1
|
Patel N, Vuruputoor VS, Rahmatpour N, Liu Y, Szövényi P, Goffinet B, Wegrzyn JL. Immediate premeiotic transcriptomic effects following nonchemically induced whole genome duplication in the moss Funaria hygrometrica. THE NEW PHYTOLOGIST 2025. [PMID: 40356201 DOI: 10.1111/nph.70208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/10/2025] [Indexed: 05/15/2025]
Affiliation(s)
- Nikisha Patel
- Biology Department, Trinity College, 300 Summit Street, Hartford, CT, 06106, USA
| | - Vidya S Vuruputoor
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269-3043, USA
| | - Nasim Rahmatpour
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269-3043, USA
| | - Yang Liu
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Peter Szövényi
- Department of Systematic and Evolutionary Botany (ISEB), University of Zürich, Zollikerstrasse 107, Zürich, 8008, Switzerland
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269-3043, USA
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269-3043, USA
- Institute for Systems Genomics, Computational Biology Core, University of Connecticut, 67 NorthEagleville Road, Storrs, CT, 06269-3003, USA
| |
Collapse
|
2
|
Setayeshnasab M, Sabzalian MR, Rahimmalek M, Lohrasebi T. Morphological and molecular evidence supporting advantages of apomictic seed production in castor bean (Ricinus communis L.). BMC PLANT BIOLOGY 2025; 25:276. [PMID: 40025447 PMCID: PMC11874775 DOI: 10.1186/s12870-025-06199-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 02/04/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Ricinus communis L. is a large plant from the spurge family (Euphorbiaceae), grown for industrial and medicinal purposes. In this research, progenies obtained from three types of reproduction, including apomixis, self-pollination, and open-pollination from a worldwide collection of castor bean (14 genotypes), were evaluated based on yield components and agro-morphological traits and the amount of inbreeding depression and apomixis advantages were estimated in each genotype using offspring. In addition, the expression of eight candidate genes for apomixis (including Helic, SERK, BBM, LEC1, ABI3, FUS3, WUS, and GLC) was assessed during three stages of floret development in both apomixis and open-pollination reproductions. RESULTS Results of data analysis demonstrated that inbreeding depression for most traits in self-pollinated progenies than apomictic progenies (IDA) was higher compared to inbreeding depression than open-pollinated progenies (IDO). Additionally, the highest inbreeding depression was for seed yield per plant, and genotypes of Isfahan and Benin had the highest IDA (-53.78%) and IDO (-76.95%) for seed yield per plant, respectively. In contrast, apomixis advantage was positive for most traits, and apomixis advantage relative to self-pollinated progenies (AAS) was higher than apomixis advantage relative to open-pollinated progenies (AAO). The highest apomixis advantage was for seed yield per plant, and the highest AAO (424.51%) and AAS (333.85%) for this trait were observed in the Benin genotype. The expression levels of apomixis candidate genes increased in apomixis reproduction vs. open-pollination one and the greatest expression difference was observed for Helic and ABI3 genes promoting somatic embryogenesis in earlier stages of seed development. CONCLUSIONS According to the results of this study, apomixis is probably advantageous over both self-pollination and open-pollination methods of reproduction in castor bean and the apomictic progenies were superior in most traits, which is probably due to the accumulation of undesirable alleles in the self-pollinated progenies (inbreeding effects) and the segregation of desirable characteristics in the open-pollinated progenies (segregation effect).
Collapse
Affiliation(s)
- Maedeh Setayeshnasab
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mohammad R Sabzalian
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Mehdi Rahimmalek
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Tahmineh Lohrasebi
- Department of Plant Bioproducts, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
3
|
Xue L, Zhang Y, Wei F, Shi G, Tian B, Yuan Y, Jiang W, Zhao M, Hu L, Xie Z, Gu H. Recent Progress on Plant Apomixis for Genetic Improvement. Int J Mol Sci 2024; 25:11378. [PMID: 39518931 PMCID: PMC11545481 DOI: 10.3390/ijms252111378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Apomixis is a reproductive process that produces clonal seeds while bypassing meiosis (or apomeiosis) without undergoing fertilization (or pseudo-fertilization). The progenies are genetically cloned from their parents, retaining the parental genotype, and have great potential for the preservation of genes of interest and the fixing of heterosis. The hallmark components of apomixis include the formation of female gametes without meiosis, the development of fertilization-independent embryos, and the formation of functional endosperm. Understanding and utilizing the molecular mechanism of apomixis has far-reaching implications for plant genetic breeding and agricultural development. Therefore, this study focuses on the classification, influencing factors, genetic regulation, and molecular mechanism of apomixis, as well as progress in the research and application of apomixis-related genes in plant breeding. This work will elucidate the molecular mechanisms of apomixis and its application for plant genetic improvement.
Collapse
Affiliation(s)
- Lihua Xue
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.X.); (Y.Z.); (F.W.); (G.S.); (B.T.); (W.J.); (M.Z.); (L.H.)
| | - Yingying Zhang
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.X.); (Y.Z.); (F.W.); (G.S.); (B.T.); (W.J.); (M.Z.); (L.H.)
| | - Fang Wei
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.X.); (Y.Z.); (F.W.); (G.S.); (B.T.); (W.J.); (M.Z.); (L.H.)
| | - Gongyao Shi
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.X.); (Y.Z.); (F.W.); (G.S.); (B.T.); (W.J.); (M.Z.); (L.H.)
| | - Baoming Tian
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.X.); (Y.Z.); (F.W.); (G.S.); (B.T.); (W.J.); (M.Z.); (L.H.)
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T & R Base of Zhengzhou University, Zhengzhou 450002, China;
| | - Wenjing Jiang
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.X.); (Y.Z.); (F.W.); (G.S.); (B.T.); (W.J.); (M.Z.); (L.H.)
| | - Meiqi Zhao
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.X.); (Y.Z.); (F.W.); (G.S.); (B.T.); (W.J.); (M.Z.); (L.H.)
| | - Lijiao Hu
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.X.); (Y.Z.); (F.W.); (G.S.); (B.T.); (W.J.); (M.Z.); (L.H.)
| | - Zhengqing Xie
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.X.); (Y.Z.); (F.W.); (G.S.); (B.T.); (W.J.); (M.Z.); (L.H.)
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Huihui Gu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
4
|
Ojosnegros S, Alvarez JM, Gagliardini V, Quintanilla LG, Grossniklaus U, Fernández H. Transcriptomic analyses in the gametophytes of the apomictic fern Dryopteris affinis. PLANTA 2024; 260:111. [PMID: 39356333 PMCID: PMC11447071 DOI: 10.1007/s00425-024-04540-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/21/2024] [Indexed: 10/03/2024]
Abstract
MAIN CONCLUSION A novel genomic map of the apogamous gametophyte of the fern Dryopteris affinis unlocks oldest hindrance with this complex plant group, to gain insight into evo-devo approaches. The gametophyte of the fern Dryopteris affinis ssp. affinis represents a good model to explore the molecular basis of vegetative and reproductive development, as well as stress responses. Specifically, this fern reproduces asexually by apogamy, a peculiar case of apomixis whereby a sporophyte forms directly from a gametophytic cell without fertilization. Using RNA-sequencing approach, we have previously annotated more than 6000 transcripts. Here, we selected 100 of the inferred proteins homolog to those of Arabidopsis thaliana, which were particularly interesting for a detailed study of their potential functions, protein-protein interactions, and distance trees. As expected, a plethora of proteins associated with gametogenesis and embryogenesis in angiosperms, such as FERONIA (FER) and CHROMATING REMODELING 11 (CHR11) were identified, and more than a dozen candidates potentially involved in apomixis, such as ARGONAUTE family (AGO4, AGO9, and AGO 10), BABY BOOM (BBM), FASCIATED STEM4 (FAS4), FERTILIZATION-INDEPENDENT ENDOSPERM (FIE), and MATERNAL EFFECT EMBRYO ARREST29 (MEE29). In addition, proteins involved in the response to biotic and abiotic stresses were widely represented, as shown by the enrichment of heat-shock proteins. Using the String platform, the interactome revealed that most of the protein-protein interactions were predicted based on experimental, database, and text mining datasets, with MULTICOPY SUPPRESSOR OF IRA4 (MSI4) showing the highest number of interactions: 16. Lastly, some proteins were studied through distance trees by comparing alignments with respect to more distantly or closely related plant groups. This analysis identified DCL4 as the most distant protein to the predicted common ancestor. New genomic information in relation to gametophyte development, including apomictic reproduction, could expand our current vision of evo-devo approaches.
Collapse
Affiliation(s)
- Sara Ojosnegros
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071, Oviedo, Spain
| | - José Manuel Alvarez
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071, Oviedo, Spain
| | - Valeria Gagliardini
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, 8008, Zurich, Switzerland
| | - Luis G Quintanilla
- Global Change Research Institute, University Rey Juan Carlos, 28933, Móstoles, Spain
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, 8008, Zurich, Switzerland
| | - Helena Fernández
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071, Oviedo, Spain.
| |
Collapse
|
5
|
Xu P, Zhong Y, Xu A, Liu B, Zhang Y, Zhao A, Yang X, Ming M, Cao F, Fu F. Application of Developmental Regulators for Enhancing Plant Regeneration and Genetic Transformation. PLANTS (BASEL, SWITZERLAND) 2024; 13:1272. [PMID: 38732487 PMCID: PMC11085514 DOI: 10.3390/plants13091272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Establishing plant regeneration systems and efficient genetic transformation techniques plays a crucial role in plant functional genomics research and the development of new crop varieties. The inefficient methods of transformation and regeneration of recalcitrant species and the genetic dependence of the transformation process remain major obstacles. With the advancement of plant meristematic tissues and somatic embryogenesis research, several key regulatory genes, collectively known as developmental regulators, have been identified. In the field of plant genetic transformation, the application of developmental regulators has recently garnered significant interest. These regulators play important roles in plant growth and development, and when applied in plant genetic transformation, they can effectively enhance the induction and regeneration capabilities of plant meristematic tissues, thus providing important opportunities for improving genetic transformation efficiency. This review focuses on the introduction of several commonly used developmental regulators. By gaining an in-depth understanding of and applying these developmental regulators, it is possible to further enhance the efficiency and success rate of plant genetic transformation, providing strong support for plant breeding and genetic engineering research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Fangfang Fu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (P.X.); (Y.Z.); (A.X.); (B.L.); (Y.Z.); (A.Z.); (X.Y.); (M.M.); (F.C.)
| |
Collapse
|
6
|
Niccolò T, Anderson AW, Emidio A. Apomixis: oh, what a tangled web we have! PLANTA 2023; 257:92. [PMID: 37000270 PMCID: PMC10066125 DOI: 10.1007/s00425-023-04124-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Apomixis is a complex evolutionary trait with many possible origins. Here we discuss various clues and causes, ultimately proposing a model harmonizing the three working hypotheses on the topic. Asexual reproduction through seeds, i.e., apomixis, is the holy grail of plant biology. Its implementation in modern breeding could be a game-changer for agriculture. It has the potential to generate clonal crops and maintain valuable complex genotypes and their associated heterotic traits without inbreeding depression. The genetic basis and origins of apomixis are still unclear. There are three central hypothesis for the development of apomixis that could be: i) a deviation from the sexual developmental program caused by an asynchronous development, ii) environmentally triggered through epigenetic regulations (a polyphenism of sex), iii) relying on one or more genes/alleles. Because of the ever-increasing complexity of the topic, the path toward a detailed understanding of the mechanisms underlying apomixis remains unclear. Here, we discuss the most recent advances in the evolution perspective of this multifaceted trait. We incorporated our understanding of the effect of endogenous effectors, such as small RNAs, epigenetic regulation, hormonal pathways, protein turnover, and cell wall modification in response to an upside stress. This can be either endogenous (hybridization or polyploidization) or exogenous environmental stress, mainly due to oxidative stress and the corresponding ROS (Reacting Oxygen Species) effectors. Finally, we graphically represented this tangled web.
