36376429 PMCID: PMC9663428 DOI: 10.1038/s42003-022-04222-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
Isoflavonoids play important roles in plant defense and also exhibit a range of mammalian health-promoting activities. Their biosynthesis is initiated by two enzymes with unusual catalytic activities; 2-hydroxyisoflavanone synthase (2-HIS), a membrane-bound cytochrome P450 catalyzing a coupled aryl-ring migration and hydroxylation, and 2-hydroxyisoflavanone dehydratase (2-HID), a member of a large carboxylesterase family that paradoxically catalyzes dehydration of 2-hydroxyisoflavanones to isoflavone. Here we report the crystal structures of 2-HIS from Medicago truncatula and 2-HID from Pueraria lobata. The 2-HIS structure reveals a unique cytochrome P450 conformation and heme and substrate binding mode that facilitate the coupled aryl-ring migration and hydroxylation reactions. The 2-HID structure reveals the active site architecture and putative catalytic residues for the dual dehydratase and carboxylesterase activities. Mutagenesis studies revealed key residues involved in substrate binding and specificity. Understanding the structural basis of isoflavone biosynthesis will facilitate the engineering of new bioactive isoflavonoids. The structure and function of two isoflavone biosynthetic enzymes are reported revealing a novel cytochrome P450 conformation and identification of key residues for dual dehydratase and carboxylesterase activities
Collapse
|
19
|
Current Status of the Diagnosis and Management of Osteoporosis. Int J Mol Sci 2022; 23:ijms23169465. [PMID: 36012730 PMCID: PMC9408932 DOI: 10.3390/ijms23169465] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
Osteoporosis has been defined as the silent disease of the 21st century, becoming a public health risk due to its severity, chronicity and progression and affecting mainly postmenopausal women and older adults. Osteoporosis is characterized by an imbalance between bone resorption and bone production. It is diagnosed through different methods such as bone densitometry and dual X-rays. The treatment of this pathology focuses on different aspects. On the one hand, pharmacological treatments are characterized by the use of anti-resorptive drugs, as well as emerging regenerative medicine treatments such as cell therapies and the use of bioactive hydrogels. On the other hand, non-pharmacological treatments are associated with lifestyle habits that should be incorporated, such as physical activity, diet and the cessation of harmful habits such as a high consumption of alcohol or smoking. This review seeks to provide an overview of the theoretical basis in relation to bone biology, the existing methods for diagnosis and the treatments of osteoporosis, including the development of new strategies.
Collapse
|
20
|
Messina M, Duncan A, Messina V, Lynch H, Kiel J, Erdman JW. The health effects of soy: A reference guide for health professionals. Front Nutr 2022; 9:970364. [PMID: 36034914 PMCID: PMC9410752 DOI: 10.3389/fnut.2022.970364] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022] Open
Abstract
Soy is a hotly debated and widely discussed topic in the field of nutrition. However, health practitioners may be ill-equipped to counsel clients and patients about the use of soyfoods because of the enormous, and often contradictory, amount of research that has been published over the past 30 years. As interest in plant-based diets increases, there will be increased pressure for practitioners to gain a working knowledge of this area. The purpose of this review is to provide concise literature summaries (400-500 words) along with a short perspective on the current state of knowledge of a wide range of topics related to soy, from the cholesterol-lowering effects of soy protein to the impact of isoflavones on breast cancer risk. In addition to the literature summaries, general background information on soyfoods, soy protein, and isoflavones is provided. This analysis can serve as a tool for health professionals to be used when discussing soyfoods with their clients and patients.
Collapse
Affiliation(s)
- Mark Messina
- Soy Nutrition Institute Global, Washington, DC, United States
| | - Alison Duncan
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | | | - Heidi Lynch
- Kinesiology Department, Point Loma Nazarene University, San Diego, CA, United States
| | - Jessica Kiel
- Scientific and Clinical Affairs, Medifast Inc., Baltimore, MD, United States
| | - John W. Erdman
- Division of Nutritional Sciences and Beckman Institute, Department of Food Science and Human Nutrition, University of Illinois at Urbana/Champaign, Urbana, IL, United States
| |
Collapse
|
21
|
Pachaiappan R, Rajamuthu TP, Sarkar A, Natrajan P, Krishnan N, Sakthivelu M, Velusamy P, Ramasamy P, Gopinath SC. N-acyl-homoserine lactone mediated virulence factor(s) of Pseudomonas aeruginosa inhibited by flavonoids and isoflavonoids. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.02.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Noviany N, Hadi S, Nofiani R, Lotulung PD, Osman H. Fabaceae: a significant flavonoid source for plant and human health. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The Fabaceae is recognized as the third largest and one of the most influential families among the flowering plants. Furthermore, its name is linked to “Legumes”, which represent a vast group of angiosperms in the continents utilized as crops, forages, and green manures. It is recognized for diverse constituents, covering both primary metabolites include lectins, chitinases, various proteases, and α-amylase inhibitors, as well as secondary metabolites include flavonoids, alkaloids, terpenoids, tannins, and phenolics. Fabaceae flavonoid plays an important role in the legumes’ adaptability to biological surroundings as defensive agents (phytoalexins) and as chemical signals in a symbiotic relationship with a bacterial species known as rhizobia. Considering their important role in plant defense and benefits to human healthiness, a number of studies on the Fabaceae plant have been performed, namely isolation and screening of the purified compounds and their biological activity. This study outlines specified issues on the chemical structure, biosynthesis, biological activities, and medicinal uses of Fabaceae compounds.
Collapse
Affiliation(s)
- Noviany Noviany
- Department of Chemistry , University of Lampung , Bandar Lampung , Indonesia
| | - Sutopo Hadi
- Department of Chemistry , University of Lampung , Bandar Lampung , Indonesia
| | - Risa Nofiani
- Department of Chemistry , University of Tanjungpura , Pontianak , Indonesia
| | - Puspa Dewi Lotulung
- Research Center for Chemistry - BRIN , Indonesian Institute of Sciences , South Tangerang 15314 , Indonesia
| | - Hasnah Osman
- School of Chemical Sciences , Universtiti Sains Malaysia , George Town , Malaysia
| |
Collapse
|
23
|
Subba P, Saha P, Karthikkeyan G, Biswas M, Prasad TSK, Roy-Barman S. Metabolite profiling reveals overexpression of the global regulator, MoLAEA leads to increased synthesis of metabolites in Magnaporthe oryzae. J Appl Microbiol 2022; 132:3825-3838. [PMID: 35261134 DOI: 10.1111/jam.15518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/18/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
AIMS To study the altered metabolic pathways and metabolites produced in overexpression and knockdown mutants of a global regulator named MoLAEA, which was recently found to regulate the expression of the genes involved in secondary metabolism in one of the most destructive plant pathogens, Magnaporthe oryzae. METHODS AND RESULTS Mass spectrometry-based global untargeted metabolomic profiling was used to identify altered metabolites. Metabolites were extracted from the mutant strains of MoLAEA using two extraction methods viz., aqueous and organic extraction and data acquired using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in positive and negative polarities. Levels of metabolites involved in various biological pathways such as amino acid as well as polyamine biosynthesis, fatty acid and pyrimidine metabolism showed remarkable change in the mutant strains. Interestingly, metabolites involved in stress responses were produced in higher quantities in the overexpression strain whereas, certain overproduced metabolites were associated with distinctive phenotypic changes in the overexpression strain compared to the wild-type. Further, the expression of several genes involved in the stress responses was found to have higher expression in the overexpression strain. CONCLUSIONS The global regulator MoLAEA is involved in secondary metabolism in the plant pathogen M. oryzae such that the mutant strains showed altered level of several metabolites involved in the biosynthesis pathways compared to the wild-type. Also, metabolites involved in stress responses were overproduced in the overexpression strain and this can be seen in the higher growth in media amended with stress-inducing agents or higher expression of genes involved in stress response in the overexpression strain compared to the wild-type. SIGNIFICANCE AND IMPACT This is the first report of metabolite profiling relative to the global regulation of secondary metabolism in M. oryzae, where secondary metabolism is poorly understood. It opens up avenues for more relevant investigations on the genetic regulation of several of the metabolites found in the analysis, which have not been previously characterized in M. oryzae.
