1
|
Etesami H, Santoyo G. Boosting Rhizobium-legume symbiosis: The role of nodule non-rhizobial bacteria in hormonal and nutritional regulation under stress. Microbiol Res 2025; 297:128192. [PMID: 40279725 DOI: 10.1016/j.micres.2025.128192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/19/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Legumes are vital for sustainable agriculture due to their unique ability to fix atmospheric nitrogen through symbiosis with rhizobia. Recent research has highlighted the significant role of non-rhizobial bacteria (NRB) within root nodules in enhancing this symbiotic relationship, particularly under stress conditions. These NRB exhibit plant growth-promoting (PGP) metabolites by modulating phytohormones and enhancing nutrient availability, thereby improving nodule development and function. Bacteria produce essential hormones, such as auxin (indole-3-acetic acid), cytokinins, gibberellic acids abscisic acid, jasmonic acid, and salicylic acid, and enzymes like 1-aminocyclopropane-1-carboxylate deaminase, which mitigate ethylene's inhibitory effects on nodulation. Furthermore, NRB contribute to nutrient cycling by solubilizing minerals like phosphate, potassium, silicate, zinc, and iron, essential for effective nitrogen fixation. The co-inoculation of legumes with both rhizobia and NRB with multiple PGP metabolites has shown synergistic effects on plant growth, yield, and resilience against environmental stresses. This review emphasizes the need to further explore the diversity and functional roles of nodule-associated non-rhizobial endophytes, aiming to optimize legume productivity through improved nutrient and hormonal management. Understanding these interactions is crucial for developing sustainable agricultural practices that enhance the efficiency of legume-rhizobia symbiosis, ultimately contributing to food security and ecosystem health.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, University of Tehran, Tehran, Iran.
| | - Gustavo Santoyo
- Institute of Chemical and Biological Research, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58095, Mexico
| |
Collapse
|
2
|
Xiao TT, Müller S, Shen D, Liu J, Adema K, van Seters A, Franssen H, Bisseling T, Kulikova O, Kohlen W. Nodule organogenesis in Medicago truncatula requires local stage-specific auxin biosynthesis and transport. PLANT PHYSIOLOGY 2025; 197:kiaf133. [PMID: 40181792 PMCID: PMC12002018 DOI: 10.1093/plphys/kiaf133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 04/05/2025]
Abstract
The importance of auxin in plant organ development, including root nodule formation, is well known. The spatiotemporal distribution pattern of auxin during nodule development has been illustrated using auxin reporter constructs. However, our understanding of how this pattern is established and maintained remains elusive. Here, we studied how the auxin gradient is associated with the spatiotemporal expression patterns of known auxin biosynthesis and transport genes at different stages of nodule development in Medicago (Medicago truncatula). In addition, we examined the Medicago PIN-FORMED10 (MtPIN10) expression pattern and polar positioning on the cell membrane during nodule primordium development to investigate auxin flux. RNA interference and the application of auxin biosynthesis inhibitors were used to demonstrate the importance of auxin biosynthesis and transport at the initial stages of nodulation. Our results show that upon rhizobium inoculation before the first cell divisions, a specific subset of Medicago YUCCA (MtYUC) and MtPIN genes, as well as Medicago LIKE AUXIN RESISTANT2 (MtLAX2), are expressed in the pericycle and contribute to the creation of an auxin maximum. Overall, we demonstrate that the dynamic spatiotemporal expression of both MtYUC and MtPIN genes results in specific auxin outputs during the different stages of nodule primordia and nodule meristem formation.
Collapse
Affiliation(s)
- Ting Ting Xiao
- Department of Plant Sciences, Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Sophia Müller
- Department of Plant Sciences, Cluster of Plant Developmental Biology, Laboratory of Cell and Developmental Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Defeng Shen
- Department of Plant Sciences, Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Jieyu Liu
- Department of Plant Sciences, Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Kelvin Adema
- Department of Plant Sciences, Cluster of Plant Developmental Biology, Laboratory of Cell and Developmental Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Amber van Seters
- Department of Plant Sciences, Cluster of Plant Developmental Biology, Laboratory of Cell and Developmental Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Henk Franssen
- Department of Plant Sciences, Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Ton Bisseling
- Department of Plant Sciences, Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Olga Kulikova
- Department of Plant Sciences, Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Wouter Kohlen
- Department of Plant Sciences, Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
- Department of Plant Sciences, Cluster of Plant Developmental Biology, Laboratory of Cell and Developmental Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| |
Collapse
|
3
|
Salgado MG, Maity PJ, Lundin D, Pawlowski K. The auxin phenylacetic acid induces NIN expression in the actinorhizal plant Datisca glomerata, whereas cytokinin acts antagonistically. PLoS One 2025; 20:e0315798. [PMID: 39899489 PMCID: PMC11790169 DOI: 10.1371/journal.pone.0315798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/30/2024] [Indexed: 02/05/2025] Open
Abstract
All nitrogen-fixing root nodule symbioses of angiosperms-legume and actinorhizal symbioses-possess a common ancestor. Molecular processes for the induction of root nodules are modulated by phytohormones, as is the case of the first nodulation-related transcription factor NODULE INCEPTION (NIN), whose expression can be induced by exogenous cytokinin in legumes. The process of actinorhizal nodule organogenesis is less well understood. To study the changes exerted by phytohormones on the expression of the orthologs of CYCLOPS, NIN, and NF-YA1 in the actinorhizal host Datisca glomerata, an axenic hydroponic system was established and used to examine the transcriptional responses (RT-qPCR) in roots treated with the synthetic cytokinin 6-Benzylaminopurine (BAP), the natural auxin Phenylacetic acid (PAA), and the synthetic auxin 1-Naphthaleneacetic acid (NAA). The model legume Lotus japonicus was used as positive control. Molecular readouts for auxins and cytokinin were established: DgSAUR1 for PAA, DgGH3.1. for NAA, and DgARR9 for BAP. L. japonicus NIN was induced by BAP, PAA, and NAA in a dosage- and time-dependent manner. While expression of D. glomerata NIN2 could not be induced in roots, D. glomerata NIN1 was induced by PAA; this induction was abolished in the presence of exogenous BAP. Furthermore, the induction of DgNIN1 expression by PAA required ethylene and gibberellic acid. This study suggests that while cytokinin signaling is central for cortex-induced nodules of L. japonicus, it acts antagonistically to the induction of nodule primordia of D. glomerata by PAA in the root pericycle.
Collapse
Affiliation(s)
- Marco Guedes Salgado
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Pooja Jha Maity
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
4
|
Timofeeva AM, Galyamova MR, Sedykh SE. How Do Plant Growth-Promoting Bacteria Use Plant Hormones to Regulate Stress Reactions? PLANTS (BASEL, SWITZERLAND) 2024; 13:2371. [PMID: 39273855 PMCID: PMC11397614 DOI: 10.3390/plants13172371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024]
Abstract
Phytohormones play a crucial role in regulating growth, productivity, and development while also aiding in the response to diverse environmental changes, encompassing both biotic and abiotic factors. Phytohormone levels in soil and plant tissues are influenced by specific soil bacteria, leading to direct effects on plant growth, development, and stress tolerance. Specific plant growth-promoting bacteria can either synthesize or degrade specific plant phytohormones. Moreover, a wide range of volatile organic compounds synthesized by plant growth-promoting bacteria have been found to influence the expression of phytohormones. Bacteria-plant interactions become more significant under conditions of abiotic stress such as saline soils, drought, and heavy metal pollution. Phytohormones function in a synergistic or antagonistic manner rather than in isolation. The study of plant growth-promoting bacteria involves a range of approaches, such as identifying singular substances or hormones, comparing mutant and non-mutant bacterial strains, screening for individual gene presence, and utilizing omics approaches for analysis. Each approach uncovers the concealed aspects concerning the effects of plant growth-promoting bacteria on plants. Publications that prioritize the comprehensive examination of the private aspects of PGPB and cultivated plant interactions are of utmost significance and crucial for advancing the practical application of microbial biofertilizers. This review explores the potential of PGPB-plant interactions in promoting sustainable agriculture. We summarize the interactions, focusing on the mechanisms through which plant growth-promoting bacteria have a beneficial effect on plant growth and development via phytohormones, with particular emphasis on detecting the synthesis of phytohormones by plant growth-promoting bacteria.
Collapse
Affiliation(s)
- Anna M Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Maria R Galyamova
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Sergey E Sedykh
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
5
|
Lepetit M, Brouquisse R. Control of the rhizobium-legume symbiosis by the plant nitrogen demand is tightly integrated at the whole plant level and requires inter-organ systemic signaling. FRONTIERS IN PLANT SCIENCE 2023; 14:1114840. [PMID: 36968361 PMCID: PMC10033964 DOI: 10.3389/fpls.2023.1114840] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Symbiotic nodules formed on legume roots with rhizobia fix atmospheric N2. Bacteria reduce N2 to NH4 + that is assimilated into amino acids by the plant. In return, the plant provides photosynthates to fuel the symbiotic nitrogen fixation. Symbiosis is tightly adjusted to the whole plant nutritional demand and to the plant photosynthetic capacities, but regulatory circuits behind this control remain poorly understood. The use of split-root systems combined with biochemical, physiological, metabolomic, transcriptomic, and genetic approaches revealed that multiple pathways are acting in parallel. Systemic signaling mechanisms of the plant N demand are required for the control of nodule organogenesis, mature nodule functioning, and nodule senescence. N-satiety/N-deficit systemic signaling correlates with rapid variations of the nodules' sugar levels, tuning symbiosis by C resources allocation. These mechanisms are responsible for the adjustment of plant symbiotic capacities to the mineral N resources. On the one hand, if mineral N can satisfy the plant N demand, nodule formation is inhibited, and nodule senescence is activated. On the other hand, local conditions (abiotic stresses) may impair symbiotic activity resulting in plant N limitation. In these conditions, systemic signaling may compensate the N deficit by stimulating symbiotic root N foraging. In the past decade, several molecular components of the systemic signaling pathways controlling nodule formation have been identified, but a major challenge remains, that is, to understand their specificity as compared to the mechanisms of non-symbiotic plants that control root development and how they contribute to the whole plant phenotypes. Less is known about the control of mature nodule development and functioning by N and C nutritional status of the plant, but a hypothetical model involving the sucrose allocation to the nodule as a systemic signaling process, the oxidative pentose phosphate pathway, and the redox status as potential effectors of this signaling is emerging. This work highlights the importance of organism integration in plant biology.
Collapse
|
6
|
Velandia K, Reid JB, Foo E. Right time, right place: The dynamic role of hormones in rhizobial infection and nodulation of legumes. PLANT COMMUNICATIONS 2022; 3:100327. [PMID: 35605199 PMCID: PMC9482984 DOI: 10.1016/j.xplc.2022.100327] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/24/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Many legume plants form beneficial associations with rhizobial bacteria that are hosted in new plant root organs, nodules, in which atmospheric nitrogen is fixed. This association requires the precise coordination of two separate programs, infection in the epidermis and nodule organogenesis in the cortex. There is extensive literature indicating key roles for plant hormones during nodulation, but a detailed analysis of the spatial and temporal roles of plant hormones during the different stages of nodulation is required. This review analyses the current literature on hormone regulation of infection and organogenesis to reveal the differential roles and interactions of auxin, cytokinin, brassinosteroids, ethylene, and gibberellins during epidermal infection and cortical nodule initiation, development, and function. With the exception of auxin, all of these hormones suppress infection events. By contrast, there is evidence that all of these hormones promote nodule organogenesis, except ethylene, which suppresses nodule initiation. This differential role for many of the hormones between the epidermal and cortical programs is striking. Future work is required to fully examine hormone interactions and create a robust model that integrates this knowledge into our understanding of nodulation pathways.