Collapse
Affiliation(s)
- Terzaroli Niccolò
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy.
| | - Aaron W Anderson
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
- Fulbright Scholar From Department of Plant Sciences, University of California, Davis, USA
| | - Albertini Emidio
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
- Consorzio Interuniversitario per le Biotecnologie (CIB), Trieste, Italy
| |
Collapse
|
7
|
He L, Fan Y, Zhang Z, Wei X, Yu J. Identifying Genes Associated with Female Flower Development of Phellodendron amurense Rupr. Using a Transcriptomics Approach. Genes (Basel) 2023; 14:661. [PMID: 36980934 PMCID: PMC10048520 DOI: 10.3390/genes14030661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Phellodendron amurense Rupr., a species of Rutaceae, is a nationally protected and valuable medicinal plant. It is generally considered to be dioecious. With the discovery of monoecious P. amurense, the phenomenon that its sex development is regulated by epigenetics has been revealed, but the way epigenetics affects the sex differentiation of P. amurense is still unclear. In this study, we investigated the effect of DNA methylation on the sexual development of P. amurense. The young inflorescences of male plants were treated with the demethylation agent 5-azaC, and the induced female flowers were obtained. The induced female flowers' morphological functions and transcriptome levels were close to those of normally developed plants. Genes associated with the development of female flowers were studied by comparing the differences in transcriptome levels between the male and female flowers. Referring to sex-related genes reported in other plants, 188 candidate genes related to the development of female flowers were obtained, including sex-regulating genes, genes related to the formation and development of sexual organs, genes related to biochemical pathways, and hormone-related genes. RPP0W, PAL3, MCM2, MCM6, SUP, PIN1, AINTEGUMENTA, AINTEGUMENTA-LIKE6, AGL11, SEUSS, SHI-RELATED SEQUENCE 5, and ESR2 were preliminarily considered the key genes for female flower development. This study has demonstrated that epigenetics was involved in the sex regulation of P. amurense, with DNA methylation as one of its regulatory modes. Moreover, some candidate genes related to the sexual differentiation of P. amurense were obtained with analysis. These results are of great significance for further exploring the mechanism of sex differentiation of P. amurense and studying of sex differentiation of plants.
Collapse
Affiliation(s)
| | | | - Zhao Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | | | | |
Collapse
|
8
|
Zhang J, Ma H, Liu Y. Analysis on characteristics of female gametophyte and functional identification of genes related to inflorescences development of Kentucky bluegrass. PROTOPLASMA 2022; 259:1061-1079. [PMID: 34743240 DOI: 10.1007/s00709-021-01720-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
The inflorescence is composed of spikes, and the spike is the carrier of grass seed formation and development, so the development status of inflorescence implies grass seed yield and quality. So far, the systematic analysis of inflorescence development of Kentucky bluegrass has not been reported. The development process of the female gametophyte of wild germplasm materials of Kentucky bluegrass in Gannan, Gansu Province of China (KB-GN), was observed. Based on this, the key developmental stages of inflorescence in KB-GN were divided into premeiosis (GPreM), meiosis (GM), postmeiosis (GPostM), and anthesis (GA), and four stages of inflorescence were selected to analyze the transcriptome expression profile. We found that its sexual reproduction formed a polygonum-type embryo sac. Transcriptome analysis showed that 4256, 1125, 1699, and 3127 genes were highly expressed in GPreM, GM, GPostM, and GA, respectively. And a large number of transcription factors (TFs) such as MADS-box, MYB and NAC, AP2, C2H2, FAR1, B3, bHLH, WRKY, and TCP were highly expressed throughout the inflorescence development stages. KEGG enrichment and MapMan analysis showed that genes involved in plant hormone metabolism were also highly expressed at the entire stages of inflorescence development. However, a few TFs belong to stage-specific genes, such as TRAF proteins with unknown function in plants was screened firstly, which was specifically and highly expressed in the GPreM, indicating that TRAF may regulate the preparatory events of meiosis or be essential for the development of megaspore mother cell (MMC). The expression patterns of 15 MADS-box genes were analyzed by qRT-PCR, and the expression results were consistent with that of the transcriptome. The study on the inflorescence development of KB-GN will be great significant works and contribution to illustrate the basic mechanism of grass seeds formation and development.
Collapse
Affiliation(s)
- Jinqing Zhang
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Huiling Ma
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China.
| | - Yan Liu
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| |
Collapse
|
9
|
Xu Y, Jia H, Tan C, Wu X, Deng X, Xu Q. Apomixis: genetic basis and controlling genes. HORTICULTURE RESEARCH 2022; 9:uhac150. [PMID: 36072837 PMCID: PMC9437720 DOI: 10.1093/hr/uhac150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 05/12/2023]
Abstract
Apomixis is the phenomenon of clonal reproduction by seed. As apomixis can produce clonal progeny with exactly the same genotype as the maternal plant, it has an important application in genotype fixation and accelerating agricultural breeding strategies. The introduction of apomixis to major crops would bring many benefits to agriculture, including permanent fixation of superior genotypes and simplifying the procedures of hybrid seed production, as well as purification and rejuvenation of crops propagated vegetatively. Although apomixis naturally occurs in more than 400 plant species, it is rare among the major crops. Currently, with better understanding of apomixis, some achievements have been made in synthetic apomixis. However, due to prevailing limitations, there is still a long way to go to achieve large-scale application of apomixis to crop breeding. Here, we compare the developmental features of apomixis and sexual plant reproduction and review the recent identification of apomixis genes, transposons, epigenetic regulation, and genetic events leading to apomixis. We also summarize the possible strategies and potential genes for engineering apomixis into crop plants.
Collapse
Affiliation(s)
- Yuantao Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Huihui Jia
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chunming Tan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaomeng Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | | |
Collapse
|
10
|
Wu G, Li W, Tian N, Wang X, Wu W, Zheng S. Cloning and functional identification of setaria italica somatic embryogenesis receptor-like kinase1 gene (SiSERK1). Gene 2021; 813:146119. [PMID: 34902513 DOI: 10.1016/j.gene.2021.146119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 11/04/2022]
Abstract
Plant somatic embryogenesis receptor-like kinases (SERK), members of leucine-rich repeat receptor-like kinases (LRR-RLKs) subfamily, are widely involved in plant growth, development and innate immunity. In this study, the setaria italica somatic embryogenesis receptor-like kinase1 gene (SiSERK1) was cloned by gateway technology, and transferred into a brasssinosteroid (BR) receptor mutant of Arabidopsis thaliana WS2 (bri1-5). After BL treatment, the transgenic plants could partially restore the phenotype of bri1-5. After Pst DC3000 treatment, the CFU value of SiSERK1 overexpression plant pathogen was between WS2 and bri1-5. Stomatal opening and plant height were also between them. Therefore, it is speculated that SiSERK1 gene is involved in BR signaling pathway and can improve the resistance of bri1-5 to Pst DC3000 through SA and NHP mediated systemic acquired resistance (SAR).
Collapse
Affiliation(s)
- Guofan Wu
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou 730070, China.
| | - Wenbo Li
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Nongfu Tian
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Xin Wang
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Wangze Wu
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Sheng Zheng
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
11
|
Soliman M, Podio M, Marconi G, Di Marsico M, Ortiz JPA, Albertini E, Delgado L. Differential Epigenetic Marks Are Associated with Apospory Expressivity in Diploid Hybrids of Paspalum rufum. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10040793. [PMID: 33920644 PMCID: PMC8072704 DOI: 10.3390/plants10040793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Apomixis seems to emerge from the deregulation of preexisting genes involved in sexuality by genetic and/or epigenetic mechanisms. The trait is associated with polyploidy, but diploid individuals of Paspalum rufum can form aposporous embryo sacs and develop clonal seeds. Moreover, diploid hybrid families presented a wide apospory expressivity variation. To locate methylation changes associated with apomixis expressivity, we compare relative DNA methylation levels, at CG, CHG, and CHH contexts, between full-sib P. rufum diploid genotypes presenting differential apospory expressivity. The survey was performed using a methylation content-sensitive enzyme ddRAD (MCSeEd) strategy on samples at premeiosis/meiosis and postmeiosis stages. Based on the relative methylation level, principal component analysis and heatmaps, clearly discriminate samples with contrasting apospory expressivity. Differential methylated contigs (DMCs) showed 14% of homology to known transcripts of Paspalum notatum reproductive transcriptome, and almost half of them were also differentially expressed between apomictic and sexual samples. DMCs showed homologies to genes involved in flower growth, development, and apomixis. Moreover, a high proportion of DMCs aligned on genomic regions associated with apomixis in Setaria italica. Several stage-specific differential methylated sequences were identified as associated with apospory expressivity, which could guide future functional gene characterization in relation to apomixis success at diploid and tetraploid levels.
Collapse
Affiliation(s)
- Mariano Soliman
- CONICET-UNR/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), Universidad Nacional de Rosario, Zavalla S2123, Argentina; (M.S.); (M.P.); (J.P.A.O.)
| | - Maricel Podio
- CONICET-UNR/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), Universidad Nacional de Rosario, Zavalla S2123, Argentina; (M.S.); (M.P.); (J.P.A.O.)
| | - Gianpiero Marconi
- Department Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (G.M.); (M.D.M.)
| | - Marco Di Marsico
- Department Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (G.M.); (M.D.M.)
| | - Juan Pablo A. Ortiz
- CONICET-UNR/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), Universidad Nacional de Rosario, Zavalla S2123, Argentina; (M.S.); (M.P.); (J.P.A.O.)
| | - Emidio Albertini
- Department Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (G.M.); (M.D.M.)
| | - Luciana Delgado
- CONICET-UNR/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), Universidad Nacional de Rosario, Zavalla S2123, Argentina; (M.S.); (M.P.); (J.P.A.O.)
| |
Collapse
|
12
|
A study of the heterochronic sense/antisense RNA representation in florets of sexual and apomictic Paspalum notatum. BMC Genomics 2021; 22:185. [PMID: 33726667 PMCID: PMC7962388 DOI: 10.1186/s12864-021-07450-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/18/2021] [Indexed: 11/10/2022] Open
Abstract
Background Apomixis, an asexual mode of plant reproduction, is a genetically heritable trait evolutionarily related to sexuality, which enables the fixation of heterozygous genetic combinations through the development of maternal seeds. Recently, reference floral transcriptomes were generated from sexual and apomictic biotypes of Paspalum notatum, one of the most well-known plant models for the study of apomixis. However, the transcriptome dynamics, the occurrence of apomixis vs. sexual expression heterochronicity across consecutive developmental steps and the orientation of transcription (sense/antisense) remain unexplored. Results We produced 24 Illumina TruSeq®/ Hiseq 1500 sense/antisense floral transcriptome libraries covering four developmental stages (premeiosis, meiosis, postmeiosis, and anthesis) in biological triplicates, from an obligate apomictic and a full sexual genotype. De novo assemblies with Trinity yielded 103,699 and 100,114 transcripts for the apomictic and sexual samples respectively. A global comparative analysis involving reads from all developmental stages revealed 19,352 differentially expressed sense transcripts, of which 13,205 (68%) and 6147 (32%) were up- and down-regulated in apomictic samples with respect to the sexual ones. Interestingly, 100 differentially expressed antisense transcripts were detected, 55 (55%) of them up- and 45 (45%) down-regulated in apomictic libraries. A stage-by-stage comparative analysis showed a higher number of differentially expressed candidates due to heterochronicity discrimination: the highest number of differential sense transcripts was detected at premeiosis (23,651), followed by meiosis (22,830), postmeiosis (19,100), and anthesis (17,962), while the highest number of differential antisense transcripts were detected at anthesis (495), followed by postmeiosis (164), meiosis (120) and premeiosis (115). Members of the AP2, ARF, MYB and WRKY transcription factor families, as well as the auxin, jasmonate and cytokinin plant hormone families appeared broadly deregulated. Moreover, the chronological expression profile of several well-characterized apomixis controllers was examined in detail. Conclusions This work provides a quantitative sense/antisense gene expression catalogue covering several subsequent reproductive developmental stages from premeiosis to anthesis for apomictic and sexual P. notatum, with potential to reveal heterochronic expression between reproductive types and discover sense/antisense mediated regulation. We detected a contrasting transcriptional and hormonal control in apomixis and sexuality as well as specific sense/antisense modulation occurring at the onset of parthenogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07450-3.
Collapse
|
13
|
Fiaz S, Wang X, Younas A, Alharthi B, Riaz A, Ali H. Apomixis and strategies to induce apomixis to preserve hybrid vigor for multiple generations. GM CROPS & FOOD 2021; 12:57-70. [PMID: 32877304 PMCID: PMC7553744 DOI: 10.1080/21645698.2020.1808423] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/06/2020] [Indexed: 11/16/2022]
Abstract
Hybrid seeds of several important crops with supreme qualities including yield, biotic and abiotic stress tolerance have been cultivated for decades. Thus far, a major challenge with hybrid seeds is that they do not have the ability to produce plants with the same qualities over subsequent generations. Apomixis, an asexual mode of reproduction by avoiding meiosis, exists naturally in flowering plants, and ultimately leads to seed production. Apomixis has the potential to preserve hybrid vigor for multiple generations in economically important plant genotypes. The evolution and genetics of asexual seed production are unclear, and much more effort will be required to determine the genetic architecture of this phenomenon. To fix hybrid vigor, synthetic apomixis has been suggested. The development of MiMe (mitosis instead of meiosis) genotypes has been utilized for clonal gamete production. However, the identification and parental origin of genes responsible for synthetic apomixis are little known and need further clarification. Genome modifications utilizing genome editing technologies (GETs), such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (cas), a reverse genetics tool, have paved the way toward the utilization of emerging technologies in plant molecular biology. Over the last decade, several genes in important crops have been successfully edited. The vast availability of GETs has made functional genomics studies easy to conduct in crops important for food security. Disruption in the expression of genes specific to egg cell MATRILINEAL (MTL) through the CRISPR/Cas genome editing system promotes the induction of haploid seed, whereas triple knockout of the Baby Boom (BBM) genes BBM1, BBM2, and BBM3 cause embryo arrest and abortion, which can be fully rescued by male-transmitted BBM1. The establishment of synthetic apomixis by engineering the MiMe genotype by genome editing of BBM1 expression or disruption of MTL leads to clonal seed production and heritability for multiple generations. In the present review, we discuss current developments related to the use of CRISPR/Cas technology in plants and the possibility of promoting apomixis in crops to preserve hybrid vigor. In addition, genetics, evolution, epigenetic modifications, and strategies for MiMe genotype development are discussed in detail.