Collapse
Affiliation(s)
- Pratigya Subba
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore-575018, India
| | - Pallabi Saha
- Department of Biotechnology, National Institute of Technology, Durgapur, India
| | - Gayathree Karthikkeyan
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore-575018, India
| | - Mousumi Biswas
- Department of Biotechnology, National Institute of Technology, Durgapur, India
| | | | | |
Collapse
|
24
|
Bisht N, Gupta A, Awasthi P, Goel A, Chandran D, Sharma N, Singh N. Development of a rapid LC-MS/MS method for the simultaneous quantification of various flavonoids, isoflavonoids, and phytohormones extracted from Medicago truncatula leaves. J LIQ CHROMATOGR R T 2022. [DOI: 10.1080/10826076.2022.2040028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Neema Bisht
- Advanced Technology Platform Centre, Regional Centre for Biotechnology, Faridabad, India
| | - Arunima Gupta
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, Faridabad, India
| | - Pallavi Awasthi
- Medicinal and Process Chemistry, Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Atul Goel
- Medicinal and Process Chemistry, Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Divya Chandran
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, Faridabad, India
| | - Neha Sharma
- Advanced Technology Platform Centre, Regional Centre for Biotechnology, Faridabad, India
| | - Nirpendra Singh
- Advanced Technology Platform Centre, Regional Centre for Biotechnology, Faridabad, India
| |
Collapse
|
25
|
Ramachandran V, V IK, Hr KK, Tiwari R, Tiwari G. Biochanin-A: A Bioactive Natural Product with Versatile Therapeutic Perspectives. Curr Drug Res Rev 2022; 14:225-238. [PMID: 35579127 DOI: 10.2174/2589977514666220509201804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Biochanin-A (5,7 dihydroxy 4 methoxy isoflavone) is a phytochemical phytoestrogen that is highly effective against various diseases. Biochanin-A is a nutritional and dietary isoflavonoid naturally present in red clover, chickpea, soybeans and other herbs. Biochanin- A possesses numerous biological activities. OBJECTIVE The study focused on collective data of therapeutic activities of Biochanin-A. METHODS According to the literature, biochanin-A revealed a range of activities starting from chemoprevention, by hindering cell growth, activation of tumor cell death, hampering metastasis, angiogenic action, cell cycle regulation, neuroprotection, by controlling microglial activation, balancing antioxidants, elevating the neurochemicals, suppressing BACE-1, NADPH oxidase hindrance to inflammation, by mitigating the MAPK and NF- κB, discharge of inflammatory markers, upregulating the PPAR-γ, improving the function of heme oxygenase-1, erythroid 2 nuclear factors, detoxifying the oxygen radicals and stimulating the superoxide dismutase action, and controlling its production of transcription factors. Against pathogens, biochanin-A acts by dephosphorylating tyrosine kinase proteins, obstructing gram-negative bacteria, suppressing the development of cytokines from viruses, and improving the action of a neuraminidase cleavage of caspase-3, and acts as an efflux pump inhibitor. In metabolic disorders, biochanin-A acts by encouraging transcriptional initiation and inhibition, activating estrogen receptors, and increasing the activity of differentiation, autophagy, inflammation, and blood glucose metabolism. CONCLUSION Therefore, biochanin-A could be used as a therapeutic drug for various pathological conditions and treatments in human beings.
Collapse
Affiliation(s)
- Vadivelan Ramachandran
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Inba Kumar V
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Kiran Kumar Hr
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Ruchi Tiwari
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kalpi Road, Bhauti, Kanpur 208020, India
| | - Gaurav Tiwari
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kalpi Road, Bhauti, Kanpur 208020, India
| |
Collapse
|
26
|
Evaluation of the effects of extraction method, duration and harvesting time on qualitative and quantitative features of Medicago sativa. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01056-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Malla A, Shanmugaraj B, Sharma A, Ramalingam S. Production of Genistein in Amaranthus tricolor var. tristis and Spinacia oleracea by Expression of Glycine max Isoflavone Synthase. PLANTS (BASEL, SWITZERLAND) 2021; 10:2311. [PMID: 34834674 PMCID: PMC8625718 DOI: 10.3390/plants10112311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Isoflavonoids, the diverse group of secondary metabolites derived from the phenylpropanoid pathway, are distributed predominantly in leguminous plants. It has received considerable attention in recent days due to its health promoting benefits and is known to prevent certain diseases in humans. These isoflavonoids are synthesized from flavonoid intermediates of phenylpropanoid pathway by the enzyme isoflavone synthase. Metabolic engineering of isoflavonoid biosynthesis in non-legume crop plants could offer the health benefits of these compounds in diverse plant species further contributing for crop improvement. The transient expression of heterologous genes in the host is considered as an alternative to stable expression, that can provide a rapid way of studying the pathway engineering for metabolite production and could also act as a production platform for nutraceuticals and biopharmaceuticals. In this study, isoflavone genistein was produced in Amaranthus tricolor var. tristis and Spinacia oleracea by transiently expressing Glycine max isoflavone synthase (GmIFS). The GmIFS gene was cloned in plant expression vector pEarleyGate 102 HA and pEAQ-HT-DEST 3 and transformed into plants by agroinfiltration. The presence of transgene in the agroinfiltrated leaves was confirmed by semiquantitative reverse-transcription polymerase chain reaction. The flavonoid substrate naringenin and isoflavonoid genistein were quantified using high performance liquid chromatography in both wild-type and infiltrated leaf samples of both the plants. The naringenin content varied in the range of 65.5-338.5 nM/g fresh weight, while the accumulation of genistein was observed with varying concentrations from 113 to 182.6 nM/g fresh weight in the agroinfiltrated leaf samples of both A. tricolor var. tristis and S. oleracea. These results indicate that the transient expression of GmIFS gene has led to the synthesis of isoflavonoid genistein in A. tricolor var. tristis and S. oleracea providing an insight that stable expression of this gene could enrich the nutraceutical content in the crop plants. To the best of our knowledge, this is the first report on transient expression of GmIFS gene for the production of genistein in A. tricolor var. tristis and S. oleracea.
Collapse
Affiliation(s)
- Ashwini Malla
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India; (A.M.); (B.S.)
| | - Balamurugan Shanmugaraj
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India; (A.M.); (B.S.)
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Campus Queretaro, Av. Epigmenio González No. 500, Fracc. San Pablo, Queretaro 76130, Mexico
| | - Sathishkumar Ramalingam
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India; (A.M.); (B.S.)
| |
Collapse
|
28
|
Aboushanab SA, El-Far AH, Narala VR, Ragab RF, Kovaleva EG. Potential therapeutic interventions of plant-derived isoflavones against acute lung injury. Int Immunopharmacol 2021; 101:108204. [PMID: 34619497 DOI: 10.1016/j.intimp.2021.108204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/19/2021] [Accepted: 09/25/2021] [Indexed: 12/24/2022]
Abstract
Acute lung injury (ALI) is a life-threatening syndrome that possibly leads to high morbidity and mortality as no therapy exists. Several natural ingredients with negligible adverse effects have recently been investigated to possibly inhibit the inflammatory pathways associated with ALI at the molecular level. Isoflavones, as phytoestrogenic compounds, are naturally occurring bioactive compounds that represent the most abundant category of plant polyphenols (Leguminosae family). A broad range of therapeutic activities of isoflavones, including antioxidants, chemopreventive, anti-inflammatory, antiallergic and antibacterial potentials, have been extensively documented in the literature. Our review exclusively focuses on the possible anti-inflammatory, antioxidant role of botanicals'-derived isoflavones against ALI and their immunomodulatory effect in experimentally induced ALI. Despite the limited scope covering their molecular mechanisms, isoflavones substantially contributed to protecting from ALI via inhibiting toll-like receptor 4 (TLR4)/Myd88/NF-κB pathway and subsequent cytokines, chemokines, and adherent proteins. Nonetheless, future research is suggested to fill the gap in elucidating the protective roles of isoflavones to alleviate ALI concerning antioxidant potentials, inhibition of the inflammatory pathways, and associated molecular mechanisms.