Collapse
Affiliation(s)
- Karen Velandia
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - James B Reid
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Eloise Foo
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia.
| |
Collapse
|
7
|
Visualization of the Crossroads between a Nascent Infection Thread and the First Cell Division Event in Phaseolus vulgaris Nodulation. Int J Mol Sci 2022; 23:ijms23095267. [PMID: 35563659 PMCID: PMC9105610 DOI: 10.3390/ijms23095267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
The development of a symbiotic nitrogen-fixing nodule in legumes involves infection and organogenesis. Infection begins when rhizobia enter a root hair through an inward structure, the infection thread (IT), which guides the bacteria towards the cortical tissue. Concurrently, organogenesis takes place by inducing cortical cell division (CCD) at the infection site. Genetic analysis showed that both events are well-coordinated; however, the dynamics connecting them remain to be elucidated. To visualize the crossroads between IT and CCD, we benefited from the fact that, in Phaseolus vulgaris nodulation, where the first division occurs in subepidermal cortical cells located underneath the infection site, we traced a Rhizobium etli strain expressing DsRed, the plant cytokinesis marker YFP-PvKNOLLE, a nuclear stain and cell wall auto-fluorescence. We found that the IT exits the root hair to penetrate an underlying subepidermal cortical (S-E) cell when it is concluding cytokinesis.
Collapse
|
8
|
Kirolinko C, Hobecker K, Wen J, Mysore KS, Niebel A, Blanco FA, Zanetti ME. Auxin Response Factor 2 (ARF2), ARF3, and ARF4 Mediate Both Lateral Root and Nitrogen Fixing Nodule Development in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2021; 12:659061. [PMID: 33897748 PMCID: PMC8060633 DOI: 10.3389/fpls.2021.659061] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Auxin Response Factors (ARFs) constitute a large family of transcription factors that mediate auxin-regulated developmental programs in plants. ARF2, ARF3, and ARF4 are post-transcriptionally regulated by the microRNA390 (miR390)/trans-acting small interference RNA 3 (TAS3) module through the action of TAS3-derived trans - acting small interfering RNAs (ta-siRNA). We have previously reported that constitutive activation of the miR390/TAS3 pathway promotes elongation of lateral roots but impairs nodule organogenesis and infection by rhizobia during the nitrogen-fixing symbiosis established between Medicago truncatula and its partner Sinorhizobium meliloti. However, the involvement of the targets of the miR390/TAS3 pathway, i.e., MtARF2, MtARF3, MtARF4a, and MtARF4b, in root development and establishment of the nitrogen-fixing symbiosis remained unexplored. Here, promoter:reporter fusions showed that expression of both MtARF3 and MtARF4a was associated with lateral root development; however, only the MtARF4a promoter was active in developing nodules. In addition, up-regulation of MtARF2, MtARF3, and MtARF4a/b in response to rhizobia depends on Nod Factor perception. We provide evidence that simultaneous knockdown of MtARF2, MtARF3, MtARF4a, and MtARF4b or mutation in MtARF4a impaired nodule formation, and reduced initiation and progression of infection events. Silencing of MtARF2, MtARF3, MtARF4a, and MtARF4b altered mRNA levels of the early nodulation gene nodulation signaling pathway 2 (MtNSP2). In addition, roots with reduced levels of MtARF2, MtARF3, MtARF4a, and MtARF4b, as well as arf4a mutant plants exhibited altered root architecture, causing a reduction in primary and lateral root length, but increasing lateral root density. Taken together, our results suggest that these ARF members are common key players of the morphogenetic programs that control root development and the formation of nitrogen-fixing nodules.
Collapse
Affiliation(s)
- Cristina Kirolinko
- Instituto de Biotecnología y Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - Karen Hobecker
- Instituto de Biotecnología y Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - Jiangqi Wen
- Noble Research Institute LLC, Ardmore, OK, United States
| | | | - Andreas Niebel
- Laboratoire des Interactions Plantes-Microorganismes, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Flavio Antonio Blanco
- Instituto de Biotecnología y Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| |
Collapse
|
9
|
Xu D, Lu Z, Qiao G, Qiu W, Wu L, Han X, Zhuo R. Auxin-Induced SaARF4 Downregulates SaACO4 to Inhibit Lateral Root Formation in Sedum alfredii Hance. Int J Mol Sci 2021; 22:1297. [PMID: 33525549 PMCID: PMC7865351 DOI: 10.3390/ijms22031297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 01/11/2023] Open
Abstract
Lateral root (LR) formation promotes plant resistance, whereas high-level ethylene induced by abiotic stress will inhibit LR emergence. Considering that local auxin accumulation is a precondition for LR generation, auxin-induced genes inhibiting ethylene synthesis may thus be important for LR development. Here, we found that auxin response factor 4 (SaARF4) in Sedum alfredii Hance could be induced by auxin. The overexpression of SaARF4 decreased the LR number and reduced the vessel diameters. Meanwhile, the auxin distribution mode was altered in the root tips and PIN expression was also decreased in the overexpressed lines compared with the wild-type (WT) plants. The overexpression of SaARF4 could reduce ethylene synthesis, and thus, the repression of ethylene production decreased the LR number of WT and reduced PIN expression in the roots. Furthermore, the quantitative real-time PCR, chromatin immunoprecipitation sequencing, yeast one-hybrid, and dual-luciferase assay results showed that SaARF4 could bind the promoter of 1-aminocyclopropane-1-carboxylate oxidase 4 (SaACO4), associated with ethylene biosynthesis, and could downregulate its expression. Therefore, we concluded that SaARF4 induced by auxin can inhibit ethylene biosynthesis by repressing SaACO4 expression, and this process may affect auxin transport to delay LR development.
Collapse
Affiliation(s)
- Dong Xu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (D.X.); (Z.L.); (G.Q.); (W.Q.)
- Forestry Faculty, Nanjing Forestry University, Nanjing 210037, China
| | - Zhuchou Lu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (D.X.); (Z.L.); (G.Q.); (W.Q.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Guirong Qiao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (D.X.); (Z.L.); (G.Q.); (W.Q.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (D.X.); (Z.L.); (G.Q.); (W.Q.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Longhua Wu
- National Engineering Laboratory of Soil Pollution Control and Remediation Technologies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (D.X.); (Z.L.); (G.Q.); (W.Q.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (D.X.); (Z.L.); (G.Q.); (W.Q.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| |
Collapse
|
10
|
Zhu F, Deng J, Chen H, Liu P, Zheng L, Ye Q, Li R, Brault M, Wen J, Frugier F, Dong J, Wang T. A CEP Peptide Receptor-Like Kinase Regulates Auxin Biosynthesis and Ethylene Signaling to Coordinate Root Growth and Symbiotic Nodulation in Medicago truncatula. THE PLANT CELL 2020; 32:2855-2877. [PMID: 32887805 PMCID: PMC7474297 DOI: 10.1105/tpc.20.00248] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 06/03/2020] [Accepted: 06/24/2020] [Indexed: 05/06/2023]
Abstract
Because of the large amount of energy consumed during symbiotic nitrogen fixation, legumes must balance growth and symbiotic nodulation. Both lateral roots and nodules form on the root system, and the developmental coordination of these organs under conditions of reduced nitrogen (N) availability remains elusive. We show that the Medicago truncatula COMPACT ROOT ARCHITECTURE2 (MtCRA2) receptor-like kinase is essential to promote the initiation of early symbiotic nodulation and to inhibit root growth in response to low N. C-TERMINALLY ENCODED PEPTIDE (MtCEP1) peptides can activate MtCRA2 under N-starvation conditions, leading to a repression of YUCCA2 (MtYUC2) auxin biosynthesis gene expression, and therefore of auxin root responses. Accordingly, the compact root architecture phenotype of cra2 can be mimicked by an auxin treatment or by overexpressing MtYUC2, and conversely, a treatment with YUC inhibitors or an MtYUC2 knockout rescues the cra2 root phenotype. The MtCEP1-activated CRA2 can additionally interact with and phosphorylate the MtEIN2 ethylene signaling component at Ser643 and Ser924, preventing its cleavage and thereby repressing ethylene responses, thus locally promoting the root susceptibility to rhizobia. In agreement with this interaction, the cra2 low nodulation phenotype is rescued by an ein2 mutation. Overall, by reducing auxin biosynthesis and inhibiting ethylene signaling, the MtCEP1/MtCRA2 pathway balances root and nodule development under low-N conditions.
Collapse
Affiliation(s)
- Fugui Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- College of Grassland Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Deng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hong Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- College of Grassland Sciences, China Agricultural University, Beijing 100193, China
| | - Peng Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lihua Zheng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qinyi Ye
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Rui Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Mathias Brault
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université d'Evry, Université de Paris, Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Jiangqi Wen
- Plant Biology Division, Samuel Roberts Noble Research Institute, Ardmore, Oklahoma 73401
| | - Florian Frugier
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université d'Evry, Université de Paris, Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
11
|
Alemneh AA, Zhou Y, Ryder MH, Denton MD. Mechanisms in plant growth-promoting rhizobacteria that enhance legume-rhizobial symbioses. J Appl Microbiol 2020; 129:1133-1156. [PMID: 32592603 DOI: 10.1111/jam.14754] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/07/2020] [Accepted: 06/20/2020] [Indexed: 12/21/2022]
Abstract
Nitrogen fixation is an important biological process in terrestrial ecosystems and for global crop production. Legume nodulation and N2 fixation have been improved using nodule-enhancing rhizobacteria (NER) under both regular and stressed conditions. The positive effect of NER on legume-rhizobia symbiosis can be facilitated by plant growth-promoting (PGP) mechanisms, some of which remain to be identified. NER that produce aminocyclopropane-1-carboxylic acid deaminase and indole acetic acid enhance the legume-rhizobia symbiosis through (i) enhancing the nodule induction, (ii) improving the competitiveness of rhizobia for nodulation, (iii) prolonging functional nodules by suppressing nodule senescence and (iv) upregulating genes associated with legume-rhizobia symbiosis. The means by which these processes enhance the legume-rhizobia symbiosis is the focus of this review. A better understanding of the mechanisms by which PGP rhizobacteria operate, and how they can be altered, will provide opportunities to enhance legume-rhizobial interactions, to provide new advances in plant growth promotion and N2 fixation.
