1
|
Contador CA, Liu A, Ng MS, Ku YS, Chan SHJ, Lam HM. Contextualized Metabolic Modelling Revealed Factors Affecting Isoflavone Accumulation in Soybean Seeds. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39292176 DOI: 10.1111/pce.15140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/05/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024]
Abstract
Isoflavones, secondary metabolites with numerous health benefits, are predominantly found in legume seeds, especially soybean; however, their contents in domesticated soybean seeds are highly variable. Wild soybeans are known for higher seed isoflavone contents than cultivars. Here we used experimental and modelling approaches on wild soybean (W05) and cultivated soybean (C08) to delineate factors influencing isoflavone accumulation. We found imported nutrients were converted into storage compounds, with isoflavone accumulation in W05 seeds being faster than in C08 ones. The isoflavone accumulation during seed development was simulated using context-specific cotyledon metabolic models of four developmental stages on cultivar C08, and the metabolic burden imposed by increasing biomass was evaluated. Trade-off analyses between biomass and isoflavone suggest that high biomass requirement in cultivars could limit the reallocation of resources for secondary metabolite production. Isoflavone production in mature seeds was also influenced by biomass compositions. Seeds with higher carbohydrate contents favour isoflavone production, while those with highest protein and oil contents had lowest isoflavone contents. Although seeds could synthesize isoflavones on their own, the predicted fluxes from biosynthesis alone were lower than the empirical levels. Shadow price analyses indicated that isoflavone accumulation depended on both intrinsic biosynthesis and direct contribution from the plant.
Collapse
Affiliation(s)
- Carolina A Contador
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ailin Liu
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ming-Sin Ng
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yee-Shan Ku
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Siu H J Chan
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Hon-Ming Lam
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
2
|
Morley SA, Ma F, Alazem M, Frankfater C, Yi H, Burch-Smith T, Clemente TE, Veena V, Nguyen H, Allen DK. Expression of malic enzyme reveals subcellular carbon partitioning for storage reserve production in soybeans. THE NEW PHYTOLOGIST 2023. [PMID: 36829298 DOI: 10.1111/nph.18835] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Central metabolism produces amino and fatty acids for protein and lipids that establish seed value. Biosynthesis of storage reserves occurs in multiple organelles that exchange central intermediates including two essential metabolites, malate, and pyruvate that are linked by malic enzyme. Malic enzyme can be active in multiple subcellular compartments, partitioning carbon and reducing equivalents for anabolic and catabolic requirements. Prior studies based on isotopic labeling and steady-state metabolic flux analyses indicated malic enzyme provides carbon for fatty acid biosynthesis in plants, though genetic evidence confirming this role is lacking. We hypothesized that increasing malic enzyme flux would alter carbon partitioning and result in increased lipid levels in soybeans. Homozygous transgenic soybean plants expressing Arabidopsis malic enzyme alleles, targeting the translational products to plastid or outside the plastid during seed development, were verified by transcript and enzyme activity analyses, organelle proteomics, and transient expression assays. Protein, oil, central metabolites, cofactors, and acyl-acyl carrier protein (ACPs) levels were quantified overdevelopment. Amino and fatty acid levels were altered resulting in an increase in lipids by 0.5-2% of seed biomass (i.e. 2-9% change in oil). Subcellular targeting of a single gene product in central metabolism impacts carbon and reducing equivalent partitioning for seed storage reserves in soybeans.
Collapse
Affiliation(s)
- Stewart A Morley
- United States Department of Agriculture, Agricultural Research Service, 975 N Warson Rd, St Louis, MO, 63132, USA
- Donald Danforth Plant Science Center, 975 N Warson Rd, St Louis, MO, 63132, USA
| | - Fangfang Ma
- Donald Danforth Plant Science Center, 975 N Warson Rd, St Louis, MO, 63132, USA
| | - Mazen Alazem
- Donald Danforth Plant Science Center, 975 N Warson Rd, St Louis, MO, 63132, USA
| | - Cheryl Frankfater
- United States Department of Agriculture, Agricultural Research Service, 975 N Warson Rd, St Louis, MO, 63132, USA
- Donald Danforth Plant Science Center, 975 N Warson Rd, St Louis, MO, 63132, USA
| | - Hochul Yi
- Donald Danforth Plant Science Center, 975 N Warson Rd, St Louis, MO, 63132, USA
| | - Tessa Burch-Smith
- Donald Danforth Plant Science Center, 975 N Warson Rd, St Louis, MO, 63132, USA
| | - Tom Elmo Clemente
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, 202 Keim Hall, Lincoln, NE, 68583, USA
| | - Veena Veena
- Donald Danforth Plant Science Center, 975 N Warson Rd, St Louis, MO, 63132, USA
| | - Hanh Nguyen
- Center for Plant Science Innovation, University of Nebraska, N300 Beadle Center, 1901 Vine St., Lincoln, NE, 68588, USA
| | - Doug K Allen
- United States Department of Agriculture, Agricultural Research Service, 975 N Warson Rd, St Louis, MO, 63132, USA
- Donald Danforth Plant Science Center, 975 N Warson Rd, St Louis, MO, 63132, USA
| |
Collapse
|
3
|
Wang Y, Wondisford FE, Song C, Zhang T, Su X. Metabolic Flux Analysis-Linking Isotope Labeling and Metabolic Fluxes. Metabolites 2020; 10:metabo10110447. [PMID: 33172051 PMCID: PMC7694648 DOI: 10.3390/metabo10110447] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 01/02/2023] Open
Abstract
Metabolic flux analysis (MFA) is an increasingly important tool to study metabolism quantitatively. Unlike the concentrations of metabolites, the fluxes, which are the rates at which intracellular metabolites interconvert, are not directly measurable. MFA uses stable isotope labeled tracers to reveal information related to the fluxes. The conceptual idea of MFA is that in tracer experiments the isotope labeling patterns of intracellular metabolites are determined by the fluxes, therefore by measuring the labeling patterns we can infer the fluxes in the network. In this review, we will discuss the basic concept of MFA using a simplified upper glycolysis network as an example. We will show how the fluxes are reflected in the isotope labeling patterns. The central idea we wish to deliver is that under metabolic and isotopic steady-state the labeling pattern of a metabolite is the flux-weighted average of the substrates’ labeling patterns. As a result, MFA can tell the relative contributions of converging metabolic pathways only when these pathways make substrates in different labeling patterns for the shared product. This is the fundamental principle guiding the design of isotope labeling experiment for MFA including tracer selection. In addition, we will also discuss the basic biochemical assumptions of MFA, and we will show the flux-solving procedure and result evaluation. Finally, we will highlight the link between isotopically stationary and nonstationary flux analysis.
Collapse
Affiliation(s)
- Yujue Wang
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (Y.W.); (F.E.W.)
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Fredric E. Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (Y.W.); (F.E.W.)
| | - Chi Song
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH 43210, USA;
| | - Teng Zhang
- Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA;
| | - Xiaoyang Su
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (Y.W.); (F.E.W.)
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
- Correspondence: ; Tel.: +1-732-235-5447
| |
Collapse
|
4
|
Correa SM, Alseekh S, Atehortúa L, Brotman Y, Ríos-Estepa R, Fernie AR, Nikoloski Z. Model-assisted identification of metabolic engineering strategies for Jatropha curcas lipid pathways. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:76-95. [PMID: 33001507 DOI: 10.1111/tpj.14906] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Efficient approaches to increase plant lipid production are necessary to meet current industrial demands for this important resource. While Jatropha curcas cell culture can be used for in vitro lipid production, scaling up the system for industrial applications requires an understanding of how growth conditions affect lipid metabolism and yield. Here we present a bottom-up metabolic reconstruction of J. curcas supported with labeling experiments and biomass characterization under three growth conditions. We show that the metabolic model can accurately predict growth and distribution of fluxes in cell cultures and use these findings to pinpoint energy expenditures that affect lipid biosynthesis and metabolism. In addition, by using constraint-based modeling approaches we identify network reactions whose joint manipulation optimizes lipid production. The proposed model and computational analyses provide a stepping stone for future rational optimization of other agronomically relevant traits in J. curcas.
Collapse
Affiliation(s)
- Sandra M Correa
- Genetics of Metabolic Traits Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
- Grupo de Biotecnología, Departamento de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Saleh Alseekh
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
- Centre for Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Lucía Atehortúa
- Grupo de Biotecnología, Departamento de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Yariv Brotman
- Genetics of Metabolic Traits Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Rigoberto Ríos-Estepa
- Grupo de Bioprocesos, Departamento de Ingeniería Química, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Alisdair R Fernie
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
- Centre for Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Zoran Nikoloski
- Centre for Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, 14476, Germany
- Systems Biology and Mathematical Modelling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| |
Collapse
|
5
|
Rezaei L, Shojaosadati SA, Farahmand L, Moradi‐Kalbolandi S. Enhancement of extracellular bispecific anti-MUC1 nanobody expression in E. coli BL21 (DE3) by optimization of temperature and carbon sources through an autoinduction condition. Eng Life Sci 2020; 20:338-349. [PMID: 32774206 PMCID: PMC7401236 DOI: 10.1002/elsc.201900158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 04/06/2020] [Accepted: 05/05/2020] [Indexed: 11/11/2022] Open
Abstract
Escherichia coli is one of the most suitable hosts for production of antibodies and antibody fragments. Antibody fragment secretion to the culture medium improves product purity in cell culture and diminishes downstream costs. In this study, E. coli strain BL21 (DE3) harboring gene encoding bispecific anti-MUC1 nanobody was selected, and the autoinduction methodology for expression of bispecific anti-MUC1 nanobody was investigated. Due to the replacement of IPTG by lactose as inducer, less impurity and toxicity in the final product were observed. To increase both intracellular and extracellular nanobody production, initially, the experiments were performed for the key factors including temperature and duration of protein expression. The highest amount of nanobody was produced after 21 h at 33°C. The effect of different carbon sources, glycerol, glucose, lactose, and glycine as a medium additive at optimum temperature and time were also assessed by using response surface methodology. The optimized concentrations of carbon sources were obtained as 0.75% (w/v), 0.03% (w/v), 0.1% (w/v), and 0.75% (w/v) for glycerol, glucose, lactose, and glycine, respectively. Finally, the production of nanobody in 2 L fermenter under the optimized autoinduction conditions was evaluated. The results show that the total titer of 87.66 µg/mL anti-MUC1 nanobody, which is approximately seven times more than the total titer of nanobody produced in LB culture medium, is 12.23 µg/L .
