1
|
Liu H, Gao X, Fan W, Fu X. Optimizing carbon and nitrogen metabolism in plants: From fundamental principles to practical applications. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 40376749 DOI: 10.1111/jipb.13919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/03/2025] [Indexed: 05/18/2025]
Abstract
Carbon (C) and nitrogen (N) are fundamental elements essential for plant growth and development, serving as the structural and functional backbone of organic compounds and driving essential biological processes such as photosynthesis, carbohydrate metabolism, and N assimilation. The metabolism and transport of C involve the movement of sugars between shoots and roots through xylem and phloem transport systems, regulated by a sugar-signaling hub. Nitrogen uptake, transport, and metabolism are equally critical, with plants assimilating nitrate and ammonium through specialized transporters and enzymes in response to varying N levels to optimize growth and development. The coordination of C and N metabolism is key to plant productivity and the maintaining of agroecosystem stability. However, inefficient utilization of N fertilizers results in substantial environmental and economic challenges, emphasizing the urgent need to improve N use efficiency (NUE) in crops. Integrating efficient photosynthesis with N uptake offers opportunities for sustainable agricultural practices. This review discusses recent advances in understanding C and N transport, metabolism, and signaling in plants, with a particular emphasis on NUE-related genes in rice, and explores breeding strategies to enhance crop efficiency and agricultural sustainability.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiuhua Gao
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Weishu Fan
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiangdong Fu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- New Cornerstone Science Laboratory, College of Life Science, Beijing, 100049, China
| |
Collapse
|
2
|
Ma L, Qin DB, Sun L, Zhang K, Yu X, Dang AK, Hou S, Zhao X, Yang Y, Wang Y, Chen Y, Guo Y. SALT OVERLY SENSITIVE2 and AMMONIUM TRANSPORTER1;1 contribute to plant salt tolerance by maintaining ammonium uptake. THE PLANT CELL 2025; 37:koaf034. [PMID: 39963720 PMCID: PMC11840955 DOI: 10.1093/plcell/koaf034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/06/2025] [Indexed: 02/21/2025]
Abstract
Soil salinity is a severe threat to agriculture and plant growth. Under high salinity conditions, ammonium (NH4+) is the predominant inorganic nitrogen source used by plants due to limited nitrification. However, how ammonium shapes the plant response to salt stress remains a mystery. Here, we demonstrate that the growth of Arabidopsis (Arabidopsis thaliana) seedlings is less sensitive to salt stress when provided with ammonium instead of nitrate (NO3-), a response that is mediated by ammonium transporters (AMTs). We further show that the kinase SALT OVERLY SENSITIVE2 (SOS2) physically interacts with and activates AMT1;1 by directly phosphorylating the nonconserved serine residue Ser-450 in the C-terminal region. In agreement with the involvement of SOS2, ammonium uptake was lower in sos2 mutants grown under salt stress relative to the wild type. Moreover, AMT-mediated ammonium uptake enhanced salt-induced SOS2 kinase activity. Together, our study demonstrates that SOS2 activates AMT1;1 to fine-tune and maintain ammonium uptake and optimize the plant salt stress response.
Collapse
Affiliation(s)
- Liang Ma
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - De-Bin Qin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Liping Sun
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Kaina Zhang
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiang Yu
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - An-Kai Dang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Shengfan Hou
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoyun Zhao
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yongqing Yang
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yang Wang
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuhang Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Niño-González M, Duque P. Posttranslational regulation of plant membrane transporters. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17262. [PMID: 39931795 DOI: 10.1111/tpj.17262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/17/2024] [Accepted: 01/03/2025] [Indexed: 05/08/2025]
Abstract
The movement of substances across biological membranes is often constrained by physical or energetic barriers, requiring the action of transporter proteins embedded within the lipidic bilayer. These transporters also provide finely tuned regulation of substrate fluxes, essential for maintaining cellular function under both normal and stress conditions. Consequently, transporters are subject to multiple levels of tight regulation, including posttranslational modifications (PTMs). Here, we review the current knowledge on PTMs affecting plant membrane transporters and their impact on protein function. The attachment of chemical groups to protein residues enables rapid modulation of transporter functions, influencing a wide range of protein characteristics. Phosphorylation stands out as the most common PTM, affecting transporter attributes such as activation status, localization and substrate specificity. In turn, ubiquitination acts as a signal for downregulation, either by targeting the transporters for proteasomal degradation or by triggering their endocytosis and subsequent vacuolar sorting. The roles of other, less common PTMs remain unclear, as limited examples exist and recent advances have been sparse. The complex dynamics of substrate transport, which require precise flux magnitudes and directions, appear to demand multi-layered control of the associated transporters. In consequence, further research is needed to investigate individual PTMs affecting transporters, as well as the interplay of multiple PTMs on a single transporter, to better understand how gradual modulation of protein function is achieved.
Collapse
Affiliation(s)
| | - Paula Duque
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| |
Collapse
|
4
|
Wang Y, Xia Y, You L, Liu Y, Zou J, Xie Q, Jiang X. Characterization of ammonium absorption by ammonium-preferential cassava. JOURNAL OF PLANT PHYSIOLOGY 2025; 304:154401. [PMID: 39674080 DOI: 10.1016/j.jplph.2024.154401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024]
Abstract
Cassava plants can adapt to poor soils where most other crops are unable to grow normally, suggesting that they are able to efficiently uptake and utilize nutrient elements from the soils. However, little is known about the mechanism of nutrient efficiency in the crop. Herein, we report that cassava grows better under low concentration of mixed nitrogen sources (0.15 mM NH4NO3) than under normal nitrogen levels. Furthermore, a low concentration of ammonium (NH4+) was sufficient for cassava plants, suggesting that cassava may efficiently absorb NH4+ in the high-affinity concentration range. AMT1 transporters are involved in high-affinity NH4+ uptake in plants. Four AMT1-type genes were cloned from cassava plants, and all four MeAMT1 transporters (MeAMT1; 1-MeAMT1; 3, MeAMT1; 5) were found to localize at the plasma membrane. Of them, expression of MeAMT1; 1, MeAMT1; 3 and MeAMT1; 5 restored growth of a yeast mutant strain and an Arabidopsis mutant line lacking primary ammonium transporters under ammonium deficiency. More interestingly, both NH4+ absorption mediated by MeAMT1; 5 in transgenic yeast cells and NH4+ influx at cassava roots displayed a two-phase pattern characterized by high- and low-affinity. In particular, the constant of high-affinity ammonium uptake mediated by MeAMT1; 5 is similar to the Km value of high-affinity ammonium absorption at cassava roots, but also close to the ammonium concentration of most soils, suggesting that cassava can efficiently capture low amounts of NH4+ from soils via plasma membrane-bound AMT1-type ammonium transporters, allowing the crop to grow and develop very well in low-nitrogen soils.
Collapse
Affiliation(s)
- Yu Wang
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/ Institute of Tropical Crops, Hainan University, Haikou 570228, China; National Center for Technology Innovation of Saline-Alkali Rice/College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Youquan Xia
- Medical College, Hexi University, Zhangye 734000, China
| | - Lili You
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/ Institute of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yindi Liu
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/ Institute of Tropical Crops, Hainan University, Haikou 570228, China
| | - Jixin Zou
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/ Institute of Tropical Crops, Hainan University, Haikou 570228, China
| | - Qing Xie
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/ Institute of Tropical Crops, Hainan University, Haikou 570228, China; National Center for Technology Innovation of Saline-Alkali Rice/College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Xingyu Jiang
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/ Institute of Tropical Crops, Hainan University, Haikou 570228, China; National Center for Technology Innovation of Saline-Alkali Rice/College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
5
|
Zhu H, Ye Z, Xu Z, Wei L. Transcriptomic Analysis Reveals the Effect of Urea on Metabolism of Nannochloropsis oceanica. Life (Basel) 2024; 14:797. [PMID: 39063552 PMCID: PMC11278182 DOI: 10.3390/life14070797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
The eukaryotic microalga Nannochloropsis oceanica represents a promising bioresource for the production of biofuels and pharmaceuticals. Urea, a crucial nutrient for the photosynthetic N. oceanica, stimulates the accumulation of substances such as lipids, which influence growth and physiology. However, the specific mechanisms by which N. oceanica responds and adapts to urea addition remain unknown. High-throughput mRNA sequencing and differential gene expression analysis under control and urea-added conditions revealed significant metabolic changes. This involved the differential expression of 2104 genes, with 1354 being upregulated and 750 downregulated, resulting in the reprogramming of crucial pathways such as carbon and nitrogen metabolism, photosynthesis, and lipid metabolism. The results specifically showed that genes associated with photosynthesis in N. oceanica were significantly downregulated, particularly those related to light-harvesting proteins. Interestingly, urea absorption and transport may depend not only on specialized transport channels such as urease but also on alternative transport channels such as the ABC transporter family and the CLC protein family. In addition, urea caused specific changes in carbon and lipid metabolism. Genes associated with the Calvin cycle and carbon concentration mechanisms were significantly upregulated. In lipid metabolism, the expression of genes associated with lipases and polyunsaturated fatty acid synthesis was highly activated. Furthermore, the expression of several genes involved in the tricarboxylic acid cycle and folate metabolism was enhanced, making important contributions to energy supply and the synthesis and modification of genes and macromolecules. Our observations indicate that N. oceanica actively and dynamically regulates the redistribution of carbon and nitrogen after urea addition, providing references for further research on the effects of urea on N. oceanica.