Collapse
Affiliation(s)
- A A Alemneh
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| | - Y Zhou
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| | - M H Ryder
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| | - M D Denton
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| |
Collapse
|
12
|
Maitra Majee S, Sharma E, Singh B, Khurana JP. Drought-induced protein (Di19-3) plays a role in auxin signaling by interacting with IAA14 in Arabidopsis. PLANT DIRECT 2020; 4:e00234. [PMID: 32582877 PMCID: PMC7306619 DOI: 10.1002/pld3.234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 05/08/2023]
Abstract
The members of early auxin response gene family, Aux/IAA, encode negative regulators of auxin signaling but play a central role in auxin-mediated plant development. Here we report the interaction of an Aux/IAA protein, AtIAA14, with Drought-induced-19 (Di19-3) protein and its possible role in auxin signaling. The Atdi19-3 mutant seedlings develop short hypocotyl, both in light and dark, and are compromised in temperature-induced hypocotyl elongation. The mutant plants accumulate more IAA and also show altered expression of NIT2, ILL5, and YUCCA genes involved in auxin biosynthesis and homeostasis, along with many auxin responsive genes like AUX1 and MYB77. Atdi19-3 seedlings show enhanced root growth inhibition when grown in the medium supplemented with auxin. Nevertheless, number of lateral roots is low in Atdi19-3 seedlings grown on the basal medium. We have shown that AtIAA14 physically interacts with AtDi19-3 in yeast two-hybrid (Y2H), bimolecular fluorescence complementation, and in vitro pull-down assays. However, the auxin-induced degradation of AtIAA14 in the Atdi19-3 seedlings was delayed. By expressing pIAA14::mIAA14-GFP in Atdi19-3 mutant background, it became apparent that both Di19-3 and AtIAA14 work in the same pathway and influence lateral root development in Arabidopsis. Gain-of-function slr-1/iaa14 (slr) mutant, like Atdi19-3, showed tolerance to abiotic stress in seed germination and cotyledon greening assays. The Atdi19-3 seedlings showed enhanced sensitivity to ethylene in triple response assay and AgNO3, an ethylene inhibitor, caused profuse lateral root formation in the mutant seedlings. These observations suggest that AtDi19-3 interacting with AtIAA14, in all probability, serves as a positive regulator of auxin signaling and also plays a role in some ethylene-mediated responses in Arabidopsis. SIGNIFICANCE STATEMENT This study has demonstrated interaction of auxin responsive Aux/IAA with Drought-induced 19 (Di19) protein and its possible implication in abiotic stress response.
Collapse
Affiliation(s)
- Susmita Maitra Majee
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular BiologyUniversity of Delhi South CampusNew DelhiIndia
| | - Eshan Sharma
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular BiologyUniversity of Delhi South CampusNew DelhiIndia
| | - Brinderjit Singh
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular BiologyUniversity of Delhi South CampusNew DelhiIndia
| | - Jitendra P. Khurana
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular BiologyUniversity of Delhi South CampusNew DelhiIndia
| |
Collapse
|
13
|
Mamenko TP, Kots SY, Khomenko YO. The intensity of ethylene release by soybean plants under the influence of fungicides in the early stages of legume-rhizobial symbiosis. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The effect of pre-sowing treatment of soybean seeds with fungicides on the intensity of ethylene release, the processes of nodulation and nitrogen fixation in different symbiotic systems in the early stages of ontogenesis were investigated. The objects of the study were selected symbiotic systems formed with the participation of soybean (Glycine max (L.) Merr.) Diamond variety, strains Bradyrhizobium japonicum 634b (active, virulent) and 604k (inactive, highly virulent) and fungicides Maxim XL 035 PS (fludioxonil, 25 g/L, metalaxyl, 10 g/L), and Standak Top (fipronil, 250 g/L, thiophanate methyl, 225 g/L, piraclostrobin, 25 g/L). Before sowing, the seeds of soybean were treated with solutions of fungicides, calculated on the basis of one rate of expenditure of the active substance of each preparation indicated by the producer per ton of seed. One part of the seeds treated with fungicides was inoculated with rhizobium culture for 1 h (the titre of bacteria was 107 cells/mL). To conduct the research we used microbiological, physiological, biochemical methods, gas chromatography and spectrophotometry. It is found that, regardless of the effectiveness of soybean rhizobial symbiosis, the highest level of ethylene release by plants was observed in the stages of primordial leaf and first true leaf. This is due to the initial processes of nodulation – the laying of nodule primordia and the active formation of nodules on the roots of soybeans. The results show that with the participation of fungicides in different symbiotic systems, there are characteristic changes in phytohormone synthesis in the primordial leaf stage, when the nodule primordia are planted on the root system of plants. In particular, in the ineffective symbiotic system, the intensity of phytohormone release decreases, while in the effective symbiotic system it increases. At the same time, a decrease in the number of nodules on soybean roots inoculated with an inactive highly virulent rhizobia 604k strain due to the action of fungicides and an increase in their number in variants with co-treatment of fungicides and active virulent strain 634b into the stage of the second true leaf were revealed. It was shown that despite a decrease in the mass of root nodules, there is an increase in their nitrogen-fixing activity in an effective symbiotic system with the participation of fungicides in the stage of the second true leaf. The highest intensity of ethylene release in both symbiotic systems was recorded in the stage of the first true leaf, which decreased in the stage of the second true leaf and was independent of the nature of the action of the active substances of fungicides. The obtained data prove that the action of fungicides changes the synthesis of ethylene by soybean plants, as well as the processes of nodulation and nitrogen fixation, which depend on the efficiency of the formed soybean-rhizobial systems and their ability to realize their symbiotic potential under appropriate growing conditions.
Collapse
|
14
|
Ng JLP, Welvaert A, Wen J, Chen R, Mathesius U. The Medicago truncatula PIN2 auxin transporter mediates basipetal auxin transport but is not necessary for nodulation. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1562-1573. [PMID: 31738415 DOI: 10.1093/jxb/erz510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
The development of root nodules leads to an increased auxin response in early nodule primordia, which is mediated by changes in acropetal auxin transport in some legumes. Here, we investigated the role of root basipetal auxin transport during nodulation. Rhizobia inoculation significantly increased basipetal auxin transport in both Medicago truncatula and Lotus japonicus. In M. truncatula, this increase was dependent on functional Nod factor signalling through NFP, NIN, and NSP2, as well as ethylene signalling through SKL. To test whether increased basipetal auxin transport is required for nodulation, we examined a loss-of-function mutant of the M. truncatula PIN2 gene. The Mtpin2 mutant exhibited a reduction in basipetal auxin transport and an agravitropic phenotype. Inoculation of Mtpin2 roots with rhizobia still led to a moderate increase in basipetal auxin transport, but the mutant nodulated normally. No clear differences in auxin response were observed during nodule development. Interestingly, inoculation of wild-type roots increased lateral root numbers, whereas inoculation of Mtpin2 mutants resulted in reduced lateral root numbers compared with uninoculated roots. We conclude that the MtPIN2 auxin transporter is involved in basipetal auxin transport, that its function is not essential for nodulation, but that it plays an important role in the control of lateral root development.
Collapse
Affiliation(s)
- Jason L P Ng
- Division of Plant Science, Research School of Biology, Australian National University, Canberra, Australia
| | - Astrid Welvaert
- Division of Plant Science, Research School of Biology, Australian National University, Canberra, Australia
| | - Jiangqi Wen
- Noble Research Institute LLC, Ardmore, OK, USA
| | - Rujin Chen
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ulrike Mathesius
- Division of Plant Science, Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
15
|
Wang X, Cheng C, Li Q, Zhang K, Lou Q, Li J, Chen J. Multi-omics analysis revealed that MAPK signaling and flavonoid metabolic pathway contributed to resistance against Meloidogyne incognita in the introgression line cucumber. J Proteomics 2020; 220:103675. [PMID: 32004728 DOI: 10.1016/j.jprot.2020.103675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/07/2020] [Accepted: 01/28/2020] [Indexed: 01/04/2023]
Abstract
Inhibiting giant cells (GCs) development is an important characteristic of introgression line cucumber IL10-1 against Meloidogyne incognita proved by our previous study, but the systematic regulatory pathways were unknown. To reveal the regulation pathways more comprehensively, in the current study, we performed a joint analysis of RNA-Seq and lable-free quantitative proteomics between the IL10-1 (resistant) and the CC3 (susceptible cucumber) after inoculation with M. incognita. The results indicated that flavonoid biosynthesis pathway was specifically enriched in IL10-1. And protein species of Csa5P590220 and Csa5P589940 associated with flavonoid biosynthesis were highly translated in IL10-1 compared with these in CC3 at 3 days post inoculation (dpi), which would resulted in the excess of flavonoids in IL10-1 roots. In addition, phosphoproteomic analysis found that phosphorylated protein species involved in MAPK signaling cascade were enhanced in IL10-1, while they were inhibited in CC3 at 3 dpi. Accordingly, we speculate that the enhanced MAPK cascade signaling plays an important role in signal transduction for IL10-1 regulating the flavonoid biosynthesis. Knowledge from the study provide important regulatory pathways and protein species of introgression line cucumber against M. incognita, which will help in efforts to improve the recognition of the resistance mechanism of plants against nematode. SIGNIFICANCE: The current approach of joint analysis in transcription level, protein level and protein phosphorylation level more comprehensively revealed the different expression patterns at the molecular level of resistant and susceptible cucumber after inoculation with M. incognita. Based on the different expression patterns, we explore the pathway of resistance regulation of resistant cucumber IL10-1. Moreover, our results are helpful for the discovery of key genes and then apply them to M. incognita-resistance breeding.
Collapse
Affiliation(s)
- Xing Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chunyan Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qingrong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Kaijing Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ji Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
16
|
Ferguson BJ, Mens C, Hastwell AH, Zhang M, Su H, Jones CH, Chu X, Gresshoff PM. Legume nodulation: The host controls the party. PLANT, CELL & ENVIRONMENT 2019; 42:41-51. [PMID: 29808564 DOI: 10.1111/pce.13348] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 05/21/2023]
Abstract
Global demand to increase food production and simultaneously reduce synthetic nitrogen fertilizer inputs in agriculture are underpinning the need to intensify the use of legume crops. The symbiotic relationship that legume plants establish with nitrogen-fixing rhizobia bacteria is central to their advantage. This plant-microbe interaction results in newly developed root organs, called nodules, where the rhizobia convert atmospheric nitrogen gas into forms of nitrogen the plant can use. However, the process of developing and maintaining nodules is resource intensive; hence, the plant tightly controls the number of nodules forming. A variety of molecular mechanisms are used to regulate nodule numbers under both favourable and stressful growing conditions, enabling the plant to conserve resources and optimize development in response to a range of circumstances. Using genetic and genomic approaches, many components acting in the regulation of nodulation have now been identified. Discovering and functionally characterizing these components can provide genetic targets and polymorphic markers that aid in the selection of superior legume cultivars and rhizobia strains that benefit agricultural sustainability and food security. This review addresses recent findings in nodulation control, presents detailed models of the molecular mechanisms driving these processes, and identifies gaps in these processes that are not yet fully explained.