Collapse
Affiliation(s)
- Leila Rezaei
- Biotechnology GroupFaculty of Chemical EngineeringTarbiat Modares UniversityTehranIran
| | | | - Leila Farahmand
- Recombinant Proteins DepartmentBreast Cancer Research CenterMotamed Cancer InstituteTehranIran
| | - Shima Moradi‐Kalbolandi
- Recombinant Proteins DepartmentBreast Cancer Research CenterMotamed Cancer InstituteTehranIran
| |
Collapse
|
6
|
IsoSearch: An Untargeted and Unbiased Metabolite and Lipid Isotopomer Tracing Strategy from HR-LC-MS/MS Datasets. Methods Protoc 2020; 3:mps3030054. [PMID: 32751454 PMCID: PMC7563207 DOI: 10.3390/mps3030054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Stable isotopic tracer analysis is a technique used to determine carbon or nitrogen atom incorporation into biological systems. A number of mass spectrometry based approaches have been developed for this purpose, including high-resolution tandem mass spectrometry (HR-LC-MS/MS), selected reaction monitoring (SRM) and parallel reaction monitoring (PRM). We have developed an approach for analyzing untargeted metabolomic and lipidomic datasets using high-resolution mass spectrometry with polarity switching and implemented our approach in the open-source R script IsoSearch and in Scaffold Elements software. Using our strategy, which requires an unlabeled reference dataset and isotope labeled datasets across various biological conditions, we traced metabolic isotopomer alterations in breast cancer cells (MCF-7) treated with the metabolic drugs 2-deoxy-glucose, 6-aminonicotinamide, compound 968, and rapamycin. Metabolites and lipids were first identified by the commercial software Scaffold Elements and LipidSearch, then IsoSearch successfully profiled the 13C-isotopomers extracted metabolites and lipids from 13C-glucose labeled MCF-7 cells. The results interpreted known models, such as glycolysis and pentose phosphate pathway inhibition, but also helped to discover new metabolic/lipid flux patterns, including a reactive oxygen species (ROS) defense mechanism induced by 6AN and triglyceride accumulation in rapamycin treated cells. The results suggest the IsoSearch/Scaffold Elements platform is effective for studying metabolic tracer analysis in diseases, drug metabolism, and metabolic engineering for both polar metabolites and non-polar lipids.
Collapse
|
7
|
Correa SM, Fernie AR, Nikoloski Z, Brotman Y. Towards model-driven characterization and manipulation of plant lipid metabolism. Prog Lipid Res 2020; 80:101051. [PMID: 32640289 DOI: 10.1016/j.plipres.2020.101051] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 01/09/2023]
Abstract
Plant lipids have versatile applications and provide essential fatty acids in human diet. Therefore, there has been a growing interest to better characterize the genetic basis, regulatory networks, and metabolic pathways that shape lipid quantity and composition. Addressing these issues is challenging due to context-specificity of lipid metabolism integrating environmental, developmental, and tissue-specific cues. Here we systematically review the known metabolic pathways and regulatory interactions that modulate the levels of storage lipids in oilseeds. We argue that the current understanding of lipid metabolism provides the basis for its study in the context of genome-wide plant metabolic networks with the help of approaches from constraint-based modeling and metabolic flux analysis. The focus is on providing a comprehensive summary of the state-of-the-art of modeling plant lipid metabolic pathways, which we then contrast with the existing modeling efforts in yeast and microalgae. We then point out the gaps in knowledge of lipid metabolism, and enumerate the recent advances of using genome-wide association and quantitative trait loci mapping studies to unravel the genetic regulations of lipid metabolism. Finally, we offer a perspective on how advances in the constraint-based modeling framework can propel further characterization of plant lipid metabolism and its rational manipulation.
Collapse
Affiliation(s)
- Sandra M Correa
- Genetics of Metabolic Traits Group, Max Planck Institute for Molecular Plant Physiology, Potsdam 14476, Germany; Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel; Departamento de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín 050010, Colombia.
| | - Alisdair R Fernie
- Central Metabolism Group, Max Planck Institute for Molecular Plant Physiology, Potsdam 14476, Germany; Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Zoran Nikoloski
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria; Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modelling Group, Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm 14476, Germany.
| | - Yariv Brotman
- Genetics of Metabolic Traits Group, Max Planck Institute for Molecular Plant Physiology, Potsdam 14476, Germany; Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| |
Collapse
|
8
|
Carey LM, Clark TJ, Deshpande RR, Cocuron JC, Rustad EK, Shachar-Hill Y. High Flux Through the Oxidative Pentose Phosphate Pathway Lowers Efficiency in Developing Camelina Seeds. PLANT PHYSIOLOGY 2020; 182:493-506. [PMID: 31699846 PMCID: PMC6945844 DOI: 10.1104/pp.19.00740] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/19/2019] [Indexed: 05/25/2023]
Abstract
Many seeds are green during development, and light has been shown to play a role in the efficiency with which maternally supplied substrates are converted into storage compounds. However, the effects of light on the fluxes through central metabolism that determine this efficiency are poorly understood. Here, we used metabolic flux analysis to determine the effects of light on central metabolism in developing embryos of false flax (Camelina sativa). Metabolic efficiency in C. sativa is of interest because, despite its growing importance as a model oilseed and engineering target and its potential as a biofuel crop, its yields are lower than other major oilseed species. Culture conditions under which steady-state growth and composition of developing embryos match those in planta were used to quantify substrate uptake and respiration rates. The carbon conversion efficiency (CCE) was 21% ± 3% in the dark and 42% ± 4% under high light. Under physiological illumination, the CCE (32% ± 2%) was substantially lower than in green and nongreen oilseeds studied previously. 13C and 14C isotopic labeling experiments were used together with computer-aided modeling to map fluxes through central metabolism. Fluxes through the oxidative pentose phosphate pathway (OPPP) were the principal source of CO2 production and strongly negatively correlated with CCE across light levels. OPPP fluxes were greatly in excess of demand for NAD(P)H for biosynthesis and larger than those measured in other systems. Excess reductant appears to be dissipated via cyanide-insensitive respiration. OPPP enzymes therefore represent a potential target for increasing efficiency and yield in C. sativa.
Collapse
Affiliation(s)
- Lisa M Carey
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Teresa J Clark
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Rahul R Deshpande
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | | | - Emily K Rustad
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
9
|
Skraly FA, Ambavaram MMR, Peoples O, Snell KD. Metabolic engineering to increase crop yield: From concept to execution. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 273:23-32. [PMID: 29907305 DOI: 10.1016/j.plantsci.2018.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/07/2018] [Accepted: 03/10/2018] [Indexed: 05/18/2023]
Abstract
Although the return on investment over the last 20 years for mass screening of individual plant genes to improve crop performance has been low, the investment in these activities was essential to establish the infrastructure and tools of modern plant genomics. Complex traits such as crop yield are likely multigenic, and the exhaustive screening of random gene combinations to achieve yield gains is not realistic. Clearly, smart approaches must be developed. In silico analyses of plant metabolism and gene networks can move a trait discovery program beyond trial-and-error approaches and towards rational design strategies. Metabolic models employing flux-balance analysis are useful to determine the contribution of individual genes to a trait, or to compare, optimize, or even design metabolic pathways. Regulatory association networks provide a transcriptome-based view of the plant and can lead to the identification of transcription factors that control expression of multiple genes affecting a trait. In this review, the use of these models from the perspective of an Ag innovation company's trait discovery and development program will be discussed. Important decisions that can have significant impacts on the cost and timeline to develop a commercial trait will also be presented.
Collapse
Affiliation(s)
- Frank A Skraly
- Yield10 Bioscience, Inc., 19 Presidential Way, Woburn, MA 01801, United States
| | | | - Oliver Peoples
- Yield10 Bioscience, Inc., 19 Presidential Way, Woburn, MA 01801, United States
| | - Kristi D Snell
- Yield10 Bioscience, Inc., 19 Presidential Way, Woburn, MA 01801, United States.
| |
Collapse
|
10
|
An adapted isotope dilution 1H- 13C heteronuclear single-quantum correlation (ID-HSQC) for rapid and accurate quantification of endogenous and exogenous plasma glucose. Anal Bioanal Chem 2018; 410:6705-6711. [PMID: 30054692 DOI: 10.1007/s00216-018-1276-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/07/2018] [Accepted: 07/17/2018] [Indexed: 02/04/2023]
Abstract
A wide variety of methods, such as enzymatic methods, LC-MS, and LC-MS/MS, are currently available for the concentration determination of plasma glucose in studies of diabetes, obesity, exercise, etc. However, these methods rarely discriminate endogenous and exogenous glucose in plasma. A novel NMR strategy for discriminative quantification of the endogenous and exogenous glucose in plasma has been developed using an adapted isotope dilution 1H-13C heteronuclear single-quantum correlation (ID-HSQC) with uniformly 13C-labeled glucose as a tracer of exogenous glucose. This method takes advantage of the distinct 1H-13C chemical shifts of the hemiacetal group of the α-D-glucopyranose and makes use of the 13C-13C one-bond J-coupling (1JCC) in uniformly 13C-labeled glucose to differentiate the 1H-13C HSQC signal of labeled glucose from that of its natural counterpart when data are acquired in high-resolution mode. The molar ratio between the endogenous and exogenous plasma glucose can then be calculated from the peak intensities of the natural and labeled glucose. The accuracy and precision of the method were evaluated using a series of standard mixtures of natural and uniformly 13C-labeled glucose with varied but known concentrations. Application of this method is demonstrated for the quantification of endogenous and exogenous glucose in plasma derived from healthy and diabetic cynomolgus monkeys. The results nicely agree with our previous LC-MS/MS results. Considering the natural abundance of 13C isotope at the level of 1.1% in endogenous glucose, comparable peak intensities of quantitatively measurable signals derived from natural and labeled glucose imply that the ID-HSQC can tolerate a significantly high ratio of isotope dilution, with labeled/natural glucose at ~ 1%. We expect that the ID-HSQC method can serve as an alternative approach to the biomedical or clinical studies of glucose metabolism.
Collapse
|
11
|
Troncoso-Ponce MA, Rivoal J, Dorion S, Sánchez R, Venegas-Calerón M, Moreno-Pérez AJ, Baud S, Garcés R, Martínez-Force E. Molecular and biochemical characterization of the sunflower (Helianthus annuus L.) cytosolic and plastidial enolases in relation to seed development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:117-130. [PMID: 29807582 DOI: 10.1016/j.plantsci.2018.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 05/19/2023]
Abstract
In the present study, we describe the molecular and biochemical characterization of sunflower (Helianthus annuus L.) enolase (ENO, EC 4.2.1.11) proteins, which catalyze the formation of phosphoenolpyruvate, the penultimate intermediate in the glycolytic pathway. We cloned and characterized three cDNAs encoding different ENO isoforms from developing sunflower seeds. Studies using fluorescently tagged ENOs confirmed the predicted subcellular localization of ENO isoforms: HaENO1 in the plastid while HaENO2 and HaENO3 were found in the cytosol. The cDNAs were used to express the corresponding 6(His)-tagged proteins in Escherichia coli. The proteins were purified to electrophoretic homogeneity, using immobilized metal ion affinity chromatography, and biochemically characterized. Recombinant HaENO1 and HaENO2, but not HaENO3 were shown to have enolase activity, in agreement with data obtained with the Arabidopsis homolog proteins. Site directed mutagenesis of several critical amino acids was used to attempt to recover enolase activity in recombinant HaENO3, resulting in very small increases that were not additive. A kinetic characterization of the two active isoforms showed that pH had similar effect on their velocity, that they had similar affinity for 2-phosphoglycerate, but that the kcat/Km of the plastidial enzyme was higher than that of the cytosolic isoform. Even though HaENO2 was always the most highly expressed transcript, the levels of expression of the three ENO genes were remarkably distinct in all the vegetative and reproductive tissues studied. This indicates that in seeds the conversion of 2-phosphoglycerate to phosphoenolpyruvate takes place through the cytosolic and the plastidial pathways therefore both routes could contribute to the supply of carbon for lipid synthesis. The identity of the main source of carbon during the period of stored products synthesis is discussed.