Collapse
Affiliation(s)
- Saied A Aboushanab
- Institute of Chemical Engineering, Ural Federal University named after the First President of Russia B. N. Yeltsin, 620002, 19 Mira Yekaterinburg, Russia.
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; Scientific Chair of Yousef Abdullatif Jameel of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
| | | | - Rokia F Ragab
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| | - Elena G Kovaleva
- Institute of Chemical Engineering, Ural Federal University named after the First President of Russia B. N. Yeltsin, 620002, 19 Mira Yekaterinburg, Russia.
| |
Collapse
|
29
|
Yamagata K, Yamori Y. Potential Effects of Soy Isoflavones on the Prevention of Metabolic Syndrome. Molecules 2021; 26:5863. [PMID: 34641407 PMCID: PMC8512040 DOI: 10.3390/molecules26195863] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 02/06/2023] Open
Abstract
Isoflavones are polyphenols primarily contained in soybean. As phytoestrogens, isoflavones exert beneficial effects on various chronic diseases. Metabolic syndrome increases the risk of death due to arteriosclerosis in individuals with various pathological conditions, including obesity, hypertension, hyperglycemia, and dyslipidemia. Although the health benefits of soybean-derived isoflavones are widely known, their beneficial effects on the pathogenesis of metabolic syndrome are incompletely understood. This review aims to describe the association between soybean-derived isoflavone intake and the risk of metabolic syndrome development. We reviewed studies on soy isoflavones, particularly daidzein and genistein, and metabolic syndrome, using PubMed, ScienceDirect, and Web of Science. We describe the pathological characteristics of metabolic syndrome, including those contributing to multiple pathological conditions. Furthermore, we summarize the effects of soybean-derived daidzein and genistein on metabolic syndrome reported in human epidemiological studies and experiments using in vitro and in vivo models. In particular, we emphasize the role of soy isoflavones in metabolic syndrome-induced cardiovascular diseases. In conclusion, this review focuses on the potential of soy isoflavones to prevent metabolic syndrome by influencing the onset of hypertension, hyperglycemia, dyslipidemia, and arteriosclerosis and discusses the anti-inflammatory effects of isoflavones.
Collapse
Affiliation(s)
- Kazuo Yamagata
- Department of Food Bioscience & Biotechnology, College of Bioresource Science, Nihon University (UNBS), Fujisawa 282-8510, Japan
| | - Yukio Yamori
- Institute for World Health Development, Mukogawa Women’s University, Nishinomiya 663-8143, Japan;
| |
Collapse
|
30
|
Zhu Y, Zheng F, Xiao C, Liu X, Yao X, Zeng W. Synthesis and Bio-evaluation of 2-Alkyl Substituted Fluorinated Genistein Analogues Against Breast Cancer. Med Chem 2021; 18:589-601. [PMID: 34463229 DOI: 10.2174/1573406417666210830114715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/13/2021] [Accepted: 05/27/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Breast cancer is the leading cause of cancer death in women. The current methods of chemotherapy for breast cancer generally have strong adverse reactions and drug resistance. Therefore, the discovery of novel anti-breast cancer lead compounds is urgently needed. OBJECTIVE Design and synthesize a series of 2-alkyl substituted fluorinated genistein analogues and evaluate their anti-breast cancer activity. METHODS Target compounds were obtained in a multistep reaction synthesis. The anti-tumor activity of compounds I-1~I-35 were evaluated with MCF-7, MDA-MB-231, MDA-MB-435, and MCF-10A cell lines in vitro, with tamoxifen as the positive control. Molecular docking was used to study the interaction between the synthesized compounds and PI3K-gamma. RESULTS A series of 2-alkyl substituted fluorinated genistein analogues were designed, synthesized and screened for their bioactivity. Most of the compounds displayed better selectivity toward breast cancer cell lines as compared with tamoxifen. Among these analogues, I-2, I-3, I-4, I-9, I-15 and I-17 have the strongest selective inhibition of breast cancer cells. Compounds I-10, I-13, I-15, I-17 and I-33 were found to have significant inhibitory effects on breast cancer cells. Molecular docking studies have shown that these compounds may act as PI3Kγ inhibitors and may further exhibit anti-breast cancer effects. CONCLUSION Most of the newly synthesized compounds could highly selectively inhibit breast cancer cell lines. The experimental results indicate that the synthesized analogs may also have obvious selective inhibitory effects on other malignant proliferation cancer cells.
Collapse
Affiliation(s)
- Yingli Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Fan Zheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Can Xiao
- Group of Lead Compound, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Xiaohe Liu
- Group of Lead Compound, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Xu Yao
- Group of Lead Compound, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
31
|
Iannetta PPM, Hawes C, Begg GS, Maaß H, Ntatsi G, Savvas D, Vasconcelos M, Hamann K, Williams M, Styles D, Toma L, Shrestha S, Balázs B, Kelemen E, Debeljak M, Trajanov A, Vickers R, Rees RM. A Multifunctional Solution for Wicked Problems: Value-Chain Wide Facilitation of Legumes Cultivated at Bioregional Scales Is Necessary to Address the Climate-Biodiversity-Nutrition Nexus. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.692137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Well-managed legume-based food systems are uniquely positioned to curtail the existential challenge posed by climate change through the significant contribution that legumes can make toward limiting Green House Gas (GHG) emissions. This potential is enabled by the specific functional attributes offered only by legumes, which deliver multiple co-benefits through improved ecosystem functions, including reduced farmland biodiversity loss, and better human-health and -nutrition provisioning. These three critical societal challenges are referred to collectively here as the “climate-biodiversity-nutrition nexus.” Despite the unparalleled potential of the provisions offered by legumes, this diverse crop group remains characterized as underutilized throughout Europe, and in many regions world-wide. This commentary highlights that integrated, diverse, legume-based, regenerative agricultural practices should be allied with more-concerted action on ex-farm gate factors at appropriate bioregional scales. Also, that this can be achieved whilst optimizing production, safeguarding food-security, and minimizing additional land-use requirements. To help avoid forfeiting the benefits of legume cultivation for system function, a specific and practical methodological and decision-aid framework is offered. This is based upon the identification and management of sustainable-development indicators for legume-based value chains, to help manage the key facilitative capacities and dependencies. Solving the wicked problems of the climate-biodiversity-nutrition nexus demands complex solutions and multiple benefits and this legume-focus must be allied with more-concerted policy action, including improved facilitation of the catalytic provisions provided by collaborative capacity builders—to ensure that the knowledge networks are established, that there is unhindered information flow, and that new transformative value-chain capacities and business models are established.