Collapse
Affiliation(s)
- Han Zhu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
- Hainan Observation and Research Station of Dongzhaigang Mangrove Wetland Ecosystem, Haikou 571129, China
- International Science and Technology Cooperation Laboratory for Marine Microalgae Ecological Carbon Sinks, Hainan Normal University, Haikou 571158, China
| | - Zhenli Ye
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Zhengru Xu
- College of Foreign Language, Hainan Normal University, Haikou 571157, China
| | - Li Wei
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
- Hainan Observation and Research Station of Dongzhaigang Mangrove Wetland Ecosystem, Haikou 571129, China
- International Science and Technology Cooperation Laboratory for Marine Microalgae Ecological Carbon Sinks, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
6
|
Chen H, Li H, Chong X, Zhou T, Lu X, Wang X, Zheng B. Transcriptome Analysis of the Regulatory Mechanisms of Holly ( Ilex dabieshanensis) under Salt Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:1638. [PMID: 38931069 PMCID: PMC11207398 DOI: 10.3390/plants13121638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
The holly Ilex dabieshanensis K. Yao & M. B. Deng, a tree endemic to the Dabieshan Mountains region in China, is a commonly used landscaping plant. Like other crops, its growth is affected by salt stress. The molecular mechanism underlying salt tolerance in holly is still unclear. In this study, we used NaCl treatment and RNA sequencing (RNA-seq) at different times to identify the salt stress response genes of holly. A total of 4775 differentially expressed genes (DEGs) were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the DEGs obtained at different salt treatment times (3, 6, 9, 12, and 24 h), as compared to control (ck, 0 h), showed that plant hormone signal transduction and carotenoid biosynthesis were highly enriched. The mechanism by which holly responds to salt stress involves many plant hormones, among which the accumulation of abscisic acid (ABA) and its signal transduction may play an important role. In addition, ion homeostasis, osmotic metabolism, accumulation of antioxidant enzymes and nonenzymatic antioxidant compounds, and transcription factors jointly regulate the physiological balance in holly, providing important guarantees for its growth and development under conditions of salt stress. These results lay the foundation for studying the molecular mechanisms of salt tolerance in holly and for the selection of salt-tolerant varieties.
Collapse
Affiliation(s)
- Hong Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-Based Healthcare Functions, Zhejiang A & F University, Hangzhou 311300, China
| | - Huihui Li
- Fuyang Academy of Agricultural Sciences, Fuyang 236065, China
| | - Xinran Chong
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China
| | - Ting Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China
| | - Xiaoqing Lu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China
| | - Xiaolong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China
| | - Bingsong Zheng
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-Based Healthcare Functions, Zhejiang A & F University, Hangzhou 311300, China
| |
Collapse
|
7
|
Williamson G, Bizior A, Harris T, Pritchard L, Hoskisson P, Javelle A. Biological ammonium transporters from the Amt/Mep/Rh superfamily: mechanism, energetics, and technical limitations. Biosci Rep 2024; 44:BSR20211209. [PMID: 38131184 PMCID: PMC10794816 DOI: 10.1042/bsr20211209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023] Open
Abstract
The exchange of ammonium across cellular membranes is a fundamental process in all domains of life and is facilitated by the ubiquitous Amt/Mep/Rh transporter superfamily. Remarkably, despite a high structural conservation in all domains of life, these proteins have gained various biological functions during evolution. It is tempting to hypothesise that the physiological functions gained by these proteins may be explained at least in part by differences in the energetics of their translocation mechanisms. Therefore, in this review, we will explore our current knowledge of energetics of the Amt/Mep/Rh family, discuss variations in observations between different organisms, and highlight some technical drawbacks which have hampered effects at mechanistic characterisation. Through the review, we aim to provide a comprehensive overview of current understanding of the mechanism of transport of this unique and extraordinary Amt/Mep/Rh superfamily of ammonium transporters.
Collapse
Affiliation(s)
- Gordon Williamson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, U.K
| | - Adriana Bizior
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, U.K
| | - Thomas Harris
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, U.K
| | - Leighton Pritchard
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, U.K
| | - Paul A. Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, U.K
| | - Arnaud Javelle
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, U.K
| |
Collapse
|
8
|
Cao H, Liu Q, Liu X, Ma Z, Zhang J, Li X, Shen L, Yuan J, Zhang Q. Phosphatidic acid regulates ammonium uptake by interacting with AMMONIUM TRANSPORTER 1;1 in Arabidopsis. PLANT PHYSIOLOGY 2023; 193:1954-1969. [PMID: 37471275 DOI: 10.1093/plphys/kiad421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/22/2023]
Abstract
Ammonium (NH4+) is a key inorganic nitrogen source in cellular amino acid biosynthesis. The coupling of transcriptional and posttranslational regulation of AMMONIUM TRANSPORTER (AMT) ensures that NH4+ acquisition by plant roots is properly balanced, which allows for rapid adaptation to a variety of nitrogen conditions. Here, we report that phospholipase D (PLD)-derived phosphatidic acid (PA) interacts with AMT1;1 to mediate NH4+ uptake in Arabidopsis (Arabidopsis thaliana). We examined pldα1 pldδ-knockout mutants and found that a reduced PA level increased seedling growth under nitrogen deficiency and inhibited root growth upon NH4+ stress, which was consistent with the enhanced accumulation of cellular NH4+. PA directly bound to AMT1;1 and inhibited its transport activity. Mutation of AMT1;1 R487 to Gly (R487G) resulted in abolition of PA suppression and, subsequently, enhancement of ammonium transport activity in vitro and in vivo. Observations of AMT1;1-GFP showed suppressed endocytosis under PLD deficiency or by mutation of the PA-binding site in AMT1;1. Endocytosis was rescued by PA in the pldα1 pldδ mutant but not in the mutant AMT1;1R487G-GFP line. Together, these findings demonstrated PA-based shutoff control of plant NH4+ transport and point to a broader paradigm of lipid-transporter function.
Collapse
Affiliation(s)
- Hongwei Cao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingyun Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaokun Ma
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jixiu Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuebing Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Like Shen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingya Yuan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qun Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
Chen YN, Ho CH. CIPK15-mediated inhibition of NH 4+ transport protects Arabidopsis from submergence. Heliyon 2023; 9:e20235. [PMID: 37810036 PMCID: PMC10560025 DOI: 10.1016/j.heliyon.2023.e20235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/18/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
Ammonium (NH4+) serves as a vital nitrogen source for plants, but it can turn toxic when it accumulates in excessive amounts. Toxicity is aggravated under hypoxic/anaerobic conditions, e.g., during flooding or submergence, due to a lower assimilation capacity. AMT1; 1 mediates NH4+ uptake into roots. Under conditions of oxygen-deficiency, i.e., submergence, the CBL-interacting protein kinase OsCIPK15 has been shown to trigger SnRK1A signaling, promoting starch mobilization, thereby the increasing availability of ATP, reduction equivalents and acceptors for NH4+ assimilation in rice. Our previous study in Arabidopsis demonstrates that AtCIPK15 phosphorylates AMT1; 1 whose activity is under allosteric feedback control by phosphorylation of T460 in the cytosolic C-terminus. Here we show that submergence cause higher NH4+ accumulation in wild-type, plant but not of nitrate, nor in a quadruple amt knock-out mutant. In addition, submergence triggers rapid accumulation of AtAMT1;1 and AtCIPK15 transcripts as well as AMT1 phosphorylation. Significantly, cipk15 knock-out mutants do not exhibit an increase in AMT1 phosphorylation; however, they do display heightened sensitivity to submergence. These findings suggest that CIPK15 suppresses AMT activity, resulting in decreased NH4+ accumulation during submergence, a period when NH4+ assimilation capacity may be impaired.
Collapse
Affiliation(s)
- Yen-Ning Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Cheng-Hsun Ho
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| |
Collapse
|
10
|
Robe K, Barberon M. Nutrient carriers at the heart of plant nutrition and sensing. CURRENT OPINION IN PLANT BIOLOGY 2023; 74:102376. [PMID: 37182415 DOI: 10.1016/j.pbi.2023.102376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023]
Abstract
Plants require water and several essential nutrients for their development. The radial transport of nutrients from the soil to the root vasculature is achieved through a combination of three different pathways: apoplastic, symplastic, and transcellular. A common feature for these pathways is the requirement of carriers to transport nutrients across the plasma membrane. An efficient transport of nutrients across the root cell layers relies on a large number of carriers, each of them having their own substrate specificity, tissular and subcellular localization. Polarity is also emerging as a major feature allowing their function. Recent advances on radial transport of nutrients, especially carrier mediated nutrient transport will be discussed in this review, as well as the role of transporters as nutrient sensors.
Collapse
Affiliation(s)
- Kevin Robe
- Department of Plant Sciences, University of Geneva, 30 Quai Ernest Ansermet, 1211, Geneva, Switzerland
| | - Marie Barberon
- Department of Plant Sciences, University of Geneva, 30 Quai Ernest Ansermet, 1211, Geneva, Switzerland.
| |
Collapse
|
11
|
Choi SJ, Lee Z, Jeong E, Kim S, Seo JS, Um T, Shim JS. Signaling pathways underlying nitrogen transport and metabolism in plants. BMB Rep 2023; 56:56-64. [PMID: 36658636 PMCID: PMC9978367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 01/21/2023] Open
Abstract
Nitrogen (N) is an essential macronutrient required for plant growth and crop production. However, N in soil is usually insufficient for plant growth. Thus, chemical N fertilizer has been extensively used to increase crop production. Due to negative effects of N rich fertilizer on the environment, improving N usage has been a major issue in the field of plant science to achieve sustainable production of crops. For that reason, many efforts have been made to elucidate how plants regulate N uptake and utilization according to their surrounding habitat over the last 30 years. Here, we provide recent advances focusing on regulation of N uptake, allocation of N by N transporting system, and signaling pathway controlling N responses in plants. [BMB Reports 2023; 56(2): 56-64].
Collapse
Affiliation(s)
- Su Jeong Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Zion Lee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Eui Jeong
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Sohyun Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Jun Sung Seo
- Crop Biotechnology Institute, Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Taeyoung Um
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Korea
| | - Jae Sung Shim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea,Corresponding author. Tel: +82-62-530-0507; Fax: +82-62-530-2199; E-mail:
| |
Collapse
|
12
|
Kishchenko O, Stepanenko A, Straub T, Zhou Y, Neuhäuser B, Borisjuk N. Ammonium Uptake, Mediated by Ammonium Transporters, Mitigates Manganese Toxicity in Duckweed, Spirodela polyrhiza. PLANTS (BASEL, SWITZERLAND) 2023; 12:208. [PMID: 36616338 PMCID: PMC9824425 DOI: 10.3390/plants12010208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 06/12/2023]
Abstract
Nitrogen is an essential nutrient that affects all aspects of the growth, development and metabolic responses of plants. Here we investigated the influence of the two major sources of inorganic nitrogen, nitrate and ammonium, on the toxicity caused by excess of Mn in great duckweed, Spirodela polyrhiza. The revealed alleviating effect of ammonium on Mn-mediated toxicity, was complemented by detailed molecular, biochemical and evolutionary characterization of the species ammonium transporters (AMTs). Four genes encoding AMTs in S. polyrhiza, were classified as SpAMT1;1, SpAMT1;2, SpAMT1;3 and SpAMT2. Functional testing of the expressed proteins in yeast and Xenopus oocytes clearly demonstrated activity of SpAMT1;1 and SpAMT1;3 in transporting ammonium. Transcripts of all SpAMT genes were detected in duckweed fronds grown in cultivation medium, containing a physiological or 50-fold elevated concentration of Mn at the background of nitrogen or a mixture of nitrate and ammonium. Each gene demonstrated an individual expression pattern, revealed by RT-qPCR. Revealing the mitigating effect of ammonium uptake on manganese toxicity in aquatic duckweed S. polyrhiza, the study presents a comprehensive analysis of the transporters involved in the uptake of ammonium, shedding a new light on the interactions between the mechanisms of heavy metal toxicity and the regulation of the plant nitrogen metabolism.