Collapse
Affiliation(s)
- M A Troncoso-Ponce
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain; Sorbonne University, Université de technologie de Compiègne, CNRS, Institute for Enzyme and Cell Engineering, Centre de recherche Royallieu, CS 60 319, 60 203 Compiègne cedex, France.
| | - J Rivoal
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke est, Montréal, QC, Canada
| | - S Dorion
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke est, Montréal, QC, Canada
| | - R Sánchez
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| | - M Venegas-Calerón
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| | - A J Moreno-Pérez
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| | - S Baud
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - R Garcés
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| | - E Martínez-Force
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| |
Collapse
|
12
|
Zhang X, Misra A, Nargund S, Coleman GD, Sriram G. Concurrent isotope-assisted metabolic flux analysis and transcriptome profiling reveal responses of poplar cells to altered nitrogen and carbon supply. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:472-488. [PMID: 29193384 DOI: 10.1111/tpj.13792] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 11/15/2017] [Accepted: 11/23/2017] [Indexed: 05/20/2023]
Abstract
Reduced nitrogen is indispensable to plants. However, its limited availability in soil combined with the energetic and environmental impacts of nitrogen fertilizers motivates research into molecular mechanisms toward improving plant nitrogen use efficiency (NUE). We performed a systems-level investigation of this problem by employing multiple 'omics methodologies on cell suspensions of hybrid poplar (Populus tremula × Populus alba). Acclimation and growth of the cell suspensions in four nutrient regimes ranging from abundant to deficient supplies of carbon and nitrogen revealed that cell growth under low-nitrogen levels was associated with substantially higher NUE. To investigate the underlying metabolic and molecular mechanisms, we concurrently performed steady-state 13 C metabolic flux analysis with multiple isotope labels and transcriptomic profiling with cDNA microarrays. The 13 C flux analysis revealed that the absolute flux through the oxidative pentose phosphate pathway (oxPPP) was substantially lower (~threefold) under low-nitrogen conditions. Additionally, the flux partitioning ratio between the tricarboxylic acid cycle and anaplerotic pathways varied from 84%:16% under abundant carbon and nitrogen to 55%:45% under deficient carbon and nitrogen. Gene expression data, together with the flux results, suggested a plastidic localization of the oxPPP as well as transcriptional regulation of certain metabolic branchpoints, including those between glycolysis and the oxPPP. The transcriptome data also indicated that NUE-improving mechanisms may involve a redirection of excess carbon to aromatic metabolic pathways and extensive downregulation of potentially redundant genes (in these heterotrophic cells) that encode photosynthetic and light-harvesting proteins, suggesting the recruitment of these proteins as nitrogen sinks in nitrogen-abundant conditions.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Ashish Misra
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Shilpa Nargund
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Gary D Coleman
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Ganesh Sriram
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
13
|
Deborde C, Moing A, Roch L, Jacob D, Rolin D, Giraudeau P. Plant metabolism as studied by NMR spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 102-103:61-97. [PMID: 29157494 DOI: 10.1016/j.pnmrs.2017.05.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 05/07/2023]
Abstract
The study of plant metabolism impacts a broad range of domains such as plant cultural practices, plant breeding, human or animal nutrition, phytochemistry and green biotechnologies. Plant metabolites are extremely diverse in terms of structure or compound families as well as concentrations. This review attempts to illustrate how NMR spectroscopy, with its broad variety of experimental approaches, has contributed widely to the study of plant primary or specialized metabolism in very diverse ways. The review presents recent developments of one-dimensional and multi-dimensional NMR methods to study various aspects of plant metabolism. Through recent examples, it highlights how NMR has proved to be an invaluable tool for the global characterization of sample composition within metabolomic studies, and shows some examples of use for targeted phytochemistry, with a special focus on compound identification and quantitation. In such cases, NMR approaches are often used to provide snapshots of the plant sample composition. The review also covers dynamic aspects of metabolism, with a description of NMR techniques to measure metabolic fluxes - in most cases after stable isotope labelling. It is mainly intended for NMR specialists who would be interested to learn more about the potential of their favourite technique in plant sciences and about specific details of NMR approaches in this field. Therefore, as a practical guide, a paragraph on the specific precautions that should be taken for sample preparation is also included. In addition, since the quality of NMR metabolic studies is highly dependent on approaches to data processing and data sharing, a specific part is dedicated to these aspects. The review concludes with perspectives on the emerging methods that could change significantly the role of NMR in the field of plant metabolism by boosting its sensitivity. The review is illustrated throughout with examples of studies selected to represent diverse applications of liquid-state or HR-MAS NMR.
Collapse
Affiliation(s)
- Catherine Deborde
- INRA, UMR 1332 Biologie du Fruit et Pathologie, Centre INRA Bordeaux, F-33140 Villenave d'Ornon, France; Plateforme Métabolome Bordeaux - MetaboHUB, Centre de Génomique Fonctionnelle Bordeaux, IBVM, Centre INRA Bordeaux, F-33140 Villenave d'Ornon, France
| | - Annick Moing
- INRA, UMR 1332 Biologie du Fruit et Pathologie, Centre INRA Bordeaux, F-33140 Villenave d'Ornon, France; Plateforme Métabolome Bordeaux - MetaboHUB, Centre de Génomique Fonctionnelle Bordeaux, IBVM, Centre INRA Bordeaux, F-33140 Villenave d'Ornon, France
| | - Léa Roch
- INRA, UMR 1332 Biologie du Fruit et Pathologie, Centre INRA Bordeaux, F-33140 Villenave d'Ornon, France; Plateforme Métabolome Bordeaux - MetaboHUB, Centre de Génomique Fonctionnelle Bordeaux, IBVM, Centre INRA Bordeaux, F-33140 Villenave d'Ornon, France
| | - Daniel Jacob
- INRA, UMR 1332 Biologie du Fruit et Pathologie, Centre INRA Bordeaux, F-33140 Villenave d'Ornon, France; Plateforme Métabolome Bordeaux - MetaboHUB, Centre de Génomique Fonctionnelle Bordeaux, IBVM, Centre INRA Bordeaux, F-33140 Villenave d'Ornon, France
| | - Dominique Rolin
- Plateforme Métabolome Bordeaux - MetaboHUB, Centre de Génomique Fonctionnelle Bordeaux, IBVM, Centre INRA Bordeaux, F-33140 Villenave d'Ornon, France; Univ. Bordeaux, UMR1332, Biologie du Fruit et Pathologie, 71 av Edouard Bourlaux, 33140 Villenave d'Ornon, France
| | - Patrick Giraudeau
- Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR 6230, CNRS, Université de Nantes, Faculté des Sciences, BP 92208, 2 rue de la Houssinière, F-44322 Nantes Cedex 03, France; Institut Universitaire de France, 1 rue Descartes, 75005 Paris, France.
| |
Collapse
|
14
|
Zhang M, Yu XW, Xu Y, Jouhten P, Swapna GVT, Glaser RW, Hunt JF, Montelione GT, Maaheimo H, Szyperski T. 13 C metabolic flux profiling of Pichia pastoris grown in aerobic batch cultures on glucose revealed high relative anabolic use of TCA cycle and limited incorporation of provided precursors of branched-chain amino acids. FEBS J 2017; 284:3100-3113. [PMID: 28731268 DOI: 10.1111/febs.14180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/18/2017] [Accepted: 07/18/2017] [Indexed: 01/02/2023]
Abstract
Carbon metabolism of Crabtree-negative yeast Pichia pastoris was profiled using 13 C nuclear magnetic resonance (NMR) to delineate regulation during exponential growth and to study the import of two precursors for branched-chain amino acid biosynthesis, α-ketoisovalerate and α-ketobutyrate. Cells were grown in aerobic batch cultures containing (a) only glucose, (b) glucose along with the precursors, or (c) glucose and Val. The study provided the following new insights. First, 13 C flux ratio analyses of central metabolism reveal an unexpectedly high anaplerotic supply of the tricarboxylic acid cycle for a Crabtree-negative yeast, and show that a substantial fraction of glucose catabolism proceeds through the pentose phosphate pathway. A comparison with previous flux ratio analyses for batch cultures of Crabtree-negative Pichia stipitis and Crabtree-positive Saccharomyces cerevisiae indicate that the overall regulation of central carbon metabolism in P. pastoris is intermediate in between P. stipitis and S. cerevisiae. Second, excess α-ketoisovalerate in the medium is not transported into the cytoplasm indicating that P. pastoris lacks a suitable transporter. In contrast, excess Val is efficiently taken up and largely fulfills demands for both Val and Leu for protein synthesis. Third, excess α-ketobutyrate is transported into the mitochondria for Ile biosynthesis. However, the import does not efficiently inhibit the synthesis of α-ketobutyrate from pyruvate indicating that P. pastoris has not been optimized evolutionarily to take full advantage of this carbon source. These findings have direct implications for preparing uniformly 2 H,13 C,15 N-labeled proteins containing protonated Ile, Val, and Leu methyl groups in P. pastoris for NMR-based structural biology. ENZYMES Acetohydroxy acid isomeroreductase (EC 1.1.1.86), branched-chain amino acid aminotransferase (BCAT, EC 2.6.1.42), fumarase (EC 4.2.1.2), malic enzyme (EC 1.1.1.39/1.1.1.40), phosphoenolpyruvate carboxykinase (EC 4.1.1.49), pyruvate carboxylase (EC 6.4.1.1), pyruvate kinase (EC 2.7.1.40), l-serine hydroxymethyltransferase (EC 2.1.2.1), threonine aldolase (EC 4.1.2.5), threonine dehydratase (EC 4.3.1.19); transketolase (EC 2.2.1.1), transaldolase (EC 2.2.1.2).
Collapse
Affiliation(s)
- Meng Zhang
- School of Biotechnology, Key Laboratory of Industrial Biotechnology, State Key Laboratory of Food Science and Technology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Xiao-Wei Yu
- School of Biotechnology, Key Laboratory of Industrial Biotechnology, State Key Laboratory of Food Science and Technology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yan Xu
- School of Biotechnology, Key Laboratory of Industrial Biotechnology, State Key Laboratory of Food Science and Technology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Paula Jouhten
- European Molecular Biology Laboratory Heidelberg, Germany
| | - Gurla V T Swapna
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Ralf W Glaser
- Institute of Biochemistry and Biophysics, Friedrich-Schiller-Universität, Jena, Germany
| | - John F Hunt
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Gaetano T Montelione
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Hannu Maaheimo
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Thomas Szyperski
- Department of Chemistry, State University of New York at Buffalo, NY, USA
| |
Collapse
|
15
|
Metabolic flux analysis of heterotrophic growth in Chlamydomonas reinhardtii. PLoS One 2017; 12:e0177292. [PMID: 28542252 PMCID: PMC5443493 DOI: 10.1371/journal.pone.0177292] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 04/25/2017] [Indexed: 12/18/2022] Open
Abstract
Despite the wealth of knowledge available for C. reinhardtii, the central metabolic fluxes of growth on acetate have not yet been determined. In this study, 13C-metabolic flux analysis (13C-MFA) was used to determine and quantify the metabolic pathways of primary metabolism in C. reinhardtii cells grown under heterotrophic conditions with acetate as the sole carbon source. Isotopic labeling patterns of compartment specific biomass derived metabolites were used to calculate the fluxes. It was found that acetate is ligated with coenzyme A in the three subcellular compartments (cytosol, mitochondria and plastid) included in the model. Two citrate synthases were found to potentially be involved in acetyl-coA metabolism; one localized in the mitochondria and the other acting outside the mitochondria. Labeling patterns demonstrate that Acetyl-coA synthesized in the plastid is directly incorporated in synthesis of fatty acids. Despite having a complete TCA cycle in the mitochondria, it was also found that a majority of the malate flux is shuttled to the cytosol and plastid where it is converted to oxaloacetate providing reducing equivalents to these compartments. When compared to predictions by flux balance analysis, fluxes measured with 13C-MFA were found to be suboptimal with respect to biomass yield; C. reinhardtii sacrifices biomass yield to produce ATP and reducing equivalents.