Collapse
Affiliation(s)
- Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur 22620 , Khyber Pakhtunkhwa, Pakistan
| | - Xiukang Wang
- College of Life Sciences, Yan'an University , Yan'an, Shaanxi, China
| | - Afifa Younas
- Department of Botany, Lahore College for Women University , Lahore, Pakistan
| | - Badr Alharthi
- College of Science and Engineering, Flinders University , Adelaide, Australia
- University College of Khurma, Taif University , Taif, Saudi Arabia
| | - Adeel Riaz
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences , Beijing, China
| | - Habib Ali
- Department of Agricultural Engineering, Khawaja Fareed University of Engineering and Information Technology , Rahim Yar Khan, Pakistan
- Department of Entomology, Sub-Campus Depalpur, University of Agriculture Faisalabad , Faisalabad, Pakistan
| |
Collapse
|
14
|
Genes Modulating the Increase in Sexuality in the Facultative Diplosporous Grass Eragrostis curvula under Water Stress Conditions. Genes (Basel) 2020; 11:genes11090969. [PMID: 32825586 PMCID: PMC7564825 DOI: 10.3390/genes11090969] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 01/23/2023] Open
Abstract
Eragrostis curvula presents mainly facultative genotypes that reproduce by diplosporous apomixis, retaining a percentage of sexual pistils that increase under drought and other stressful situations, indicating that some regulators activated by stress could be affecting the apomixis/sexual switch. Water stress experiments were performed in order to associate the increase in sexual embryo sacs with the differential expression of genes in a facultative apomictic cultivar using cytoembryology and RNA sequencing. The percentage of sexual embryo sacs increased from 4 to 24% and 501 out of the 201,011 transcripts were differentially expressed (DE) between control and stressed plants. DE transcripts were compared with previous transcriptomes where apomictic and sexual genotypes were contrasted. The results point as candidates to transcripts related to methylation, ubiquitination, hormone and signal transduction pathways, transcription regulation and cell wall biosynthesis, some acting as a general response to stress and some that are specific to the reproductive mode. We suggest that a DNA glycosylase EcROS1-like could be demethylating, thus de-repressing a gene or genes involved in the sexuality pathways. Many of the other DE transcripts could be part of a complex mechanism that regulates apomixis and sexuality in this grass, the ones in the intersection between control/stress and apo/sex being the strongest candidates.
Collapse
|
15
|
Koehler AD, Irsigler AST, Carneiro VTC, Cabral GB, Rodrigues JCM, Gomes ACMM, Togawa RC, Costa MMC, Martinelli AP, Dusi DMDA. SERK genes identification and expression analysis during somatic embryogenesis and sporogenesis of sexual and apomictic Brachiaria brizantha (Syn. Urochloa brizantha). PLANTA 2020; 252:39. [PMID: 32797317 DOI: 10.1007/s00425-020-03443-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
In Brachiaria brizantha BbrizSERK1, BbrizSERK2 and BbrizSERK3 were identified. SERK expression marks somatic embryogenesis, sexual MMC, and sexual and apomictic PMC. BbrizSERK3 might have a regulatory role in reproductive development. Somatic embryogenesis receptor-like kinase (SERK) consists of plasma membrane receptor genes that have been characterized in various species, associated with several aspects of plant development, including reproduction. SERK genes are involved in anther development and in early embryo development in sexual and asexual seed formation. To comprehend the complexity of the SERK genes and their function in Brachiaria reproduction, we performed a homology-based search in a genomic database of a sexual B. brizantha and identified sequences of three SERK genes, BbrizSERK1, BbrizSERK2, and BbrizSERK3. RNASeq data showed equivalent abundance of BbrizSERK1 and BbrizSERK2 transcripts in ovaries at early megasporogenesis of sexuals and apomicts, while BbrizSERK3 transcripts were more abundant in ovaries of sexuals than in apomicts. BbrizSERK3 results in three coding sequences due to alternative splicing, among them Variant 1 results in a protein with all the predicted domains of a SERK. BbrizSERK transcripts were detected in male reproductive tissues of both sexual and apomictic plants, suggesting a role in controlling anther development. BbrizSERK transcripts were detected early in ovule development, in the integuments, and in the megaspore mother cell of the sexual plant, but not in the cells that give rise to apomictic embryo sacs, suggesting a role in female reproductive development of sexuals. This paper provides evidences that SERK genes plays a role in the onset and establishment of somatic embryogenesis and in the reproductive development of B. brizantha and suggests a distinct role of BbrizSERK in apomixis initiation.
Collapse
Affiliation(s)
- Andréa D Koehler
- University of Sao Paulo, CENA, Av. Centenario 303, Piracicaba, SP, 13416-903, Brazil
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Genetic Resources and Biotechnology, Cx.Postal 02372, Brasília, DF, 70770-917, Brazil
- , Linhares, Brazil
| | - André S T Irsigler
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Genetic Resources and Biotechnology, Cx.Postal 02372, Brasília, DF, 70770-917, Brazil
| | - Vera T C Carneiro
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Genetic Resources and Biotechnology, Cx.Postal 02372, Brasília, DF, 70770-917, Brazil
| | - Glaucia B Cabral
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Genetic Resources and Biotechnology, Cx.Postal 02372, Brasília, DF, 70770-917, Brazil
| | - Júlio C M Rodrigues
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Genetic Resources and Biotechnology, Cx.Postal 02372, Brasília, DF, 70770-917, Brazil
| | - Ana Cristina M M Gomes
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Genetic Resources and Biotechnology, Cx.Postal 02372, Brasília, DF, 70770-917, Brazil
| | - Roberto C Togawa
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Genetic Resources and Biotechnology, Cx.Postal 02372, Brasília, DF, 70770-917, Brazil
| | - Marcos M C Costa
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Genetic Resources and Biotechnology, Cx.Postal 02372, Brasília, DF, 70770-917, Brazil
| | | | - Diva Maria de Alencar Dusi
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Genetic Resources and Biotechnology, Cx.Postal 02372, Brasília, DF, 70770-917, Brazil.
| |
Collapse
|
16
|
Marconi G, Aiello D, Kindiger B, Storchi L, Marrone A, Reale L, Terzaroli N, Albertini E. The Role of APOSTART in Switching between Sexuality and Apomixis in Poa pratensis. Genes (Basel) 2020; 11:genes11080941. [PMID: 32824095 PMCID: PMC7464379 DOI: 10.3390/genes11080941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
The production of seeds without sex is considered the holy grail of plant biology. The transfer of apomixis to various crop species has the potential to transform plant breeding, since it will allow new varieties to retain valuable traits thorough asexual reproduction. Therefore, a greater molecular understanding of apomixis is fundamental. In a previous work we identified a gene, namely APOSTART, that seemed to be involved in this asexual mode of reproduction, which is very common in Poa pratensis L., and here we present a detailed work aimed at clarifying its role in apomixis. In situ hybridization showed that PpAPOSTART is expressed in reproductive tissues from pre-meiosis to embryo development. Interestingly, it is expressed early in few nucellar cells of apomictic individuals possibly switching from a somatic to a reproductive cell as in aposporic apomixis. Moreover, out of 13 APOSTART members, we identified one, APOSTART_6, as specifically expressed in flower tissue. APOSTART_6 also exhibited delayed expression in apomictic genotypes when compared with sexual types. Most importantly, the SCAR (Sequence Characterized Amplified Region) derived from the APOSTART_6 sequence completely co-segregated with apomixis.
Collapse
Affiliation(s)
- Gianpiero Marconi
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy; (G.M.); (D.A.); (L.R.); (N.T.)
| | - Domenico Aiello
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy; (G.M.); (D.A.); (L.R.); (N.T.)
| | - Bryan Kindiger
- USDA-ARS, Grazinglands Research Laboratory, 7207 West Cheyenne St., El Reno, OK 73036, USA;
| | - Loriano Storchi
- Dipartimento di Farmacia, Università G. d’Annunzio, via dei Vestini 31, 66100 Chieti, Italy; (L.S.); (A.M.)
- Molecular Discovery Limited, Elstree WD6 3FG, UK
| | - Alessandro Marrone
- Dipartimento di Farmacia, Università G. d’Annunzio, via dei Vestini 31, 66100 Chieti, Italy; (L.S.); (A.M.)
| | - Lara Reale
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy; (G.M.); (D.A.); (L.R.); (N.T.)
| | - Niccolò Terzaroli
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy; (G.M.); (D.A.); (L.R.); (N.T.)
| | - Emidio Albertini
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy; (G.M.); (D.A.); (L.R.); (N.T.)
- Correspondence:
| |
Collapse
|
17
|
Genes, proteins and other networks regulating somatic embryogenesis in plants. J Genet Eng Biotechnol 2020; 18:31. [PMID: 32661633 PMCID: PMC7359197 DOI: 10.1186/s43141-020-00047-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/01/2020] [Indexed: 11/21/2022]
Abstract
Background Somatic embryogenesis (SE) is an intricate molecular and biochemical process principally based on cellular totipotency and a model in studying plant development. In this unique embryo-forming process, the vegetative cells acquire embryogenic competence under cellular stress conditions. The stress caused by plant growth regulators (PGRs), nutrient, oxygenic, or other signaling elements makes cellular reprogramming and transforms vegetative cells into embryos through activation/deactivation of a myriad of genes and transcriptional networks. Hundreds of genes have been directly linked to zygotic and somatic embryogeneses; some of them like SOMATIC EMBRYOGENESIS LIKE RECEPTOR KINASE (SERK), LEAFY COTYLEDON (LEC), BABYBOOM (BBM), and AGAMOUS-LIKE 15 (AGL15) are very important and are part of molecular network. Main text (observation) This article reviews various genes/orthologs isolated from different plants; encoded proteins and their possible role in regulating somatic embryogenesis of plants have been discussed. The role of SERK in regulating embryogenesis is also summarized. Different SE-related proteins identified through LC–MS at various stages of embryogenesis are also described; a few proteins like 14-3-3, chitinase, and LEA are used as potential SE markers. These networks are interconnected in a complicated manner, posing challenges for their complete elucidation. Conclusions The various gene networks and factors controlling somatic embryogenesis have been discussed and presented. The roles of stress, PGRs, and other signaling elements have been discussed. In the last two-to-three decades’ progress, the challenges ahead and its future applications in various fields of research have been highlighted. The review also presents the need of high throughput, innovative techniques, and sensitive instruments in unraveling the mystery of SE.
Collapse
|
18
|
Chasing the Apomictic Factors in the Ranunculus auricomus Complex: Exploring Gene Expression Patterns in Microdissected Sexual and Apomictic Ovules. Genes (Basel) 2020; 11:genes11070728. [PMID: 32630035 PMCID: PMC7397075 DOI: 10.3390/genes11070728] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/10/2020] [Accepted: 06/27/2020] [Indexed: 12/24/2022] Open
Abstract
Apomixis, the asexual reproduction via seeds, is associated to polyploidy and hybridization. To identify possible signatures of apomixis, and possible candidate genes underlying the shift from sex to apomixis, microarray-based gene expression patterns of live microdissected ovules at four different developmental stages were compared between apomictic and sexual individuals of the Ranunculus auricomus complex. Following predictions from previous work on mechanisms underlying apomixis penetrance and expressivity in the genus, gene expression patterns were classified into three categories based on their relative expression in apomicts compared to their sexual parental ancestors. We found evidence of misregulation and differential gene expression between apomicts and sexuals, with the highest number of differences detected during meiosis progression and emergence of aposporous initial (AI) cells, a key developmental stage in the ovule of apomicts where a decision between divergent reproductive pathways takes place. While most of the differentially expressed genes (DEGs) could not be annotated, gene expression was classified into transgressive, parent of origin and ploidy effects. Genes related to gametogenesis and meiosis demonstrated patterns reflective of transgressive and genome dosage effects, which support the hypothesis of a dominant factor controlling apomixis in Ranunculus and modulated by secondary modifiers. Three genes with probable functions in sporogenesis and gametogenesis development are identified and characterized for future studies.