Collapse
Affiliation(s)
- Olena Kishchenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, West Changjiang Road 111, Huai’an 223000, China
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
- Institute of Cell Biology and Genetic Engineering, National Academy of Science of Ukraine, Acad. Zabolotnogo Str. 148, 03143 Kyiv, Ukraine
| | - Anton Stepanenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, West Changjiang Road 111, Huai’an 223000, China
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
- Institute of Cell Biology and Genetic Engineering, National Academy of Science of Ukraine, Acad. Zabolotnogo Str. 148, 03143 Kyiv, Ukraine
| | - Tatsiana Straub
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Yuzhen Zhou
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, West Changjiang Road 111, Huai’an 223000, China
| | - Benjamin Neuhäuser
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, West Changjiang Road 111, Huai’an 223000, China
| |
Collapse
|
13
|
Xia J, Wang Y, Zhang T, Pan C, Ji Y, Zhou Y, Jiang X. Genome-wide identification, expression profiling, and functional analysis of ammonium transporter 2 (AMT2) gene family in cassava ( Manihot esculenta crantz). Front Genet 2023; 14:1145735. [PMID: 36911399 PMCID: PMC9992417 DOI: 10.3389/fgene.2023.1145735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Background: Nitrogen (N), absorbed primarily as ammonium (NH4 +) from soil by plant, is a necessary macronutrient in plant growth and development. Ammonium transporter (AMT) plays a vital role in the absorption and transport of ammonium (NH4 +). Cassava (Manihot esculenta Crantz) has a strong adaptability to nitrogen deprivation. However, little is known about the functions of ammonium transporter AMT2 in cassava. Methods: The cassava AMT2-type genes were identified and their characteristics were analyzed using bioinformatic techniques. The spatial expression patterns were analyzed based on the public RNA-seq data and their expression profiles under low ammonium treatment were studied using Real-time quantitative PCR (RT-qPCR) method. The cassava AMT2 genes were transformed into yeast mutant strain TM31019b by PEG/LiAc method to investigate their functions. Results: Seven AMT2-type genes (MeAMT2.1-2.7) were identified in cassava and they were distributed on 6 chromosomes and included two segmental duplication events (MeAMT2.2/MeAMT2.4 and MeAMT2.3/MeAMT2.5). Based on their amino acid sequences, seven MeAMT2 were further divided into four subgroups, and each subgroup contained similar motif constitution and protein structure. Synteny analysis showed that two and four MeAMT2 genes in cassava were collinear with those in the Arabidopsis and soybean genomes, respectively. Sixteen types of cis-elements were identified in the MeAMT2 promoters, and they were related to light-, hormone-, stress-, and plant growth and development-responsive elements, respectively. Most of the MeAMT2 genes displayed tissue-specific expression patterns according to the RNA-seq data, of them, three MeAMT2 (MeAMT2.3, MeAMT2.5, and MeATM2.6) expressions were up-regulated under ammonium deficiency. Complementation experiments showed that yeast mutant strain TM31019b transformed with MeAMT2.3, MeAMT2.5, or MeATM2.6 grew better than untransgenic yeast cells under ammonium deficiency, suggesting that MeAMT2.3, MeAMT2.5, and MeATM2.6 might be the main contributors in response to ammonium deficiency in cassava. Conclusion: This study provides a basis for further study of nitrogen efficient utilization in cassava.
Collapse
Affiliation(s)
- Jinze Xia
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yu Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Tingting Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China.,Xiangyang Academy of Agricultural Sciences, Xiangyang, China
| | - Chengcai Pan
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Yiyin Ji
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Yang Zhou
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Xingyu Jiang
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
14
|
Ganz P, Porras-Murillo R, Ijato T, Menz J, Straub T, Stührwohldt N, Moradtalab N, Ludewig U, Neuhäuser B. Abscisic acid influences ammonium transport via regulation of kinase CIPK23 and ammonium transporters. PLANT PHYSIOLOGY 2022; 190:1275-1288. [PMID: 35762968 PMCID: PMC9516733 DOI: 10.1093/plphys/kiac315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/10/2022] [Indexed: 06/12/2023]
Abstract
Ammonium uptake at plant roots is regulated at the transcriptional, posttranscriptional, and posttranslational levels. Phosphorylation by the protein kinase calcineurin B-like protein (CBL)-interacting protein kinase 23 (CIPK23) transiently inactivates ammonium transporters (AMT1s), but the phosphatases activating AMT1s remain unknown. Here, we identified the PP2C phosphatase abscisic acid (ABA) insensitive 1 (ABI1) as an activator of AMT1s in Arabidopsis (Arabidopsis thaliana). We showed that high external ammonium concentrations elevate the level of the stress phytohormone ABA, possibly by de-glycosylation. Active ABA was sensed by ABI1-PYR1-like () complexes followed by the inactivation of ABI1, in turn activating CIPK23. Under favorable growth conditions, ABI1 reduced AMT1;1 and AMT1;2 phosphorylation, both by binding and inactivating CIPK23. ABI1 further directly interacted with AMT1;1 and AMT1;2, which would be a prerequisite for dephosphorylation of the transporter by ABI1. Thus, ABI1 is a positive regulator of ammonium uptake, coupling nutrient acquisition to abiotic stress signaling. Elevated ABA reduces ammonium uptake during stress situations, such as ammonium toxicity, whereas ABI1 reactivates AMT1s under favorable growth conditions.
Collapse
Affiliation(s)
- Pascal Ganz
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart D-70593, Germany
| | - Romano Porras-Murillo
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart D-70593, Germany
| | - Toyosi Ijato
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart D-70593, Germany
| | - Jochen Menz
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart D-70593, Germany
| | - Tatsiana Straub
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart D-70593, Germany
| | - Nils Stührwohldt
- Institute of Biology, Plant Physiology and Biochemistry, University of Hohenheim, Stuttgart D-70593, Germany
| | - Narges Moradtalab
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart D-70593, Germany
| | - Uwe Ludewig
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart D-70593, Germany
| | | |
Collapse
|
15
|
Hui J, An X, Li Z, Neuhäuser B, Ludewig U, Wu X, Schulze WX, Chen F, Feng G, Lambers H, Zhang F, Yuan L. The mycorrhiza-specific ammonium transporter ZmAMT3;1 mediates mycorrhiza-dependent nitrogen uptake in maize roots. THE PLANT CELL 2022; 34:4066-4087. [PMID: 35880836 PMCID: PMC9516061 DOI: 10.1093/plcell/koac225] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Most plant species can form symbioses with arbuscular mycorrhizal fungi (AMFs), which may enhance the host plant's acquisition of soil nutrients. In contrast to phosphorus nutrition, the molecular mechanism of mycorrhizal nitrogen (N) uptake remains largely unknown, and its physiological relevance is unclear. Here, we identified a gene encoding an AMF-inducible ammonium transporter, ZmAMT3;1, in maize (Zea mays) roots. ZmAMT3;1 was specifically expressed in arbuscule-containing cortical cells and the encoded protein was localized at the peri-arbuscular membrane. Functional analysis in yeast and Xenopus oocytes indicated that ZmAMT3;1 mediated high-affinity ammonium transport, with the substrate NH4+ being accessed, but likely translocating uncharged NH3. Phosphorylation of ZmAMT3;1 at the C-terminus suppressed transport activity. Using ZmAMT3;1-RNAi transgenic maize lines grown in compartmented pot experiments, we demonstrated that substantial quantities of N were transferred from AMF to plants, and 68%-74% of this capacity was conferred by ZmAMT3;1. Under field conditions, the ZmAMT3;1-dependent mycorrhizal N pathway contributed >30% of postsilking N uptake. Furthermore, AMFs downregulated ZmAMT1;1a and ZmAMT1;3 protein abundance and transport activities expressed in the root epidermis, suggesting a trade-off between mycorrhizal and direct root N-uptake pathways. Taken together, our results provide a comprehensive understanding of mycorrhiza-dependent N uptake in maize and present a promising approach to improve N-acquisition efficiency via plant-microbe interactions.
Collapse
Affiliation(s)
- Jing Hui
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Xia An
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Zhibo Li
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Benjamin Neuhäuser
- Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, Stuttgart, 70593, Germany
| | - Uwe Ludewig
- Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, Stuttgart, 70593, Germany
| | - Xuna Wu
- Department of Plant Systems Biology, Institute for Physiology and Biotechnology of Plants, University of Hohenheim, Stuttgart, 70593, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, Institute for Physiology and Biotechnology of Plants, University of Hohenheim, Stuttgart, 70593, Germany
| | - Fanjun Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Gu Feng
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Hans Lambers
- School of Biological Science and Institute of Agriculture, University of Western Australia, Perth, WA6009, Australia
| | - Fusuo Zhang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | | |
Collapse
|
16
|
Ye JY, Tian WH, Jin CW. Nitrogen in plants: from nutrition to the modulation of abiotic stress adaptation. STRESS BIOLOGY 2022; 2:4. [PMID: 37676383 PMCID: PMC10441927 DOI: 10.1007/s44154-021-00030-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/14/2021] [Indexed: 09/08/2023]
Abstract
Nitrogen is one of the most important nutrient for plant growth and development; it is strongly associated with a variety of abiotic stress responses. As sessile organisms, plants have evolved to develop efficient strategies to manage N to support growth when exposed to a diverse range of stressors. This review summarizes the recent progress in the field of plant nitrate (NO3-) and ammonium (NH4+) uptake, which are the two major forms of N that are absorbed by plants. We explore the intricate relationship between NO3-/NH4+ and abiotic stress responses in plants, focusing on stresses from nutrient deficiencies, unfavorable pH, ions, and drought. Although many molecular details remain unclear, research has revealed a number of core signaling regulators that are associated with N-mediated abiotic stress responses. An in-depth understanding and exploration of the molecular processes that underpin the interactions between N and abiotic stresses is useful in the design of effective strategies to improve crop growth, development, and productivity.