Collapse
|
32
|
Aboushanab SA, Khedr SM, Gette IF, Danilova IG, Kolberg NA, Ravishankar GA, Ambati RR, Kovaleva EG. Isoflavones derived from plant raw materials: bioavailability, anti-cancer, anti-aging potentials, and microbiome modulation. Crit Rev Food Sci Nutr 2021; 63:261-287. [PMID: 34251921 DOI: 10.1080/10408398.2021.1946006] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Isoflavones are secondary metabolites that represent the most abundant category of plant polyphenols. Dietary soy, kudzu, and red clover contain primarily genistein, daidzein, glycitein, puerarin, formononetin, and biochanin A. The structural similarity of these compounds to β-estradiol has demonstrated protection against age-related and hormone-dependent diseases in both genders. Demonstrative shreds of evidence confirmed the fundamental health benefits of the consumption of these isoflavones. These relevant activities are complex and largely driven by the source, active ingredients, dose, and administration period of the bioactive compounds. However, the preclinical and clinical studies of these compounds are greatly variable, controversial, and still with no consensus due to the non-standardized research protocols. In addition, absorption, distribution, metabolism, and excretion studies, and the safety profile of isoflavones have been far limited. This highlights a major gap in understanding the potentially critical role of these isoflavones as prospective replacement therapy. Our general review exclusively focuses attention on the crucial role of isoflavones derived from these plant materials and critically highlights their bioavailability, possible anticancer, antiaging potentials, and microbiome modulation. Despite their fundamental health benefits, plant isoflavones reveal prospective therapeutic effects that worth further standardized analysis.
Collapse
Affiliation(s)
- Saied A Aboushanab
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia
| | - Shaimaa M Khedr
- Pharmaceutical and Fermentation Industries Development Center (PFIDC), City of Scientific Research and Technological Applications, SRTA-City, Alexandria, Egypt
| | - Irina F Gette
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia.,Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Irina G Danilova
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia.,Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Natalia A Kolberg
- Integrated Laboratory Complex, Ural State University of Economics, Yekaterinburg, Russia
| | - Gokare A Ravishankar
- C. D. Sagar Centre for Life Sciences, Dayananda Sagar College of Engineering, Dayananda Sagar Institutions, Bangalore, Karnataka, India
| | - Ranga Rao Ambati
- Department of Biotechnology, Vignan's Foundation of Science, Technology and Research, Guntur, Andhra Pradesh, India
| | - Elena G Kovaleva
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia
| |
Collapse
|
33
|
Sajid M, Stone SR, Kaur P. Recent Advances in Heterologous Synthesis Paving Way for Future Green-Modular Bioindustries: A Review With Special Reference to Isoflavonoids. Front Bioeng Biotechnol 2021; 9:673270. [PMID: 34277582 PMCID: PMC8282456 DOI: 10.3389/fbioe.2021.673270] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Isoflavonoids are well-known plant secondary metabolites that have gained importance in recent time due to their multiple nutraceutical and pharmaceutical applications. In plants, isoflavonoids play a role in plant defense and can confer the host plant a competitive advantage to survive and flourish under environmental challenges. In animals, isoflavonoids have been found to interact with multiple signaling pathways and have demonstrated estrogenic, antioxidant and anti-oncologic activities in vivo. The activity of isoflavonoids in the estrogen pathways is such that the class has also been collectively called phytoestrogens. Over 2,400 isoflavonoids, predominantly from legumes, have been identified so far. The biosynthetic pathways of several key isoflavonoids have been established, and the genes and regulatory components involved in the biosynthesis have been characterized. The biosynthesis and accumulation of isoflavonoids in plants are regulated by multiple complex environmental and genetic factors and interactions. Due to this complexity of secondary metabolism regulation, the export and engineering of isoflavonoid biosynthetic pathways into non-endogenous plants are difficult, and instead, the microorganisms Saccharomyces cerevisiae and Escherichia coli have been adapted and engineered for heterologous isoflavonoid synthesis. However, the current ex-planta production approaches have been limited due to slow enzyme kinetics and traditionally laborious genetic engineering methods and require further optimization and development to address the required titers, reaction rates and yield for commercial application. With recent progress in metabolic engineering and the availability of advanced synthetic biology tools, it is envisaged that highly efficient heterologous hosts will soon be engineered to fulfill the growing market demand.
Collapse
Affiliation(s)
| | | | - Parwinder Kaur
- UWA School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
34
|
Asati V, Srivastava A, Mukherjee S, Sharma PK. Comparative analysis of antioxidant and antiproliferative activities of crude and purified flavonoid enriched fractions of pods/seeds of two desert legumes Prosopis cineraria and Cyamopsis tetragonoloba. Heliyon 2021; 7:e07304. [PMID: 34189326 PMCID: PMC8220241 DOI: 10.1016/j.heliyon.2021.e07304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/26/2020] [Accepted: 06/09/2021] [Indexed: 11/25/2022] Open
Abstract
Cyamopsis tetragonoloba and Prosopis cineraria are two legumes of the semi-arid region of Indian subcontinent which are unexplored with respect to their medicinal potential. Moreover, there is considerable lack in the comparative analysis of the biological properties of crude and enriched fractions obtained from the pods and seeds. Therefore, this study aims in investigating the effect of purification on the antioxidant and anticancerous activities of the extracts from the two legumes. This is the first study to purify an enriched methanolic fraction using Amberlite XAD7HP column chromatography followed by analysis using Thin Layer Chromatography. This matrix provided an economic and time efficient isolation of flavonoids and isoflavonoids from the seeds and pods of the above mentioned legumes. In addition, antioxidant activity carried out using DPPH assay showed that purification process did not contributed to enhanced antioxidant potential. However, inverse results were obtained during anticancerous activity assay on Huh-7 cell lines.
Collapse
Affiliation(s)
- Vidushi Asati
- Department of Biological Sciences, BITS-Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Abhilasha Srivastava
- Department of Biological Sciences, BITS-Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Sudeshna Mukherjee
- Department of Biological Sciences, BITS-Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Pankaj Kumar Sharma
- Department of Biological Sciences, BITS-Pilani, Pilani Campus, Rajasthan, 333031, India
| |
Collapse
|
35
|
Gao R, Han T, Xun H, Zeng X, Li P, Li Y, Wang Y, Shao Y, Cheng X, Feng X, Zhao J, Wang L, Gao X. MYB transcription factors GmMYBA2 and GmMYBR function in a feedback loop to control pigmentation of seed coat in soybean. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4401-4418. [PMID: 33825878 DOI: 10.1093/jxb/erab152] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Soybean has undergone extensive selection pressures for seed nutrient composition and seed color during domestication, but the major genetic loci controlling seed coat color have not been completely understood, and the transcriptional regulation relationship among the loci remains elusive. Here, two major regulators, GmMYBA2 and GmMYBR, were functionally characterized as an anthocyanin activator and repressor, respectively. Ectopic expression of GmMYBA2 in soybean hairy roots conferred the enhanced accumulation of delphinidin and cyanidin types of anthocyanins in W1t and w1T backgrounds, respectively, through activating anthocyanin biosynthetic genes in the reported loci. The seed coat pigmentation of GmMYBA2-overexpressing transgenic plants in the W1 background mimicked the imperfect black phenotype (W1/w1, i, R, t), suggesting that GmMYBA2 was responsible for the R locus. Molecular and biochemical analysis showed that GmMYBA2 interacted with GmTT8a to directly activate anthocyanin biosynthetic genes. GmMYBA2 and GmMYBR might form a feedback loop to fine-tune seed coat coloration, which was confirmed in transgenic soybeans. Both GmTT8a and GmMYBR that were activated by GmMYBA2 in turn enhanced and obstructed the formation of the GmMYBA2-GmTT8a module, respectively. The results revealed the sophisticated regulatory network underlying the soybean seed coat pigmentation loci and shed light on the understanding of the seed coat coloration and other seed inclusions.