Collapse
|
19
|
Hojsgaard D. Apomixis Technology: Separating the Wheat from the Chaff. Genes (Basel) 2020; 11:E411. [PMID: 32290084 PMCID: PMC7231277 DOI: 10.3390/genes11040411] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
Projections indicate that current plant breeding approaches will be unable to incorporate the global crop yields needed to deliver global food security. Apomixis is a disruptive innovation by which a plant produces clonal seeds capturing heterosis and gene combinations of elite phenotypes. Introducing apomixis into hybrid cultivars is a game-changing development in the current plant breeding paradigm that will accelerate the generation of high-yield cultivars. However, apomixis is a developmentally complex and genetically multifaceted trait. The central problem behind current constraints to apomixis breeding is that the genomic configuration and molecular mechanism that initiate apomixis and guide the formation of a clonal seed are still unknown. Today, not a single explanation about the origin of apomixis offer full empirical coverage, and synthesizing apomixis by manipulating individual genes has failed or produced little success. Overall evidence suggests apomixis arise from a still unknown single event molecular mechanism with multigenic effects. Disentangling the genomic basis and complex genetics behind the emergence of apomixis in plants will require the use of novel experimental approaches benefiting from Next Generation Sequencing technologies and targeting not only reproductive genes, but also the epigenetic and genomic configurations associated with reproductive phenotypes in homoploid sexual and apomictic carriers. A comprehensive picture of most regulatory changes guiding apomixis emergence will be central for successfully installing apomixis into the target species by exploiting genetic modification techniques.
Collapse
Affiliation(s)
- Diego Hojsgaard
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University of Göttingen, Untere Karspüle 2, D-37073-1 Göttingen, Germany
| |
Collapse
|
20
|
Ghai D, Alok A, Himani, Upadhyay SK, Sembi JK. Genome wide characterization of the SERK/SERL gene family in Phalaenopsis equestris, Dendrobium catenatum and Apostasia shenzhenica (Orchidaceae). Comput Biol Chem 2020; 85:107210. [PMID: 32062377 DOI: 10.1016/j.compbiolchem.2020.107210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 10/25/2022]
Abstract
Somatic embryogenesis receptor kinases (SERKs) play a significant role in morphogenesis, stress/defense and signal transduction. In the present study, we have identified two SERK and 11 SERK-like (SERL) genes in Phalaenopsis equestris, two SERK and 11 SERL genes in Dendrobium catenatum, and one SERK and eight SERL genes in Apostasia shenzhenica genome. Characterization of the SERK proteins revealed the presence of a signal peptide, a leucine zipper, five leucine-rich repeats (LRRs), a serine proline proline (SPP) motif, a transmembrane region, a kinase domain, and a C-terminus. Most of the SERK/SERL proteins were characterized with similar physicochemical properties. The presence of transmembrane region predicted their membranous localization. Tertiary structure prediction of all the five identified SERK proteins had sequence identity with BAK1 protein of Arabidopsis thaliana. Generally, all the SERK/SERL genes shared similar gene architecture and intron phasing. Gene ontology analysis indicated the role of SERKs in receptor and ATP binding, signal transduction, and protein phosphorylation. Phylogenetic analysis revealed the clustering of SERKs and SERLs in distinct clades. Expression of SERKs in reproductive tissues like floral bud, floral stalk, whole flower and pollen was reported to be higher than their expression in vegetative tissues with an exception of PeSERK1 and DcSERK1 which showed higher expression in leaves and roots, respectively. Likewise, a higher expression of AsSERK1 was observed in tubers. However, lower expression of SERLs was observed in majority of tissues studied irrespective of their vegetative or reproductive origin. This work paves way for future studies involving functional characterization of SERK/SERLs and their potential role in embryogenesis/organogenesis as an aid to regeneration and multiplication of endangered orchids.
Collapse
Affiliation(s)
- Devina Ghai
- Department of Botany, Panjab University, Chandigarh-160014, India
| | - Anshu Alok
- Department of Botany, Panjab University, Chandigarh-160014, India
| | - Himani
- Department of Botany, Panjab University, Chandigarh-160014, India
| | - S K Upadhyay
- Department of Botany, Panjab University, Chandigarh-160014, India
| | - Jaspreet K Sembi
- Department of Botany, Panjab University, Chandigarh-160014, India.
| |
Collapse
|
21
|
Controlling Apomixis: Shared Features and Distinct Characteristics of Gene Regulation. Genes (Basel) 2020; 11:genes11030329. [PMID: 32245021 PMCID: PMC7140868 DOI: 10.3390/genes11030329] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 02/06/2023] Open
Abstract
In higher plants, sexual and asexual reproduction through seeds (apomixis) have evolved as alternative strategies. As apomixis leads to the formation of clonal offspring, its great potential for agricultural applications has long been recognized. However, the genetic basis and the molecular control underlying apomixis and its evolutionary origin are to date not fully understood. Both in sexual and apomictic plants, reproduction is tightly controlled by versatile mechanisms regulating gene expression, translation, and protein abundance and activity. Increasing evidence suggests that interrelated pathways including epigenetic regulation, cell-cycle control, hormonal pathways, and signal transduction processes are relevant for apomixis. Additional molecular mechanisms are being identified that involve the activity of DNA- and RNA-binding proteins, such as RNA helicases which are increasingly recognized as important regulators of reproduction. Together with other factors including non-coding RNAs, their association with ribosomes is likely to be relevant for the formation and specification of the apomictic reproductive lineage. Subsequent seed formation appears to involve an interplay of transcriptional activation and repression of developmental programs by epigenetic regulatory mechanisms. In this review, insights into the genetic basis and molecular control of apomixis are presented, also taking into account potential relations to environmental stress, and considering aspects of evolution.
Collapse
|
22
|
Deo TG, Ferreira RCU, Lara LAC, Moraes ACL, Alves-Pereira A, de Oliveira FA, Garcia AAF, Santos MF, Jank L, de Souza AP. High-Resolution Linkage Map With Allele Dosage Allows the Identification of Regions Governing Complex Traits and Apospory in Guinea Grass ( Megathyrsus maximus). FRONTIERS IN PLANT SCIENCE 2020; 11:15. [PMID: 32161603 PMCID: PMC7054243 DOI: 10.3389/fpls.2020.00015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/08/2020] [Indexed: 05/11/2023]
Abstract
Forage grasses are mainly used in animal feed to fatten cattle and dairy herds, and guinea grass (Megathyrsus maximus) is considered one of the most productive of the tropical forage crops that reproduce by seeds. Due to the recent process of domestication, this species has several genomic complexities, such as autotetraploidy and aposporous apomixis. Consequently, approaches that relate phenotypic and genotypic data are incipient. In this context, we built a linkage map with allele dosage and generated novel information of the genetic architecture of traits that are important for the breeding of M. maximus. From a full-sib progeny, a linkage map containing 858 single nucleotide polymorphism (SNP) markers with allele dosage information expected for an autotetraploid was obtained. The high genetic variability of the progeny allowed us to map 10 quantitative trait loci (QTLs) related to agronomic traits, such as regrowth capacity and total dry matter, and 36 QTLs related to nutritional quality, which were distributed among all homology groups (HGs). Various overlapping regions associated with the quantitative traits suggested QTL hotspots. In addition, we were able to map one locus that controls apospory (apo-locus) in HG II. A total of 55 different gene families involved in cellular metabolism and plant growth were identified from markers adjacent to the QTLs and APOSPORY locus using the Panicum virgatum genome as a reference in comparisons with the genomes of Arabidopsis thaliana and Oryza sativa. Our results provide a better understanding of the genetic basis of reproduction by apomixis and traits important for breeding programs that considerably influence animal productivity as well as the quality of meat and milk.
Collapse
Affiliation(s)
- Thamiris G. Deo
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil
| | - Rebecca C. U. Ferreira
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil
| | - Letícia A. C. Lara
- Genetics Department, Escola Superior de Agricultura “Luiz de Queiroz,” University of São Paulo, Piracicaba, Brazil
| | - Aline C. L. Moraes
- Plant Biology Department, Biology Institute, University of Campinas, Campinas, Brazil
| | | | - Fernanda A. de Oliveira
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil
| | - Antonio A. F. Garcia
- Genetics Department, Escola Superior de Agricultura “Luiz de Queiroz,” University of São Paulo, Piracicaba, Brazil
| | - Mateus F. Santos
- Embrapa Beef Cattle, Brazilian Agricultural Research Corporation, Campo Grande, Brazil
| | - Liana Jank
- Embrapa Beef Cattle, Brazilian Agricultural Research Corporation, Campo Grande, Brazil
| | - Anete P. de Souza
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil
- Plant Biology Department, Biology Institute, University of Campinas, Campinas, Brazil
| |
Collapse
|
23
|
Coexpression and Transcriptome analyses identify active Apomixis-related genes in Paspalum notatum leaves. BMC Genomics 2020; 21:78. [PMID: 31992196 PMCID: PMC6986084 DOI: 10.1186/s12864-020-6518-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 01/20/2020] [Indexed: 11/12/2022] Open
Abstract
Background Paspalum notatum exhibits both sexual and apomictic cytotypes and, thus, is considered a good model for studies of apomixis because it facilitates comparative approaches. In this work, transcriptome sequencing was used to compare contrasting P. notatum cytotypes to identify differential expression patterns and candidate genes involved in the regulation of expression of this trait. Results We built a comprehensive transcriptome using leaf and inflorescence from apomictic tetraploids and sexual diploids/tetraploids and a coexpression network based on pairwise correlations between transcript expression profiles. We identified genes exclusively expressed in each cytotype and genes differentially expressed between pairs of cytotypes. Gene Ontology enrichment analyses were performed to better interpret the data. We de novo assembled 114,306 reference transcripts. In total, 536 candidate genes possibly associated with apomixis were detected through statistical analyses of the differential expression data, and several interacting genes potentially linked to the apomixis-controlling region, genes that have already been reported in the literature, and their neighbors were transcriptionally related in the coexpression network. Conclusions Apomixis is a highly desirable trait in modern agriculture due to the maintenance of the characteristics of the mother plant in the progeny. The reference transcriptome, candidate genes and their coexpression network identified in this work represent rich resources for future grass breeding programs.
Collapse
|
24
|
Zühl L, Volkert C, Ibberson D, Schmidt A. Differential activity of F-box genes and E3 ligases distinguishes sexual versus apomictic germline specification in Boechera. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5643-5657. [PMID: 31294816 PMCID: PMC6812705 DOI: 10.1093/jxb/erz323] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 07/01/2019] [Indexed: 05/22/2023]
Abstract
Germline specification is the first step during sexual and apomictic plant reproduction, and takes place in the nucellus of the ovule, a specialized domain of the reproductive flower tissues. In each case, a sporophytic cell is determined to form the sexual megaspore mother cell (MMC) or an apomictic initial cell (AIC). These differ in their developmental fates: while the MMC undergoes meiosis, the AIC modifies or omits meiosis to form the female gametophyte. Despite great interest in these distinct developmental processes, little is known about their gene regulatory basis. To elucidate the gene regulatory networks underlying germline specification, we conducted tissue-specific transcriptional profiling using laser-assisted microdissection and RNA sequencing to compare the transcriptomes of nucellar tissues between different sexual and apomictic Boechera accessions representing four species and two ploidy levels. This allowed us to distinguish between expression differences caused by genetic background or reproductive mode. Statistical data analysis revealed 45 genes that were significantly differentially expressed, and which potentially play a role for determination of the reproductive mode. Based on annotations, these included F-box genes and E3 ligases that most likely relate to genes previously described as regulators important for germline development. Our findings provide novel insights into the transcriptional basis of sexual and apomictic reproduction.