Collapse
Affiliation(s)
- Jia Yuan Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Wen Hao Tian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China.
| | - Chong Wei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
17
|
Wang Y, Xuan YM, Wang SM, Fan DM, Wang XC, Zheng XQ. Genome-wide identification, characterization, and expression analysis of the ammonium transporter gene family in tea plants (Camellia sinensis L.). PHYSIOLOGIA PLANTARUM 2022; 174:e13646. [PMID: 35129836 DOI: 10.1111/ppl.13646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
As a preferred nitrogen form, ammonium (NH4 + ) transport via specific transporters is particularly important for the growth and development of tea plants (Camellia sinensis L.). However, our understanding of the functions of the AMT family in tea plants is limited. We identified and named 16 putative AMT genes according to phylogenetic analysis. All CsAMT genes were divided into three groups, distributed on 12 chromosomes with only one segmental duplication repetition. The CsAMT genes showed different expression levels in different organs, and most of them were expressed mainly in the apical buds and roots. Complementation analysis of yeast mutants showed that CsAMTs restored the uptake of NH4 + . This study provides insights into the genome-wide distribution and spatial expression of AMT genes in tea plants.
Collapse
Affiliation(s)
- Yu Wang
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yi-Min Xuan
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shu-Mao Wang
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Dong-Mei Fan
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiao-Chang Wang
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xin-Qiang Zheng
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Niepsch D, Clarke LJ, Tzoulas K, Cavan G. Distinguishing atmospheric nitrogen compounds (nitrate and ammonium) in lichen biomonitoring studies. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:2021-2036. [PMID: 34870671 DOI: 10.1039/d1em00274k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nitrogen speciation, i.e. distinguishing nitrate (NO3-) and ammonium (NH4+), is commonly undertaken in soil studies, but has not been conducted extensively for lichens. Lichen total nitrogen contents (N wt%) reflect airborne atmospheric nitrogen loadings, originating from anthropogenic sources (e.g. vehicular and agricultural/livestock emissions). Albeit nitrogen being an essential lichen nutrient, nitrogen compound (i.e. NO3- and NH4+) concentrations in the atmosphere can have deleterious effects on lichens. Moreover, N wt% do not provide information on individual nitrogen compounds, i.e. NO3- and NH4+ which are major constituents of atmospheric particulate matter (e.g. PM10 and PM2.5). This study presents a novel method to separate and quantify NO3- and NH4+ extracted from lichen material. An optimal approach was identified by testing different strengths and volumes of potassium chloride (KCl) solutions and variable extraction times, i.e. the use of 3% KCl for 6 hours can achieve a same-day extraction and subsequent ion chromatography (IC) analysis for reproducible lichen nitrate and ammonium concentration determinations. Application of the method was undertaken by comparing urban and rural Xanthoria parietina samples to investigate the relative importance of the two nitrogen compounds in contrasting environments. Findings presented showed that lichen nitrogen compound concentrations varied in rural and urban X. parietina samples, suggesting different atmospheric nitrogen loadings from potentially different sources (e.g. agricultural and traffic) and varied deposition patterns (e.g. urban layout impacts). Despite potential impacts of nitrogen compounds on lichen metabolism, the approach presented here can be used for quantification of two different nitrogen compounds in lichen biomonitoring studies that will provide specific information on spatial and temporal variability of airborne NO3- and NH4+ concentrations that act as precursors of particulate matter, affecting air quality and subsequently human health.
Collapse
Affiliation(s)
- Daniel Niepsch
- Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK.
| | - Leon J Clarke
- Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK.
| | - Konstantinos Tzoulas
- Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK.
| | - Gina Cavan
- Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK.
| |
Collapse
|
19
|
Sathee L, Krishna GK, Adavi SB, Jha SK, Jain V. Role of protein phosphatases in the regulation of nitrogen nutrition in plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2911-2922. [PMID: 35035144 PMCID: PMC8720119 DOI: 10.1007/s12298-021-01115-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/18/2021] [Accepted: 12/07/2021] [Indexed: 05/20/2023]
Abstract
The reversible protein phosphorylation and dephosphorylation mediated by protein kinases and phosphatases regulate different biological processes and their response to environmental cues, including nitrogen (N) availability. Nitrate assimilation is under the strict control of phosphorylation-dephosphorylation mediated post-translational regulation. The protein phosphatase family with approximately 150 members in Arabidopsis and around 130 members in rice is a promising player in N uptake and assimilation pathways. Protein phosphatase 2A (PP2A) enhances the activation of nitrate reductase (NR) by deactivating SnRK1 and reduces the binding of inhibitory 14-3-3 proteins on NR. The functioning of nitrate transporter NPF6.3 is regulated by phosphorylation of CBL9 (Calcineurin B like protein 9) and CIPK23 (CBL interacting protein kinase 23) module. Phosphorylation by CIPK23 inhibits the activity of NPF6.3, whereas protein phosphatases (PP2C) enhance the NPF6.3-dependent nitrate sensing. PP2Cs and CIPK23 also regulate ammonium transporters (AMTs). Under either moderate ammonium supply or high N demand, CIPK23 is bound and inactivated by PP2Cs. Ammonium uptake is mediated by nonphosphorylated and active AMT1s. Whereas, under high ammonium availability, CIPK23 gets activated and phosphorylate AMT1;1 and AMT1;2 rendering them inactive. Recent reports suggest the critical role of protein phosphatases in regulating N use efficiency (NUE). In rice, PP2C9 regulates NUE by improving N uptake and assimilation. Comparative leaf proteome of wild type and PP2C9 over-expressing transgenic rice lines showed 30 differentially expressed proteins under low N level. These proteins are involved in photosynthesis, N metabolism, signalling, and defence.
Collapse
Affiliation(s)
- Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012 India
| | - G. K. Krishna
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012 India
- Department of Plant Physiology, College of Agriculture, Kerala Agricultural University, Thrissur, 680 656 India
| | - Sandeep B. Adavi
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012 India
| | - Shailendra K. Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012 India
| | - Vanita Jain
- Agricultural Education Division, ICAR, KAB-II, New Delhi, 110 012 India
| |
Collapse
|
20
|
Zhou JY, Hao DL, Yang GZ. Regulation of Cytosolic pH: The Contributions of Plant Plasma Membrane H +-ATPases and Multiple Transporters. Int J Mol Sci 2021; 22:12998. [PMID: 34884802 PMCID: PMC8657649 DOI: 10.3390/ijms222312998] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Cytosolic pH homeostasis is a precondition for the normal growth and stress responses in plants, and H+ flux across the plasma membrane is essential for cytoplasmic pH control. Hence, this review focuses on seven types of proteins that possess direct H+ transport activity, namely, H+-ATPase, NHX, CHX, AMT, NRT, PHT, and KT/HAK/KUP, to summarize their plasma-membrane-located family members, the effect of corresponding gene knockout and/or overexpression on cytosolic pH, the H+ transport pathway, and their functional regulation by the extracellular/cytosolic pH. In general, H+-ATPases mediate H+ extrusion, whereas most members of other six proteins mediate H+ influx, thus contributing to cytosolic pH homeostasis by directly modulating H+ flux across the plasma membrane. The fact that some AMTs/NRTs mediate H+-coupled substrate influx, whereas other intra-family members facilitate H+-uncoupled substrate transport, demonstrates that not all plasma membrane transporters possess H+-coupled substrate transport mechanisms, and using the transport mechanism of a protein to represent the case of the entire family is not suitable. The transport activity of these proteins is regulated by extracellular and/or cytosolic pH, with different structural bases for H+ transfer among these seven types of proteins. Notably, intra-family members possess distinct pH regulatory characterization and underlying residues for H+ transfer. This review is anticipated to facilitate the understanding of the molecular basis for cytosolic pH homeostasis. Despite this progress, the strategy of their cooperation for cytosolic pH homeostasis needs further investigation.