Collapse
Affiliation(s)
- Ruifang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Taotao Han
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Hongwei Xun
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Xiangsheng Zeng
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, China
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, China
| | - Yueqing Li
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Yanan Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Yan Shao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Xin Cheng
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, China
| | - Li Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| |
Collapse
|
36
|
Li X. Plant cell wall chemistry: implications for ruminant utilisation. JOURNAL OF APPLIED ANIMAL NUTRITION 2021. [DOI: 10.3920/jaan2020.0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ruminants have adapted to cope with bulky, fibrous forage diets by accommodating a large, diverse microbial population in the reticulo-rumen. Ruminants are dependent on forages as their main sources of energy and other nutrients. Forages are comprised of a complex matrix of cellulose, hemicellulose, protein, minerals and phenolic compounds (including lignin and tannins) with various linkages; many of which are poorly defined. The composition and characteristics of polysaccharides vary greatly among forages and plant cell walls. Plant cell walls are linked and packed together in tight configurations to resist degradation, and hence their nutritional value to animals varies considerably, depending on composition, structure and degradability. An understanding of the inter-relationship between the chemical composition and the degradation of plant cell walls by rumen microorganisms is of major economic importance to ruminant production. Increasing the efficiency of fibre degradation in the rumen has been the subject of extensive research for many decades. This review summarises current knowledge of forage chemistry in order to develop strategies to increase efficiency of forage utilisation by ruminants.
Collapse
Affiliation(s)
- X. Li
- The University of Queensland, School of Agriculture and Food Sciences, Gatton, Qld 4343, Australia
| |
Collapse
|
37
|
Messina M, Mejia SB, Cassidy A, Duncan A, Kurzer M, Nagato C, Ronis M, Rowland I, Sievenpiper J, Barnes S. Neither soyfoods nor isoflavones warrant classification as endocrine disruptors: a technical review of the observational and clinical data. Crit Rev Food Sci Nutr 2021; 62:5824-5885. [PMID: 33775173 DOI: 10.1080/10408398.2021.1895054] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Soybeans are a rich source of isoflavones, which are classified as phytoestrogens. Despite numerous proposed benefits, isoflavones are often classified as endocrine disruptors, based primarily on animal studies. However, there are ample human data regarding the health effects of isoflavones. We conducted a technical review, systematically searching Medline, EMBASE, and the Cochrane Library (from inception through January 2021). We included clinical studies, observational studies, and systematic reviews and meta-analyses (SRMA) that examined the relationship between soy and/or isoflavone intake and endocrine-related endpoints. 417 reports (229 observational studies, 157 clinical studies and 32 SRMAs) met our eligibility criteria. The available evidence indicates that isoflavone intake does not adversely affect thyroid function. Adverse effects are also not seen on breast or endometrial tissue or estrogen levels in women, or testosterone or estrogen levels, or sperm or semen parameters in men. Although menstrual cycle length may be slightly increased, ovulation is not prevented. Limited insight could be gained about possible impacts of in utero isoflavone exposure, but the existing data are reassuring. Adverse effects of isoflavone intake were not identified in children, but limited research has been conducted. After extensive review, the evidence does not support classifying isoflavones as endocrine disruptors.
Collapse
Affiliation(s)
- Mark Messina
- Department of Nutrition, Loma Linda University, Loma Linda, California, USA
| | - Sonia Blanco Mejia
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Aedin Cassidy
- Nutrition and Preventive Medicine, Queen's University, Belfast, Northern Ireland, UK
| | - Alison Duncan
- College of Biological Sciences, University of Guelph, Guelph, Canada
| | - Mindy Kurzer
- Department of Food Science and Nutrition, University of Minnesota, Minneapolis, Minnesota, USA
| | - Chisato Nagato
- Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Martin Ronis
- Health Sciences Center, Louisiana State University Health Sciences Center, Baton Rouge, New Orleans, USA
| | - Ian Rowland
- Human Nutrition, University of Reading, Reading, England, UK
| | | | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama, Alabama, USA
| |
Collapse
|
38
|
Silva H. The Vascular Effects of Isolated Isoflavones-A Focus on the Determinants of Blood Pressure Regulation. BIOLOGY 2021; 10:49. [PMID: 33445531 PMCID: PMC7827317 DOI: 10.3390/biology10010049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/27/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023]
Abstract
Isoflavones are phytoestrogen compounds with important biological activities, including improvement of cardiovascular health. This activity is most evident in populations with a high isoflavone dietary intake, essentially from soybean-based products. The major isoflavones known to display the most important cardiovascular effects are genistein, daidzein, glycitein, formononetin, and biochanin A, although the closely related metabolite equol is also relevant. Most clinical studies have been focused on the impact of dietary intake or supplementation with mixtures of compounds, with only a few addressing the effect of isolated compounds. This paper reviews the main actions of isolated isoflavones on the vasculature, with particular focus given to their effect on the determinants of blood pressure regulation. Isoflavones exert vasorelaxation due to a multitude of pathways in different vascular beds. They can act in the endothelium to potentiate the release of NO and endothelium-derived hyperpolarization factors. In the vascular smooth muscle, isoflavones modulate calcium and potassium channels, leading to hyperpolarization and relaxation. Some of these effects are influenced by the binding of isoflavones to estrogen receptors and to the inhibition of specific kinase enzymes. The vasorelaxation effects of isoflavones are mostly obtained with plasma concentrations in the micromolar range, which are only attained through supplementation. This paper highlights isolated isoflavones as potentially suitable alternatives to soy-based foodstuffs and supplements and which could enlarge the current therapeutic arsenal. Nonetheless, more studies are needed to better establish their safety profile and elect the most useful applications.
Collapse
Affiliation(s)
- Henrique Silva
- Informetrics Research Group, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam;
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
| |
Collapse
|
39
|
Sohn SI, Pandian S, Oh YJ, Kang HJ, Cho WS, Cho YS. Metabolic Engineering of Isoflavones: An Updated Overview. FRONTIERS IN PLANT SCIENCE 2021; 12:670103. [PMID: 34163508 PMCID: PMC8216759 DOI: 10.3389/fpls.2021.670103] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/21/2021] [Indexed: 05/04/2023]
Abstract
Isoflavones are ecophysiologically active secondary metabolites derived from the phenylpropanoid pathway. They were mostly found in leguminous plants, especially in the pea family. Isoflavones play a key role in plant-environment interactions and act as phytoalexins also having an array of health benefits to the humans. According to epidemiological studies, a high intake of isoflavones-rich diets linked to a lower risk of hormone-related cancers, osteoporosis, menopausal symptoms, and cardiovascular diseases. These characteristics lead to the significant advancement in the studies on genetic and metabolic engineering of isoflavones in plants. As a result, a number of structural and regulatory genes involved in isoflavone biosynthesis in plants have been identified and characterized. Subsequently, they were engineered in various crop plants for the increased production of isoflavones. Furthermore, with the advent of high-throughput technologies, the regulation of isoflavone biosynthesis gains attention to increase or decrease the level of isoflavones in the crop plants. In the review, we begin with the role of isoflavones in plants, environment, and its benefits in human health. Besides, the main theme is to discuss the updated research progress in metabolic engineering of isoflavones in other plants species and regulation of production of isoflavones in soybeans.
Collapse
Affiliation(s)
- Soo In Sohn
- Biosafety Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, South Korea
- *Correspondence: Soo-In Sohn,
| | - Subramani Pandian
- Biosafety Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, South Korea
| | - Young Ju Oh
- Institute for Future Environmental Ecology Co., Ltd., Jeonju, South Korea
| | - Hyeon Jung Kang
- Biosafety Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, South Korea
| | - Woo Suk Cho
- Biosafety Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, South Korea
| | - Youn Sung Cho
- Biosafety Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, South Korea
| |
Collapse
|
40
|
Ahmed QU, Ali AHM, Mukhtar S, Alsharif MA, Parveen H, Sabere ASM, Nawi MSM, Khatib A, Siddiqui MJ, Umar A, Alhassan AM. Medicinal Potential of Isoflavonoids: Polyphenols That May Cure Diabetes. Molecules 2020; 25:molecules25235491. [PMID: 33255206 PMCID: PMC7727648 DOI: 10.3390/molecules25235491] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 01/18/2023] Open
Abstract
In recent years, there is emerging evidence that isoflavonoids, either dietary or obtained from traditional medicinal plants, could play an important role as a supplementary drug in the management of type 2 diabetes mellitus (T2DM) due to their reported pronounced biological effects in relation to multiple metabolic factors associated with diabetes. Hence, in this regard, we have comprehensively reviewed the potential biological effects of isoflavonoids, particularly biochanin A, genistein, daidzein, glycitein, and formononetin on metabolic disorders and long-term complications induced by T2DM in order to understand whether they can be future candidates as a safe antidiabetic agent. Based on in-depth in vitro and in vivo studies evaluations, isoflavonoids have been found to activate gene expression through the stimulation of peroxisome proliferator-activated receptors (PPARs) (α, γ), modulate carbohydrate metabolism, regulate hyperglycemia, induce dyslipidemia, lessen insulin resistance, and modify adipocyte differentiation and tissue metabolism. Moreover, these natural compounds have also been found to attenuate oxidative stress through the oxidative signaling process and inflammatory mechanism. Hence, isoflavonoids have been envisioned to be able to prevent and slow down the progression of long-term diabetes complications including cardiovascular disease, nephropathy, neuropathy, and retinopathy. Further thoroughgoing investigations in human clinical studies are strongly recommended to obtain the optimum and specific dose and regimen required for supplementation with isoflavonoids and derivatives in diabetic patients.