Collapse
Affiliation(s)
- Luise Zühl
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld, Heidelberg
- Present address: Max Planck Institute for Plant Breeding Research, Department of Comparative Development and Genetics, Carl-von-Linné-Weg 10, D-50829 Cologne
| | - Christopher Volkert
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld, Heidelberg
| | - David Ibberson
- Deep Sequencing Core Facility, CellNetworks Excellence Cluster, Heidelberg University, Im Neuenheimer Feld, Heidelberg
| | - Anja Schmidt
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld, Heidelberg
- Correspondence:
| |
Collapse
|
25
|
Fei X, Shi J, Liu Y, Niu J, Wei A. The steps from sexual reproduction to apomixis. PLANTA 2019; 249:1715-1730. [PMID: 30963237 DOI: 10.1007/s00425-019-03113-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/18/2019] [Indexed: 05/03/2023]
Abstract
In this paper, an interaction model of apomixis-related genes was constructed to analyze the emergence of apomictic types. It is speculated that apomixis technology will be first implemented in gramineous plants. Apomixis (asexual seed formation) is a phenomenon in which a plant bypasses the most fundamental aspects of sexual reproduction-meiosis and fertilization-to form a viable seed. Plants can form seeds without fertilization, and the seed genotype is consistent with the female parent. The development of apomictic technology would be revolutionary for agriculture and for food production as it would reduce costs and breeding times and also avoid many complications typical of sexual reproduction (e.g. incompatibility barriers) and of vegetative propagation (e.g. viral transfer). The application of apomictic reproductive technology has the potential to revolutionize crop breeding. This article reviews recent advances in apomixis in cytology and molecular biology. The general idea of identifying apomixis was proposed and the process of the emergence of non-fusion types was discussed. To better understand the apomixis mechanism, an apomixis regulatory model was established. At the same time, the realization of apomixis technology is proposed, which provides reference for the research and application of apomixis.
Collapse
Affiliation(s)
- Xitong Fei
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Jingwei Shi
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Yulin Liu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinshuang Niu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Anzhi Wei
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
26
|
Brukhin V, Baskar R. A brief note on genes that trigger components of apomixis. J Biosci 2019; 44:45. [PMID: 31180058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Apomixis or asexual reproduction through seeds occurs in about 400 species of flowering plants producing genetically uniform progeny. During apomixis, meiosis is bypassed and embryos develop by parthenogenesis. However, the endosperm could form either autonomously without fertilization or sexually, depending on the plant species. Most probably, a heterochronic expression of sexually expressed genes is one of the reason that causes apomixis. A better understanding of the genetic components regulating apomixis is important for developmental and evolutionary studies and also for engineering apomixis traits into crop plants that may realize a possibility to propagate hybrid vigor in a range of subsequent generations.
Collapse
Affiliation(s)
- Vladimir Brukhin
- Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, 41 Sredniy Prospekt, Vasilievsky Island, Saint Petersburg, Russia 199004
| | | |
Collapse
|
27
|
Soliman M, Espinoza F, Ortiz JPA, Delgado L. Heterochronic reproductive developmental processes between diploid and tetraploid cytotypes of Paspalum rufum. ANNALS OF BOTANY 2019; 123:901-915. [PMID: 30576402 PMCID: PMC6526369 DOI: 10.1093/aob/mcy228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/28/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Apomixis is an asexual reproductive mode via seeds that generate maternal clonal progenies. Although apomixis in grasses is mainly expressed at the polyploid level, some natural diploid genotypes of Paspalum rufum produce aposporous embryo sacs in relatively high proportions and are even able to complete apomixis under specific conditions. However, despite the potential for apomixis, sexuality prevails in diploids, and apomixis expression is repressed for an as yet undetermind reason. Apomixis is thought to derive from a deregulation of one or a few components of the sexual pathway that could be triggered by polyploidy and/or hybridization. The objectives of this work were to characterize and compare the reproductive development and the timing of apospory initial (AI) emergence between diploid genotypes with potential for apomixis and facultative apomictic tetraploid cytotypes of P. rufum. METHODS Reproductive characterization was performed by cytoembryological observations of cleared ovaries and anthers during all reproductive development steps and by quantitative evaluation of the ovule growth parameters. KEY RESULTS Cytoembryological observations showed that in diploids, both female and male reproductive development is equally synchronized, but in tetraploids, megasporogenesis and early megagametogenesis are delayed with respect to microsporogenesis and early microgametogenesis. This delay was also seen when ovary growth was taken as a reference parameter. The analysis of the onset of AIs revealed that they emerge during different developmental periods depending on the ploidy level. In diploids, the AIs appeared along with the tetrad (or triad) of female meiocytes, but in tetraploids they appeared earlier, at the time of the megaspore mother cell. In both cytotypes, AIs can be seen even during megagametogenesis. CONCLUSIONS Overall observations reveal that female sexual reproductive development is delayed in tetraploids as compared with diploid genotypes, mainly at meiosis. In tetraploids, AIs appear at earlier sexual developmental stages than in diploids, and they accumulate up to the end of megasporogenesis. The longer extension of megasporogenesis in tetraploids could favour AI emergence and also apomixis success.
Collapse
Affiliation(s)
- Mariano Soliman
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET-UNR/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario. Campo Experimental Villarino, Zavalla, Provincia de Santa Fe, Argentina
| | - Francisco Espinoza
- Instituto de Botánica del Nordeste (IBONE), CONICET-UNNE, Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Casilla de Correo, Corrientes, Argentina
| | - Juan Pablo A Ortiz
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET-UNR/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario. Campo Experimental Villarino, Zavalla, Provincia de Santa Fe, Argentina
| | - Luciana Delgado
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET-UNR/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario. Campo Experimental Villarino, Zavalla, Provincia de Santa Fe, Argentina
| |
Collapse
|
28
|
|
29
|
Kaushal P, Dwivedi KK, Radhakrishna A, Srivastava MK, Kumar V, Roy AK, Malaviya DR. Partitioning Apomixis Components to Understand and Utilize Gametophytic Apomixis. FRONTIERS IN PLANT SCIENCE 2019; 10:256. [PMID: 30906306 PMCID: PMC6418048 DOI: 10.3389/fpls.2019.00256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/18/2019] [Indexed: 05/07/2023]
Abstract
Apomixis is a method of reproduction to generate clonal seeds and offers tremendous potential to fix heterozygosity and hybrid vigor. The process of apomictic seed development is complex and comprises three distinct components, viz., apomeiosis (leading to formation of unreduced egg cell), parthenogenesis (development of embryo without fertilization) and functional endosperm development. Recently, in many crops, these three components are reported to be uncoupled leading to their partitioning. This review provides insight into the recent status of our understanding surrounding partitioning apomixis components in gametophytic apomictic plants and research avenues that it offers to help understand the biology of apomixis. Possible consequences leading to diversity in seed developmental pathways, resources to understand apomixis, inheritance and identification of candidate gene(s) for partitioned components, as well as contribution towards creation of variability are all discussed. The potential of Panicum maximum, an aposporous crop, is also discussed as a model crop to study partitioning principle and effects. Modifications in cytogenetic status, as well as endosperm imprinting effects arising due to partitioning effects, opens up new opportunities to understand and utilize apomixis components, especially towards synthesizing apomixis in crops.
Collapse
Affiliation(s)
- Pankaj Kaushal
- ICAR-National Institute of Biotic Stress Management, Raipur, India
| | | | | | | | - Vinay Kumar
- ICAR-National Institute of Biotic Stress Management, Raipur, India
| | - Ajoy Kumar Roy
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | | |
Collapse
|
30
|
Zappacosta D, Gallardo J, Carballo J, Meier M, Rodrigo JM, Gallo CA, Selva JP, Stein J, Ortiz JPA, Albertini E, Echenique V. A High-Density Linkage Map of the Forage Grass Eragrostis curvula and Localization of the Diplospory Locus. FRONTIERS IN PLANT SCIENCE 2019; 10:918. [PMID: 31354781 PMCID: PMC6640543 DOI: 10.3389/fpls.2019.00918] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/28/2019] [Indexed: 05/05/2023]
Abstract
Eragrostis curvula (Schrad.) Nees (weeping lovegrass) is an apomictic species native to Southern Africa that is used as forage grass in semiarid regions of Argentina. Apomixis is a mechanism for clonal propagation through seeds that involves the avoidance of meiosis to generate an unreduced embryo sac (apomeiosis), parthenogenesis, and viable endosperm formation in a fertilization-dependent or -independent manner. Here, we constructed the first saturated linkage map of tetraploid E. curvula using both traditional (AFLP and SSR) and high-throughput molecular markers (GBS-SNP) and identified the locus controlling diplospory. We also identified putative regulatory regions affecting the expressivity of this trait and syntenic relationships with genomes of other grass species. We obtained a tetraploid mapping population from a cross between a full sexual genotype (OTA-S) with a facultative apomictic individual of cv. Don Walter. Phenotypic characterization of F1 hybrids by cytoembryological analysis yielded a 1:1 ratio of apomictic vs. sexual plants (34:27, X 2 = 0.37), which agrees with the model of inheritance of a single dominant genetic factor. The final number of markers was 1,114 for OTA-S and 2,019 for Don Walter. These markers were distributed into 40 linkage groups per parental genotype, which is consistent with the number of E. curvula chromosomes (containing 2 to 123 markers per linkage group). The total length of the OTA-S map was 1,335 cM, with an average marker density of 1.22 cM per marker. The Don Walter map was 1,976.2 cM, with an average marker density of 0.98 cM/marker. The locus responsible for diplospory was mapped on Don Walter linkage group 3, with other 65 markers. QTL analyses of the expressivity of diplospory in the F1 hybrids revealed the presence of two main QTLs, located 3.27 and 15 cM from the diplospory locus. Both QTLs explained 28.6% of phenotypic variation. Syntenic analysis allowed us to establish the groups of homologs/homeologs for each linkage map. The genetic linkage map reported in this study, the first such map for E. curvula, is the most saturated map for the genus Eragrostis and one of the most saturated maps for a polyploid forage grass species.
Collapse
Affiliation(s)
- Diego Zappacosta
- Departamento de Agronomía, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CONICET, CCT Bahía Blanca), Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Jimena Gallardo
- Departamento de Agronomía, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CONICET, CCT Bahía Blanca), Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - José Carballo
- Departamento de Agronomía, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CONICET, CCT Bahía Blanca), Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Mauro Meier
- Laboratorio Biotecnológico, Asociación de Cooperativas Argentinas Coop. Ltd., Pergamino, Argentina
| | - Juan Manuel Rodrigo
- Departamento de Agronomía, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CONICET, CCT Bahía Blanca), Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Cristian A. Gallo
- Departamento de Agronomía, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CONICET, CCT Bahía Blanca), Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Juan Pablo Selva
- Departamento de Agronomía, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CONICET, CCT Bahía Blanca), Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Juliana Stein
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR, CONICET-UNR), Zavalla, Argentina
| | - Juan Pablo A. Ortiz
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR, CONICET-UNR), Zavalla, Argentina
| | - Emidio Albertini
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
- Emidio Albertini,
| | - Viviana Echenique
- Departamento de Agronomía, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CONICET, CCT Bahía Blanca), Universidad Nacional del Sur, Bahía Blanca, Argentina
- *Correspondence: Viviana Echenique,
| |
Collapse
|
31
|
Hojsgaard D. Transient Activation of Apomixis in Sexual Neotriploids May Retain Genomically Altered States and Enhance Polyploid Establishment. FRONTIERS IN PLANT SCIENCE 2018; 9:230. [PMID: 29535745 PMCID: PMC5834478 DOI: 10.3389/fpls.2018.00230] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/09/2018] [Indexed: 05/19/2023]
Abstract
Polyploid genomes evolve and follow a series of dynamic transfigurations along with adaptation and speciation. The initial formation of a new polyploid individual within a diploid population usually involves a triploid bridge, a two-step mechanism of cell fusions between ubiquitous (reduced) and rare (unreduced) gametes. The primary fusion event creates an intermediate triploid individual with unbalanced genome sets, a situation of genomic-shock characterized by gene expression dysregulation, high dosage sensitivity, disturbed cell divisions, and physiological and reproductive attributes drastically altered. This near-sterile neotriploid must produce (even) eupolyploids through secondary fusion events to restore genome steadiness, meiotic balance, and fertility required for the demographic establishment of a nascent lineage. Natural conditions locate several difficulties to polyploid establishment, including the production of highly unbalanced and rarely unreduced (euploid) gametes, frequency-dependent disadvantages (minority cytotype exclusion), severe fitness loss, and ecological competition with diploid parents. Persistence and adaptation of neopolyploids depend upon genetic and phenotypic novelty coupled to joint selective forces that preserve shock-induced genomic changes (subgenome homeolog partitioning) and drive meiotic (reproductive) stabilization and ecological diversification. Thus, polyploid establishment through the triploid bridge is a feasible but not ubiquitous process that requires a number of low-probability events and singular circumstances. Yet, frequencies of polyploids suggest that polyploid establishment is a pervasive process. To explain this disparity, and supported in experimental evidence, I propose that situations like hybridization and ploidy-state transitions associated to genomic shock and substantial developmental alterations can transiently activate apomixis as a mechanism to halt genomic instability and cancel factors restraining neopolyploid's sexual fertility, particularly in triploids. Apomixis -as a temporal alternative to sex- skip meiosis and syngamy, and thus can freeze genomic attributes, avoid unbalanced chromosomal segregation and increase the formation of unreduced euploid gametes, elude frequency-dependent reproductive disadvantages by parthenogenetic development of the embryo and permissive development of endosperm during seed formation, and increase the effective population size of the neopolyploid lineage favoring the formation rate of eupolyploids compared to aneuploids. The subsequent action of genome resilience mechanisms that alleviate transcriptomic shock and selection upon gene interactions might restore a stable meiosis and sexual fertility within few generations, as observed in synthetic polyploids. Alternatively, provided that resilience mechanisms fail, the neopolyploid might retain apomixis and hold genomically and transcriptionally altered states for many generations.