Collapse
|
16
|
Salon C, Avice JC, Colombié S, Dieuaide-Noubhani M, Gallardo K, Jeudy C, Ourry A, Prudent M, Voisin AS, Rolin D. Fluxomics links cellular functional analyses to whole-plant phenotyping. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2083-2098. [PMID: 28444347 DOI: 10.1093/jxb/erx126] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Fluxes through metabolic pathways reflect the integration of genetic and metabolic regulations. While it is attractive to measure all the mRNAs (transcriptome), all the proteins (proteome), and a large number of the metabolites (metabolome) in a given cellular system, linking and integrating this information remains difficult. Measurement of metabolome-wide fluxes (termed the fluxome) provides an integrated functional output of the cell machinery and a better tool to link functional analyses to plant phenotyping. This review presents and discusses sets of methodologies that have been developed to measure the fluxome. First, the principles of metabolic flux analysis (MFA), its 'short time interval' version Inst-MFA, and of constraints-based methods, such as flux balance analysis and kinetic analysis, are briefly described. The use of these powerful methods for flux characterization at the cellular scale up to the organ (fruits, seeds) and whole-plant level is illustrated. The added value given by fluxomics methods for unravelling how the abiotic environment affects flux, the process, and key metabolic steps are also described. Challenges associated with the development of fluxomics and its integration with 'omics' for thorough plant and organ functional phenotyping are discussed. Taken together, these will ultimately provide crucial clues for identifying appropriate target plant phenotypes for breeding.
Collapse
Affiliation(s)
- Christophe Salon
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, 17 Rue Sully, BP 86510, 21065 Dijon Cedex, France
| | - Jean-Christophe Avice
- UNICAEN, UMR INRA 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, Université Caen Normandie, 14032 Caen Cedex 5, France
| | - Sophie Colombié
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, 33882 Villenave d'Ornon, France
| | - Martine Dieuaide-Noubhani
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, 33882 Villenave d'Ornon, France
| | - Karine Gallardo
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, 17 Rue Sully, BP 86510, 21065 Dijon Cedex, France
| | - Christian Jeudy
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, 17 Rue Sully, BP 86510, 21065 Dijon Cedex, France
| | - Alain Ourry
- UNICAEN, UMR INRA 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, Université Caen Normandie, 14032 Caen Cedex 5, France
| | - Marion Prudent
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, 17 Rue Sully, BP 86510, 21065 Dijon Cedex, France
| | - Anne-Sophie Voisin
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, 17 Rue Sully, BP 86510, 21065 Dijon Cedex, France
| | - Dominique Rolin
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, 33882 Villenave d'Ornon, France
| |
Collapse
|
17
|
Parra O, Gallego AM, Urrea A, Rojas LF, Correa C, Atehortúa L. Biochemical precursor effects on the fatty acid production in cell suspension cultures of Theobroma cacao L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 111:59-66. [PMID: 27914320 DOI: 10.1016/j.plaphy.2016.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/04/2016] [Accepted: 11/22/2016] [Indexed: 06/06/2023]
Abstract
Cocoa butter (CB) is composed of 96% palmitic, stearic, oleic, linoleic and linolenic fatty acids that are responsible for the hardness, texture and fusion properties of chocolate. Through in vitro plant cell culture it is possible to modify CB lipid profiles and to study the fatty acid biosynthesis pathway on a subcellular level, evaluating fundamental aspects to enhance in vitro fatty acid production in a specific and controlled way. In this research, culture media was supplemented with acetate, biotin, pyruvate, bicarbonate and glycerol at three different concentrations and the effects on the biomass production (g/L), cell viability, and fatty acids profile and production was evaluated in in vitro cell suspensions culture. It was found that biotin stimulated fatty acid synthesis without altering cell viability and cell growth. It was also evident a change in the lipid profile of cell suspensions, increasing middle and long chain fatty acids proportion, which are unusual to those reported in seeds; thus implying that it is possible to modify lipid profiles according to the treatment used. According to the results of sucrose gradients and enzyme assays performed, it is proposed that cacao cells probably use the pentose phosphate pathway, mitochondria being the key organelle in the carbon flux for the synthesis of reductant power and fatty acid precursors.
Collapse
Affiliation(s)
- O Parra
- Universidad de Antioquia, Grupo de Biotecnología, Calle 70 No 52-21, A.A 1226, Medellín, Colombia.
| | - A M Gallego
- Universidad de Antioquia, Grupo de Biotecnología, Calle 70 No 52-21, A.A 1226, Medellín, Colombia
| | - A Urrea
- Universidad de Antioquia, Grupo de Biotecnología, Calle 70 No 52-21, A.A 1226, Medellín, Colombia
| | - L F Rojas
- Universidad de Antioquia, Grupo de Biotecnología - Escuela de Microbiología, Calle 70 No 52-21, A.A 1226, Medellín, Colombia
| | - C Correa
- Instituto Tecnológico Metropolitano, Grupo de investigación: Calidad, Metrología y Producción, Calle 73 No 76A - 354, Colombia
| | - L Atehortúa
- Universidad de Antioquia, Grupo de Biotecnología, Calle 70 No 52-21, A.A 1226, Medellín, Colombia
| |
Collapse
|
18
|
A scientific workflow framework for 13C metabolic flux analysis. J Biotechnol 2016; 232:12-24. [DOI: 10.1016/j.jbiotec.2015.12.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/14/2015] [Accepted: 12/17/2015] [Indexed: 12/15/2022]
|
19
|
Dersch LM, Beckers V, Wittmann C. Green pathways: Metabolic network analysis of plant systems. Metab Eng 2016; 34:1-24. [DOI: 10.1016/j.ymben.2015.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 12/18/2022]
|
20
|
Pollard M, Delamarter D, Martin TM, Shachar-Hill Y. Lipid labeling from acetate or glycerol in cultured embryos of Camelina sativa seeds: A tale of two substrates. PHYTOCHEMISTRY 2015; 118:192-203. [PMID: 26265565 DOI: 10.1016/j.phytochem.2015.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/17/2015] [Accepted: 07/27/2015] [Indexed: 05/20/2023]
Abstract
Studies on the metabolism of lipids in seeds frequently use radiolabeled acetate and glycerol supplied to excised developing seeds to track the biosynthesis of acyl and lipid head groups, respectively. Such experiments are generally restricted to shorter time periods and the results may not quantitatively reflect in planta rates. These limitations can be removed by using cultured embryos, provided they mimic growth and lipid deposition observed for embryos in planta. Mid-maturation embryos from Camelina sativa were cultured in vitro to assess the use of sufficient acetate or glycerol concentrations and labeling periods for stable isotope labeling and mass spectrometric detection. Maximum incorporation of exogenous acetate into fatty acids occurred at 1mM and above. This provides about 5% of the total carbon flux entering fatty acids, enough for (13)C isotopomer analysis while maintaining normal biosynthetic rates for over 24h. Labeling analysis indicates that acetate reports lipid metabolism uniformly across the embryo. At higher acetate concentrations with longer incubations, the rate of fatty acid synthesis is reduced and the composition of newly synthesized fatty acids changes. While the mole fractions of oleate that undergo Δ12-desaturation or elongation are independent of biosynthetic flux, Δ15-desaturation shows a bimodal dependence. These observations are consistent with changes occurring in planta over seed development. Incorporation rates of the glyceryl moiety into lipids saturates at about 0.5mM exogenous glycerol. At saturation, the exogenous glycerol almost completely replaces the endogenous supply of glycerol-3-phosphate without affecting net lipid accumulation or fatty acid composition. It is concluded that acetate and glycerol labeling of cultured C. sativa embryos can provide an accurate representation of lipid metabolism in embryos in vivo, and that in Camelina embryos glycerol-3-phosphate levels do not co-limit triacylglycerol synthesis.
Collapse
Affiliation(s)
- Mike Pollard
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824, USA.
| | - Danielle Delamarter
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824, USA
| | - Tina M Martin
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824, USA
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824, USA
| |
Collapse
|
21
|
Tsogtbaatar E, Cocuron JC, Sonera MC, Alonso AP. Metabolite fingerprinting of pennycress (Thlaspi arvense L.) embryos to assess active pathways during oil synthesis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4267-77. [PMID: 25711705 PMCID: PMC4493779 DOI: 10.1093/jxb/erv020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Pennycress (Thlaspi arvense L.), a plant naturalized to North America, accumulates high levels of erucic acid in its seeds, which makes it a promising biodiesel and industrial crop. The main carbon sinks in pennycress embryos were found to be proteins, fatty acids, and cell wall, which respectively represented 38.5, 33.2, and 27.0% of the biomass at 21 days after pollination. Erucic acid reached a maximum of 36% of the total fatty acids. Together these results indicate that total oil and erucic acid contents could be increased to boost the economic competitiveness of this crop. Understanding the biochemical basis of oil synthesis in pennycress embryos is therefore timely and relevant to guide future breeding and/or metabolic engineering efforts. For this purpose, a combination of metabolomics approaches was conducted to assess the active biochemical pathways during oil synthesis. First, gas chromatography-mass spectrometry (GC-MS) profiling of intracellular metabolites highlighted three main families of compounds: organic acids, amino acids, and sugars/sugar alcohols. Secondly, these intermediates were quantified in developing pennycress embryos by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring mode. Finally, partitional clustering analysis grouped the intracellular metabolites that shared a similar pattern of accumulation over time into eight clusters. This study underlined that: (i) sucrose might be stored rather than cleaved into hexoses; (ii) glucose and glutamine would be the main sources of carbon and nitrogen, respectively; and (iii) glycolysis, the oxidative pentose phosphate pathway, the tricarboxylic acid cycle, and the Calvin cycle were active in developing pennycress embryos.