Collapse
Affiliation(s)
- Jin-Yan Zhou
- Jiangsu Vocational College of Agriculture and Forest, Jurong 212400, China;
| | - Dong-Li Hao
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Guang-Zhe Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China;
| |
Collapse
|
21
|
Wang W, Li A, Zhang Z, Chu C. Posttranslational Modifications: Regulation of Nitrogen Utilization and Signaling. PLANT & CELL PHYSIOLOGY 2021; 62:543-552. [PMID: 33493288 PMCID: PMC8462382 DOI: 10.1093/pcp/pcab008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/07/2021] [Indexed: 05/08/2023]
Abstract
Nitrogen is the most important macroelement required for the composition of key molecules, such as nucleic acids, proteins and other organic compounds. As sessile organisms, plants have evolved sophisticated mechanisms to acquire nitrogen for their normal growth and development. Besides the transcriptional and translational regulation of nitrogen uptake, assimilation, remobilization and signal transduction, posttranslational modifications (PTMs) are shown to participate in these processes in plants. In addition to alterations in protein abundance, PTMs may dramatically increase the complexity of the proteome without the concomitant changes in gene transcription and have emerged as an important type of protein regulation in terms of protein function, subcellular localization and protein activity and stability. Herein, we briefly summarize recent advances on the posttranslational regulation of nitrogen uptake, assimilation, remobilization and nitrogen signaling and discuss the underlying mechanisms of PTMs as well as the signal output of such PTMs. Understanding these regulation mechanisms will provide novel insights for improving the nitrogen use efficiency of plants.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Aifu Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhihua Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Chengcai Chu
- * Corresponding author: E-mail, ; Fax, +86-10-64806608
| |
Collapse
|
22
|
Bollam S, Romana KK, Rayaprolu L, Vemula A, Das RR, Rathore A, Gandham P, Chander G, Deshpande SP, Gupta R. Nitrogen Use Efficiency in Sorghum: Exploring Native Variability for Traits Under Variable N-Regimes. FRONTIERS IN PLANT SCIENCE 2021; 12:643192. [PMID: 33968102 PMCID: PMC8097177 DOI: 10.3389/fpls.2021.643192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Exploring the natural genetic variability and its exploitation for improved Nitrogen Use Efficiency (NUE) in sorghum is one of the primary goals in the modern crop improvement programs. The integrated strategies include high-throughput phenotyping, next generation sequencing (NGS)-based genotyping technologies, and a priori selected candidate gene studies that help understand the detailed physiological and molecular mechanisms underpinning this complex trait. A set of sixty diverse sorghum genotypes was evaluated for different vegetative, reproductive, and yield traits related to NUE in the field (under three N regimes) for two seasons. Significant variations for different yield and related traits under 0 and 50% N confirmed the availability of native genetic variability in sorghum under low N regimes. Sorghum genotypes with distinct genetic background had interestingly similar NUE associated traits. The Genotyping-By-Sequencing based SNPs (>89 K) were used to study the population structure, and phylogenetic groupings identified three distinct groups. The information of grain N and stalk N content of the individuals covered on the phylogenetic groups indicated randomness in the distribution for adaptation under variable N regimes. This study identified promising sorghum genotypes with consistent performance under varying environments, with buffer capacity for yield under low N conditions. We also report better performing genotypes for varied production use-grain, stover, and dual-purpose sorghum having differential adaptation response to NUE traits. Expression profiling of NUE associated genes in shoot and root tissues of contrasting lines (PVK801 and HDW703) grown in varying N conditions revealed interesting outcomes. Root tissues of contrasting lines exhibited differential expression profiles for transporter genes [ammonium transporter (SbAMT), nitrate transporters (SbNRT)]; primary assimilatory (glutamine synthetase (SbGS), glutamate synthase (SbGOGAT[NADH], SbGOGAT[Fd]), assimilatory genes [nitrite reductase (SbNiR[NADH]3)]; and amino acid biosynthesis associated gene [glutamate dehydrogenase (SbGDH)]. Identification and expression profiling of contrasting sorghum genotypes in varying N dosages will provide new information to understand the response of NUE genes toward adaptation to the differential N regimes in sorghum. High NUE genotypes identified from this study could be potential candidates for in-depth molecular analysis and contribute toward the development of N efficient sorghum cultivars.
Collapse
|
23
|
Nitrogen Uptake in Plants: The Plasma Membrane Root Transport Systems from a Physiological and Proteomic Perspective. PLANTS 2021; 10:plants10040681. [PMID: 33916130 PMCID: PMC8066207 DOI: 10.3390/plants10040681] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022]
Abstract
Nitrogen nutrition in plants is a key determinant in crop productivity. The availability of nitrogen nutrients in the soil, both inorganic (nitrate and ammonium) and organic (urea and free amino acids), highly differs and influences plant physiology, growth, metabolism, and root morphology. Deciphering this multifaceted scenario is mandatory to improve the agricultural sustainability. In root cells, specific proteins located at the plasma membrane play key roles in the transport and sensing of nitrogen forms. This review outlines the current knowledge regarding the biochemical and physiological aspects behind the uptake of the individual nitrogen forms, their reciprocal interactions, the influences on root system architecture, and the relations with other proteins sustaining fundamental plasma membrane functionalities, such as aquaporins and H+-ATPase. This topic is explored starting from the information achieved in the model plant Arabidopsis and moving to crops in agricultural soils. Moreover, the main contributions provided by proteomics are described in order to highlight the goals and pitfalls of this approach and to get new hints for future studies.
Collapse
|
24
|
Ijato T, Porras-Murillo R, Ganz P, Ludewig U, Neuhäuser B. Concentration-dependent physiological and transcriptional adaptations of wheat seedlings to ammonium. PHYSIOLOGIA PLANTARUM 2021; 171:328-342. [PMID: 32335941 DOI: 10.1111/ppl.13113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/20/2020] [Indexed: 05/24/2023]
Abstract
Conventional wheat production utilizes fertilizers of various nitrogen forms. Sole ammonium nutrition has been shown to improve grain quality, despite the potential toxic effects of ammonium at elevated concentrations. We therefore investigated the responses of young seedlings of winter wheat to different nitrogen sources (NH4 NO3 = NN, NH4 Cl = NNH4 + and KNO3 = NNO3 - ). Growth with ammonium-nitrate was superior. However, an elevated concentration of sole ammonium caused severe toxicity symptoms and significant decreases in biomass accumulation. We addressed the molecular background of the ammonium uptake by gathering an overview of the ammonium transporter (AMT) of wheat (Triticum aestivum) and characterized the putative high-affinity TaAMT1 transporters. TaAMT1;1 and TaAMT1;2 were both active in yeast and Xenopus laevis oocytes and showed saturating high-affinity ammonium transport characteristics. Interestingly, nitrogen starvation, as well as ammonium resupply to starved seedlings triggered an increase in the expression of the TaAMT1s. The presence of nitrate seamlessly repressed their expression. We conclude that wheat showed the ability to respond robustly to sole ammonium supply by adopting distinct physiological and transcriptional responses.
Collapse
Affiliation(s)
- Toyosi Ijato
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Fruwirthstr. 20, 70593, Stuttgart, Germany
| | - Romano Porras-Murillo
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Fruwirthstr. 20, 70593, Stuttgart, Germany
| | - Pascal Ganz
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Fruwirthstr. 20, 70593, Stuttgart, Germany
| | - Uwe Ludewig
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Fruwirthstr. 20, 70593, Stuttgart, Germany
| | - Benjamin Neuhäuser
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Fruwirthstr. 20, 70593, Stuttgart, Germany
| |
Collapse
|
25
|
Responses of Temperate Forests to Nitrogen Deposition: Testing the Explanatory Power of Modeled Deposition Datasets for Vegetation Gradients. Ecosystems 2020. [DOI: 10.1007/s10021-020-00579-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractEutrophication due to increased nitrogen concentrations is known to alter species composition and threaten sensitive habitat types. The contribution of atmospheric nitrogen deposition to eutrophication is often difficult to determine. Various deposition models have been developed to estimate the amount of nitrogen deposited for both entire regions and different landscape surface types. The question arises whether the resulting deposition maps allow direct conclusions about the risk of eutrophication-related changes in the understory vegetation composition and diversity in nitrogen-sensitive forest ecosystems. We combined vegetation and soil data recorded across eutrophication gradients in ten oligo-mesotrophic forest types in southwest Germany with datasets from two different deposition models specifically fitted for forests in our study region. Altogether, 153 forest stands, with three sampling replicates each, were examined. Linear mixed-effect models and NMDS analyses revealed that other site factors, in particular the soil C/N ratio, soil pH and canopy cover, played a greater role in explaining vegetation gradients than nitrogen deposition. The latter only rarely had effects on species richness (positive), nitrophyte cover (positive or negative) and the cover of sensitive character species (negative). These effects varied depending on the deposition model used and the forest types examined. No effects of nitrogen deposition on average Ellenberg N values were found. The results reflect the complex situation in forests where nitrogen availability is not only influenced by deposition but also by nitrogen mineralization and retention which depend on soil type, pH and (micro)climate. This context dependency must be regarded when evaluating the effects of nitrogen deposition.
Collapse
|
26
|
Abstract
AbstractIt is crucial for the growth and development of an organism whether ammonium is transported across its membranes in a form of NH4+ or NH3. The transport of both molecules follows different pH-dependent gradients across membranes and transport of both substrates differentially affects the internal and external pH. As a consequence, they directly influence the physiology and organism development. CaMep2 from Candida albicans shows a dual transceptor function in ammonium transport and sensing. CaMep2 senses low ammonium availability and induces filamentous growth. CaMep1, by contrast, is only active in transport, but not involved in ammonium signaling. Here, both proteins were heterologously expressed in Xenopus laevis oocytes. This study identified electrogenic NH4+ transport by CaMep1 and electroneutral NH3 transport by CaMep2, which might be a prerequisite for the induction of pseudohyphal growth.
Collapse
|
27
|
Han X, Wu K, Fu X, Liu Q. Improving coordination of plant growth and nitrogen metabolism for sustainable agriculture. ABIOTECH 2020; 1:255-275. [PMID: 36304130 PMCID: PMC9590520 DOI: 10.1007/s42994-020-00027-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/20/2020] [Indexed: 01/25/2023]
Abstract
The agricultural green revolution of the 1960s boosted cereal crop yield was in part due to cultivation of semi-dwarf green revolution varieties. The semi-dwarf plants resist lodging and require high nitrogen (N) fertilizer inputs to maximize yield. To produce higher grain yield, inorganic fertilizer has been overused by Chinese farmers in intensive crop production. With the ongoing increase in the food demand of global population and the environmental pollution, improving crop productivity with reduced N supply is a pressing challenge. Despite a great deal of research efforts, to date only a few genes that improve N use efficiency (NUE) have been identified. The molecular mechanisms underlying the coordination of plant growth, carbon (C) and N assimilation is still not fully understood, thus preventing significant improvement. Recent advances have shed light on how explore NUE within an overall plant biology system that considered the co-regulation of plant growth, C and N metabolisms as a whole, rather than focusing specifically on N uptake and assimilation. There are several potential approaches to improve NUE discussed in this review. Increasing knowledge of how plants sense and respond to changes in N availability, as well as identifying new targets for breeding strategies to simultaneously improve NUE and grain yield, could usher in a new green revolution.