Collapse
Affiliation(s)
- Diego Hojsgaard
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, Georg August University of Göttingen, Göttingen, Germany
| |
Collapse
|
32
|
Singh A, Khurana P. Ectopic expression of Triticum aestivum SERK genes (TaSERKs) control plant growth and development in Arabidopsis. Sci Rep 2017; 7:12368. [PMID: 28959050 PMCID: PMC5620050 DOI: 10.1038/s41598-017-10038-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 08/02/2017] [Indexed: 01/09/2023] Open
Abstract
Somatic embryogenesis receptor kinases (SERKs) belong to a small gene family of receptor-like kinases involved in signal transduction. A total of 54 genes were shortlisted from the wheat genome survey sequence of which 5 were classified as SERKs and 49 were identified as SERK-like (SERLs). Tissue- specific expression of TaSERKs at major developmental stages of wheat corroborates their indispensable role during somatic and zygotic embryogenesis. TaSERK transcripts show inherent differences in their hormonal sensitivities, i.e. TaSERK2 and TaSERK3 elicits auxin- specific responses while TaSERK1, 4 and 5 were more specific towards BR-mediated regulation. The ectopic expression of TaSERK1, 2, 3, 4 and 5 in Arabidopsis led to enhanced plant height, larger silique size and increased seed yield. Zygotic embryogenesis specific genes showed a differential pattern in TaSERK Arabidopsis transgenics specifically in the silique tissues. Elongated hypocotyls and enhanced root growth were observed in the overexpression transgenic lines of all five TaSERKs. The inhibitory action of auxin and brassinosteroid in all the TaSERK transgenic lines indicates their role in regulating root development. The results obtained imply redundant functions of TaSERKs in maintaining plant growth and development.
Collapse
Affiliation(s)
- Akanksha Singh
- Department of Plant Molecular Biology, University of Delhi, New Delhi, 110021, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi, New Delhi, 110021, India.
| |
Collapse
|
33
|
|
34
|
Šarhanová P, Sharbel TF, Sochor M, Vašut RJ, Dančák M, Trávníček B. Hybridization drives evolution of apomicts in Rubus subgenus Rubus: evidence from microsatellite markers. ANNALS OF BOTANY 2017; 120:317-328. [PMID: 28402390 PMCID: PMC5737493 DOI: 10.1093/aob/mcx033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/02/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Rubus subgenus Rubus is a group of mostly apomictic and polyploid species with a complicated taxonomy and history of ongoing hybridization. The only polyploid series with prevailing sexuality is the series Glandulosi , although the apomictic series Discolores and Radula also retain a high degree of sexuality, which is influenced by environmental conditions and/or pollen donors. The aim of this study is to detect sources of genetic variability, determine the origin of apomictic taxa and validate microsatellite markers by cloning and sequencing. METHODS A total of 206 individuals from two central European regions were genotyped for 11 nuclear microsatellite loci and the chloroplast trn L- trn F region. Microsatellite alleles were further sequenced in order to determine the exact repeat number and to detect size homoplasy due to insertions/deletions in flanking regions. KEY RESULTS The results confirm that apomictic microspecies of ser. Radula are derived from crosses between sexual series Glandulosi and apomictic series Discolores , whereby the apomict acts as pollen donor. Each apomictic microspecies is derived from a single distinct genotype differing from the parental taxa, suggesting stabilized clonal reproduction. Intraspecific variation within apomicts is considerably low compared with sexual series Glandulosi , and reflects somatic mutation accumulation. While facultative apomicts produce clonal offspring, sexual species are the conduits of origin for new genetically different apomictic lineages. CONCLUSIONS One of the main driving forces of evolution and speciation in the highly apomictic subgenus Rubus in central Europe is sexuality in the series Glandulosi . Palaeovegetation data suggest that initial hybridizations took place over different time periods in the two studied regions, and that the successful origin and spread of apomictic microspecies of the series Radula took place over several millennia. Additionally, the cloning and sequencing show that standard evaluations of microsatellite repeat numbers underestimate genetic variability considering homoplasy in allele size.
Collapse
Affiliation(s)
- Petra Šarhanová
- Leibniz Institute of Plant Genetics and Crop Research (IPK), Department of Experimental Taxonomy, Corrensstr. 3, D-06466 Gatersleben, Germany
- For correspondence. E-mail
| | - Timothy F. Sharbel
- Leibniz Institute of Plant Genetics and Crop Research (IPK), Department of Experimental Taxonomy, Corrensstr. 3, D-06466 Gatersleben, Germany
- Present address: Global Institute for Food Security, University of Saskatchewan, 110 Gymnasium Place, suite 1460 Saskatoon, SK S7N 4J8, Canada
| | - Michal Sochor
- Department of Botany, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, CZ-78371 Olomouc, Czech Republic
| | - Radim J. Vašut
- Department of Botany, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Martin Dančák
- Department of Ecology and Environmental Sciences, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Bohumil Trávníček
- Department of Botany, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| |
Collapse
|
35
|
Tang Q, Zang G, Cheng C, Luan M, Dai Z, Xu Y, Yang Z, Zhao L, Su J. Diplosporous development in Boehmeria tricuspis: Insights from de novo transcriptome assembly and comprehensive expression profiling. Sci Rep 2017; 7:46043. [PMID: 28382950 PMCID: PMC5382578 DOI: 10.1038/srep46043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/07/2017] [Indexed: 01/05/2023] Open
Abstract
Boehmeria tricuspis includes sexually reproducing diploid and apomictic triploid individuals. Previously, we established that triploid B. tricuspis reproduces through obligate diplospory. To understand the molecular basis of apomictic development in B. tricuspis, we sequenced and compared transcriptomic profiles of the flowers of sexual and apomictic plants at four key developmental stages. A total of 283,341 unique transcripts were obtained from 1,463 million high-quality paired-end reads. In total, 18,899 unigenes were differentially expressed between the reproductive types at the four stages. By classifying the transcripts into gene ontology categories of differentially expressed genes, we showed that differential plant hormone signal transduction, cell cycle regulation, and transcription factor regulation are possibly involved in apomictic development and/or a polyploidization response in B. tricuspis. Furthermore, we suggest that specific gene families are possibly related to apomixis and might have important effects on diplosporous floral development. These results make a notable contribution to our understanding of the molecular basis of diplosporous development in B. tricuspis.
Collapse
Affiliation(s)
- Qing Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West Xianjiahu Road, Changsha, Hunan, China
| | - Gonggu Zang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West Xianjiahu Road, Changsha, Hunan, China
| | - Chaohua Cheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West Xianjiahu Road, Changsha, Hunan, China
| | - Mingbao Luan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West Xianjiahu Road, Changsha, Hunan, China
| | - Zhigang Dai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West Xianjiahu Road, Changsha, Hunan, China
| | - Ying Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West Xianjiahu Road, Changsha, Hunan, China
| | - Zemao Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West Xianjiahu Road, Changsha, Hunan, China
| | - Lining Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West Xianjiahu Road, Changsha, Hunan, China
| | - Jianguang Su
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West Xianjiahu Road, Changsha, Hunan, China
| |
Collapse
|
36
|
Godee C, Mira MM, Wally O, Hill RD, Stasolla C. Cellular localization of the Arabidopsis class 2 phytoglobin influences somatic embryogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1013-1023. [PMID: 28199692 PMCID: PMC5441859 DOI: 10.1093/jxb/erx003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mutation of phytoglobin 2 (Pgb2) increases the number of somatic embryos in Arabidopsis. To assess the effects of the cellular localization of Pgb2 on embryo formation, an inducible system expressing a fusion protein consisting of Pgb2 linked to the steroid-binding domain of the rat glucocorticoid receptor (GR) was introduced in a pgb2 mutant line lacking the ability to express Pgb2. In this transgenic system, Pgb2 remains in the cytoplasm but migrates into the nucleus upon exposure to dexamethasone (DEX). Pgb2 retention in the cytoplasm, in the absence of DEX, increased the number of somatic embryos and reduced the expression of MYC2 - an inhibitor of the synthesis of auxin, which is the inductive signal for embryogenesis. Removal of DEX also induced the expression of several genes involved in the biosynthesis of tryptophan and the auxin, indole-3-acetic acid (IAA). These genes included: tryptophan synthase-α subunit (TSA1) and tryptophan synthase-β subunit (TSB1), which are involved in the synthesis of tryptophan, cytochrome P450 CYP79B2 (CYP79B2) and amidase 1 (AMI1), which participate in the formation of IAA via indole-3-acetaldoxime, and several members of the YUCCA family, including YUC1 and 4, which are also required for IAA synthesis. Retention of Pgb2 in the cytoplasm by removal of DEX increased the staining pattern of IAA along the cotyledons of the explants generating embryogenic tissue. Staining for IAA decreased when Pgb2 translocated into the nucleus in response to the application of DEX. Collectively, these results suggest that the presence of Pgb2 in the cytoplasm, but not in the nucleus, phenocopies the effects of Pgb2 mutation in inducing somatic embryogenesis.
Collapse
Affiliation(s)
- Cara Godee
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Mohamed M Mira
- Permanent address: Department of Botany, Faculty of Science, Tanta University, Tanta, Egypt 31527
| | - Owen Wally
- Agriculture and Agri-Food Canada/Government of Canada, Harrow Research and Development Centre, RR #2, 2585 County Rd. 20, Harrow, ON N0R 1G0, Canada
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
37
|
Grossmann J, Fernández H, Chaubey PM, Valdés AE, Gagliardini V, Cañal MJ, Russo G, Grossniklaus U. Proteogenomic Analysis Greatly Expands the Identification of Proteins Related to Reproduction in the Apogamous Fern Dryopteris affinis ssp. affinis. FRONTIERS IN PLANT SCIENCE 2017; 8:336. [PMID: 28382042 PMCID: PMC5360702 DOI: 10.3389/fpls.2017.00336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/27/2017] [Indexed: 05/19/2023]
Abstract
Performing proteomic studies on non-model organisms with little or no genomic information is still difficult. However, many specific processes and biochemical pathways occur only in species that are poorly characterized at the genomic level. For example, many plants can reproduce both sexually and asexually, the first one allowing the generation of new genotypes and the latter their fixation. Thus, both modes of reproduction are of great agronomic value. However, the molecular basis of asexual reproduction is not well understood in any plant. In ferns, it combines the production of unreduced spores (diplospory) and the formation of sporophytes from somatic cells (apogamy). To set the basis to study these processes, we performed transcriptomics by next-generation sequencing (NGS) and shotgun proteomics by tandem mass spectrometry in the apogamous fern D. affinis ssp. affinis. For protein identification we used the public viridiplantae database (VPDB) to identify orthologous proteins from other plant species and new transcriptomics data to generate a "species-specific transcriptome database" (SSTDB). In total 1,397 protein clusters with 5,865 unique peptide sequences were identified (13 decoy proteins out of 1,410, protFDR 0.93% on protein cluster level). We show that using the SSTDB for protein identification increases the number of identified peptides almost four times compared to using only the publically available VPDB. We identified homologs of proteins involved in reproduction of higher plants, including proteins with a potential role in apogamy. With the increasing availability of genomic data from non-model species, similar proteogenomics approaches will improve the sensitivity in protein identification for species only distantly related to models.
Collapse
Affiliation(s)
| | - Helena Fernández
- Area of Plant Physiology, Department of Organisms and Systems Biology (BOS), Oviedo UniversityOviedo, Spain
- *Correspondence: Helena Fernández
| | - Pururawa M. Chaubey
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of ZurichZürich, Switzerland
| | - Ana E. Valdés
- Physiological Botany, Uppsala BioCenter, Uppsala UniversityUppsala, Sweden
- Linnean Centre for Plant BiologyUppsala, Sweden
| | - Valeria Gagliardini
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of ZurichZürich, Switzerland
| | - María J. Cañal
- Area of Plant Physiology, Department of Organisms and Systems Biology (BOS), Oviedo UniversityOviedo, Spain
| | | | - Ueli Grossniklaus
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of ZurichZürich, Switzerland
- Ueli Grossniklaus
| |
Collapse
|
38
|
Abstract
Apomixis, commonly defined as asexual reproduction through seed, is a reproductive trait that occurs in only a few minor crops, but would be highly valuable in major crops. Apomixis results in seed-derived progenies that are genetically identical to their maternal parent. The advantage of apomixis would lie in seed propagation of elite food, feed, and biofuel crops that are heterozygous such as hybrid corn and switchgrass or self-pollinating crops for which no commercial-scale hybrid production system is available. While hybrid plants often outperform parental lines in growth and higher yields, production of hybrid seed is accomplished through carefully controlled, labor intensive crosses. Both small farmers in developing countries who produce their own seed and commercial companies that market hybrid seed could benefit from the establishment of engineered apomixis in plants. In this chapter, we review what has been learned from studying natural apomicts and mutations in sexual plants leading to apomixis-like development, plus discuss how the components of apomixis could be successfully engineered in plants.