Collapse
Affiliation(s)
- Brett J Ferguson
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| | - Céline Mens
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| | - April H Hastwell
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| | - Mengbai Zhang
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| | - Huanan Su
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
- National Navel Orange Engineering Research Center, College of Life and Environmental Science, Gannan Normal University, Ganzhou, China
| | - Candice H Jones
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| | - Xitong Chu
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| | - Peter M Gresshoff
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
17
|
Zhang W, Sun K, Shi RH, Yuan J, Wang XJ, Dai CC. Auxin signalling of Arachis hypogaea activated by colonization of mutualistic fungus Phomopsis liquidambari enhances nodulation and N 2 -fixation. PLANT, CELL & ENVIRONMENT 2018; 41:2093-2108. [PMID: 29469227 DOI: 10.1111/pce.13170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/02/2018] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
Beneficial fungal and rhizobial symbioses share commonalities in phytohormones responses, especially in auxin signalling. Mutualistic fungus Phomopsis liquidambari effectively increases symbiotic efficiency of legume peanut (Arachis hypogaea L.) with another microsymbiont, bradyrhizobium, but the underlying mechanisms are not well understood. We quantified and manipulated the IAA accumulation in ternary P. liquidambari-peanut-bradyrhizobial interactions to uncover its role between distinct symbioses. We found that auxin signalling is both locally and systemically induced by the colonization of P. liquidambari with peanut and further confirmed by Arabidopsis harbouring auxin-responsive reporter, DR5:GUS, and that auxin action, including auxin transport, is required to maintain fungal symbiotic behaviours and beneficial traits of plant during the symbiosis. Complementation and action inhibition experiments reveal that auxin signalling is involved in P. liquidambari-mediated nodule development and N2 -fixation enhancement and symbiotic gene activation. Further analyses showed that blocking of auxin action compromised the P. liquidambari-induced nodule phenotype and physiology changes, including vascular bundle development, symbiosome and bacteroids density, and malate concentrations, while induced the accumulation of starch granules in P. liquidambari-inoculated nodules. Collectively, our study demonstrated that auxin signalling activated by P. liquidambari symbiosis is recruited by peanut for bradyrhizobial symbiosis via symbiotic signalling pathway activation and nodule carbon metabolism enhancement.
Collapse
Affiliation(s)
- Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Run-Han Shi
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Jie Yuan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Xiao-Jun Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| |
Collapse
|
18
|
Kohlen W, Ng JLP, Deinum EE, Mathesius U. Auxin transport, metabolism, and signalling during nodule initiation: indeterminate and determinate nodules. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:229-244. [PMID: 28992078 DOI: 10.1093/jxb/erx308] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Most legumes can form a unique type of lateral organ on their roots: root nodules. These structures host symbiotic nitrogen-fixing bacteria called rhizobia. Several different types of nodules can be found in nature, but the two best-studied types are called indeterminate and determinate nodules. These two types differ with respect to the presence or absence of a persistent nodule meristem, which consistently correlates with the cortical cell layers giving rise to the nodule primordia. Similar to other plant developmental processes, auxin signalling overlaps with the site of organ initiation and meristem activity. Here, we review how auxin contributes to early nodule development. We focus on changes in auxin transport, signalling, and metabolism during nodule initiation, describing both experimental evidence and computer modelling. We discuss how indeterminate and determinate nodules may differ in their mechanisms for generating localized auxin response maxima and highlight outstanding questions for future research.
Collapse
Affiliation(s)
- Wouter Kohlen
- Laboratory for Molecular Biology, Wageningen University & Research, The Netherlands
| | - Jason Liang Pin Ng
- Division of Plant Science, Research School of Biology, The Australian National University, Australia
| | - Eva E Deinum
- Mathematical and Statistical Methods, Wageningen University & Research, The Netherlands
| | - Ulrike Mathesius
- Division of Plant Science, Research School of Biology, The Australian National University, Australia
| |
Collapse
|
19
|
Powell AF, Doyle JJ. Non-Additive Transcriptomic Responses to Inoculation with Rhizobia in a Young Allopolyploid Compared with Its Diploid Progenitors. Genes (Basel) 2017; 8:E357. [PMID: 29189710 PMCID: PMC5748675 DOI: 10.3390/genes8120357] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 12/29/2022] Open
Abstract
Root nodule symbioses (nodulation) and whole genome duplication (WGD, polyploidy) are both important phenomena in the legume family (Leguminosae). Recently, it has been proposed that polyploidy may have played a critical role in the origin or refinement of nodulation. However, while nodulation and polyploidy have been studied independently, there have been no direct studies of mechanisms affecting the interactions between these phenomena in symbiotic, nodule-forming species. Here, we examined the transcriptome-level responses to inoculation in the young allopolyploid Glycine dolichocarpa (T2) and its diploid progenitor species to identify underlying processes leading to the enhanced nodulation responses previously identified in T2. We assessed the differential expression of genes and, using weighted gene co-expression network analysis (WGCNA), identified modules associated with nodulation and compared their expression between species. These transcriptomic analyses revealed patterns of non-additive expression in T2, with evidence of transcriptional responses to inoculation that were distinct from one or both progenitors. These differential responses elucidate mechanisms underlying the nodulation-related differences observed between T2 and the diploid progenitors. Our results indicate that T2 has reduced stress-related transcription, coupled with enhanced transcription of modules and genes implicated in hormonal signaling, both of which are important for nodulation.
Collapse
Affiliation(s)
- Adrian F Powell
- Section of Plant Biology, School of Integrated Plant Sciences, Cornell University, Ithaca, NY 14853, USA.
- Boyce Thompson Institute, Ithaca, NY 14853, USA.
| | - Jeff J Doyle
- Section of Plant Breeding and Genetics, School of Integrated Plant Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
20
|
Roy S, Robson F, Lilley J, Liu CW, Cheng X, Wen J, Walker S, Sun J, Cousins D, Bone C, Bennett MJ, Downie JA, Swarup R, Oldroyd G, Murray JD. MtLAX2, a Functional Homologue of the Arabidopsis Auxin Influx Transporter AUX1, Is Required for Nodule Organogenesis. PLANT PHYSIOLOGY 2017; 174:326-338. [PMID: 28363992 PMCID: PMC5411133 DOI: 10.1104/pp.16.01473] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/25/2017] [Indexed: 05/22/2023]
Abstract
Most legume plants can form nodules, specialized lateral organs that form on roots, and house nitrogen-fixing bacteria collectively called rhizobia. The uptake of the phytohormone auxin into cells is known to be crucial for development of lateral roots. To test the role of auxin influx in nodulation we used the auxin influx inhibitors 1-naphthoxyacetic acid (1-NOA) and 2-NOA, which we found reduced nodulation of Medicago truncatula. This suggested the possible involvement of the AUX/LAX family of auxin influx transporters in nodulation. Gene expression studies identified MtLAX2, a paralogue of Arabidopsis (Arabidopsis thaliana) AUX1, as being induced at early stages of nodule development. MtLAX2 is expressed in nodule primordia, the vasculature of developing nodules, and at the apex of mature nodules. The MtLAX2 promoter contains several auxin response elements, and treatment with indole-acetic acid strongly induces MtLAX2 expression in roots. mtlax2 mutants displayed root phenotypes similar to Arabidopsis aux1 mutants, including altered root gravitropism, fewer lateral roots, shorter root hairs, and auxin resistance. In addition, the activity of the synthetic DR5-GUS auxin reporter was strongly reduced in mtlax2 roots. Following inoculation with rhizobia, mtlax2 roots developed fewer nodules, had decreased DR5-GUS activity associated with infection sites, and had decreased expression of the early auxin responsive gene ARF16a Our data indicate that MtLAX2 is a functional analog of Arabidopsis AUX1 and is required for the accumulation of auxin during nodule formation in tissues underlying sites of rhizobial infection.
Collapse
Affiliation(s)
- Sonali Roy
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Fran Robson
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Jodi Lilley
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Cheng-Wu Liu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Xiaofei Cheng
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Jiangqi Wen
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Simon Walker
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Jongho Sun
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Donna Cousins
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Caitlin Bone
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Malcolm J Bennett
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - J Allan Downie
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Ranjan Swarup
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Giles Oldroyd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.)
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.)
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.)
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| | - Jeremy D Murray
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.);
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.);
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.);
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and
- Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)
| |
Collapse
|
21
|
Deinum EE, Kohlen W, Geurts R. Quantitative modelling of legume root nodule primordium induction by a diffusive signal of epidermal origin that inhibits auxin efflux. BMC PLANT BIOLOGY 2016; 16:254. [PMID: 27846795 PMCID: PMC5109694 DOI: 10.1186/s12870-016-0935-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 10/27/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND Rhizobium nitrogen fixation in legumes takes place in specialized organs called root nodules. The initiation of these symbiotic organs has two important components. First, symbiotic rhizobium bacteria are recognized at the epidermis through specific bacterially secreted lipo-chitooligosaccharides (LCOs). Second, signaling processes culminate in the formation of a local auxin maximum marking the site of cell divisions. Both processes are spatially separated. This separation is most pronounced in legumes forming indeterminate nodules, such as model organism Medicago truncatula, in which the nodule primordium is formed from pericycle to most inner cortical cell layers. RESULTS We used computer simulations of a simplified root of a legume that can form indeterminate nodules. A diffusive signal that inhibits auxin transport is produced in the epidermis, the site of rhizobium contact. In our model, all cells have the same response characteristics to the diffusive signal. Nevertheless, we observed the fastest and strongest auxin accumulation in the pericycle and inner cortex. The location of these auxin maxima correlates with the first dividing cells of future nodule primordia in M. truncatula. The model also predicts a transient reduction of the vascular auxin concentration rootward of the induction site as is experimentally observed. We use our model to investigate how competition for the vascular auxin source could contribute to the regulation of nodule number and spacing. CONCLUSION Our simulations show that the diffusive signal may invoke the strongest auxin accumulation response in the inner root layers, although the signal itself is strongest close to its production site.
Collapse
Affiliation(s)
- Eva E. Deinum
- Mathematical and Statistical methods group, Wageningen University, Droevendaalsesteeg 1PB, Wageningen, 6708 the Netherlands
- FOM institute AMOLF, Science Park 104XG, Amsterdam, 1098 the Netherlands
| | - Wouter Kohlen
- Laboratory for Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB the Netherlands
| | - René Geurts
- Laboratory for Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB the Netherlands
| |
Collapse
|
22
|
Sańko-Sawczenko I, Łotocka B, Czarnocka W. Expression Analysis of PIN Genes in Root Tips and Nodules of Medicago truncatula. Int J Mol Sci 2016; 17:E1197. [PMID: 27463709 PMCID: PMC5000595 DOI: 10.3390/ijms17081197] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/07/2016] [Accepted: 07/15/2016] [Indexed: 11/16/2022] Open
Abstract
Polar auxin transport is dependent on the family of PIN-formed proteins (PINs), which are membrane transporters of anionic indole-3-acetic acid (IAA(-)). It is assumed that polar auxin transport may be essential in the development and meristematic activity maintenance of Medicago truncatula (M. truncatula) root nodules. However, little is known about the involvement of specific PIN proteins in M. truncatula nodulation. Using real-time quantitative PCR, we analyzed the expression patterns of all previously identified MtPIN genes and compared them between root nodules and root tips of M. truncatula. Our results demonstrated significant differences in the expression level of all 11 genes (MtPIN1-MtPIN11) between examined organs. Interestingly, MtPIN9 was the only PIN gene with higher expression level in root nodules compared to root tips. This result is the first indication of PIN9 transporter potential involvement in M. truncatula nodulation. Moreover, relatively high expression level in root nodules was attributed to MtPINs encoding orthologs of Arabidopsis thaliana PIN5 subclade. PIN proteins from this subclade have been found to localize in the endoplasmic reticulum, which may indicate that the development and meristematic activity maintenance of M. truncatula root nodules is associated with intracellular homeostasis of auxins level and their metabolism in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Izabela Sańko-Sawczenko
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Barbara Łotocka
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Weronika Czarnocka
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
23
|
Foo E, Heynen EMH, Reid JB. Common and divergent shoot-root signalling in legume symbioses. THE NEW PHYTOLOGIST 2016; 210:643-56. [PMID: 26661110 DOI: 10.1111/nph.13779] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/28/2015] [Indexed: 06/05/2023]
Abstract
The role of shoot-root signals in the control of nodulation and arbuscular mycorrhizal (AM) development were examined in the divergent legume species pea and blue lupin. These species were chosen as pea can host both symbionts, whereas lupin can nodulate but has lost the ability to form AM. Intergeneric grafts between lupin and pea enabled examination of key long-distance signals in these symbioses. The role of strigolactones, auxin and elements of the autoregulation of nodulation (AON) pathway were investigated. Grafting studies were combined with loss-of-function mutants to monitor symbioses (nodulation, AM) and hormone effects (levels, gene expression and application studies). Lupin shoots suppress AM colonization in pea roots, in part by downregulating strigolactone exudation involving reduced expression of the strigolactone biosynthesis gene PsCCD8. By contrast, lupin shoots enhance pea nodulation, independently of strigolactones, possibly due to a partial incompatibility in AON shoot-root signalling between pea and lupin. This study highlights that nodulation and AM symbioses can be regulated independently and this may be due to long-distance signals, a phenomenon we were able to uncover by working with divergent legumes. We also identify a role for strigolactone exudation in determining the status of non-AM hosts.