Collapse
Affiliation(s)
- Enkhtuul Tsogtbaatar
- The Ohio State University, Department of Molecular Genetics, Columbus, OH 43210, USA
| | - Jean-Christophe Cocuron
- The Ohio State University, Department of Molecular Genetics, Columbus, OH 43210, USA The Ohio State University, Center for Applied Plant Sciences, Columbus, OH 43210, USA
| | - Marcos Corchado Sonera
- University of Puerto Rico, Mechanical Engineering Department, Mayagüez, 00681-9000, Puerto Rico
| | - Ana Paula Alonso
- The Ohio State University, Department of Molecular Genetics, Columbus, OH 43210, USA
| |
Collapse
|
22
|
Sarkar D, Shimizu K. An overview on biofuel and biochemical production by photosynthetic microorganisms with understanding of the metabolism and by metabolic engineering together with efficient cultivation and downstream processing. BIORESOUR BIOPROCESS 2015. [DOI: 10.1186/s40643-015-0045-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
23
|
Li L, Hur M, Lee JY, Zhou W, Song Z, Ransom N, Demirkale CY, Nettleton D, Westgate M, Arendsee Z, Iyer V, Shanks J, Nikolau B, Wurtele ES. A systems biology approach toward understanding seed composition in soybean. BMC Genomics 2015; 16 Suppl 3:S9. [PMID: 25708381 PMCID: PMC4331812 DOI: 10.1186/1471-2164-16-s3-s9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The molecular, biochemical, and genetic mechanisms that regulate the complex metabolic network of soybean seed development determine the ultimate balance of protein, lipid, and carbohydrate stored in the mature seed. Many of the genes and metabolites that participate in seed metabolism are unknown or poorly defined; even more remains to be understood about the regulation of their metabolic networks. A global omics analysis can provide insights into the regulation of seed metabolism, even without a priori assumptions about the structure of these networks. RESULTS With the future goal of predictive biology in mind, we have combined metabolomics, transcriptomics, and metabolic flux technologies to reveal the global developmental and metabolic networks that determine the structure and composition of the mature soybean seed. We have coupled this global approach with interactive bioinformatics and statistical analyses to gain insights into the biochemical programs that determine soybean seed composition. For this purpose, we used Plant/Eukaryotic and Microbial Metabolomics Systems Resource (PMR, http://www.metnetdb.org/pmr, a platform that incorporates metabolomics data to develop hypotheses concerning the organization and regulation of metabolic networks, and MetNet systems biology tools http://www.metnetdb.org for plant omics data, a framework to enable interactive visualization of metabolic and regulatory networks. CONCLUSIONS This combination of high-throughput experimental data and bioinformatics analyses has revealed sets of specific genes, genetic perturbations and mechanisms, and metabolic changes that are associated with the developmental variation in soybean seed composition. Researchers can explore these metabolomics and transcriptomics data interactively at PMR.
Collapse
Affiliation(s)
- Ling Li
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
- Center for Metabolic Biology, Iowa State University, Ames, Iowa 50011, USA
- Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa 50011, USA
| | - Manhoi Hur
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
- Center for Metabolic Biology, Iowa State University, Ames, Iowa 50011, USA
- Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa 50011, USA
| | - Joon-Yong Lee
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Wenxu Zhou
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Zhihong Song
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Nick Ransom
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, Iowa 50011, USA
| | - Mark Westgate
- Department of Agronomy, Iowa State University, Ames, Iowa 50011, USA
| | - Zebulun Arendsee
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Vidya Iyer
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, USA
| | - Jackie Shanks
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, USA
- Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa 50011, USA
| | - Basil Nikolau
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
- Center for Metabolic Biology, Iowa State University, Ames, Iowa 50011, USA
- Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa 50011, USA
| | - Eve Syrkin Wurtele
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
- Center for Metabolic Biology, Iowa State University, Ames, Iowa 50011, USA
- Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
24
|
Fu Y, Yoon JM, Jarboe L, Shanks JV. Metabolic flux analysis of Escherichia coli MG1655 under octanoic acid (C8) stress. Appl Microbiol Biotechnol 2015; 99:4397-408. [PMID: 25620365 DOI: 10.1007/s00253-015-6387-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/08/2015] [Indexed: 12/25/2022]
Abstract
Systems metabolic engineering has made the renewable production of industrial chemicals a feasible alternative to modern operations. One major example of a renewable process is the production of carboxylic acids, such as octanoic acid (C8), from Escherichia coli, engineered to express thioesterase enzymes. C8, however, is toxic to E. coli above a certain concentration, which limits the final titer. (13)C metabolic flux analysis of E. coli was performed for both C8 stress and control conditions using NMR2Flux with isotopomer balancing. A mixture of labeled and unlabeled glucose was used as the sole carbon source for bacterial growth for (13)C flux analysis. By comparing the metabolic flux maps of the control condition and C8 stress condition, pathways that were altered under the stress condition were identified. C8 stress was found to reduce carbon flux in several pathways: the tricarboxylic acid (TCA) cycle, the CO2 production, and the pyruvate dehydrogenase pathway. Meanwhile, a few pathways became more active: the pyruvate oxidative pathway, and the extracellular acetate production. These results were statistically significant for three biological replicates between the control condition and C8 stress. As a working hypothesis, the following causes are proposed to be the main causes for growth inhibition and flux alteration for a cell under stress: membrane disruption, low activity of electron transport chain, and the activation of the pyruvate dehydrogenase regulator (PdhR).
Collapse
Affiliation(s)
- Yanfen Fu
- Department of Chemical and Biological Engineering, Iowa State University, 4136 Biorenewables Research Laboratory, Ames, IA, 50011-2230, USA
| | | | | | | |
Collapse
|
25
|
Antoniewicz MR. Methods and advances in metabolic flux analysis: a mini-review. J Ind Microbiol Biotechnol 2015; 42:317-25. [PMID: 25613286 DOI: 10.1007/s10295-015-1585-x] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/09/2015] [Indexed: 01/12/2023]
Abstract
Metabolic flux analysis (MFA) is one of the pillars of metabolic engineering. Over the past three decades, it has been widely used to quantify intracellular metabolic fluxes in both native (wild type) and engineered biological systems. Through MFA, changes in metabolic pathway fluxes are quantified that result from genetic and/or environmental interventions. This information, in turn, provides insights into the regulation of metabolic pathways and may suggest new targets for further metabolic engineering of the strains. In this mini-review, we discuss and classify the various methods of MFA that have been developed, which include stoichiometric MFA, (13)C metabolic flux analysis, isotopic non-stationary (13)C metabolic flux analysis, dynamic metabolic flux analysis, and (13)C dynamic metabolic flux analysis. For each method, we discuss key advantages and limitations and conclude by highlighting important recent advances in flux analysis approaches.
Collapse
Affiliation(s)
- Maciek R Antoniewicz
- Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, 150 Academy St, Newark, DE, 19716, USA,
| |
Collapse
|
26
|
Colombié S, Nazaret C, Bénard C, Biais B, Mengin V, Solé M, Fouillen L, Dieuaide-Noubhani M, Mazat JP, Beauvoit B, Gibon Y. Modelling central metabolic fluxes by constraint-based optimization reveals metabolic reprogramming of developing Solanum lycopersicum (tomato) fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:24-39. [PMID: 25279440 PMCID: PMC4309433 DOI: 10.1111/tpj.12685] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 09/19/2014] [Accepted: 09/19/2014] [Indexed: 05/18/2023]
Abstract
Modelling of metabolic networks is a powerful tool to analyse the behaviour of developing plant organs, including fruits. Guided by our current understanding of heterotrophic metabolism of plant cells, a medium-scale stoichiometric model, including the balance of co-factors and energy, was constructed in order to describe metabolic shifts that occur through the nine sequential stages of Solanum lycopersicum (tomato) fruit development. The measured concentrations of the main biomass components and the accumulated metabolites in the pericarp, determined at each stage, were fitted in order to calculate, by derivation, the corresponding external fluxes. They were used as constraints to solve the model by minimizing the internal fluxes. The distribution of the calculated fluxes of central metabolism were then analysed and compared with known metabolic behaviours. For instance, the partition of the main metabolic pathways (glycolysis, pentose phosphate pathway, etc.) was relevant throughout fruit development. We also predicted a valid import of carbon and nitrogen by the fruit, as well as a consistent CO2 release. Interestingly, the energetic balance indicates that excess ATP is dissipated just before the onset of ripening, supporting the concept of the climacteric crisis. Finally, the apparent contradiction between calculated fluxes with low values compared with measured enzyme capacities suggest a complex reprogramming of the metabolic machinery during fruit development. With a powerful set of experimental data and an accurate definition of the metabolic system, this work provides important insight into the metabolic and physiological requirements of the developing tomato fruits.
Collapse
Affiliation(s)
- Sophie Colombié
- INRAUMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, F-33883, France
- *For correspondence (e-mail )
| | - Christine Nazaret
- Institut de Mathématiques de Bordeaux, ENSTBB-Institut Polytechnique de Bordeaux351 Cours de la Liberation, Talence, F-33400, France
| | - Camille Bénard
- INRAUMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, F-33883, France
| | - Benoît Biais
- INRAUMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, F-33883, France
| | - Virginie Mengin
- INRAUMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, F-33883, France
| | - Marion Solé
- INRAUMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, F-33883, France
| | - Laëtitia Fouillen
- CNRS, UMR 5200Laboratoire de Biogenèse Membranaire, Villenave D'Ornon, F-33883, France
- Univ. Bordeaux146 rue Léo-Saignat, Bordeaux Cedex, F-33076, France
| | - Martine Dieuaide-Noubhani
- INRAUMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, F-33883, France
- Univ. Bordeaux146 rue Léo-Saignat, Bordeaux Cedex, F-33076, France
| | - Jean-Pierre Mazat
- Univ. Bordeaux146 rue Léo-Saignat, Bordeaux Cedex, F-33076, France
- IBGC-CNRS1 rue Camille Saint-Saëns, Bordeaux Cedex, F-33077, France
| | - Bertrand Beauvoit
- INRAUMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, F-33883, France
- Univ. Bordeaux146 rue Léo-Saignat, Bordeaux Cedex, F-33076, France
| | - Yves Gibon
- INRAUMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, F-33883, France
| |
Collapse
|
27
|
Radchuk V, Borisjuk L. Physical, metabolic and developmental functions of the seed coat. FRONTIERS IN PLANT SCIENCE 2014; 5:510. [PMID: 25346737 PMCID: PMC4193196 DOI: 10.3389/fpls.2014.00510] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 09/11/2014] [Indexed: 05/04/2023]
Abstract
The conventional understanding of the role of the seed coat is that it provides a protective layer for the developing zygote. Recent data show that the picture is more nuanced. The seed coat certainly represents a first line of defense against adverse external factors, but it also acts as channel for transmitting environmental cues to the interior of the seed. The latter function primes the seed to adjust its metabolism in response to changes in its external environment. The purpose of this review is to provide the reader with a comprehensive view of the structure and functionality of the seed coat, and to expose its hidden interaction with both the endosperm and embryo. Any breeding and/or biotechnology intervention seeking to increase seed size or modify seed features will have to consider the implications on this tripartite interaction.
Collapse
Affiliation(s)
| | - Ljudmilla Borisjuk
- Heterosis, Molecular Genetics, Leibniz-Institut für Pflanzengenetik und KulturpflanzenforschungGatersleben, Germany
| |
Collapse
|
28
|
Steady-state and instationary modeling of proteinogenic and free amino acid isotopomers for flux quantification. Methods Mol Biol 2014; 1090:155-79. [PMID: 24222416 DOI: 10.1007/978-1-62703-688-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Metabolic flux analysis (MFA) is a powerful tool for exploring and quantifying carbon traffic in metabolic networks. Accurate flux quantification requires (1) high-quality isotopomer measurements, usually of biomass components including proteinogenic/free amino acids or central carbon metabolites, and (2) a mathematical model that relates the unknown fluxes to the measured isotopomers. Modeling requires a thorough knowledge of the structure of the underlying metabolic network, often available from many databases, as well as the ability to make reasonable assumptions that will enable simplification of the model. Here we describe a general methodology underlying computer-aided mathematical modeling of a flux-isotopomer relationship and some of the accompanying data-processing steps. One of two modeling strategies will need to be employed, depending on the type of isotope labeling experiment performed. These strategies-steady-state modeling and instationary modeling-have different experimental and computational demands. We discuss the concepts underlying these two types of modeling and demonstrate steady-state modeling in a step-by-step manner. Our methodology should be applicable to most isotope-assisted MFA applications and should serve as a general framework applicable to many realistic metabolic networks with little modification.