Collapse
Affiliation(s)
- Joann A Conner
- Horticulture Department, NESPAL/University of Georgia-Tifton Campus, 2356 Rainwater Road, Tifton, GA, 31794, USA.
| | - Peggy Ozias-Akins
- Horticulture Department, NESPAL/University of Georgia-Tifton Campus, 2356 Rainwater Road, Tifton, GA, 31794, USA
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia-Tifton Campus, Tifton, GA, USA
| |
Collapse
|
39
|
Bicknell R, Catanach A, Hand M, Koltunow A. Seeds of doubt: Mendel's choice of Hieracium to study inheritance, a case of right plant, wrong trait. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:2253-2266. [PMID: 27695890 PMCID: PMC5121183 DOI: 10.1007/s00122-016-2788-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/12/2016] [Indexed: 05/14/2023]
Abstract
KEY MESSAGE In this review, we explore Gregor Mendel's hybridization experiments with Hieracium , update current knowledge on apomictic reproduction and describe approaches now being used to develop true-breeding hybrid crops. From our perspective, it is easy to conclude that Gregor Mendel's work on pea was insightful, but his peers clearly did not regard it as being either very convincing or of much importance. One apparent criticism was that his findings only applied to pea. We know from a letter he wrote to Carl von Nägeli, a leading botanist, that he believed he needed to "verify, with other plants, the results obtained with Pisum". For this purpose, Mendel adopted Hieracium subgenus Pilosella, a phenotypically diverse taxon under botanical study at the time. What Mendel could not have known, however, is that the majority of these plants are not sexual plants like pea, but instead are facultatively apomictic. In these forms, the majority of seed arises asexually, and such progeny are, therefore, clones of the maternal parent. Mendel obtained very few hybrids in his Hieracium crosses, yet we calculate that he probably emasculated in excess of 5000 Hieracium florets to even obtain the numbers he did. Despite that effort, he was perplexed by the results, and they ultimately led him to conclude that "the hybrids of Hieracium show a behaviour exactly opposite to those of Pisum". Apomixis is now a topic of intense research interest, and in an ironic twist of history, Hieracium subgenus Pilosella has been developed as a molecular model to study this trait. In this paper, we explore further Mendel's hybridization experiments with Hieracium, update current knowledge on apomictic reproduction and describe approaches now being used to develop true-breeding hybrid crops.
Collapse
Affiliation(s)
- Ross Bicknell
- Plant and Food Research, Private Bag 4704, Christchurch, 8140, New Zealand
| | - Andrew Catanach
- Plant and Food Research, Private Bag 4704, Christchurch, 8140, New Zealand
| | - Melanie Hand
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Private Bag 2, Glen Osmond, SA, 5064, Australia
| | - Anna Koltunow
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Private Bag 2, Glen Osmond, SA, 5064, Australia.
| |
Collapse
|
40
|
Szenejko M, Śmietana P, Stępień E. Genetic diversity of Poa pratensis L. depending on geographical origin and compared with genetic markers. PeerJ 2016; 4:e2489. [PMID: 27703847 PMCID: PMC5045881 DOI: 10.7717/peerj.2489] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/25/2016] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Poa pratensis is one of the most common species of meadow grass in Europe. Most cultivars of the species found in Poland were originally derived from its ecotypes. We compared the effectiveness of the RAPD and ISSR methods in assessing the genetic diversity of the selected populations of P. pratensis. We examined whether these methods could be useful for detecting a possible link between the geographical origin of a given population and its assessed genetic variation. METHODS The molecular markers RAPD and ISSR were used and their efficiency compared using, inter alia, statistical multivariate methods (UPGMA and PCA). RESULTS The low value of Dice's coefficient (0.369) along with the significantly high percentage of polymorphic products indicates a substantial degree of genetic diversity among the studied populations. Our results found a correlation between the geographical origin of the studied populations and their genetic variations. For ISSR, which proved to be the more effective method in that respect, we selected primers with the greatest differentiating powers correlating to geographical origin. DISCUSSION The populations evaluated in this study were characterized by a high genetic diversity. This seems to confirm the hypothesis that ecotypes of P. pratensis originating from different regions of Central Europe with different terrain structures and habitat conditions can be a source of great genetic variability.
Collapse
Affiliation(s)
- Magdalena Szenejko
- Faculty of Biology, Department of Ecology and Environmental Protection, Institute for Research on Biodiversity, University of Szczecin, Szczecin, Poland
- Faculty of Biology, Molecular Biology and Biotechnology Center, University of Szczecin, Szczecin, Poland
| | - Przemysław Śmietana
- Faculty of Biology, Department of Ecology and Environmental Protection, Institute for Research on Biodiversity, University of Szczecin, Szczecin, Poland
- Faculty of Biology, Molecular Biology and Biotechnology Center, University of Szczecin, Szczecin, Poland
| | - Edyta Stępień
- Department of Plant Taxonomy and Phytogeography, Institute for Research on Biodiversity, Faculty of Biology, University of Szczecin, Szczecin, Poland
| |
Collapse
|
41
|
Hand ML, de Vries S, Koltunow AMG. A Comparison of In Vitro and In Vivo Asexual Embryogenesis. Methods Mol Biol 2016; 1359:3-23. [PMID: 26619856 DOI: 10.1007/978-1-4939-3061-6_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In plants, embryogenesis generally occurs through the sexual process of double fertilization, which involves a haploid sperm cell fusing with a haploid egg cell to ultimately give rise to a diploid embryo. Embryogenesis can also occur asexually in the absence of fertilization, both in vitro and in vivo. Somatic or gametic cells are able to differentiate into embryos in vitro following the application of plant growth regulators or stress treatments. Asexual embryogenesis also occurs naturally in some plant species in vivo, from either ovule cells as part of a process defined as apomixis, or from somatic leaf tissue in other species. In both in vitro and in vivo asexual embryogenesis, the embryo precursor cells must attain an embryogenic fate without the act of fertilization. This review compares the processes of in vitro and in vivo asexual embryogenesis including what is known regarding the genetic and epigenetic regulation of each process, and considers how the precursor cells are able to change fate and adopt an embryogenic pathway.
Collapse
Affiliation(s)
- Melanie L Hand
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture, Waite Campus, Urrbrae, South Australia
| | - Sacco de Vries
- Department of Biochemistry, University of Wageningen, Wageningen, 6703 HA, The Netherlands
| | - Anna M G Koltunow
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture, Waite Campus, Urrbrae, South Australia.
| |
Collapse
|
42
|
Pilarska M, Malec P, Salaj J, Bartnicki F, Konieczny R. High expression of SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE coincides with initiation of various developmental pathways in in vitro culture of Trifolium nigrescens. PROTOPLASMA 2016; 253:345-55. [PMID: 25876517 PMCID: PMC4783438 DOI: 10.1007/s00709-015-0814-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/26/2015] [Indexed: 05/22/2023]
Abstract
The aim of this study was to identify and examine the expression pattern of the ortholog of SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE gene from Trifolium nigrescens (TnSERK) in embryogenic and non-regenerative cultures of immature cotyledonary-stage zygotic embryos (CsZEs). In the presence of 1-naphthaleneacetic acid and N(6)-[2-isopentenyl]-adenine, the CsZE regenerated embryoids directly and in a lengthy culture produced callus which was embryogenic or remained non-regenerative. As revealed by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), the TnSERK was expressed in both embryogenic and non-regenerative cultures, but the expression level was significantly higher in embryogenic ones. An in situ RNA hybridization assay revealed that the expression of TnSERK preceded the induction of cell division in explants, and then, it was maintained exclusively in actively dividing cells from which embryoids, embryo-like structures (ELSs), callus or tracheary elements were produced. However, the cells involved in different morphogenic events differed in intensity of hybridization signal which was the highest in embryogenic cells. The TnSERK was up-regulated during the development of embryoids, but in cotyledonary embryos, it was preferentially expressed in the regions of the apical meristems. The occurrence of morphological and anatomical abnormalities in embryoid development was preceded by a decline in TnSERK expression, and this coincided with the parenchymatization of the ground tissue in developing ELSs. TnSERK was also down-regulated during the maturation of parenchyma and xylem elements in CsZE and callus. Altogether, these data suggest the involvement of TnSERK in the induction of various developmental programs related to differentiation/transdifferentiation and totipotent state of cell(s).
Collapse
Affiliation(s)
- Maria Pilarska
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Przemysław Malec
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Jan Salaj
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Akademicka 2, 950-07, Nitra, Slovak Republic
| | - Filip Bartnicki
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Robert Konieczny
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland.
| |
Collapse
|
43
|
Abstract
Somatic embryogenesis involves a broad repertoire of genes, and complex expression patterns controlled by a concerted gene regulatory network. The present work describes this regulatory network focusing on the main aspects involved, with the aim of providing a deeper insight into understanding the total reprogramming of cells into a new organism through a somatic way. To the aim, the chromatin remodeling necessary to totipotent stem cell establishment is described, as the activity of numerous transcription factors necessary to cellular totipotency reprogramming. The eliciting effects of various plant growth regulators on the induction of somatic embryogenesis is also described and put in relation with the activity of specific transcription factors. The role of programmed cell death in the process, and the related function of specific hemoglobins as anti-stress and anti-death compounds is also described. The tools for biotechnology coming from this information is highlighted in the concluding remarks.
Collapse
|
44
|
Abstract
Apomixis (asexual seed formation) is the result of a plant gaining the ability to bypass the most fundamental aspects of sexual reproduction: meiosis and fertilization. Without the need for male fertilization, the resulting seed germinates a plant that develops as a maternal clone. This dramatic shift in reproductive process has been documented in many flowering plant species, although no major seed crops have been shown to be capable of apomixis. The ability to generate maternal clones and therefore rapidly fix desirable genotypes in crop species could accelerate agricultural breeding strategies. The potential of apomixis as a next-generation breeding technology has contributed to increasing interest in the mechanisms controlling apomixis. In this review, we discuss the progress made toward understanding the genetic and molecular control of apomixis. Research is currently focused on two fronts. One aims to identify and characterize genes causing apomixis in apomictic species that have been developed as model species. The other aims to engineer or switch the sexual seed formation pathway in non-apomictic species, to one that mimics apomixis. Here we describe the major apomictic mechanisms and update knowledge concerning the loci that control them, in addition to presenting candidate genes that may be used as tools for switching the sexual pathway to an apomictic mode of reproduction in crops.
Collapse
|
45
|
Ronceret A, Vielle-Calzada JP. Meiosis, unreduced gametes, and parthenogenesis: implications for engineering clonal seed formation in crops. PLANT REPRODUCTION 2015; 28:91-102. [PMID: 25796397 DOI: 10.1007/s00497-015-0262-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/09/2015] [Indexed: 05/18/2023]
Abstract
Meiosis and unreduced gametes. Sexual flowering plants produce meiotically derived cells that give rise to the male and female haploid gametophytic phase. In the ovule, usually a single precursor (the megaspore mother cell) undergoes meiosis to form four haploid megaspores; however, numerous mutants result in the formation of unreduced gametes, sometimes showing female specificity, a phenomenon reminiscent of the initiation of gametophytic apomixis. Here, we review the developmental events that occur during female meiosis and megasporogenesis at the light of current possibilities to engineer unreduced gamete formation. We also provide an overview of the current understanding of mechanisms leading to parthenogenesis and discuss some of the conceptual implications for attempting the induction of clonal seed production in cultivated plants.