Collapse
Affiliation(s)
- Eloise Foo
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| | - Eveline M H Heynen
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
- Applied Biology, HAS University of Applied Sciences, 5200 MA, 's-Hertogenbosch, the Netherlands
| | - James B Reid
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| |
Collapse
|
24
|
Vernié T, Camut S, Camps C, Rembliere C, de Carvalho-Niebel F, Mbengue M, Timmers T, Gasciolli V, Thompson R, le Signor C, Lefebvre B, Cullimore J, Hervé C. PUB1 Interacts with the Receptor Kinase DMI2 and Negatively Regulates Rhizobial and Arbuscular Mycorrhizal Symbioses through Its Ubiquitination Activity in Medicago truncatula. PLANT PHYSIOLOGY 2016; 170:2312-24. [PMID: 26839127 PMCID: PMC4825150 DOI: 10.1104/pp.15.01694] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/30/2016] [Indexed: 05/21/2023]
Abstract
PUB1, an E3 ubiquitin ligase, which interacts with and is phosphorylated by the LYK3 symbiotic receptor kinase, negatively regulates rhizobial infection and nodulation during the nitrogen-fixing root nodule symbiosis in Medicago truncatula In this study, we show that PUB1 also interacts with and is phosphorylated by DOES NOT MAKE INFECTIONS 2, the key symbiotic receptor kinase of the common symbiosis signaling pathway, required for both the rhizobial and the arbuscular mycorrhizal (AM) endosymbioses. We also show here that PUB1 expression is activated during successive stages of root colonization by Rhizophagus irregularis that is compatible with its interaction with DOES NOT MAKE INFECTIONS 2. Through characterization of a mutant, pub1-1, affected by the E3 ubiquitin ligase activity of PUB1, we have shown that the ubiquitination activity of PUB1 is required to negatively modulate successive stages of infection and development of rhizobial and AM symbioses. In conclusion, PUB1 represents, to our knowledge, a novel common component of symbiotic signaling integrating signal perception through interaction with and phosphorylation by two key symbiotic receptor kinases, and downstream signaling via its ubiquitination activity to fine-tune both rhizobial and AM root endosymbioses.
Collapse
Affiliation(s)
- Tatiana Vernié
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Sylvie Camut
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Céline Camps
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Céline Rembliere
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Fernanda de Carvalho-Niebel
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Malick Mbengue
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Ton Timmers
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Virginie Gasciolli
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Richard Thompson
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Christine le Signor
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Benoit Lefebvre
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Julie Cullimore
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Christine Hervé
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| |
Collapse
|
25
|
Foo E, McAdam EL, Weller JL, Reid JB. Interactions between ethylene, gibberellins, and brassinosteroids in the development of rhizobial and mycorrhizal symbioses of pea. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2413-24. [PMID: 26889005 PMCID: PMC4809293 DOI: 10.1093/jxb/erw047] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The regulation of arbuscular mycorrhizal development and nodulation involves complex interactions between the plant and its microbial symbionts. In this study, we use the recently identified ethylene-insensitive ein2 mutant in pea (Pisum sativum L.) to explore the role of ethylene in the development of these symbioses. We show that ethylene acts as a strong negative regulator of nodulation, confirming reports in other legumes. Minor changes in gibberellin1 and indole-3-acetic acid levels in ein2 roots appear insufficient to explain the differences in nodulation. Double mutants produced by crosses between ein2 and the severely gibberellin-deficient na and brassinosteroid-deficient lk mutants showed increased nodule numbers and reduced nodule spacing compared with the na and lk single mutants, but nodule numbers and spacing were typical of ein2 plants, suggesting that the reduced number of nodules innaandlkplants is largely due to the elevated ethylene levels previously reported in these mutants. We show that ethylene can also negatively regulate mycorrhizae development when ethylene levels are elevated above basal levels, consistent with a role for ethylene in reducing symbiotic development under stressful conditions. In contrast to the hormone interactions in nodulation, ein2 does not override the effect of lk or na on the development of arbuscular mycorrhizae, suggesting that brassinosteroids and gibberellins influence this process largely independently of ethylene.
Collapse
Affiliation(s)
- Eloise Foo
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Erin L McAdam
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - James L Weller
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - James B Reid
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| |
Collapse
|
26
|
Lelandais-Brière C, Moreau J, Hartmann C, Crespi M. Noncoding RNAs, Emerging Regulators in Root Endosymbioses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:170-80. [PMID: 26894282 DOI: 10.1094/mpmi-10-15-0240-fi] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Endosymbiosis interactions allow plants to grow in nutrient-deficient soil environments. The arbuscular mycorrhizal (AM) symbiosis is an ancestral interaction between land plants and fungi, whereas nitrogen-fixing symbioses are highly specific for certain plants, notably major crop legumes. The signaling pathways triggered by specific lipochitooligosaccharide molecules involved in these interactions have common components that also overlap with plant root development. These pathways include receptor-like kinases, transcription factors (TFs), and various intermediate signaling effectors, including noncoding (nc)RNAs. These latter molecules have emerged as major regulators of gene expression and small ncRNAs, composed of micro (mi)RNAs and small interfering (si)RNAs, are known to control gene expression at transcriptional (chromatin) or posttranscriptional levels. In this review, we describe exciting recent data connecting variants of conserved si/miRNAs with the regulation of TFs, such as NSP2, NFY-A1, auxin-response factors, and AP2-like proteins, known to be involved in symbiosis. The link between hormonal regulations and these si- and miRNA-TF nodes is proposed in a model in which different feedback loops or regulations controlling endosymbiosis signaling are integrated. The diversity and emerging regulatory networks of young legume miRNAs are also highlighted.
Collapse
Affiliation(s)
- Christine Lelandais-Brière
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Sorbone Paris-Cité, University of Paris-Saclay, 91405 Orsay, France
| | - Jérémy Moreau
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Sorbone Paris-Cité, University of Paris-Saclay, 91405 Orsay, France
| | - Caroline Hartmann
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Sorbone Paris-Cité, University of Paris-Saclay, 91405 Orsay, France
| | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Sorbone Paris-Cité, University of Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
27
|
Guinel FC. Ethylene, a Hormone at the Center-Stage of Nodulation. FRONTIERS IN PLANT SCIENCE 2015; 6:1121. [PMID: 26834752 PMCID: PMC4714629 DOI: 10.3389/fpls.2015.01121] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/26/2015] [Indexed: 05/19/2023]
Abstract
Nodulation is the result of a beneficial interaction between legumes and rhizobia. It is a sophisticated process leading to nutrient exchange between the two types of symbionts. In this association, within a nodule, the rhizobia, using energy provided as photosynthates, fix atmospheric nitrogen and convert it to ammonium which is available to the plant. Nodulation is recognized as an essential process in nitrogen cycling and legume crops are known to enrich agricultural soils in nitrogenous compounds. Furthermore, as they are rich in nitrogen, legumes are considered important as staple foods for humans and fodder for animals. To tightly control this association and keep it mutualistic, the plant uses several means, including hormones. The hormone ethylene has been known as a negative regulator of nodulation for almost four decades. Since then, much progress has been made in the understanding of both the ethylene signaling pathway and the nodulation process. Here I have taken a large view, using recently obtained knowledge, to describe in some detail the major stages of the process. I have not only reviewed the steps most commonly covered (the common signaling transduction pathway, and the epidermal and cortical programs), but I have also looked into steps less understood (the pre-infection step with the plant defense response, the bacterial release and the formation of the symbiosome, and nodule functioning and senescence). After a succinct review of the ethylene signaling pathway, I have used the knowledge obtained from nodulation- and ethylene-related mutants to paint a more complete picture of the role played by the hormone in nodule organogenesis, functioning, and senescence. It transpires that ethylene is at the center of this effective symbiosis. It has not only been involved in most of the steps leading to a mature nodule, but it has also been implicated in host immunity and nodule senescence. It is likely responsible for the activation of other hormonal signaling pathways. I have completed the review by citing three studies which makes one wonder whether knowledge gained on nodulation in the last decades is ready to be transferred to agricultural fields.
Collapse
|
28
|
Dalla Via V, Narduzzi C, Aguilar OM, Zanetti ME, Blanco FA. Changes in the Common Bean Transcriptome in Response to Secreted and Surface Signal Molecules of Rhizobium etli. PLANT PHYSIOLOGY 2015; 169:1356-70. [PMID: 26282238 PMCID: PMC4587446 DOI: 10.1104/pp.15.00508] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/16/2015] [Indexed: 05/08/2023]
Abstract
Establishment of nitrogen-fixing symbiosis requires the recognition of rhizobial molecules to initiate the development of nodules. Using transcriptional profiling of roots inoculated with mutant strains defective in the synthesis of Nod Factor (NF), exopolysaccharide (EPS), or lipopolysaccharide (LPS), we identified 2,606 genes from common bean (Phaseolus vulgaris) that are differentially regulated at early stages of its interaction with Rhizobium etli. Many transcription factors from different families are modulated by NF, EPS, and LPS in different combinations, suggesting that the plant response depends on the integration of multiple signals. Some receptors identified as differentially expressed constitute excellent candidates to participate in signal perception of molecules derived from the bacteria. Several components of the ethylene signal response, a hormone that plays a negative role during early stages of the process, were down-regulated by NF and LPS. In addition, genes encoding proteins involved in small RNA-mediated gene regulation were regulated by these signal molecules, such as Argonaute7, a specific component of the trans-acting short interfering RNA3 pathway, an RNA-dependent RNA polymerase, and an XH/XP domain-containing protein, which is part of the RNA-directed DNA methylation. Interestingly, a number of genes encoding components of the circadian central oscillator were down-regulated by NF and LPS, suggesting that a root circadian clock is adjusted at early stages of symbiosis. Our results reveal a complex interaction of the responses triggered by NF, LPS, and EPS that integrates information of the signals present in the surface or secreted by rhizobia.