Collapse
|
29
|
Pianelli K, Monier A, Andrieu MH, Beauvoit B, Dieuaide-Noubhani M. ¹⁴C pulse labeling to estimate external fluxes and turnovers in primary metabolism. Methods Mol Biol 2014; 1090:41-52. [PMID: 24222408 DOI: 10.1007/978-1-62703-688-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Steady state (13)C-MFA is classically used to measure fluxes in complex metabolic networks. However, the modeling of steady state labeling allows the quantification of internal fluxes only and requires the estimation, by other methods, of the external fluxes, corresponding to substrate uptake (carbon input into the network) and to the production rate of compounds that accumulate within plant cells (network output). Additionally, it is not always possible to discriminate between different pathways that lead to the same label distribution. Methods to measure fluxes, based on direct measurements of pool size and on (14)C short-time labeling experiments, are described in this chapter. To illustrate this approach, we focus on the quantification of sucrose and starch turnovers.
Collapse
Affiliation(s)
- Katia Pianelli
- UMR 1332 de Biologie du Fruit et Pathologie, INRA, Villenave d'Ornon, France
| | | | | | | | | |
Collapse
|
30
|
Heise R, Arrivault S, Szecowka M, Tohge T, Nunes-Nesi A, Stitt M, Nikoloski Z, Fernie AR. Flux profiling of photosynthetic carbon metabolism in intact plants. Nat Protoc 2014; 9:1803-24. [DOI: 10.1038/nprot.2014.115] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Nargund S, Misra A, Zhang X, Coleman GD, Sriram G. Flux and reflux: metabolite reflux in plant suspension cells and its implications for isotope-assisted metabolic flux analysis. MOLECULAR BIOSYSTEMS 2014; 10:1496-508. [PMID: 24675729 DOI: 10.1039/c3mb70348g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Isotope-assisted metabolic flux analysis (MFA) is a powerful methodology to quantify intracellular fluxes via isotope labeling experiments (ILEs). In batch cultures, which are often convenient, inexpensive or inevitable especially for eukaryotic systems, MFA is complicated by the presence of the initially present biomass. This unlabeled biomass may either mix with the newly synthesized labeled biomass or reflux into the metabolic network, thus masking the true labeling patterns in the newly synthesized biomass. Here, we report a detailed investigation of such metabolite reflux in cell suspensions of the tree poplar. In ILEs supplying 28% or 98% U-(13)C glucose as the sole organic carbon source, biomass components exhibited lower (13)C enrichments than the supplied glucose as well as anomalous isotopomers not explainable by simple mixing of the initial and newly synthesized biomass. These anomalous labeling patterns were most prominent in a 98% U-(13)C glucose ILE. By comparing the performance of light- and dark-grown cells as well as by analyzing the isotope labeling patterns in aspartic and glutamic acids, we eliminated photosynthetic or anaplerotic fixation of extracellular (12)CO2 as explanations for the anomalous labeling patterns. We further investigated four different metabolic models for interpreting the labeling patterns and evaluating fluxes: (i) a carbon source (glucose) dilution model, (ii) an isotopomer correction model with uniform dilution for all amino acids, (iii) an isotopomer correction model with variable dilution for different amino acids, and (iv) a comprehensive metabolite reflux model. Of these, the metabolite reflux model provided a substantially better fit for the observed labeling patterns (sum of squared residues: 538) than the other three models whose sum of squared residues were (i) 4626, (ii) 4983, and (iii) 1748, respectively. We compared fluxes determined using the metabolite reflux model to those determined using an independent methodology involving an excessively long ILE to wash out initial biomass and a minimal reflux model. This comparison showed identical or similar distributions for a majority of fluxes, thus validating our comprehensive reflux model. In summary, we have demonstrated the need for quantifying interactions between initially present biomass and newly synthesized biomass in batch ILEs, especially through the use of ≈100% U-(13)C carbon sources. Our ILEs reveal a high amount of metabolite reflux in poplar cell suspensions, which is well explained by a comprehensive metabolite reflux model.
Collapse
Affiliation(s)
- Shilpa Nargund
- Department of Chemical and Biomolecular Engineering, University of Maryland, 1208D, Chemical and Nuclear Engineering Building 090, College Park, MD 20742, USA.
| | | | | | | | | |
Collapse
|
32
|
Mandy DE, Goldford JE, Yang H, Allen DK, Libourel IGL. Metabolic flux analysis using ¹³C peptide label measurements. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:476-86. [PMID: 24279886 DOI: 10.1111/tpj.12390] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 11/08/2013] [Accepted: 11/15/2013] [Indexed: 05/09/2023]
Abstract
¹³C metabolic flux analysis (MFA) has become the experimental method of choice to investigate the cellular metabolism of microbes, cell cultures and plant seeds. Conventional steady-state MFA utilizes isotopic labeling measurements of amino acids obtained from protein hydrolysates. To retain spatial information in conventional steady-state MFA, tissues or subcellular fractions must be dissected or biochemically purified. In contrast, peptides retain their identity in complex protein extracts, and may therefore be associated with a specific time of expression, tissue type and subcellular compartment. To enable 'single-sample' spatially and temporally resolved steady-state flux analysis, we investigated the suitability of peptide mass distributions (PMDs) as an alternative to amino acid label measurements. PMDs are the discrete convolution of the mass distributions of the constituent amino acids of a peptide. We investigated the requirements for the unique deconvolution of PMDs into amino acid mass distributions (AAMDs), the influence of peptide sequence length on parameter sensitivity, and how AAMD and flux estimates that are determined through deconvolution compare to estimates from a conventional GC-MS measurement-based approach. Deconvolution of PMDs of the storage protein β-conglycinin of soybean (Glycine max) resulted in good AAMD and flux estimates if fluxes were directly fitted to PMDs. Unconstrained deconvolution resulted in inferior AAMD and flux estimates. PMD measurements do not include amino acid backbone fragments, which increase the information content in GC-MS-derived analyses. Nonetheless, the resulting flux maps were of comparable quality due to the precision of Orbitrap quantification and the larger number of peptide measurements.
Collapse
Affiliation(s)
- Dominic E Mandy
- Department of Plant Biology, University of Minnesota, 1500 Gortner Avenue, St Paul, MN, 55108, USA
| | | | | | | | | |
Collapse
|
33
|
Nargund S, Sriram G. Mathematical modeling of isotope labeling experiments for metabolic flux analysis. Methods Mol Biol 2014; 1083:109-131. [PMID: 24218213 DOI: 10.1007/978-1-62703-661-0_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Isotope labeling experiments (ILEs) offer a powerful methodology to perform metabolic flux analysis. However, the task of interpreting data from these experiments to evaluate flux values requires significant mathematical modeling skills. Toward this, this chapter provides background information and examples to enable the reader to (1) model metabolic networks, (2) simulate ILEs, and (3) understand the optimization and statistical methods commonly used for flux evaluation. A compartmentalized model of plant glycolysis and pentose phosphate pathway illustrates the reconstruction of a typical metabolic network, whereas a simpler example network illustrates the underlying metabolite and isotopomer balancing techniques. We also discuss the salient features of commonly used flux estimation software 13CFLUX2, Metran, NMR2Flux+, FiatFlux, and OpenFLUX. Furthermore, we briefly discuss methods to improve flux estimates. A graphical checklist at the end of the chapter provides a reader a quick reference to the mathematical modeling concepts and resources.
Collapse
|
34
|
Abstract
A genome-scale model (GSM) is an in silico metabolic model comprising hundreds or thousands of chemical reactions that constitute the metabolic inventory of a cell, tissue, or organism. A complete, accurate GSM, in conjunction with a simulation technique such as flux balance analysis (FBA), can be used to comprehensively predict cellular metabolic flux distributions for a given genotype and given environmental conditions. Apart from enabling a user to quantitatively visualize carbon flow through metabolic pathways, these flux predictions also facilitate the hypothesis of new network properties. By simulating the impacts of environmental stresses or genetic interventions on metabolism, GSMs can aid the formulation of nontrivial metabolic engineering strategies. GSMs for plants and other eukaryotes are significantly more complicated than those for prokaryotes due to their extensive compartmentalization and size. The reconstruction of a GSM involves creating an initial model, curating the model, and then rendering the model ready for FBA. Model reconstruction involves obtaining organism-specific reactions from the annotated genome sequence or organism-specific databases. Model curation involves determining metabolite protonation status or charge, ensuring that reactions are stoichiometrically balanced, assigning reactions to appropriate subcellular compartments, deleting generic reactions or creating specific versions of them, linking dead-end metabolites, and filling of pathway gaps to complete the model. Subsequently, the model requires the addition of transport, exchange, and biomass synthesis reactions to make it FBA-ready. This cycle of editing, refining, and curation has to be performed iteratively to obtain an accurate model. This chapter outlines the reconstruction and curation of GSMs with a focus on models of plant metabolism.
Collapse
|
35
|
Liquid chromatography tandem mass spectrometry for measuring ¹³C-labeling in intermediates of the glycolysis and pentose phosphate pathway. Methods Mol Biol 2014; 1090:131-42. [PMID: 24222414 DOI: 10.1007/978-1-62703-688-7_9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
This chapter describes a procedure to analyze (13)C-labeled phosphorylated compounds by liquid chromatography tandem mass spectrometry. Phosphorylated compounds, intermediaries of the glycolysis and pentose phosphate pathway, are separated by anion exchange chromatography and their isotopic labeling is determined by mass spectrometry. A sensitivity in the fmole range is achieved using scheduled multiple reaction monitoring mode.
Collapse
|
36
|
Masakapalli SK, Ratcliffe RG, Williams TCR. Quantification of ¹³C enrichments and isotopomer abundances for metabolic flux analysis using 1D NMR spectroscopy. Methods Mol Biol 2014; 1090:73-86. [PMID: 24222410 DOI: 10.1007/978-1-62703-688-7_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The analysis of stable isotope incorporation following feeding of (13)C-labeled precursors to plant tissues provides the constraints necessary for metabolic flux analysis. This protocol describes the use of one-dimensional (1)H and (13)C nuclear magnetic resonance spectroscopy for the quantification of (13)C enrichments and isotopomer abundances in mixtures of metabolites or hydrolyzed biomass components.
Collapse
|
37
|
Truong QX, Yoon JM, Shanks JV. Isotopomer measurement techniques in metabolic flux analysis I: nuclear magnetic resonance. Methods Mol Biol 2014; 1083:65-83. [PMID: 24218211 DOI: 10.1007/978-1-62703-661-0_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Two-dimensional [(1)H, (13)C] heteronuclear single quantum correlation (HSQC) spectroscopy nuclear magnetic resonance (NMR) is a comprehensive tool in metabolic flux analysis using (13)C-labeling experiments. NMR is particularly relevant when extensive isotopomer measurements are required, such as for plant cells and tissues, which contain multiple cellular compartments. Several isotope isomers (isotopomers) can be detected and their distribution extracted quantitatively from a single 2-D HSQC NMR spectrum. For example, 2-D HSQC detects the labeling patterns of adjacent carbon atoms and provides the enrichment of individual carbon atoms of the amino acids and glucosyl and mannosyl units present in hydrolysates of glycosylated protein. The HSQC analysis can quantitatively distinguish differences between the glucosyl units in the starch hydrolysate and a protein hydrolysate of plant biomass: this specifies crucial information about compartmentalization in the plant system. The peak structures obtained from the HSQC experiment show multiplet patterns that are directly related to the isotopomer abundances. These abundances have a nonlinear relationship to the fluxes via isotopomer balancing. Fluxes are obtained from the numerical solution of these balances and a stoichiometric model that includes biomass composition data as well as consumption rates of carbohydrate and nitrogen sources. Herein, we describe the methods for the experimental measurements for flux analysis, i.e., determination of the biomass composition (lipid, protein, soluble sugar, and starch) as well as detailed procedures of acid hydrolysis of protein and starch samples and NMR sample preparation, using soybean embryo culture as the model plant system. Techniques to obtain the relative intensity of 16 amino acids and glucosyl units for protein hydrolysate and the glucosyl units of starch hydrolysate of soybean embryos in 2-D HSQC NMR spectra also are provided.