Collapse
Affiliation(s)
- Xiang Han
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Kun Wu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xiangdong Fu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101 China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qian Liu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
28
|
Qin DB, Liu MY, Yuan L, Zhu Y, Li XD, Chen LM, Wang Y, Chen YF, Wu WH, Wang Y. CALCIUM-DEPENDENT PROTEIN KINASE 32-mediated phosphorylation is essential for the ammonium transport activity of AMT1;1 in Arabidopsis roots. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5087-5097. [PMID: 32443150 DOI: 10.1093/jxb/eraa249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/18/2020] [Indexed: 05/20/2023]
Abstract
Protein kinase-mediated phosphorylation modulates the absorption of many nutrients in plants. CALCIUM-DEPENDENT PROTEIN KINASES (CPKs) are key players in plant signaling to translate calcium signals into diverse physiological responses. However, the regulatory role of CPKs in ammonium uptake remains largely unknown. Here, using methylammonium (MeA) toxicity screening, CPK32 was identified as a positive regulator of ammonium uptake in roots. CPK32 specifically interacted with AMMONIUM TRANSPORTER 1;1 (AMT1;1) and phosphorylated AMT1;1 at the non-conserved serine residue Ser450 in the C-terminal domain. Functional analysis in Xenopus oocytes showed that co-expression of CPK32 and AMT1;1 significantly enhanced the AMT1;1-mediated inward ammonium currents. In transgenic plants, the phosphomimic variant AMT1;1S450E, but not the non-phosphorylatable variant AMT1;1S450A, fully complemented the MeA insensitivity and restored high-affinity 15NH4+ uptake in both amt1;1 and cpk32 mutants. Moreover, in the CPK32 knockout background, AMT1;1 lost its ammonium transport activity entirely. These results indicate that CPK32 is a crucial positive regulator of ammonium uptake in roots and the ammonium transport activity of AMT1;1 is dependent on CPK32-mediated phosphorylation.
Collapse
Affiliation(s)
- De-Bin Qin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Meng-Yuan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lixing Yuan
- Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Yun Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xi-Dong Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Li-Mei Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yi-Fang Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wei-Hua Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yang Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
29
|
Hao DL, Zhou JY, Yang SY, Huang YN, Su YH. Functional and Regulatory Characterization of Three AMTs in Maize Roots. FRONTIERS IN PLANT SCIENCE 2020; 11:884. [PMID: 32676086 PMCID: PMC7333355 DOI: 10.3389/fpls.2020.00884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Maize grows in nitrate-dominated dryland soils, but shortly upon localized dressing of nitrogen fertilizers, ammonium is retained as a noticeable form of nitrogen source available to roots. Thus in addition to nitrate, the absorption of ammonium can be an important strategy that promotes rapid plant growth at strong nitrogen demanding stages. The present study reports the functional characterization of three root-expressed ammonium transporters (AMTs), aiming at finding out functional and regulatory properties that correlate with efficient nitrogen acquisition of maize. Using a stable electrophysiological recording method we previously established in Xenopus laevis oocytes that integrates the capture of currents in response to voltage ramps with onsite stability controls, we demonstrate that all three ZmAMT1s engage NH4 + uniporting as ammonium uptake mechanisms. The K m value for ZmAMT1.1a, 1.1b, or ZmAMT1.3 is, respectively, 9.9, 15.6, or 18.6 μM, indicating a typical high-affinity transport of NH4 + ions. Importantly, the uptake currents of these ZmAMT1s are markedly amplified upon extracellular acidification. A pH drop from 7.4 to 5.4 results in a 140.8%, 64.1% or a 120.7% increase of ammonium uptake activity through ZmAMT1.1a, 1.1b, or ZmAMT1.3. Since ammonium uptake by plant roots accompanies a spontaneous acidification to the root medium, the functional promotion of ZmAMT1.1a, 1.1b, and ZmAMT1.3 by low pH is in line with the facilitated ammonium uptake activity in maize roots. Furthermore, the expression of the three ZmAMT1 genes is induced under ammonium-dominated conditions. Thus we describe a facilitated ammonium uptake strategy in maize roots by functional and expression regulations of ZmAMT1 transporters that may coordinate with efficient acquisition of this form of nitrogen source when available.
Collapse
|
30
|
Hao DL, Zhou JY, Yang SY, Qi W, Yang KJ, Su YH. Function and Regulation of Ammonium Transporters in Plants. Int J Mol Sci 2020; 21:E3557. [PMID: 32443561 PMCID: PMC7279009 DOI: 10.3390/ijms21103557] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Ammonium transporter (AMT)-mediated acquisition of ammonium nitrogen from soils is essential for the nitrogen demand of plants, especially for those plants growing in flooded or acidic soils where ammonium is dominant. Recent advances show that AMTs additionally participate in many other physiological processes such as transporting ammonium from symbiotic fungi to plants, transporting ammonium from roots to shoots, transferring ammonium in leaves and reproductive organs, or facilitating resistance to plant diseases via ammonium transport. Besides being a transporter, several AMTs are required for the root development upon ammonium exposure. To avoid the adverse effects of inadequate or excessive intake of ammonium nitrogen on plant growth and development, activities of AMTs are fine-tuned not only at the transcriptional level by the participation of at least four transcription factors, but also at protein level by phosphorylation, pH, endocytosis, and heterotrimerization. Despite these progresses, it is worth noting that stronger growth inhibition, not facilitation, unfortunately occurs when AMT overexpression lines are exposed to optimal or slightly excessive ammonium. This implies that a long road remains towards overcoming potential limiting factors and achieving AMT-facilitated yield increase to accomplish the goal of persistent yield increase under the present high nitrogen input mode in agriculture.
Collapse
Affiliation(s)
- Dong-Li Hao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (D.-L.H.); (J.-Y.Z.); (S.-Y.Y.)
| | - Jin-Yan Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (D.-L.H.); (J.-Y.Z.); (S.-Y.Y.)
| | - Shun-Ying Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (D.-L.H.); (J.-Y.Z.); (S.-Y.Y.)
| | - Wei Qi
- College of Resources and Environment, Shandong Agricultural University, Taian 271018, China;
| | - Ke-Jun Yang
- Agro-Tech Extension and Service Center, Zhucheng 262200, China;
| | - Yan-Hua Su
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (D.-L.H.); (J.-Y.Z.); (S.-Y.Y.)
| |
Collapse
|
31
|
Zhang Y, Wu X, Yuan L. Distinct non-coding RNAs confer root-dependent sense transgene-induced post-transcriptional gene silencing and nitrogen-dependent post-transcriptional regulation to AtAMT1;1 transcripts in Arabidopsis roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:823-837. [PMID: 31901180 DOI: 10.1111/tpj.14667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
High-affinity ammonium uptake in roots mediate by AMT1-type ammonium transporters, which are tightly controlled at multiple regulatory levels for adapting various nitrogen availability. For Arabidopsis AtAMT1;1 gene, in addition to the transcriptional and post-translational controls, an organ-dependent and N-dependent post-transcriptional regulation was suggested as an additional regulatory step for fine tuning ammonium uptake, but the underlying mechanisms remain to be elucidated. Here, we showed that degradation of AtAMT1;1 transcript in roots of Pro35s:AtAMT1;1-transformed atamt1;1-1 Arabidopsis plants resulted from RDR6-dependent sense transgene-induced post-transcriptional gene silencing (S-PTGS). The siRNAs for S-PTGS may derive from the aberrant RNA, of which the production was co-determined by sequence feature and excessive expression of AtAMT1;1. Switching to the expression of AtAMT1;1 driven by ProAtUBQ10 or of AtAMT1;1 mutated at two siRNA-targeted hotspots reduced AtAMT1;1-specific siRNAs and overcame S-PTGS in roots. In roots of these lines, however, the steady-state transcript levels of AtAMT1;1 still significantly decreased under conditions of N-sufficiency compared with N-deficiency, confirming a N-dependent post-transcriptional regulatory manner. A crucial role of the 207-bp 3'-end sequence of AtAMT1;1 was further demonstrated by N-dependent accumulation of chimeric-AtAMT1;1 transcript in T-DNA insertion lines and of GFP-tagged chimeric-AtAMT1;1 transcript in transgenic lines. A novel non-coding RNA (ncRNA), which was highly abundant in N-sufficient roots, may target the above-identified 3'-end region for the degrading AtAMT1;1 transcript. This degradation could be prevented by a mutation on the AtAMT1;1 transcript at a potential cleavage site (+1458). These results suggested two distinct mechanisms of regulating AtAMT1;1 mRNA turnover by ncRNA for strictly control of ammonium uptake in roots.
Collapse
Affiliation(s)
- Yongjian Zhang
- Key Laboratory of Plant-Soil Interaction, MOE, College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China
| | - Xiangyu Wu
- Key Laboratory of Plant-Soil Interaction, MOE, College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China
| | - Lixing Yuan
- Key Laboratory of Plant-Soil Interaction, MOE, College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China
| |
Collapse
|
32
|
Ganz P, Ijato T, Porras-Murrilo R, Stührwohldt N, Ludewig U, Neuhäuser B. A twin histidine motif is the core structure for high-affinity substrate selection in plant ammonium transporters. J Biol Chem 2020; 295:3362-3370. [PMID: 31988244 DOI: 10.1074/jbc.ra119.010891] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/22/2020] [Indexed: 01/03/2023] Open
Abstract
Ammonium transporters (AMT), methylamine permeases (Mep), and the more distantly related rhesus factors (Rh) are trimeric membrane proteins present in all domains of life. AMT/Mep/Rhs are highly selective membrane proteins required for ammonium uptake or release, and they efficiently exclude the similarly sized K+ ion. Previously reported crystal structures have revealed that each transporter subunit contains a unique hydrophobic but occluded central pore, but it is unclear whether the base (NH3) or NH3 coupled with an H+ are transported. Here, using expression of two plant AMTs (AtAMT1;2 and AMT2) in budding yeast, we found that systematic replacements in the conserved twin-histidine motif, a hallmark of most AMT/Mep/Rh, alter substrate recognition, transport capacities, N isotope selection, and selectivity against K+ AMT-specific differences were found for histidine variants. Variants that completely lost ammonium N isotope selection, a feature likely associated with NH4 + deprotonation during passage, substantially transported K+ in addition to NH4 + Of note, the twin-histidine motif was not essential for ammonium transport. However, it conferred key AMT features, such as high substrate affinity and selectivity against alkali cations via an NH4 + deprotonation mechanism. Our findings indicate that the twin-His motif is the core structure responsible for substrate deprotonation and isotopic preferences in AMT pores and that decreased deprotonation capacity is associated with reduced selectivity against K+ We conclude that optimization for ammonium transport in plant AMT represents a compromise between substrate deprotonation for optimal selectivity and high substrate affinity and transport rates.