Collapse
Affiliation(s)
- Virginia Dalla Via
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900 La Plata, Argentina
| | - Candela Narduzzi
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900 La Plata, Argentina
| | - Orlando Mario Aguilar
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900 La Plata, Argentina
| | - María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900 La Plata, Argentina
| | - Flavio Antonio Blanco
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900 La Plata, Argentina
| |
Collapse
|
29
|
Gamalero E, Glick BR. Bacterial Modulation of Plant Ethylene Levels. PLANT PHYSIOLOGY 2015; 169:13-22. [PMID: 25897004 PMCID: PMC4577377 DOI: 10.1104/pp.15.00284] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/15/2015] [Indexed: 05/05/2023]
Abstract
A focus on the mechanisms by which ACC deaminase-containing bacteria facilitate plant growth.Bacteria that produce the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, when present either on the surface of plant roots (rhizospheric) or within plant tissues (endophytic), play an active role in modulating ethylene levels in plants. This enzyme activity facilitates plant growth especially in the presence of various environmental stresses. Thus, plant growth-promoting bacteria that express ACC deaminase activity protect plants from growth inhibition by flooding and anoxia, drought, high salt, the presence of fungal and bacterial pathogens, nematodes, and the presence of metals and organic contaminants. Bacteria that express ACC deaminase activity also decrease the rate of flower wilting, promote the rooting of cuttings, and facilitate the nodulation of legumes. Here, the mechanisms behind bacterial ACC deaminase facilitation of plant growth and development are discussed, and numerous examples of the use of bacteria with this activity are summarized.
Collapse
Affiliation(s)
- Elisa Gamalero
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, 15121 Alessandria, Italy (E.G.); andDepartment of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (B.R.G.)
| | - Bernard R Glick
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, 15121 Alessandria, Italy (E.G.); andDepartment of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (B.R.G.)
| |
Collapse
|
30
|
Ng JLP, Perrine-Walker F, Wasson AP, Mathesius U. The Control of Auxin Transport in Parasitic and Symbiotic Root-Microbe Interactions. PLANTS (BASEL, SWITZERLAND) 2015; 4:606-43. [PMID: 27135343 PMCID: PMC4844411 DOI: 10.3390/plants4030606] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/12/2015] [Accepted: 08/18/2015] [Indexed: 01/13/2023]
Abstract
Most field-grown plants are surrounded by microbes, especially from the soil. Some of these, including bacteria, fungi and nematodes, specifically manipulate the growth and development of their plant hosts, primarily for the formation of structures housing the microbes in roots. These developmental processes require the correct localization of the phytohormone auxin, which is involved in the control of cell division, cell enlargement, organ development and defense, and is thus a likely target for microbes that infect and invade plants. Some microbes have the ability to directly synthesize auxin. Others produce specific signals that indirectly alter the accumulation of auxin in the plant by altering auxin transport. This review highlights root-microbe interactions in which auxin transport is known to be targeted by symbionts and parasites to manipulate the development of their host root system. We include case studies for parasitic root-nematode interactions, mycorrhizal symbioses as well as nitrogen fixing symbioses in actinorhizal and legume hosts. The mechanisms to achieve auxin transport control that have been studied in model organisms include the induction of plant flavonoids that indirectly alter auxin transport and the direct targeting of auxin transporters by nematode effectors. In most cases, detailed mechanisms of auxin transport control remain unknown.
Collapse
Affiliation(s)
- Jason Liang Pin Ng
- Division of Plant Science, Research School of Biology, Australian National University, Linnaeus Way, Building 134, Canberra ACT 2601, Australia.
| | | | | | - Ulrike Mathesius
- Division of Plant Science, Research School of Biology, Australian National University, Linnaeus Way, Building 134, Canberra ACT 2601, Australia.
| |
Collapse
|
31
|
Bensmihen S. Hormonal Control of Lateral Root and Nodule Development in Legumes. PLANTS (BASEL, SWITZERLAND) 2015; 4:523-47. [PMID: 27135340 PMCID: PMC4844399 DOI: 10.3390/plants4030523] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/24/2015] [Accepted: 07/29/2015] [Indexed: 11/23/2022]
Abstract
Many plants can establish symbioses with nitrogen-fixing bacteria, some of which lead to nodulation, including legumes. Indeed, in the rhizobium/legume symbiosis, new root organs, called nodules, are formed by the plant in order to host the rhizobia in protective conditions, optimized for nitrogen fixation. In this way, these plants can benefit from the reduction of atmospheric dinitrogen into ammonia by the hosted bacteria, and in exchange the plant provides the rhizobia with a carbon source. Since this symbiosis is costly for the plant it is highly regulated. Both legume nodule and lateral root organogenesis involve divisions of the root inner tissues, and both developmental programs are tightly controlled by plant hormones. In fact, most of the major plant hormones, such as auxin, cytokinins, abscisic acid, and strigolactones, control both lateral root formation and nodule organogenesis, but often in an opposite manner. This suggests that the sensitivity of legume plants to some phytohormones could be linked to the antagonism that exists between the processes of nodulation and lateral root formation. Here, we will review the implication of some major phytohormones in lateral root formation in legumes, compare them with their roles in nodulation, and discuss specificities and divergences from non-legume eudicot plants such as Arabidopsis thaliana.
Collapse
Affiliation(s)
- Sandra Bensmihen
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326 Castanet-Tolosan, France.
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326 Castanet-Tolosan, France.
| |
Collapse
|
32
|
Ekimova GA, Fedorov DN, Doronina NV, Trotsenko YA. 1-aminocyclopropane-1-carboxylate deaminase of the aerobic facultative methylotrophic actinomycete Amycolatopsis methanolica 239. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715040074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
33
|
Etesami H, Alikhani HA, Mirseyed Hosseini H. Indole-3-Acetic Acid and 1-Aminocyclopropane-1-Carboxylate Deaminase: Bacterial Traits Required in Rhizosphere, Rhizoplane and/or Endophytic Competence by Beneficial Bacteria. BACTERIAL METABOLITES IN SUSTAINABLE AGROECOSYSTEM 2015. [DOI: 10.1007/978-3-319-24654-3_8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Breakspear A, Liu C, Roy S, Stacey N, Rogers C, Trick M, Morieri G, Mysore KS, Wen J, Oldroyd GED, Downie JA, Murray JD. The root hair "infectome" of Medicago truncatula uncovers changes in cell cycle genes and reveals a requirement for Auxin signaling in rhizobial infection. THE PLANT CELL 2014; 26:4680-701. [PMID: 25527707 PMCID: PMC4311213 DOI: 10.1105/tpc.114.133496] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 10/23/2014] [Accepted: 12/03/2014] [Indexed: 05/18/2023]
Abstract
Nitrogen-fixing rhizobia colonize legume roots via plant-made intracellular infection threads. Genetics has identified some genes involved but has not provided sufficient detail to understand requirements for infection thread development. Therefore, we transcriptionally profiled Medicago truncatula root hairs prior to and during the initial stages of infection. This revealed changes in the responses to plant hormones, most notably auxin, strigolactone, gibberellic acid, and brassinosteroids. Several auxin responsive genes, including the ortholog of Arabidopsis thaliana Auxin Response Factor 16, were induced at infection sites and in nodule primordia, and mutation of ARF16a reduced rhizobial infection. Associated with the induction of auxin signaling genes, there was increased expression of cell cycle genes including an A-type cyclin and a subunit of the anaphase promoting complex. There was also induction of several chalcone O-methyltransferases involved in the synthesis of an inducer of Sinorhizobium meliloti nod genes, as well as a gene associated with Nod factor degradation, suggesting both positive and negative feedback loops that control Nod factor levels during rhizobial infection. We conclude that the onset of infection is associated with reactivation of the cell cycle as well as increased expression of genes required for hormone and flavonoid biosynthesis and that the regulation of auxin signaling is necessary for initiation of rhizobial infection threads.
Collapse
Affiliation(s)
- Andrew Breakspear
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Chengwu Liu
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Sonali Roy
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Nicola Stacey
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Christian Rogers
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Martin Trick
- Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Giulia Morieri
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Kirankumar S Mysore
- Division of Plant Biology, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Jiangqi Wen
- Division of Plant Biology, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Giles E D Oldroyd
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - J Allan Downie
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Jeremy D Murray
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
35
|
Zhao M, Liu W, Xia X, Wang T, Zhang WH. Cold acclimation-induced freezing tolerance of Medicago truncatula seedlings is negatively regulated by ethylene. PHYSIOLOGIA PLANTARUM 2014; 152:115-29. [PMID: 24494928 DOI: 10.1111/ppl.12161] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/06/2014] [Accepted: 01/09/2014] [Indexed: 05/07/2023]
Abstract
To evaluate the role of ethylene in cold acclimation and cold stress, freezing tolerance and characteristics associated with cold acclimation were investigated using legume model plant Medicago truncatula Gaertn Jemalong A17. There was a rapid suppression of ethylene production during cold acclimation in A17 plants. Ethylene level was negatively correlated with freezing tolerance as inhibition of ethylene biosynthesis by inhibitors of ethylene biosynthesis enhanced freezing tolerance, while exogenous application of ethylene reduced cold acclimation-induced freezing tolerance. The involvement of ethylene signaling in modulation of freezing tolerance and cold acclimation was further studied using ethylene-insensitive mutant sickle skl. Although skl mutant was more tolerant to freezing than its wild-type counterpart A17 plants, cold acclimation enhanced freezing tolerance in 17 plants, but not in skl mutant. Expression of several ethylene response genes including EIN3, EIN3/EIL and ERFs was suppressed in skl mutant compared to A17 plants under non-cold-acclimated conditions. Cold acclimation downregulated expression of EIN3, EIN3/EIL and ERFs in A17 plants, while expression patterns of these genes were relatively constant in skl mutant during cold acclimation. Cold acclimation-induced increases in transcription of MtCBFs and MtCAS15 were suppressed in skl mutant compared with A17 plants. These results suggest that MtSKL1 is required for perception of the change of ethylene level in M. truncatula plants for the full development of the cold acclimation response by suppressing expression of MtEIN3 and MtEIN3/EIL1, which in turn downregulates expression of MtERFs, leading to the enhanced tolerance of M. truncatula to freezing by upregulating MtCBFs and MtCAS15.