Collapse
|
38
|
Abstract
Comprehensive analysis of isotopic labeling patterns of metabolites in proteinogenic amino acids and starch for plant systems lay in the powerful tool of 2-Dimensional [(1)H, (13)C] Nuclear Magnetic Resonance (2D NMR) spectroscopy. From (13)C-labeling experiments, 2D NMR provides information on the labeling of particular carbon positions, which contributes to the quantification of positional isotope isomers (isotopomer). 2D Heteronuclear Single Quantum Correlation (HSQC) NMR distinguishes particularly between the labeling patterns of adjacent carbon atoms, and leads to a characteristic enrichment of each carbon atom of amino acids and glucosyl and mannosyl units present in hydrolysates of glycosylated protein. Furthermore, this technique can quantitatively classify differences in glucosyl units of starch hydrolysate and of protein hydrolysate of plant biomass. Therefore, the 2D HSQC NMR method uses proteinogenic amino acids and starch to provide an understanding of carbon distribution of compartmentalization in the plant system. NMR has the advantage of minimal sample handle without separate individual compounds prior to analysis, for example multiple isotopomers can be detected, and their distribution extracted quantitatively from a single 2D HSQC NMR spectrum. The peak structure obtained from the HSQC experiment show multiplet patterns, which are directly related to isotopomer balancing. These abundances can be translated to maximum information on the metabolic flux analysis. Detailed methods for the extractions of protein, oil, soluble sugars, and starch, hydrolysis of proteinogenic amino acid and starch, and NMR preparation using soybean embryos cultured in vitro as a model plant systems are reported in this text. In addition, this chapter includes procedures to obtain the relative intensity of 16 amino acids and glucosyl units from protein hydrolysate and the glucosyl units of starch hydrolysate of soybean embryos in 2D HSQC NMR spectra.
Collapse
Affiliation(s)
- Quyen Truong
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | | |
Collapse
|
39
|
Abstract
This volume compiles a series of chapters that cover the major aspects of plant metabolic flux analysis, such as but not limited to labeling of plant material, acquisition of labeling data, mathematical modeling of metabolic network at the cell, tissue, and plant level. A short revue, including methodological points and applications of flux analysis to plants, is presented in this introductory chapter.
Collapse
|
40
|
Aghamirzaie D, Nabiyouni M, Fang Y, Klumas C, Heath LS, Grene R, Collakova E. Changes in RNA Splicing in Developing Soybean (Glycine max) Embryos. BIOLOGY 2013; 2:1311-37. [PMID: 24833227 PMCID: PMC4009788 DOI: 10.3390/biology2041311] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/06/2013] [Accepted: 11/12/2013] [Indexed: 12/17/2022]
Abstract
Developing soybean seeds accumulate oils, proteins, and carbohydrates that are used as oxidizable substrates providing metabolic precursors and energy during seed germination. The accumulation of these storage compounds in developing seeds is highly regulated at multiple levels, including at transcriptional and post-transcriptional regulation. RNA sequencing was used to provide comprehensive information about transcriptional and post-transcriptional events that take place in developing soybean embryos. Bioinformatics analyses lead to the identification of different classes of alternatively spliced isoforms and corresponding changes in their levels on a global scale during soybean embryo development. Alternative splicing was associated with transcripts involved in various metabolic and developmental processes, including central carbon and nitrogen metabolism, induction of maturation and dormancy, and splicing itself. Detailed examination of selected RNA isoforms revealed alterations in individual domains that could result in changes in subcellular localization of the resulting proteins, protein-protein and enzyme-substrate interactions, and regulation of protein activities. Different isoforms may play an important role in regulating developmental and metabolic processes occurring at different stages in developing oilseed embryos.
Collapse
Affiliation(s)
- Delasa Aghamirzaie
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Mahdi Nabiyouni
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Yihui Fang
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Curtis Klumas
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Lenwood S Heath
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Ruth Grene
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Eva Collakova
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
41
|
Zheng Y, Quinn AH, Sriram G. Experimental evidence and isotopomer analysis of mixotrophic glucose metabolism in the marine diatom Phaeodactylum tricornutum. Microb Cell Fact 2013; 12:109. [PMID: 24228629 PMCID: PMC3842785 DOI: 10.1186/1475-2859-12-109] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 11/06/2013] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Heterotrophic fermentation using simple sugars such as glucose is an established and cost-effective method for synthesizing bioproducts from bacteria, yeast and algae. Organisms incapable of metabolizing glucose have limited applications as cell factories, often despite many other advantageous characteristics. Therefore, there is a clear need to investigate glucose metabolism in potential cell factories. One such organism, with a unique metabolic network and a propensity to synthesize highly reduced compounds as a large fraction of its biomass, is the marine diatom Phaeodactylum tricornutum (Pt). Although Pt has been engineered to metabolize glucose, conflicting lines of evidence leave it unresolved whether Pt can natively consume glucose. RESULTS Isotope labeling experiments in which Pt was mixotrophically grown under light on 100% U-(13)C glucose and naturally abundant (~99% (12)C) dissolved inorganic carbon resulted in proteinogenic amino acids with an average 13C-enrichment of 88%, thus providing convincing evidence of glucose uptake and metabolism. The dissolved inorganic carbon was largely incorporated through anaplerotic rather than photosynthetic fixation. Furthermore, an isotope labeling experiment utilizing 1-(13)C glucose and subsequent metabolic pathway analysis indicated that (i) the alternative Entner-Doudoroff and Phosphoketolase glycolytic pathways are active during glucose metabolism, and (ii) during mixotrophic growth, serine and glycine are largely synthesized from glyoxylate through photorespiratory reactions rather than from 3-phosphoglycerate. We validated the latter result for mixotrophic growth on glycerol by performing a 2-(13)C glycerol isotope labeling experiment. Additionally, gene expression assays showed that known, native glucose transporters in Pt are largely insensitive to glucose or light, whereas the gene encoding cytosolic fructose bisphosphate aldolase 3, an important glycolytic enzyme, is overexpressed in light but insensitive to glucose. CONCLUSION We have shown that Pt can use glucose as a primary carbon source when grown in light, but cannot use glucose to sustain growth in the dark. We further analyzed the metabolic mechanisms underlying the mixotrophic metabolism of glucose and found isotopic evidence for unusual pathways active in Pt. These insights expand the envelope of Pt cultivation methods using organic substrates. We anticipate that they will guide further engineering of Pt towards sustainable production of fuels, pharmaceuticals, and platform chemicals.
Collapse
Affiliation(s)
- Yuting Zheng
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, MD 20742, USA
| | - Andrew H Quinn
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, MD 20742, USA
| | - Ganesh Sriram
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, MD 20742, USA
| |
Collapse
|
42
|
Shestov AA, Barker B, Gu Z, Locasale JW. Computational approaches for understanding energy metabolism. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2013; 5:733-50. [PMID: 23897661 PMCID: PMC3906216 DOI: 10.1002/wsbm.1238] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There has been a surge of interest in understanding the regulation of metabolic networks involved in disease in recent years. Quantitative models are increasingly being used to interrogate the metabolic pathways that are contained within this complex disease biology. At the core of this effort is the mathematical modeling of central carbon metabolism involving glycolysis and the citric acid cycle (referred to as energy metabolism). Here, we discuss several approaches used to quantitatively model metabolic pathways relating to energy metabolism and discuss their formalisms, successes, and limitations.
Collapse
Affiliation(s)
| | - Brandon Barker
- Division of Nutritional Sciences, Cornell University, Ithaca NY 14850
- Tri-Institutional Field of Computational Biology and Medicine, Cornell University, Ithaca NY 14850
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca NY 14850
- Tri-Institutional Field of Computational Biology and Medicine, Cornell University, Ithaca NY 14850
| | - Jason W Locasale
- Division of Nutritional Sciences, Cornell University, Ithaca NY 14850
- Tri-Institutional Field of Computational Biology and Medicine, Cornell University, Ithaca NY 14850
| |
Collapse
|
43
|
Boisseau R, Charrier B, Massou S, Portais JC, Akoka S, Giraudeau P. Fast Spatially Encoded 3D NMR Strategies for 13C-Based Metabolic Flux Analysis. Anal Chem 2013; 85:9751-7. [DOI: 10.1021/ac402155w] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Renaud Boisseau
- Université de Nantes, CNRS, CEISAM UMR 6230, B.P.
92208, 2 rue de la Houssinière, 44322 Nantes Cedex 03, France
| | - Benoît Charrier
- Université de Nantes, CNRS, CEISAM UMR 6230, B.P.
92208, 2 rue de la Houssinière, 44322 Nantes Cedex 03, France
| | - Stéphane Massou
- Université de Toulouse, INSA, UPS, INP, 135 Avenue de Rangueil, F-31077, Toulouse, France
- INRA, UMR792 Ingénierie
des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
| | - Jean-Charles Portais
- Université de Toulouse, INSA, UPS, INP, 135 Avenue de Rangueil, F-31077, Toulouse, France
- INRA, UMR792 Ingénierie
des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
| | - Serge Akoka
- Université de Nantes, CNRS, CEISAM UMR 6230, B.P.
92208, 2 rue de la Houssinière, 44322 Nantes Cedex 03, France
| | - Patrick Giraudeau
- Université de Nantes, CNRS, CEISAM UMR 6230, B.P.
92208, 2 rue de la Houssinière, 44322 Nantes Cedex 03, France
| |
Collapse
|
44
|
Sweetlove LJ, Williams TCR, Cheung CYM, Ratcliffe RG. Modelling metabolic CO₂ evolution--a fresh perspective on respiration. PLANT, CELL & ENVIRONMENT 2013; 36:1631-1640. [PMID: 23531106 DOI: 10.1111/pce.12105] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/06/2013] [Accepted: 03/19/2013] [Indexed: 05/28/2023]
Abstract
Respiration is a major contributor to net exchange of CO₂ between plants and the atmosphere and thus an important aspect of the vegetation component of global climate change models. However, a mechanistic model of respiration is lacking, and so here we explore the potential for flux balance analysis (FBA) to predict cellular CO₂ evolution rates. Metabolic flux analysis reveals that respiration is not always the dominant source of CO₂, and that metabolic processes such as the oxidative pentose phosphate pathway (OPPP) and lipid synthesis can be quantitatively important. Moreover, there is considerable variation in the metabolic origin of evolved CO₂ between tissues, species and conditions. Comparison of FBA-predicted CO₂ evolution profiles with those determined from flux measurements reveals that FBA is able to predict the metabolic origin of evolved CO₂ in different tissues/species and under different conditions. However, FBA is poor at predicting flux through certain metabolic processes such as the OPPP and we identify the way in which maintenance costs are accounted for as a major area of improvement for future FBA studies. We conclude that FBA, in its standard form, can be used to predict CO₂ evolution in a range of plant tissues and in response to environment.