Collapse
Affiliation(s)
- Qamar Uddin Ahmed
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia; (A.H.M.A); (A.S.M.S.); (M.S.M.N.); (A.K.); (M.J.S.)
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia
- Correspondence: (Q.U.A.); (S.M.)
| | - Abdul Hasib Mohd Ali
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia; (A.H.M.A); (A.S.M.S.); (M.S.M.N.); (A.K.); (M.J.S.)
| | - Sayeed Mukhtar
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.A.A.); (H.P.)
- Correspondence: (Q.U.A.); (S.M.)
| | - Meshari A. Alsharif
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.A.A.); (H.P.)
| | - Humaira Parveen
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.A.A.); (H.P.)
| | - Awis Sukarni Mohmad Sabere
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia; (A.H.M.A); (A.S.M.S.); (M.S.M.N.); (A.K.); (M.J.S.)
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia
| | - Mohamed Sufian Mohd. Nawi
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia; (A.H.M.A); (A.S.M.S.); (M.S.M.N.); (A.K.); (M.J.S.)
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia
| | - Alfi Khatib
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia; (A.H.M.A); (A.S.M.S.); (M.S.M.N.); (A.K.); (M.J.S.)
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia
| | - Mohammad Jamshed Siddiqui
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia; (A.H.M.A); (A.S.M.S.); (M.S.M.N.); (A.K.); (M.J.S.)
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang DM, Malaysia
| | - Abdulrashid Umar
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, P M B: 2436 Sokoto, Nigeria; (A.U.); (A.M.A.)
| | - Alhassan Muhammad Alhassan
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, P M B: 2436 Sokoto, Nigeria; (A.U.); (A.M.A.)
| |
Collapse
|
41
|
Ku YS, Contador CA, Ng MS, Yu J, Chung G, Lam HM. The Effects of Domestication on Secondary Metabolite Composition in Legumes. Front Genet 2020; 11:581357. [PMID: 33193705 PMCID: PMC7530298 DOI: 10.3389/fgene.2020.581357] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Legumes are rich in secondary metabolites, such as polyphenols, alkaloids, and saponins, which are important defense compounds to protect the plant against herbivores and pathogens, and act as signaling molecules between the plant and its biotic environment. Legume-sourced secondary metabolites are well known for their potential benefits to human health as pharmaceuticals and nutraceuticals. During domestication, the color, smell, and taste of crop plants have been the focus of artificial selection by breeders. Since these agronomic traits are regulated by secondary metabolites, the basis behind the genomic evolution was the selection of the secondary metabolite composition. In this review, we will discuss the classification, occurrence, and health benefits of secondary metabolites in legumes. The differences in their profiles between wild legumes and their cultivated counterparts will be investigated to trace the possible effects of domestication on secondary metabolite compositions, and the advantages and drawbacks of such modifications. The changes in secondary metabolite contents will also be discussed at the genetic level to examine the genes responsible for determining the secondary metabolite composition that might have been lost due to domestication. Understanding these genes would enable breeding programs and metabolic engineering to produce legume varieties with favorable secondary metabolite profiles for facilitating adaptations to a changing climate, promoting beneficial interactions with biotic factors, and enhancing health-beneficial secondary metabolite contents for human consumption.
Collapse
Affiliation(s)
- Yee-Shan Ku
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Carolina A. Contador
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Ming-Sin Ng
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Jeongjun Yu
- Department of Biotechnology, Chonnam National University, Yeosu, South Korea
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu, South Korea
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| |
Collapse
|
42
|
Ojo OA, Aruleba RT, Adekiya TA, Sibuyi NRS, Ojo AB, Ajiboye BO, Oyinloye BE, Adeola HA, Fadaka AO. Deciphering the interaction of puerarin with cancer macromolecules: An in silico investigation. J Biomol Struct Dyn 2020; 40:848-859. [PMID: 32924840 DOI: 10.1080/07391102.2020.1819425] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The worldwide expanding increment in cancer pervasiveness is disturbing and this disease ranks among the main causes of mortality in both developing and developed countries. Unfortunately, available treatment options come with serious side effects and do not guarantee complete success. Although numerous models have been proposed for the development of better therapeutic agent, however the exact mechanism are still poorly understood. This then calls for continued research aimed at developing new drugs as an alternative or adjuvant anticancer agents. Here we have identified five vital proteins (CDK-2, Bcl-2, CDK-6, VEGFR, and IGF-1R) that aid tumor growth and we inhibited the activity of these proteins with Puerarin. Puerarin is an isoflavonoid C-glycosides used as a therapeutic agent against various human ailments. Our findings revealed that Puerarin fulfilled Veber's rule. Added to this, CDK-6 and Bcl-2 had better glide scores for puerarin than the control (doxorubicin) and molecular simulation showed the stability of the complexes. These findings suggest that inhibiting CDK-6 and Bcl-2 with Puerarin could prove more effective in the management of cancer than doxorubicin. Overall, this study provides a new direction that could facilitate rational drug design for cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Oluwafemi Adeleke Ojo
- Phytomedicine, Natural Products, Drug and Biochemical Toxicology Group, Department of Biochemistry, Landmark University, Omu Aran, Kwara State, Nigeria
| | - Raphael Taiwo Aruleba
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| | - Tayo Alex Adekiya
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Nicole Remaliah Samantha Sibuyi
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Adebola Busola Ojo
- Department of Biochemistry, Faculty of Sciences, Ekiti State University, Ado-Ekiti, Nigeria
| | - Basiru Olaitan Ajiboye
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratory, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Babatunji Emmanuel Oyinloye
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratory, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria.,Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, Richards Bay, South Africa
| | - Henry Ademola Adeola
- Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Adewale Oluwaseun Fadaka
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
43
|
Ahmad S, Zeb A. Phytochemical profile and pharmacological properties of Trifolium repens. J Basic Clin Physiol Pharmacol 2020; 32:/j/jbcpp.ahead-of-print/jbcpp-2020-0015/jbcpp-2020-0015.xml. [PMID: 32776902 DOI: 10.1515/jbcpp-2020-0015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/07/2020] [Indexed: 11/15/2022]
Abstract
Trifolium repens belongs to the family Leguminosae and has been used for therapeutic purposes as traditional medicine. The plant is widely used as fodder and leafy vegetables for human uses. However, there is a lack of a detailed review of its phytochemical profile and pharmacological properties. This review presents a comprehensive overview of the phytochemical profile and biological properties of T. repens. The plant is used as antioxidants and cholinesterase inhibitors and for anti-inflammatory, antiseptic, analgesic, antirheumatic ache, and antimicrobial purposes. This review has summarized the available updated useful information about the different bioactive compounds such as simple phenols, phenolic acids, flavones, flavonols, isoflavones, pterocarpans, cyanogenic glucosides, saponins, and condensed tannins present in T. repens. The pharmacological roles of these secondary metabolites present in T. repens have been presented. It has been revealed that T. repens contain important phytochemicals, which is the potential source of health-beneficial bioactive components for food and nutraceuticals industries.