Collapse
Affiliation(s)
- Mingui Zhao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, P. R. China
| | | | | | | | | |
Collapse
|
36
|
Ferguson BJ, Mathesius U. Phytohormone regulation of legume-rhizobia interactions. J Chem Ecol 2014; 40:770-90. [PMID: 25052910 DOI: 10.1007/s10886-014-0472-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 12/16/2022]
Abstract
The symbiosis between legumes and nitrogen fixing bacteria called rhizobia leads to the formation of root nodules. Nodules are highly organized root organs that form in response to Nod factors produced by rhizobia, and they provide rhizobia with a specialized niche to optimize nutrient exchange and nitrogen fixation. Nodule development and invasion by rhizobia is locally controlled by feedback between rhizobia and the plant host. In addition, the total number of nodules on a root system is controlled by a systemic mechanism termed 'autoregulation of nodulation'. Both the local and the systemic control of nodulation are regulated by phytohormones. There are two mechanisms by which phytohormone signalling is altered during nodulation: through direct synthesis by rhizobia and through indirect manipulation of the phytohormone balance in the plant, triggered by bacterial Nod factors. Recent genetic and physiological evidence points to a crucial role of Nod factor-induced changes in the host phytohormone balance as a prerequisite for successful nodule formation. Phytohormones synthesized by rhizobia enhance symbiosis effectiveness but do not appear to be necessary for nodule formation. This review provides an overview of recent advances in our understanding of the roles and interactions of phytohormones and signalling peptides in the regulation of nodule infection, initiation, positioning, development, and autoregulation. Future challenges remain to unify hormone-related findings across different legumes and to test whether hormone perception, response, or transport differences among different legumes could explain the variety of nodules types and the predisposition for nodule formation in this plant family. In addition, the molecular studies carried out under controlled conditions will need to be extended into the field to test whether and how phytohormone contributions by host and rhizobial partners affect the long term fitness of the host and the survival and competition of rhizobia in the soil. It also will be interesting to explore the interaction of hormonal signalling pathways between rhizobia and plant pathogens.
Collapse
Affiliation(s)
- Brett J Ferguson
- Centre for Integrative Legume Research, School of Agricultural and Food Sciences, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| | | |
Collapse
|
37
|
Gallego-Giraldo L, Bhattarai K, Pislariu CI, Nakashima J, Jikumaru Y, Kamiya Y, Udvardi MK, Monteros MJ, Dixon RA. Lignin modification leads to increased nodule numbers in alfalfa. PLANT PHYSIOLOGY 2014; 164:1139-50. [PMID: 24406794 PMCID: PMC3938609 DOI: 10.1104/pp.113.232421] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/08/2014] [Indexed: 05/11/2023]
Abstract
Reduction of lignin levels in the forage legume alfalfa (Medicago sativa) by down-regulation of the monolignol biosynthetic enzyme hydroxycinnamoyl coenzyme A:shikimate hydroxycinnamoyl transferase (HCT) results in strongly increased digestibility and processing ability of lignocellulose. However, these modifications are often also associated with dwarfing and other changes in plant growth. Given the importance of nitrogen fixation for legume growth, we evaluated the impact of constitutively targeted lignin modification on the belowground organs (roots and nodules) of alfalfa plants. HCT down-regulated alfalfa plants exhibit a striking reduction in root growth accompanied by an unexpected increase in nodule numbers when grown in the greenhouse or in the field. This phenotype is associated with increased levels of gibberellins and certain flavonoid compounds in roots. Although HCT down-regulation reduced biomass yields in both the greenhouse and field experiments, the impact on the allocation of nitrogen to shoots or roots was minimal. It is unlikely, therefore, that the altered growth phenotype of reduced-lignin alfalfa is a direct result of changes in nodulation or nitrogen fixation efficiency. Furthermore, HCT down-regulation has no measurable effect on carbon allocation to roots in either greenhouse or 3-year field trials.
Collapse
Affiliation(s)
| | - Kishor Bhattarai
- Plant Biology Division (L.G.-G., C.I.P., J.N., M.K.U., R.A.D.) and Forage Improvement Division (K.B., M.J.M.), Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401; and
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan (Y.J., Y.K.)
| | - Catalina I. Pislariu
- Plant Biology Division (L.G.-G., C.I.P., J.N., M.K.U., R.A.D.) and Forage Improvement Division (K.B., M.J.M.), Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401; and
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan (Y.J., Y.K.)
| | - Jin Nakashima
- Plant Biology Division (L.G.-G., C.I.P., J.N., M.K.U., R.A.D.) and Forage Improvement Division (K.B., M.J.M.), Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401; and
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan (Y.J., Y.K.)
| | - Yusuke Jikumaru
- Plant Biology Division (L.G.-G., C.I.P., J.N., M.K.U., R.A.D.) and Forage Improvement Division (K.B., M.J.M.), Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401; and
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan (Y.J., Y.K.)
| | - Yuji Kamiya
- Plant Biology Division (L.G.-G., C.I.P., J.N., M.K.U., R.A.D.) and Forage Improvement Division (K.B., M.J.M.), Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401; and
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan (Y.J., Y.K.)
| | - Michael K. Udvardi
- Plant Biology Division (L.G.-G., C.I.P., J.N., M.K.U., R.A.D.) and Forage Improvement Division (K.B., M.J.M.), Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401; and
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan (Y.J., Y.K.)
| | - Maria J. Monteros
- Plant Biology Division (L.G.-G., C.I.P., J.N., M.K.U., R.A.D.) and Forage Improvement Division (K.B., M.J.M.), Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401; and
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan (Y.J., Y.K.)
| | | |
Collapse
|
38
|
Li X, Lei M, Yan Z, Wang Q, Chen A, Sun J, Luo D, Wang Y. The REL3-mediated TAS3 ta-siRNA pathway integrates auxin and ethylene signaling to regulate nodulation in Lotus japonicus. THE NEW PHYTOLOGIST 2014; 201:531-544. [PMID: 24164597 DOI: 10.1111/nph.12550] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/10/2013] [Indexed: 05/04/2023]
Abstract
The ta-siRNA pathway is required for lateral organ development, including leaf patterning, flower differentiation and lateral root growth. Legumes can develop novel lateral root organs--nodules--resulting from symbiotic interactions with rhizobia. However, ta-siRNA regulation in nodule formation remains unknown. To explore ta-siRNA regulation in nodule formation, we investigated the roles of REL3, a key component of TAS3 ta-siRNA biogenesis, during nodulation in Lotus japonicus. We characterized the symbiotic phenotypes of the TAS3 ta-siRNA defective rel3 mutant, and analyzed the responses of the rel3 mutant to auxin and ethylene in order to gain insight into TAS3 ta-siRNA regulation of nodulation. The rel3 mutant produced fewer pink nitrogen-fixing nodules, with substantially decreased infection frequency and nodule initiation. Moreover, the rel3 mutant was more resistant than wild-type to 1-naphthaleneacetic acid (NAA) and N-1-naphthylphthalamic acid (NPA) in root growth, and exhibited insensitivity to auxins but greater sensitivity to auxin transport inhibitors during nodulation. Furthermore, the rel3 mutant has enhanced root-specific ethylene sensitivity and altered responses to ethylene during nodulation; the low-nodulating phenotype of the rel3 mutant can be restored by ethylene synthesis inhibitor L-α-(2-aminoethoxyvinyl)-glycine (AVG) or action inhibitor Ag(+). The REL3-mediated TAS3 ta-siRNA pathway regulates nodulation by integrating ethylene and auxin signaling.
Collapse
Affiliation(s)
- Xiaolin Li
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Mingjuan Lei
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhongyuan Yan
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qi Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Aimin Chen
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jie Sun
- The key Laboratory of Oasis Eco-agriculture, Agriculture College of Shihezi University, Shihezi, 832003, China
| | - Da Luo
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yanzhang Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
39
|
Rasmussen A, Depuydt S, Goormachtig S, Geelen D. Strigolactones fine-tune the root system. PLANTA 2013; 238:615-26. [PMID: 23801297 DOI: 10.1007/s00425-013-1911-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/05/2013] [Indexed: 05/07/2023]
Abstract
Strigolactones were originally discovered to be involved in parasitic weed germination, in mycorrhizal association and in the control of shoot architecture. Despite their clear role in rhizosphere signaling, comparatively less attention has been given to the belowground function of strigolactones on plant development. However, research has revealed that strigolactones play a key role in the regulation of the root system including adventitious roots, primary root length, lateral roots, root hairs and nodulation. Here, we review the recent progress regarding strigolactone regulation of the root system and the antagonism and interplay with other hormones.
Collapse
Affiliation(s)
- Amanda Rasmussen
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | | | | | | |
Collapse
|
40
|
Glick BR. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 2013; 169:30-9. [PMID: 24095256 DOI: 10.1016/j.micres.2013.09.009] [Citation(s) in RCA: 815] [Impact Index Per Article: 67.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/09/2013] [Accepted: 09/14/2013] [Indexed: 01/25/2023]
Abstract
To feed all of the world's people, it is necessary to sustainably increase agricultural productivity. One way to do this is through the increased use of plant growth-promoting bacteria; recently, scientists have developed a more profound understanding of the mechanisms employed by these bacteria to facilitate plant growth. Here, it is argued that the ability of plant growth-promoting bacteria that produce 1-aminocyclopropane-1-carboxylate (ACC) deaminase to lower plant ethylene levels, often a result of various stresses, is a key component in the efficacious functioning of these bacteria. The optimal functioning of these bacteria includes the synergistic interaction between ACC deaminase and both plant and bacterial auxin, indole-3-acetic acid (IAA). These bacteria not only directly promote plant growth, they also protect plants against flooding, drought, salt, flower wilting, metals, organic contaminants, and both bacterial and fungal pathogens. While a considerable amount of both basic and applied work remains to be done before ACC deaminase-producing plant growth-promoting bacteria become a mainstay of plant agriculture, the evidence indicates that with the expected shift from chemicals to soil bacteria, the world is on the verge of a major paradigm shift in plant agriculture.
Collapse
Affiliation(s)
- Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
| |
Collapse
|
41
|
KUSUMAWATI LUCIA, KURAN KATHRYN, IMIN NIJAT, MATHESIUS ULRIKE, DJORDJEVIC MICHAEL. The Expression of Genes Encoding Secreted Proteins in Medicago truncatula A17 Inoculated Roots. HAYATI JOURNAL OF BIOSCIENCES 2013. [DOI: 10.4308/hjb.20.3.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
42
|
Li J, McConkey BJ, Cheng Z, Guo S, Glick BR. Identification of plant growth-promoting bacteria-responsive proteins in cucumber roots under hypoxic stress using a proteomic approach. J Proteomics 2013; 84:119-31. [PMID: 23568019 DOI: 10.1016/j.jprot.2013.03.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/19/2012] [Accepted: 03/19/2013] [Indexed: 11/17/2022]
Abstract
UNLABELLED Plant growth-promoting bacteria (PGPB) can both facilitate plant growth and improve plant resistance to a variety of environmental stresses. In order to investigate the mechanisms that PGPB use to protect plants under hypoxic conditions, the protein profiles of stressed and non-stressed cucumber roots, either treated or not treated with PGPB, were examined. Two dimensional difference in-gel electrophoresis (DIGE) was used to detect significantly up- or down-regulated proteins (p<0.05, |ratio|>1.5) in cucumber roots in response to hypoxia. There were 1980, 1893 and 1735 protein spots detected from cucumber roots in the absence of stress in the presence of the PGPB Pseudomonas putida UW4, following hypoxic stress, and following hypoxic stress in the presence of P. putida UW4, respectively. The numbers of significantly changed protein spots were 0, 106, and 147 in these three treatments respectively. Proteins were identified by LTQ-MS/MS and categorized into classes corresponding to transcription, protein synthesis, signal transduction, carbohydrate and nitrogen metabolism, defense stress, antioxidant, binding and others. The functions of the proteins whose expression changed significantly were analyzed in detail, contributing to a more thorough understanding of how PGPB mediate the stress response in plants. BIOLOGICAL SIGNIFICANCE To our knowledge, only a limited number of papers have addressed cucumber proteomics, this study is the first report to describe the effect of plant growth-promoting bacteria (P. putida UW4) on cucumber plants under hypoxic stress using a proteomic approach. Thus, this work provides new insights to understand the cross-reactivity between P. putida UW4 and cucumber plant. A model of cucumber roots in response to P. putida UW4 and hypoxia was proposed: P. putida UW4 and hypoxic stress caused changes of gene expression in cucumber roots, then transcription was stimulated, the proteins involved in carbohydrate metabolism, nitrogen metabolism, defense stress, antioxidant, binding and others were induced, these proteins might work cooperatively to release hypoxic stress and promote cucumber growth. These results describe a dynamic protein network to explain the promotion mechanism of P. putida UW4, and also provide a solid basis for further functional research of single nodes of this network.