Collapse
Affiliation(s)
- Pascal Ganz
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Toyosi Ijato
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Romano Porras-Murrilo
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Nils Stührwohldt
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Uwe Ludewig
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Benjamin Neuhäuser
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, 70593 Stuttgart, Germany.
| |
Collapse
|
33
|
CBL–CIPK module-mediated phosphoregulation: facts and hypothesis. Biochem J 2020; 477:853-871. [DOI: 10.1042/bcj20190339] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/19/2022]
Abstract
Calcium (Ca2+) signaling is a versatile signaling network in plant and employs very efficient signal decoders to transduce the encoded message. The CBL–CIPK module is one of the sensor-relay decoders that have probably evolved with the acclimatization of land plant. The CBLs are unique proteins with non-canonical Ca2+ sensing EF-hands, N-terminal localization motif and a C-terminal phosphorylation motif. The partner CIPKs are Ser/Thr kinases with kinase and regulatory domains. Phosphorylation plays a major role in the functioning of the module. As the module has a functional kinase to transduce signal, it employs phosphorylation as a preferred mode for modulation of targets as well as its interaction with CBL. We analyze the data on the substrate regulation by the module from the perspective of substrate phosphorylation. We have also predicted some of the probable sites in the identified substrates that may be the target of the CIPK mediated phosphorylation. In addition, phosphatases have been implicated in reversing the CIPK mediated phosphorylation of substrates. Therefore, we have also presented the role of phosphatases in the modulation of the CBL–CIPK and its targets. We present here an overview of the phosphoregulation mechanism of the CBL–CIPK module.
Collapse
|
34
|
Hao DL, Yang SY, Liu SX, Zhou JY, Huang YN, Véry AA, Sentenac H, Su YH. Functional Characterization of the Arabidopsis Ammonium Transporter AtAMT1;3 With the Emphasis on Structural Determinants of Substrate Binding and Permeation Properties. FRONTIERS IN PLANT SCIENCE 2020; 11:571. [PMID: 32528489 PMCID: PMC7256485 DOI: 10.3389/fpls.2020.00571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/17/2020] [Indexed: 05/13/2023]
Abstract
AtAMT1;3 is a major contributor to high-affinity ammonium uptake in Arabidopsis roots. Using a stable electrophysiological recording strategy, we demonstrate in Xenopus laevis oocytes that AtAMT1;3 functions as a typical high-affinity NH4 + uniporter independent of protons and Ca2+. The findings that AtAMT1;3 transports methylammonium (MeA+, a chemical analog of NH4 +) with extremely low affinity (K m in the range of 2.9-6.1 mM) led to investigate the mechanisms underlying substrate binding. Homologous modeling and substrate docking analyses predicted that the deduced substrate binding motif of AtAMT1;3 facilitates the binding of NH4 + ions but loosely accommodates the binding of MeA+ to a more superficial location of the permeation pathway. Amongst point mutations tested based on this analysis, P181A resulted in both significantly increased current amplitudes and substrate binding affinity, whereas F178I led to opposite effects. Thus these 2 residues, which flank W179, a major structural component of the binding site, are also important determinants of AtAMT1;3 transport capacity by being involved in substrate binding. The Q365K mutation neighboring the histidine residue H378, which confines the substrate permeation tunnel, affected only the current amplitudes but not the binding affinities, providing evidence that Q365 mainly controls the substrate diffusion rate within the permeation pathway.
Collapse
Affiliation(s)
- Dong-Li Hao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Shun-Ying Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Shu-Xia Liu
- Department of Computational Biology, Beijing Computing Center, Beijing, China
| | - Jin-Yan Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Ya-Nan Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Anne-Aliénor Véry
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Hervé Sentenac
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
- *Correspondence: Hervé Sentenac,
| | - Yan-Hua Su
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- Yan-Hua Su,
| |
Collapse
|
35
|
A pore-occluding phenylalanine gate prevents ion slippage through plant ammonium transporters. Sci Rep 2019; 9:16765. [PMID: 31727964 PMCID: PMC6856177 DOI: 10.1038/s41598-019-53333-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/31/2019] [Indexed: 01/08/2023] Open
Abstract
Throughout all kingdoms of life, highly conserved transport proteins mediate the passage of ammonium across membranes. These transporters share a high homology and a common pore structure. Whether NH3, NH4+ or NH3 + H+ is the molecularly transported substrate, still remains unclear for distinct proteins. High-resolution protein structures of several ammonium transporters suggested two conserved pore domains, an external NH4+ recruitment site and a pore-occluding twin phenylalanine gate, to take over a crucial role in substrate determination and selectivity. Here, we show that while the external recruitment site seems essential for AtAMT1;2 function, single mutants of the double phenylalanine gate were not reduced in their ammonium transport capacity. Despite an unchanged ammonium transport rate, a single mutant of the inner phenylalanine showed reduced N-isotope selection that was proposed to be associated with ammonium deprotonation during transport. Even though ammonium might pass the mutant AMT pore in the ionic form, the transporter still excluded potassium ions from being transported. Our results, highlight the importance of the twin phenylalanine gate in blocking uncontrolled ammonium ion flux.
Collapse
|
36
|
Wu X, Liu T, Zhang Y, Duan F, Neuhäuser B, Ludewig U, Schulze WX, Yuan L. Ammonium and nitrate regulate NH4+ uptake activity of Arabidopsis ammonium transporter AtAMT1;3 via phosphorylation at multiple C-terminal sites. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4919-4930. [PMID: 31087098 PMCID: PMC6760267 DOI: 10.1093/jxb/erz230] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/04/2019] [Indexed: 05/03/2023]
Abstract
In plants, nutrient transporters require tight regulation to ensure optimal uptake in complex environments. The activities of many nutrient transporters are post-translationally regulated by reversible phosphorylation, allowing rapid adaptation to variable environmental conditions. Here, we show that the Arabidopsis root epidermis-expressed ammonium transporter AtAMT1;3 was dynamically (de-)phosphorylated at multiple sites in the cytosolic C-terminal region (CTR) responding to ammonium and nitrate signals. Under ammonium resupply rapid phosphorylation of a Thr residue (T464) in the conserved part of the CTR (CTRC) effectively inhibited AtAMT1;3-dependent NH4+ uptake. Moreover, phosphorylation of Thr (T494), one of three phosphorylation sites in the non-conserved part of the CTR (CRTNC), moderately decreased the NH4+ transport activity of AtAMT1;3, as deduced from functional analysis of phospho-mimic mutants in yeast, oocytes, and transgenic Arabidopsis. Double phospho-mutants indicated a role of T494 in fine-tuning the NH4+ transport activity when T464 was non-phosphorylated. Transient dephosphorylation of T494 with nitrate resupply closely paralleled a transient increase in ammonium uptake. These results suggest that T464 phosphorylation at the CTRC acts as a prime switch to prevent excess ammonium influx, while T494 phosphorylation at the CTRNC fine tunes ammonium uptake in response to nitrate. This provides a sophisticated regulatory mechanism for plant ammonium transporters to achieve optimal ammonium uptake in response to various nitrogen forms.
Collapse
Affiliation(s)
- Xiangyu Wu
- Key Lab of Plant-Soil Interaction, MOE, College Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Ting Liu
- Key Lab of Plant-Soil Interaction, MOE, College Resources and Environmental Sciences, China Agricultural University, Beijing, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Yongjian Zhang
- Key Lab of Plant-Soil Interaction, MOE, College Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Fengying Duan
- Key Lab of Plant-Soil Interaction, MOE, College Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Benjamin Neuhäuser
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - Uwe Ludewig
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - Waltraud X Schulze
- Institute for Physiology and Biotechnology of Plants, Plant Systems Biology, University of Hohenheim, Garbenstraße, Stuttgart, Germany
| | - Lixing Yuan
- Key Lab of Plant-Soil Interaction, MOE, College Resources and Environmental Sciences, China Agricultural University, Beijing, China
- Correspondence:
| |
Collapse
|
37
|
Tornkvist A, Liu C, Moschou PN. Proteolysis and nitrogen: emerging insights. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2009-2019. [PMID: 30715465 DOI: 10.1093/jxb/erz024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/10/2019] [Indexed: 05/07/2023]
Abstract
Nitrogen (N) is a core component of fertilizers used in modern agriculture to increase yields and thus to help feed a growing global population. However, this comes at a cost to the environment, through run-off of excess N as a result of poor N-use efficiency (NUE) by crops. An obvious remedy to this problem would therefore be the improvement of NUE, which requires advancing our understanding on N homeostasis, sensing, and uptake. Proteolytic pathways are linked to N homeostasis as they recycle proteins that contain N and carbon; however, emerging data suggest that their functions extend beyond this simple recycling. Here, we highlight roles of proteolytic pathways in non-symbiotic and symbiotic N uptake and in systemic N sensing. We also offer a novel view in which we suggest that proteolytic pathways have roles in N homeostasis that differ from their accepted function in recycling.
Collapse
Affiliation(s)
- Anna Tornkvist
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Chen Liu
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Panagiotis N Moschou
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece
| |
Collapse
|
38
|
Mirandela GD, Tamburrino G, Hoskisson PA, Zachariae U, Javelle A. The lipid environment determines the activity of the Escherichia coli ammonium transporter AmtB. FASEB J 2019; 33:1989-1999. [PMID: 30211659 PMCID: PMC6338640 DOI: 10.1096/fj.201800782r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/14/2018] [Indexed: 12/22/2022]
Abstract
The movement of ammonium across biologic membranes is a fundamental process in all living organisms and is mediated by the ubiquitous ammonium transporter/methylammonium permease/rhesus protein (Amt/Mep/Rh) family of transporters. Recent structural analysis and coupled mass spectrometry studies have shown that the Escherichia coli ammonium transporter AmtB specifically binds 1-palmitoyl-2-oleoyl phosphatidylglycerol (POPG). Upon POPG binding, several residues of AmtB undergo a small conformational change, which stabilizes the protein against unfolding. However, no studies have so far been conducted, to our knowledge, to explore whether POPG binding to AmtB has functional consequences. Here, we used an in vitro experimental assay with purified components, together with molecular dynamics simulations, to characterize the relation between POPG binding and AmtB activity. We show that the AmtB activity is electrogenic. Our results indicate that the activity, at the molecular level, of Amt in archaebacteria and eubacteria may differ. We also show that POPG is an important cofactor for AmtB activity and that, in the absence of POPG, AmtB cannot complete the full translocation cycle. Furthermore, our simulations reveal previously undiscovered POPG binding sites on the intracellular side of the lipid bilayer between the AmtB subunits. Possible molecular mechanisms explaining the functional role of POPG are discussed.-Mirandela, G. D., Tamburrino, G., Hoskisson, P. A., Zachariae, U., Javelle, A. The lipid environment determines the activity of the Escherichia coli ammonium transporter AmtB.