Collapse
Affiliation(s)
- Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| | | | | | | |
Collapse
|
45
|
Fernie AR, Morgan JA. Analysis of metabolic flux using dynamic labelling and metabolic modelling. PLANT, CELL & ENVIRONMENT 2013; 36:1738-1750. [PMID: 23421750 DOI: 10.1111/pce.12083] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/05/2013] [Accepted: 02/11/2013] [Indexed: 06/01/2023]
Abstract
Metabolic fluxes and the capacity to modulate them are a crucial component of the ability of the plant cell to react to environmental perturbations. Our ability to quantify them and to attain information concerning the regulatory mechanisms that control them is therefore essential to understand and influence metabolic networks. For all but the simplest of flux measurements labelling methods have proven to be the most informative. Both steady-state and dynamic labelling approaches have been adopted in the study of plant metabolism. Here the conceptual basis of these complementary approaches, as well as their historical application in microbial, mammalian and plant sciences, is reviewed, and an update on technical developments in label distribution analyses is provided. This is supported by illustrative cases studies involving the kinetic modelling of secondary metabolism. One issue that is particularly complex in the analysis of plant fluxes is the extensive compartmentation of the plant cell. This problem is discussed from both theoretical and experimental perspectives, and the current approaches used to address it are assessed. Finally, current limitations and future perspectives of kinetic modelling of plant metabolism are discussed.
Collapse
Affiliation(s)
- A R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | | |
Collapse
|
46
|
Misra A, Conway MF, Johnnie J, Qureshi TM, Lige B, Derrick AM, Agbo EC, Sriram G. Metabolic analyses elucidate non-trivial gene targets for amplifying dihydroartemisinic acid production in yeast. Front Microbiol 2013; 4:200. [PMID: 23898325 PMCID: PMC3724057 DOI: 10.3389/fmicb.2013.00200] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/25/2013] [Indexed: 11/13/2022] Open
Abstract
Synthetic biology enables metabolic engineering of industrial microbes to synthesize value-added molecules. In this, a major challenge is the efficient redirection of carbon to the desired metabolic pathways. Pinpointing strategies toward this goal requires an in-depth investigation of the metabolic landscape of the organism, particularly primary metabolism, to identify precursor and cofactor availability for the target compound. The potent antimalarial therapeutic artemisinin and its precursors are promising candidate molecules for production in microbial hosts. Recent advances have demonstrated the production of artemisinin precursors in engineered yeast strains as an alternative to extraction from plants. We report the application of in silico and in vivo metabolic pathway analyses to identify metabolic engineering targets to improve the yield of the direct artemisinin precursor dihydroartemisinic acid (DHA) in yeast. First, in silico extreme pathway (ExPa) analysis identified NADPH-malic enzyme and the oxidative pentose phosphate pathway (PPP) as mechanisms to meet NADPH demand for DHA synthesis. Next, we compared key DHA-synthesizing ExPas to the metabolic flux distributions obtained from in vivo (13)C metabolic flux analysis of a DHA-synthesizing strain. This comparison revealed that knocking out ethanol synthesis and overexpressing glucose-6-phosphate dehydrogenase in the oxidative PPP (gene YNL241C) or the NADPH-malic enzyme ME2 (YKL029C) are vital steps toward overproducing DHA. Finally, we employed in silico flux balance analysis and minimization of metabolic adjustment on a yeast genome-scale model to identify gene knockouts for improving DHA yields. The best strategy involved knockout of an oxaloacetate transporter (YKL120W) and an aspartate aminotransferase (YKL106W), and was predicted to improve DHA yields by 70-fold. Collectively, our work elucidates multiple non-trivial metabolic engineering strategies for improving DHA yield in yeast.
Collapse
Affiliation(s)
- Ashish Misra
- Department of Chemical and Biomolecular Engineering, University of MarylandCollege Park, MD, USA
| | - Matthew F. Conway
- Department of Chemical and Biomolecular Engineering, University of MarylandCollege Park, MD, USA
| | - Joseph Johnnie
- Institute for Systems Engineering, University of MarylandCollege Park, MD, USA
| | - Tabish M. Qureshi
- Department of Chemical and Biomolecular Engineering, University of MarylandCollege Park, MD, USA
| | - Bao Lige
- Fyodor BiotechnologiesBaltimore, MD, USA
| | | | | | - Ganesh Sriram
- Department of Chemical and Biomolecular Engineering, University of MarylandCollege Park, MD, USA
| |
Collapse
|
47
|
Truong Q, Koch K, Yoon JM, Everard JD, Shanks JV. Influence of carbon to nitrogen ratios on soybean somatic embryo (cv. Jack) growth and composition. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2985-95. [PMID: 23740932 PMCID: PMC3697947 DOI: 10.1093/jxb/ert138] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Soybean [Glycine max (L.) Merr.] seed are valued for their protein and oil content. Soybean somatic embryos cultured in Soybean Histodifferentiation and Maturation (SHaM) medium were examined for their suitability as a model system for developing an understanding of assimilate partitioning and metabolic control points for protein and oil biosynthesis in soybean seed. This report describes the growth dynamics and compositional changes of SHaM embryos in response to change in the carbon to nitrogen ratio of the medium. It was postulated that at media compositions that were sufficient to support maximal growth rates, changes in the C:N ratio are likely to influence the partitioning of resources between the various storage products, especially protein and oil. As postulated, at steady-state growth rates, embryo protein content was strongly correlated with decreasing C:N ratios and increasing glutamine consumption rates. However, oil content remained relatively unchanged across the C:N ratio range tested, and resources were instead directed towards the starch and residual biomass (estimated by mass balance) pools in response to increasing C:N ratios. Protein and oil were inversely related only at concentrations of sucrose in the medium <88 mM, where carbon limited growth and no starch was found to accumulate in the tissues. These observations and the high reproducibility in the data indicate that SHaM embryos are an ideal model system for the application of metabolic flux analysis studies designed to test hypotheses regarding assimilate partitioning in developing soybean seeds.
Collapse
Affiliation(s)
- Quyen Truong
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50010, USA
| | - Kaelynn Koch
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50010, USA
| | - Jong Moon Yoon
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50010, USA
| | - John D. Everard
- DuPont Agricultural Biotechnology Research and Development, DuPont Experimental Station, Wilmington, DE 19880, USA
| | - Jacqueline V. Shanks
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50010, USA
| |
Collapse
|
48
|
Collakova E, Aghamirzaie D, Fang Y, Klumas C, Tabataba F, Kakumanu A, Myers E, Heath LS, Grene R. Metabolic and Transcriptional Reprogramming in Developing Soybean (Glycine max) Embryos. Metabolites 2013; 3:347-72. [PMID: 24957996 PMCID: PMC3901275 DOI: 10.3390/metabo3020347] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/16/2013] [Accepted: 05/07/2013] [Indexed: 01/08/2023] Open
Abstract
Soybean (Glycine max) seeds are an important source of seed storage compounds, including protein, oil, and sugar used for food, feed, chemical, and biofuel production. We assessed detailed temporal transcriptional and metabolic changes in developing soybean embryos to gain a systems biology view of developmental and metabolic changes and to identify potential targets for metabolic engineering. Two major developmental and metabolic transitions were captured enabling identification of potential metabolic engineering targets specific to seed filling and to desiccation. The first transition involved a switch between different types of metabolism in dividing and elongating cells. The second transition involved the onset of maturation and desiccation tolerance during seed filling and a switch from photoheterotrophic to heterotrophic metabolism. Clustering analyses of metabolite and transcript data revealed clusters of functionally related metabolites and transcripts active in these different developmental and metabolic programs. The gene clusters provide a resource to generate predictions about the associations and interactions of unknown regulators with their targets based on “guilt-by-association” relationships. The inferred regulators also represent potential targets for future metabolic engineering of relevant pathways and steps in central carbon and nitrogen metabolism in soybean embryos and drought and desiccation tolerance in plants.
Collapse
Affiliation(s)
- Eva Collakova
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, USA.
| | - Delasa Aghamirzaie
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA, USA.
| | - Yihui Fang
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, USA.
| | - Curtis Klumas
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA, USA.
| | | | - Akshay Kakumanu
- Huck Institutes of the Life Sciences, Penn State University, University Park, PA, USA.
| | - Elijah Myers
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA, USA.
| | - Lenwood S Heath
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA.
| | - Ruth Grene
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
49
|
Yoon JM, Zhao L, Shanks JV. Metabolic engineering with plants for a sustainable biobased economy. Annu Rev Chem Biomol Eng 2013; 4:211-37. [PMID: 23540288 DOI: 10.1146/annurev-chembioeng-061312-103320] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plants are bona fide sustainable organisms because they accumulate carbon and synthesize beneficial metabolites from photosynthesis. To meet the challenges to food security and health threatened by increasing population growth and depletion of nonrenewable natural resources, recent metabolic engineering efforts have shifted from single pathways to holistic approaches with multiple genes owing to integration of omics technologies. Successful engineering of plants results in the high yield of biomass components for primary food sources and biofuel feedstocks, pharmaceuticals, and platform chemicals through synthetic biology and systems biology strategies. Further discovery of undefined biosynthesis pathways in plants, integrative analysis of discrete omics data, and diversified process developments for production of platform chemicals are essential to overcome the hurdles for sustainable production of value-added biomolecules from plants.
Collapse
Affiliation(s)
- Jong Moon Yoon
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA.
| | | | | |
Collapse
|
50
|
Allen DK, Young JD. Carbon and nitrogen provisions alter the metabolic flux in developing soybean embryos. PLANT PHYSIOLOGY 2013; 161:1458-75. [PMID: 23314943 PMCID: PMC3585609 DOI: 10.1104/pp.112.203299] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 01/09/2013] [Indexed: 05/19/2023]
Abstract
Soybean (Glycine max) seeds store significant amounts of their biomass as protein, levels of which reflect the carbon and nitrogen received by the developing embryo. The relationship between carbon and nitrogen supply during filling and seed composition was examined through a series of embryo-culturing experiments. Three distinct ratios of carbon to nitrogen supply were further explored through metabolic flux analysis. Labeling experiments utilizing [U-(13)C5]glutamine, [U-(13)C4]asparagine, and [1,2-(13)C2]glucose were performed to assess embryo metabolism under altered feeding conditions and to create corresponding flux maps. Additionally, [U-(14)C12]sucrose, [U-(14)C6]glucose, [U-(14)C5]glutamine, and [U-(14)C4]asparagine were used to monitor differences in carbon allocation. The analyses revealed that: (1) protein concentration as a percentage of total soybean embryo biomass coincided with the carbon-to-nitrogen ratio; (2) altered nitrogen supply did not dramatically impact relative amino acid or storage protein subunit profiles; and (3) glutamine supply contributed 10% to 23% of the carbon for biomass production, including 9% to 19% of carbon to fatty acid biosynthesis and 32% to 46% of carbon to amino acids. Seed metabolism accommodated different levels of protein biosynthesis while maintaining a consistent rate of dry weight accumulation. Flux through ATP-citrate lyase, combined with malic enzyme activity, contributed significantly to acetyl-coenzyme A production. These fluxes changed with plastidic pyruvate kinase to maintain a supply of pyruvate for amino and fatty acids. The flux maps were independently validated by nitrogen balancing and highlight the robustness of primary metabolism.
Collapse
Affiliation(s)
- Doug K Allen
- United States Department of Agriculture-Agricultural Research Service, Plant Genetic Research Unit, St. Louis, MO 63132, USA.
| | | |
Collapse
|