Collapse
Affiliation(s)
- Jing Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | |
Collapse
|
43
|
Chan PK, Biswas B, Gresshoff PM. Classical ethylene insensitive mutants of the Arabidopsis EIN2 orthologue lack the expected 'hypernodulation' response in Lotus japonicus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:395-408. [PMID: 23452324 DOI: 10.1111/jipb.12040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Three independent ethylene insensitive mutants were selected from an EMS- mutagenized population of Lotus japonicus MG-20 (Miyakojima). The mutants, called 'Enigma', were mutated in the LjEIN2a gene from Lotus chromosome 1, sharing significant homology with Arabidopsis EIN2 (ethylene-insensitive2). All three alleles showed classical ethylene insensitivity phenotypes (e.g., Triple Response), but lacked the increased nodulation phenotype commonly associated with ethylene insensitivity. Indeed, all showed a marginal reduction in nodule number per plant, a phenotype that is enigmatic to sickle, an ethylene-insensitive EIN2 mutant in Medicago truncatula. In contrast to wild type, but similar to an ETR1-1 ethylene ethylene-insensitive transgenic of L. japonicus, enigma mutants formed nodules in between the protoxylem poles, demonstrating the influence of ethylene on radial positioning. Suppression of nodule numbers by nitrate and colonisation by mycorrhizal fungi in the enigma-1 mutant were indistinguishable from the wild-type MG-20. However, reflecting endogenous ethylene feedback, the enigma-1 mutant released more than twice the wild-type amount of ethylene. enigma-1 had a moderate reduction in growth, greater root mass (and lateral root formation), delayed flowering and ripening, smaller pods and seeds. Expression analysis of ethylene-regulated genes, such as ETR1, NRL1 (neverripe-like 1), and EIL3 in shoots and roots of enigma-1 and MG-20 illustrated that the ethylene-insensitive mutation strongly affected transcriptional responses in the root. These mutants open the possibility that EIN2 in L. japonicus, a determinate nodulating legume, acts in a more complex fashion possibly through the presence of a duplicated copy of LjEIN2.
Collapse
Affiliation(s)
- Pick Kuen Chan
- Australian Research Council Centre of Excellence for Integrative Legume Research, The University of Queensland, St. Lucia, Brisbane QLD 4072, Australia
| | | | | |
Collapse
|
44
|
|
45
|
Mortier V, De Wever E, Vuylsteke M, Holsters M, Goormachtig S. Nodule numbers are governed by interaction between CLE peptides and cytokinin signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:367-76. [PMID: 22168914 DOI: 10.1111/j.1365-313x.2011.04881.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
CLE peptides are involved in the balance between cell division and differentiation throughout plant development, including nodulation. Previously, two CLE genes of Medicago truncatula, MtCLE12 and MtCLE13, had been identified whose expression correlated with nodule primordium formation and meristem establishment. Gain-of-function analysis indicated that both MtCLE12 and MtCLE13 interact with the SUPER NUMERIC NODULES (SUNN)-dependent auto-regulation of nodulation to control nodule numbers. Here we demonstrate that cytokinin, which is essential for nodule organ formation, regulates MtCLE13 expression. In addition, simultaneous knockdown of MtCLE12 and MtCLE13 resulted in an increase in nodule number, implying that both genes play a role in controlling nodule number. Additionally, a weak link may exist with the ethylene-dependent mechanism that locally controls nodule number.
Collapse
|
46
|
Mortier V, Holsters M, Goormachtig S. Never too many? How legumes control nodule numbers. PLANT, CELL & ENVIRONMENT 2012; 35:245-58. [PMID: 21819415 DOI: 10.1111/j.1365-3040.2011.02406.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Restricted availability of nitrogen compounds in soils is often a major limiting factor for plant growth and productivity. Legumes circumvent this problem by establishing a symbiosis with soil-borne bacteria, called rhizobia that fix nitrogen for the plant. Nitrogen fixation and nutrient exchange take place in specialized root organs, the nodules, which are formed by a coordinated and controlled process that combines bacterial infection and organ formation. Because nodule formation and nitrogen fixation are energy-consuming processes, legumes develop the minimal number of nodules required to ensure optimal growth. To this end, several mechanisms have evolved that adapt nodule formation and nitrogen fixation to the plant's needs and environmental conditions, such as nitrate availability in the soil. In this review, we give an updated view on the mechanisms that control nodulation.
Collapse
Affiliation(s)
- Virginie Mortier
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | | | | |
Collapse
|
47
|
Rightmyer AP, Long SR. Pseudonodule formation by wild-type and symbiotic mutant Medicago truncatula in response to auxin transport inhibitors. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1372-84. [PMID: 21809981 DOI: 10.1094/mpmi-04-11-0103] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Rhizobium and allied bacteria form symbiotic nitrogen-fixing nodules on legume roots. Plant hormones play key roles in nodule formation. We treated Medicago truncatula roots with auxin transport inhibitors (ATI) N-(1-naphthyl)phthalamic acid (NPA) and 2,3,5-triiodobenzoic acid (TIBA) to induce the formation of pseudonodules. M. truncatula mutants defective for rhizobial Nod factor signal transduction still formed pseudonodules in response to ATI. However, a M. truncatula ethylene-insensitive supernodulator, sickle 1-1, did not form pseudonodules in response to TIBA, suggesting that the ethylene response pathway is involved in ATI-induced pseudonodule formation. We compared the transcriptional responses of M. truncatula roots treated with ATI to roots inoculated with Sinorhizobium meliloti. Some genes showed consistently parallel expression in ATI-induced and Rhizobium-induced nodules. For other genes, the transcriptional response of M. truncatula roots 1 and 7 days after ATI treatment was in the opposite direction to roots treated with S. meliloti; then, by 21 days, the transcriptional patterns for the two conditions became similar. We silenced 17 genes that were upregulated in both ATI and S. meliloti treatments to determine their effect on nodule formation. Some gene-silenced roots showed a decrease in nodulation efficiency, suggesting a role in nodule formation but not in later nodule functions.
Collapse
|
48
|
Basu P, Brown KM, Pal A. Detailed quantitative analysis of architectural traits of basal roots of young seedlings of bean in response to auxin and ethylene. PLANT PHYSIOLOGY 2011; 155:2056-65. [PMID: 21311033 PMCID: PMC3091101 DOI: 10.1104/pp.110.168229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 02/02/2011] [Indexed: 05/22/2023]
Abstract
Vertical placement of roots within the soil determines their efficiency of acquisition of heterogeneous belowground resources. This study quantifies the architectural traits of seedling basal roots of bean (Phaseolus vulgaris), and shows that the distribution of root tips at different depths results from a combined effect of both basal root growth angle (BRGA) and root length. Based on emergence locations, the basal roots are classified in three zones, upper, middle, and lower, with each zone having distinct architectural traits. The genotypes characterized as shallow on BRGA alone produced basal roots with higher BRGA, greater length, and more vertically distributed roots than deep genotypes, thereby establishing root depth as a robust measure of root architecture. Although endogenous indole-3-acetic acid (IAA) levels were similar in all genotypes, IAA and 1-N-naphthylphthalamic acid treatments showed different root growth responses to auxin because shallow and deep genotypes tended to have optimal and supraoptimal auxin levels, respectively, for root growth in controls. While IAA increased ethylene production, ethylene also increased IAA content. Although differences in acropetal IAA transport to roots of different zones can account for some of the differences in auxin responsiveness among roots of different emergence positions, this study shows that mutually dependent ethylene-auxin interplay regulates BRGA and root growth differently in different genotypes. Root length inhibition by auxin was reversed by an ethylene synthesis inhibitor. However, IAA caused smaller BRGA in deep genotypes, but not in shallow genotypes, which only responded to IAA in the presence of an ethylene inhibitor.
Collapse
Affiliation(s)
| | | | - Anupam Pal
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India (P.B., A.P.); and Intercollege Program in Plant Biology (P.B., K.M.B.) and Department of Horticulture (K.M.B.), Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
49
|
Glick BR, Stearns JC. Making phytoremediation work better: maximizing a plant's growth potential in the midst of adversity. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2011; 13 Suppl 1:4-16. [PMID: 22046748 DOI: 10.1080/15226514.2011.568533] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
While a number of different plants can either breakdown a variety of organic contaminants or hyperaccumulate metals from the environment, even the most efficient of those plants is typically inhibited by the presence of the toxicant(s). The plant stress that is induced by the presence of various environmental toxicants typically limits a plant's growth and ultimately its ability to phytoremediate the toxicant(s). Here, it is argued that the simple strategy of adding plant growth-promoting bacteria (preferably endophytes) that reduce plant ethylene levels by ACC deaminase activity and have the ability to synthesize the phytohoromone IAA, and are used to phytoremediate various toxicants can significantly (and often dramatically) increase both plant growth and phytoremediation activity in the presence of those toxicants.
Collapse
Affiliation(s)
- Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
| | | |
Collapse
|
50
|
Schnabel E, Mukherjee A, Smith L, Kassaw T, Long S, Frugoli J. The lss supernodulation mutant of Medicago truncatula reduces expression of the SUNN gene. PLANT PHYSIOLOGY 2010; 154:1390-402. [PMID: 20861425 PMCID: PMC2971615 DOI: 10.1104/pp.110.164889] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 09/22/2010] [Indexed: 05/18/2023]
Abstract
The number of nodules that form in a legume when interacting with compatible rhizobia is regulated by the plant. We report the identification of a mutant in nodule regulation in Medicago truncatula, like sunn supernodulator (lss), which displays shoot-controlled supernodulation and short roots, similar to sunn mutants. In contrast with the sunn-1 mutant, nodulation in the lss mutant is more extensive and is less sensitive to nitrate and ethylene, resembling the sunn-4 presumed null allele phenotype. Although the lss locus maps to the SUNN region of linkage group 4 and sunn and lss do not complement each other, there is no mutation in the genomic copy of the SUNN gene or in the 15-kb surrounding region in the lss mutant. However, expression of the SUNN gene in the shoots of lss plants is greatly reduced compared with wild-type plants. Analysis of cDNA from plants heterozygous for lss indicates that lss is a cis-acting factor affecting the expression of SUNN, and documented reversion events show it to be unstable, suggesting a possible reversible DNA rearrangement or an epigenetic change in the lss mutant. Assessment of the SUNN promoter revealed low levels of cytosine methylation in the 700-bp region proximal to the predicted transcription start site in both wild-type and lss plants, indicating that promoter hypermethylation is not responsible for the suppression of SUNN expression in lss. Thus, lss represents either a distal novel locus within the mapped region affecting SUNN expression or an uncharacterized epigenetic modification at the SUNN locus.
Collapse
|