Collapse
Affiliation(s)
- Arnaud Ronceret
- Group of Reproductive Development and Apomixis, UGA Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, CP 36821, Irapuato, Guanajuato, Mexico
| | | |
Collapse
|
46
|
Aan den Toorn M, Albrecht C, de Vries S. On the Origin of SERKs: Bioinformatics Analysis of the Somatic Embryogenesis Receptor Kinases. MOLECULAR PLANT 2015; 8:762-82. [PMID: 25864910 DOI: 10.1016/j.molp.2015.03.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 03/25/2015] [Accepted: 03/29/2015] [Indexed: 05/26/2023]
Abstract
Somatic embryogenesis receptor-like kinases (SERKs) are leucine-rich repeat receptor-like kinases involved in several, seemingly unrelated, plant-signaling pathways. In Arabidopsis thaliana, functional and genetic analysis of four SERK proteins has indicated that they are only partly redundant; their functions overlap but each performs a specific subset of signaling roles. The molecular basis for the functional specificity within this highly homologous protein family is currently not known. Sequence analysis of SERK proteins from different plant species indicates that the SERKs are a highly conserved protein family present in monocots, dicots, and non-vascular plants. Residues in the extracellular domain that are important for interaction with other receptor kinases are highly conserved, even among SERK members without a function in the corresponding pathways. SERK2, for instance, does not function in the brassinosteroid pathway, does not interact with BRI1, but is conserved in its BRI1-interacting domain. Further sequence analysis indicates that SERK3/BAK1 and SERK4/BKK1 have diverged from the original SERK protein in both their extracellular and cytoplasmic domains. Functional analysis of chimeric SERK proteins shows that different domains provide the SERK proteins with different functional specificity. For instance, the SERK1 or SERK2 extracellular domains are essential for SERK function in male sporogenesis, while the SERK3 extracellular and cytoplasmic domains are essential for SERK3 activity in brassinosteroid and flagellin signaling. The emerging picture is that SERKs are ancient genes, whose products have been recruited as co-receptors in the newly evolved signaling pathways. The SERK ligand-binding and protein-protein interaction domains are highly conserved, allowing all SERKs to form complexes, albeit with different affinity. However, specific functional residues must have been altered, in both the extracellular and intracellular domains, to allow for the observed differences in functionality.
Collapse
Affiliation(s)
- Marije Aan den Toorn
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, the Netherlands
| | - Catherine Albrecht
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, the Netherlands
| | - Sacco de Vries
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, the Netherlands.
| |
Collapse
|
47
|
De novo sequencing of the Hypericum perforatum L. flower transcriptome to identify potential genes that are related to plant reproduction sensu lato. BMC Genomics 2015; 16:254. [PMID: 25887758 PMCID: PMC4451943 DOI: 10.1186/s12864-015-1439-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/06/2015] [Indexed: 02/07/2023] Open
Abstract
Background St. John’s wort (Hypericum perforatum L.) is a medicinal plant that produces important metabolites with antidepressant and anticancer activities. Recently gained biological information has shown that this species is also an attractive model system for the study of a naturally occurring form of asexual reproduction called apomixis, which allows cloning plants through seeds. In aposporic gametogenesis, one or multiple somatic cells belonging to the ovule nucellus change their fate by dividing mitotically and developing functionally unreduced embryo sacs by mimicking sexual gametogenesis. Although the introduction of apomixis into agronomically important crops could have revolutionary implications for plant breeding, the genetic control of this mechanism of seed formation is still not well understood for most of the model species investigated so far. We used Roche 454 technology to sequence the entire H. perforatum flower transcriptome of whole flower buds and single flower verticils collected from obligately sexual and unrelated highly or facultatively apomictic genotypes, which enabled us to identify RNAs that are likely exclusive to flower organs (i.e., sepals, petals, stamens and carpels) or reproductive strategies (i.e., sexual vs. apomictic). Results Here we sequenced and annotated the flower transcriptome of H. perforatum with particular reference to reproductive organs and processes. In particular, in our study we characterized approximately 37,000 transcripts found expressed in male and/or female reproductive organs, including tissues or cells of sexual and apomictic flower buds. Ontological annotation was applied to identify major biological processes and molecular functions involved in flower development and plant reproduction. Starting from this dataset, we were able to recover and annotate a large number of transcripts related to meiosis, gametophyte/gamete formation, and embryogenesis, as well as genes that are exclusively or preferentially expressed in sexual or apomictic libraries. Real-Time RT-qPCR assays on pistils and anthers collected at different developmental stages from accessions showing alternative modes of reproduction were used to identify potential genes that are related to plant reproduction sensu lato in H. perforatum. Conclusions Our approach of sequencing flowers from two fully obligate sexual genotypes and two unrelated highly apomictic genotypes, in addition to different flower parts dissected from a facultatively apomictic accession, enabled us to analyze the complexity of the flower transcriptome according to its main reproductive organs as well as for alternative reproductive behaviors. Both annotation and expression data provided original results supporting the hypothesis that apomixis in H. perforatum relies upon spatial or temporal mis-expression of genes acting during female sexual reproduction. The present analyses aim to pave the way toward a better understanding of the molecular basis of flower development and plant reproduction, by identifying genes or RNAs that may differentiate or regulate the sexual and apomictic reproductive pathways in H. perforatum. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1439-y) contains supplementary material, which is available to authorized users.
Collapse
|
48
|
Schmidt A, Schmid MW, Klostermeier UC, Qi W, Guthörl D, Sailer C, Waller M, Rosenstiel P, Grossniklaus U. Apomictic and sexual germline development differ with respect to cell cycle, transcriptional, hormonal and epigenetic regulation. PLoS Genet 2014; 10:e1004476. [PMID: 25010342 PMCID: PMC4091798 DOI: 10.1371/journal.pgen.1004476] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/18/2014] [Indexed: 11/18/2022] Open
Abstract
Seeds of flowering plants can be formed sexually or asexually through apomixis. Apomixis occurs in about 400 species and is of great interest for agriculture as it produces clonal offspring. It differs from sexual reproduction in three major aspects: (1) While the sexual megaspore mother cell (MMC) undergoes meiosis, the apomictic initial cell (AIC) omits or aborts meiosis (apomeiosis); (2) the unreduced egg cell of apomicts forms an embryo without fertilization (parthenogenesis); and (3) the formation of functional endosperm requires specific developmental adaptations. Currently, our knowledge about the gene regulatory programs underlying apomixis is scarce. We used the apomict Boechera gunnisoniana, a close relative of Arabidopsis thaliana, to investigate the transcriptional basis underlying apomeiosis and parthenogenesis. Here, we present the first comprehensive reference transcriptome for reproductive development in an apomict. To compare sexual and apomictic development at the cellular level, we used laser-assisted microdissection combined with microarray and RNA-Seq analyses. Conservation of enriched gene ontologies between the AIC and the MMC likely reflects functions of importance to germline initiation, illustrating the close developmental relationship of sexuality and apomixis. However, several regulatory pathways differ between sexual and apomictic germlines, including cell cycle control, hormonal pathways, epigenetic and transcriptional regulation. Enrichment of specific signal transduction pathways are a feature of the apomictic germline, as is spermidine metabolism, which is associated with somatic embryogenesis in various plants. Our study provides a comprehensive reference dataset for apomictic development and yields important new insights into the transcriptional basis underlying apomixis in relation to sexual reproduction. In flowering plants, asexual reproduction through seeds (apomixis) likely evolved from sexual ancestors several times independently. Only three key developmental steps differ between sexual reproduction and apomixis. In contrast to sexual reproduction, in apomicts the first cell of the female reproductive lineage omits or aborts meiosis (apomeiosis) to initiate gamete formation. Subsequently, the egg cell develops into an embryo without fertilization (parthenogenesis), and endosperm formation can either be autonomous or depend on fertilization. Consequently, the offspring of apomicts is genetically identical to the mother plant. The production of clonal seeds bears great promise for agricultural applications. However, the targeted manipulation of reproductive pathways for seed production has proven difficult as knowledge about the underlying gene regulatory processes is limited. We performed cell type-specific transcriptome analyses to study apomictic germline development in Boechera gunnisoniana, an apomictic species closely related to Arabidopsis thaliana. To facilitate these analyses, we first characterized a floral reference transcriptome. In comparison, we identified several regulatory pathways, including core cell cycle regulation, protein degradation, transcription factor activity, and hormonal pathways to be differentially regulated between sexual and apomictic plants. Apart from new insights into the underlying transcriptional networks, our dataset provides a valuable starting point for functional investigations.
Collapse
Affiliation(s)
- Anja Schmidt
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
- * E-mail: (AS); (UG)
| | - Marc W. Schmid
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | | | - Weihong Qi
- Functional Genomics Center Zürich, UZH/ETH Zürich, Zürich, Switzerland
| | - Daniela Guthörl
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Christian Sailer
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Manuel Waller
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts University, Kiel, Germany
| | - Ueli Grossniklaus
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
- * E-mail: (AS); (UG)
| |
Collapse
|
49
|
Schmidt A, Schmid MW, Klostermeier UC, Qi W, Guthörl D, Sailer C, Waller M, Rosenstiel P, Grossniklaus U. Apomictic and sexual germline development differ with respect to cell cycle, transcriptional, hormonal and epigenetic regulation. PLoS Genet 2014. [PMID: 25010342 DOI: 10.1371/journal.pgen.100447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
Seeds of flowering plants can be formed sexually or asexually through apomixis. Apomixis occurs in about 400 species and is of great interest for agriculture as it produces clonal offspring. It differs from sexual reproduction in three major aspects: (1) While the sexual megaspore mother cell (MMC) undergoes meiosis, the apomictic initial cell (AIC) omits or aborts meiosis (apomeiosis); (2) the unreduced egg cell of apomicts forms an embryo without fertilization (parthenogenesis); and (3) the formation of functional endosperm requires specific developmental adaptations. Currently, our knowledge about the gene regulatory programs underlying apomixis is scarce. We used the apomict Boechera gunnisoniana, a close relative of Arabidopsis thaliana, to investigate the transcriptional basis underlying apomeiosis and parthenogenesis. Here, we present the first comprehensive reference transcriptome for reproductive development in an apomict. To compare sexual and apomictic development at the cellular level, we used laser-assisted microdissection combined with microarray and RNA-Seq analyses. Conservation of enriched gene ontologies between the AIC and the MMC likely reflects functions of importance to germline initiation, illustrating the close developmental relationship of sexuality and apomixis. However, several regulatory pathways differ between sexual and apomictic germlines, including cell cycle control, hormonal pathways, epigenetic and transcriptional regulation. Enrichment of specific signal transduction pathways are a feature of the apomictic germline, as is spermidine metabolism, which is associated with somatic embryogenesis in various plants. Our study provides a comprehensive reference dataset for apomictic development and yields important new insights into the transcriptional basis underlying apomixis in relation to sexual reproduction.
Collapse
Affiliation(s)
- Anja Schmidt
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Marc W Schmid
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Ulrich C Klostermeier
- Institute of Clinical Molecular Biology, Christian-Albrechts University, Kiel, Germany
| | - Weihong Qi
- Functional Genomics Center Zürich, UZH/ETH Zürich, Zürich, Switzerland
| | - Daniela Guthörl
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Christian Sailer
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Manuel Waller
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts University, Kiel, Germany
| | - Ueli Grossniklaus
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| |
Collapse
|
50
|
Podio M, Felitti SA, Siena LA, Delgado L, Mancini M, Seijo JG, González AM, Pessino SC, Ortiz JPA. Characterization and expression analysis of SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) genes in sexual and apomictic Paspalum notatum. PLANT MOLECULAR BIOLOGY 2014; 84:479-95. [PMID: 24146222 DOI: 10.1007/s11103-013-0146-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 10/11/2013] [Indexed: 05/19/2023]
Abstract
The SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) gene plays a fundamental role in somatic embryogenesis of angiosperms, and is associated with apomixis in Poa pratensis. The objective of this work was to isolate, characterize and analyze the expression patterns of SERK genes in apomictic and sexual genotypes of Paspalum notatum. A conserved 200-bp gene fragment was amplified from genomic DNA with heterologous primers, and used to initiate a chromosomal walking strategy for cloning the complete sequence. This procedure allowed the isolation of two members of the P. notatum SERK family; PnSERK1, which is similar to PpSERK1, and PnSERK2, which is similar to ZmSERK2 and AtSERK1. Phylogenetic analyses indicated that PnSERK1 and PnSERK2 represent paralogous sequences. Southern-blot hybridization indicated the presence of at least three copies of SERK genes in the species. qRT-PCR analyses revealed that PnSERK2 was expressed at significantly higher levels than PnSERK1 in roots, leaves, reproductive tissues and embryogenic calli. Moreover, in situ hybridization experiments revealed that PnSERK2 displayed a spatially and chronologically altered expression pattern in reproductive organs of the apomictic genotype with respect to the sexual one. PnSERK2 is expressed in nucellar cells of the apomictic genotype at meiosis, but only in the megaspore mother cell in the sexual genotype. Therefore, apomixis onset in P. notatum seems to be correlated with the expression of PnSERK2 in nucellar tissue.
Collapse
Affiliation(s)
- Maricel Podio
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario (UNR), Campo Experimental Villarino, CC 14 (S2125ZAA), Zavalla, Santa Fe, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|