Collapse
Affiliation(s)
- Sultan Ahmad
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Alam Zeb
- Department of Biochemistry, University of Malakand, Chakdara, Pakistan
| |
Collapse
|
44
|
Moradbeygi H, Jamei R, Heidari R, Darvishzadeh R. Fe 2 O 3 nanoparticles induced biochemical responses and expression of genes involved in rosmarinic acid biosynthesis pathway in Moldavian balm under salinity stress. PHYSIOLOGIA PLANTARUM 2020; 169:555-570. [PMID: 32065661 DOI: 10.1111/ppl.13077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/04/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
The effect of iron oxide nanoparticle (NP) at four concentrations (0, 30, 60 and 90 ppm) and salinity at three levels (0, 50 and 100 mM) were investigated on rosmarinic acid (RA) production in 5-week-old Moldavian balm (Dracocephalum moldavica L.) plants. Salinity and spraying iron oxide NPs significantly affected tyrosine (Tyr), phenylalanine (Phe) and proline (Pro) amino acids content, Phenylalanine Ammonia-Lyase (PAL), Tyrosine Aminotransferase (TAT) and Rosmarinic Acid Synthase (RAS) genes expression levels, RA content, Polyphenol Oxidase (PPO), PAL and Superoxide Dismutase (SOD) activities, malondialdehyde (MDA) content and DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity. PAL, TAT and RAS genes expression rate and content of RA were enhanced in Moldavian balm plants exposed by NaCl + NPs. The results of high performance liquid chromatography (HPLC) revealed that simultaneous application of 50 mM NaCl and 90 ppm NPs increases the RA content in leaf by 81.15% as compared to control plants. The Tyr and Phe contents decreased in Moldavian balm plants exposed to salt stress. Application of NPs had a positive effect on the content of these amino acids. Proline content increased under salinity stress and application of iron NPs induced a significant increase in the Pro content of leaf. The results revealed that PAL, PPO and SOD enzymes activities increased under salinity conditions. The highest activity of PPO and SOD was observed in 100 mM NaCl + 60 ppm NPs treatment. Simultaneous application of 100 mM NaCl + 90 ppm NPs increased the MDA content and DPPH radical scavenging activity compared to control plants. It can be concluded that the application of appropriate levels of NPs moderates the effect of salinity stress in D. moldavica L. and results in an increased amount of RA compared to control plants.
Collapse
Affiliation(s)
- Hanieh Moradbeygi
- Department of Biology, Faculty of Sciences, Urmia University, Urmia, Iran
| | - Rashid Jamei
- Department of Biology, Faculty of Sciences, Urmia University, Urmia, Iran
| | - Reza Heidari
- Department of Biology, Faculty of Sciences, Urmia University, Urmia, Iran
| | - Reza Darvishzadeh
- Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran
| |
Collapse
|
45
|
Wei J, Yang J, Jiang W, Pang Y. Stacking triple genes increased proanthocyanidins level in Arabidopsis thaliana. PLoS One 2020; 15:e0234799. [PMID: 32584850 PMCID: PMC7316333 DOI: 10.1371/journal.pone.0234799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/02/2020] [Indexed: 11/20/2022] Open
Abstract
Anthocyanins and proanthocyanidins are two important plant secondary metabolites, and they contribute to plant survival and human health. In particular, proanthocyanidins could also prevent ruminants from the damage of pasture bloat. However, the improvement of proanthocyanidins content remain unsatisfied. In this study, we attempted to improve proanthocyanidins level by gene stacking in Arabidopsis thaliana as prove-of-concept. Two proanthocyanidin pathway genes from tea plant, CsF3’5’H and CsANR2, were co-expressed in the wild type and PAP1 over-expression Arabidopsis. Over-expression of CsF3’5’H slightly affected anthocyanins level in leaves and proanthocyanidins in mature seed when expressed alone in the pap1-D line. Over-expression of CsANR2 led to an obvious decrease in anthocyanins in leaves of both wild type and pap1-D lines, but increase in proanthocyanidin level in mature seeds. Over-expression of CsANR2 in pap1-D lines lead to production of DMACA-reactive soluble proanthocyanidins in leaves, but not in wild type or pap1-D lines. Anthocyanins level was decreased in the leaves of CsF3’5’H, CsANR2 and pap1-D co-expression lines, but proanthocyanidins were increased remarkably in both leaves and mature seeds in the co-expression line. It is concluded that co-expression of CsANR2 and PAP1 in Arabidopsis produce soluble proanthocyanidins in leaves, and co-expression of CsF3’5’H, CsANR2 and PAP1 lead to a significant increase in proanthocyanidins in mature seeds. The transcript levels of endogenous CHS, DFR, ANS and ANR genes in Arabidopsis were up-regulated in the triple genes co-expression line. Based on these studies, it is possible to develop new plant germplasm with improved proanthocyanidins by co-expressing of multiple genes.
Collapse
Affiliation(s)
- Jiebing Wei
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junfeng Yang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenbo Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (WJ); (YP)
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (WJ); (YP)
| |
Collapse
|
46
|
Wu ZY, Sang LX, Chang B. Isoflavones and inflammatory bowel disease. World J Clin Cases 2020; 8:2081-2091. [PMID: 32548137 PMCID: PMC7281056 DOI: 10.12998/wjcc.v8.i11.2081] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/27/2020] [Accepted: 04/24/2020] [Indexed: 02/05/2023] Open
Abstract
Isoflavones constitute a class of plant hormones including genistein, daidzein, glycitein, formononetin, biochanin A, and irilone, and the major source of human intake is soybeans. Inflammatory bowel disease (IBD) is a chronic recurrent inflammatory disease including ulcerative colitis, Crohn’s disease, and indeterminate colitis, which seriously affects the quality of life of patients and has become a global health problem. Although the pathogenesis of IBD is not very clear, many factors are thought to be related to the occurrence and development of IBD such as genes, immunity, and intestinal flora. How to control IBD effectively for a long time is still a problem for gastroenterologists. Diet has an important effect on IBD. Patients with IBD should pay more attention to diet. To date, many studies have reported that isoflavones have both good and bad effects on IBD. Isoflavones have many activities such as regulating the inflammatory signal pathways and affecting intestinal barrier functions and gut flora. They can also act through estrogen receptors, as they have a similar structure to estrogen. Isoflavones are easy to get from diet for human. Whether they are valuable to be applied to the treatment of IBD is worth studying. This review summarizes the relationship between isoflavones and IBD.
Collapse
Affiliation(s)
- Ze-Yu Wu
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Li-Xuan Sang
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Bing Chang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
47
|
Gohari G, Safai F, Panahirad S, Akbari A, Rasouli F, Dadpour MR, Fotopoulos V. Modified multiwall carbon nanotubes display either phytotoxic or growth promoting and stress protecting activity in Ocimum basilicum L. in a concentration-dependent manner. CHEMOSPHERE 2020; 249:126171. [PMID: 32087452 DOI: 10.1016/j.chemosphere.2020.126171] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 06/10/2023]
Abstract
Carbon-based materials including multiwall carbon nanotubes (MWCNTs) have been recently implicated in a number of reports dealing with their potential use in agriculture, leading to contradictory findings. In this study, MWCNTs were successfully functionalized with carboxylic acid groups (MWCNTs-COOH) in order to increase water dispersion. Hydroponically cultured sweet basil (Ocimum basilicum L.) seedlings were subjected to four concentrations (0, 25, 50 and 100 mg L-1) of MWCNTs-COOH under three salt stress levels (0, 50 and 100 mM NaCl). An array of agronomic, physiological, analytical and biochemical parameters were evaluated in an attempt to examine the potential use of MWCNTs in plants under optimal and abiotic stress conditions. Application of MWCNTs-COOH at optimum concentration (50 mg L-1) could ameliorate the negative effects of salinity stress by increasing chlorophyll and carotenoids content and inducing non-enzymatic (i.e. phenolic content) and enzymatic antioxidant components (i.e. ascorbate peroxidase (APX), catalase (CAT) and guaiacol peroxidase (GP) activity). Furthermore, MWCNTs-COOH treatments under optimal conditions induced plant growth, while a significant increase (P ≤ 0.01) was recorded in essential oil content and compound profile. On the other hand, biochemical and epifluorescence microscopy evidence suggested that high dosage (100 mg L-1) of MWCNTs-COOH leads to toxicity effects in plant tissue. Overall, the positive response of plants to low concentrations of MWCNTs-COOH under control and abiotic stress conditions renders them as potential novel plant growth promoting and stress protecting agents, opening up new perspectives for their use in agriculture.
Collapse
Affiliation(s)
- Gholamreza Gohari
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, Iran.
| | - Fatemeh Safai
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Sima Panahirad
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Ali Akbari
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Farzad Rasouli
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Mohammad Reza Dadpour
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
48
|
Król-Grzymała A, Amarowicz R. Phenolic Compounds of Soybean Seeds from Two European Countries and Their Antioxidant Properties. Molecules 2020; 25:E2075. [PMID: 32365546 PMCID: PMC7249021 DOI: 10.3390/molecules25092075] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 11/30/2022] Open
Abstract
There is only a small acreage of planted soybeans in northern Europe, as the global production of this crop is mainly dictated by the warmer temperatures needed for bountiful yields. The defense response of soybean plants to a cold climate entails the secretion of specific compounds which help mitigate oxidative stress, i.e., antioxidants, including phenolic compounds. The objective of this study was to examine differences in the concentrations of phenolic compounds, their antioxidant properties, and the concentration of key isoflavones (namely genistein, daidzein, malonyl daidzein, malonyl genistein, and daidzin) in the seeds of six soybean cultivars from two different regions of Europe, namely Poland and France. The total phenolic contents, isoflavone levels, and in vitro antioxidant capacities of soybean seeds from most of the investigated cultivars of northeast Europe were found to be greater than those from southwest Europe. The phenolic compounds of seed extracts are primarily responsible for the free-radical scavenging of soybeans. Factors regulating the production of phenolic compounds in the seeds have not been thoroughly elucidated. Hence, the results presented in this paper can be useful in the selection of soybean cultivars with higher levels of seed phenolics, because of their beneficial impact on human health and on the soybean's defense mechanism against plant stresses.
Collapse
Affiliation(s)
- Angelika Król-Grzymała
- Department of Biology and Biotechnology, Chair of Biochemistry, University of Warmia and Mazury, 10-748 Olsztyn, Poland
| | - Ryszard Amarowicz
- Division of Food Science, Institute of Animal Reproduction and Food Research of the Polish Academy of Science, 10-748 Olsztyn, Poland;
| |
Collapse
|
49
|
Gohari G, Alavi Z, Esfandiari E, Panahirad S, Hajihoseinlou S, Fotopoulos V. Interaction between hydrogen peroxide and sodium nitroprusside following chemical priming of Ocimum basilicum L. against salt stress. PHYSIOLOGIA PLANTARUM 2020; 168:361-373. [PMID: 31433490 DOI: 10.1111/ppl.13020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/23/2019] [Accepted: 08/16/2019] [Indexed: 05/04/2023]
Abstract
Sodium nitroprusside (SNP) and hydrogen peroxide (H2 O2 ), as priming agents, have the well-recorded property to increase plant tolerance against a range of different abiotic stresses such as salinity. In this regard, the present study was conducted to evaluate the effect of different levels of SNP (100 and 200 µM) and H2 O2 (2.5 and 5 mM) as well as their combinations under salt stress (0 and 50 mM NaCl) on key physiological and biochemical attributes of the economically important aromatic plant basil (Ocimum basilicum L.) grown under hydroponic culture. Results revealed that morphological parameters such as plant height, root length, leaf fresh and dry weights (FW and DW) were significantly decreased by salinity stress, while SNP and H2 O2 treatments, alone or combined, increased FW and DW thus enhancing plant tolerance to salt stress. Furthermore, 200 µM SNP + 2.5 mM H2 O2 appeared to be the most effective treatment by causing significant increase in chlorophyll a and b, anthocyanin content and guaiacol peroxidase and ascorbate peroxidase enzymes activities under saline condition. In addition, analytical measurements showed that essential oil profile (concentration of main components) under salt stress was mostly affected by SNP and H2 O2 treatments. The highest increase was observed for methyl chavicol (43.09-69.91%), linalool (4.8-17.9%), cadinol (1.5-3.2%) and epi-α-cadinol (0.18-10.75%) compounds. In conclusion, current findings demonstrated a positive crosstalk between SNP and H2 O2 toward improved basil plant tolerance to salt stress, linked with regulation of essential oil composition.
Collapse
Affiliation(s)
- Gholamreza Gohari
- Department of Horticultural Sciences, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Zahra Alavi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Ezatollah Esfandiari
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Sima Panahirad
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Sedigheh Hajihoseinlou
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
50
|
Noviany N, Samadi A, Yuliyan N, Hadi S, Aziz M, Purwitasari N, Mohamad S, Ismail NN, Gable KP, Mahmud T. Structure Characterization and Biological Activity of 2-Arylbenzofurans from an Indonesian Plant, Sesbania grandiflora (L.) Pers. PHYTOCHEMISTRY LETTERS 2020; 35:211-215. [PMID: 32863985 PMCID: PMC7451414 DOI: 10.1016/j.phytol.2019.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A new 2-arylbenzofuran, sesbagrandiflorain C (1), together with four known compounds, 2-(3,4-dihydroxy-2-methoxyphenyl)-4-hydroxy-6-methoxybenzofuran-3-carbaldehyde (2), 2-(4-hydroxy-2-methoxyphenyl)-5,6-dimethoxybenzofuran-3-carboxaldehyde (3), sesbagrandiflorain A (4) and sesbagrandiflorain B (5), have been isolated from the stem bark of an Indonesian plant, Sesbania grandiflora (L.) Pers. The chemical structure of compound 1 was elucidated by UV, IR, MS, and NMR spectroscopic techniques. The proton and carbon NMR resonances of 1 were also compared with the predicted chemical shifts obtained from DFT quantum mechanical calculations with Gaussian. None of the compounds showed antibacterial activity against Bacillus subtilis, Escherichia coli, Mycobacterium smegmatis, Pseudomonas aeruginosa, and Staphylococcus aureus in an agar diffusion assay. However, sesbagrandiflorains A (4) and B (5) exhibited moderate activity against Mycobacterium tuberculosis H37Rv. In addition, compounds 1 - 5 have moderate cytotoxicity against HeLa, HepG2, and MCF-7 cancer cell lines.
Collapse
Affiliation(s)
- Noviany Noviany
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Lampung, Bandar Lampung 35145, Lampung, Indonesia
| | - Arash Samadi
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331-3507, USA
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-3507, USA
| | - Nita Yuliyan
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Lampung, Bandar Lampung 35145, Lampung, Indonesia
| | - Sutopo Hadi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Lampung, Bandar Lampung 35145, Lampung, Indonesia
| | - Muhammad Aziz
- Institute of Innovative Research, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Neny Purwitasari
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, University of Airlangga, Surabaya 60286, Indonesia
| | - Suriyati Mohamad
- School of Biological Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Nur Najihah Ismail
- School of Biological Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Kevin P. Gable
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-3507, USA
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331-3507, USA
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-3507, USA
| |
Collapse
|