Collapse
Affiliation(s)
- Gaëtan Dias Mirandela
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Giulia Tamburrino
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Physics, School of Science and Engineering, University of Dundee, Dundee, United Kingdom
| | - Paul A. Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Ulrich Zachariae
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Physics, School of Science and Engineering, University of Dundee, Dundee, United Kingdom
| | - Arnaud Javelle
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
39
|
Bao Z, Bai J, Cui H, Gong C. A Missing Link in Radial Ion Transport: Ion Transporters in the Endodermis. FRONTIERS IN PLANT SCIENCE 2019; 10:713. [PMID: 31231406 PMCID: PMC6558311 DOI: 10.3389/fpls.2019.00713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/14/2019] [Indexed: 05/09/2023]
Abstract
In higher plants, roots have important functions, such as the acquisition of water and ions, as well as transportation into the aerial parts of the plant via the xylem vessels. Radial ion transport in the root is strongly regulated in the endodermis, which is characterized by the presence of the Casparian strip (CS) and suberin lamellae. Although tremendous progress has been made with regard to the ion transporters and endodermal cells, little is known about the relationship between the ion transporters in the endodermis and ion homeostasis in aboveground tissues. This review summarizes the current knowledge about the location of the ion transporters (or channels) in the endodermis. We mainly discuss the effects of mutants related to the CS and/or suberin formation on the role of endodermal ion transporters in ion homeostasis. We also wish to emphasize the critical role of endodermal ion transporters in the regulation of radial ion transport in the root.
Collapse
Affiliation(s)
- Zhulatai Bao
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Juan Bai
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Hongchang Cui
- College of Life Sciences, Northwest A&F University, Yangling, China
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
- *Correspondence: Hongchang Cui,
| | - Chunmei Gong
- College of Horticulture, Northwest A&F University, Yangling, China
- Chunmei Gong, ;
| |
Collapse
|
40
|
Guo H, Wang N, McDonald TR, Reinders A, Ward JM. MpAMT1;2 from Marchantia polymorpha is a High-Affinity, Plasma Membrane Ammonium Transporter. PLANT & CELL PHYSIOLOGY 2018; 59:997-1005. [PMID: 29444306 DOI: 10.1093/pcp/pcy038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 02/09/2018] [Indexed: 06/08/2023]
Abstract
Plant ammonium transporters in the AMT/MEP/Rh (ammonium transporter/methylammonium and ammonium permease/Rhesus factor) superfamily have only been previously characterized in flowering plants (angiosperms). Plant AMT1s are electrogenic, while plant AMT2s are electroneutral, and MEP and Rh transporters in other organisms are electroneutral. We analyzed the transport function of MpAMT1;2 from the basal land plant Marchantia polymorpha, a liverwort. MpAMT1;2 was shown to localize to the plasma membrane in Marchantia gametophyte thallus by stable transformation using a C-terminal citrine fusion. MpAMT1;2 expression was studied using quantitative real-time PCR and shown to be higher when plants were N deficient and lower when plants were grown on media containing ammonium, nitrate or the amino acid glutamine. Expression in Xenopus oocytes and analysis by electrophysiology revealed that MpAMT1;2 is an electrogenic ammonium transporter with a very high affinity for ammonium (7 µM at pH 5.6 and a membrane potential of -137 mV). A conserved inhibitory phosphorylation site identified in angiosperm AMT1s is also present in all AMT1s in Marchantia. Here we show that a phosphomimetic mutation T475D in MpAMT1;2 completely inhibits ammonium transport activity. The results indicate that MpAMT1;2 may be important for ammonium uptake into cells in the Marchantia thallus.
Collapse
Affiliation(s)
- Hanqing Guo
- Department of Plant and Microbial Biology, University of Minnesota Twin Cities, St. Paul, MN, USA
| | - Nu Wang
- Department of Plant and Microbial Biology, University of Minnesota Twin Cities, St. Paul, MN, USA
| | - Tami R McDonald
- Biology Department, St. Catherine University, St. Paul, MN, USA
| | - Anke Reinders
- Department of Plant and Microbial Biology, University of Minnesota Twin Cities, St. Paul, MN, USA
| | - John M Ward
- Department of Plant and Microbial Biology, University of Minnesota Twin Cities, St. Paul, MN, USA
| |
Collapse
|
41
|
Boo MV, Hiong KC, Goh EJK, Choo CYL, Wong WP, Chew SF, Ip YK. The ctenidium of the giant clam, Tridacna squamosa, expresses an ammonium transporter 1 that displays light-suppressed gene and protein expression and may be involved in ammonia excretion. J Comp Physiol B 2018; 188:765-777. [DOI: 10.1007/s00360-018-1161-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 04/03/2018] [Accepted: 04/15/2018] [Indexed: 01/31/2023]
|
42
|
Durant AC, Donini A. Ammonia Excretion in an Osmoregulatory Syncytium Is Facilitated by AeAmt2, a Novel Ammonia Transporter in Aedes aegypti Larvae. Front Physiol 2018; 9:339. [PMID: 29695971 PMCID: PMC5905399 DOI: 10.3389/fphys.2018.00339] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/20/2018] [Indexed: 02/03/2023] Open
Abstract
The larvae of the mosquito Aedes aegypti inhabit ammonia rich septic tanks in tropical regions of the world that make extensive use of these systems, explaining the prevalence of disease during dry seasons. Since ammonia (NH3/NH4+) is toxic to animals, an understanding of the physiological mechanisms of ammonia excretion permitting the survival of A. aegypti larvae in high ammonia environments is important. We have characterized a novel ammonia transporter, AeAmt2, belonging to the Amt/MEP/Rh family of ammonia transporters. Based on the amino acid sequence, the predicted topology of AeAmt2 consists of 11 transmembrane helices with an extracellular N-terminus and a cytoplasmic C-terminus region. Alignment of the predicted AeAmt2 amino acid sequence with other Amt/MEP proteins from plants, bacteria, and yeast highlights the presence of conserved residues characteristic of ammonia conducting channels in this protein. AeAmt2 is expressed in the ionoregulatory anal papillae of A. aegypti larvae where it is localized to the apical membrane of the epithelium. dsRNA-mediated knockdown of AeAmt2 results in a significant decrease in NH4+ efflux from the anal papillae, suggesting a key role in facilitating ammonia excretion. The effect of high environmental ammonia (HEA) on expression of AeAmt2, along with previously characterized AeAmt1, AeRh50-1, and AeRh50-2 in the anal papillae was investigated. We show that changes in expression of ammonia transporters occur in response to acute and chronic exposure to HEA, which reflects the importance of these transporters in the physiology of life in high ammonia habitats.
Collapse
Affiliation(s)
| | - Andrew Donini
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
43
|
Liu LH, Fan TF, Shi DX, Li CJ, He MJ, Chen YY, Zhang L, Yang C, Cheng XY, Chen X, Li DQ, Sun YC. Coding-Sequence Identification and Transcriptional Profiling of Nine AMTs and Four NRTs From Tobacco Revealed Their Differential Regulation by Developmental Stages, Nitrogen Nutrition, and Photoperiod. FRONTIERS IN PLANT SCIENCE 2018; 9:210. [PMID: 29563921 PMCID: PMC5850829 DOI: 10.3389/fpls.2018.00210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/05/2018] [Indexed: 05/31/2023]
Abstract
Although many members encoding different ammonium- and nitrate-transporters (AMTs, NRTs) were identified and functionally characterized from several plant species, little is known about molecular components for [Formula: see text]- and [Formula: see text] acquisition/transport in tobacco, which is often used as a plant model for biological studies besides its agricultural and industrial interest. We reported here the first molecular identification in tobacco (Nicotiana tabacum) of nine AMTs and four NRTs, which are respectively divided into four (AMT1/2/3/4) and two (NRT1/2) clusters and whose functionalities were preliminarily evidenced by heterologous functional-complementation in yeast or Arabidopsis. Tissue-specific transcriptional profiling by qPCR revealed that NtAMT1.1/NRT1.1 mRNA occurred widely in leaves, flower organs and roots; only NtAMT1.1/1.3/2.1NRT1.2/2.2 were strongly transcribed in the aged leaves, implying their dominant roles in N-remobilization from source/senescent tissues. N-dependent expression analysis showed a marked upregulation of NtAMT1.1 in the roots by N-starvation and resupply with N including [Formula: see text], suggesting a predominant action of NtAMT1.1 in [Formula: see text] uptake/transport whenever required. The obvious leaf-expression of other NtAMTs e.g., AMT1.2 responsive to N indicates a major place, where they may play transport roles associated with plant N-status and ([Formula: see text]-)N movement within aerial-parts. The preferentially root-specific transcription of NtNRT1.1/1.2/2.1 responsive to N argues their importance for root [Formula: see text] uptake and even sensing in root systems. Moreover, of all NtAMTs/NRTs, only NtAMT1.1/NRT1.1/1.2 showed their root-expression alteration in a typical diurnal-oscillation pattern, reflecting likely their significant roles in root N-acquisition regulated by internal N-demand influenced by diurnal-dependent assimilation and translocation of carbohydrates from shoots. This suggestion could be supported at least in part by sucrose- and MSX-affected transcriptional-regulation of NtNRT1.1/1.2. Thus, present data provide valuable molecular bases for the existence of AMTs/NRTs in tobacco, promoting a deeper understanding of their biological functions.
Collapse
Affiliation(s)
- Lai-Hua Liu
- Department of Crop Breeding, College of Agriculture Sciences Hunan Agricultural University, Changsha, China
- Department of Plant Nutrition, College of Resources and Environmental Sciences China Agricultural University, Beijing, China
| | - Teng-Fei Fan
- Department of Plant Nutrition, College of Resources and Environmental Sciences China Agricultural University, Beijing, China
| | - Dong-Xue Shi
- Department of Plant Nutrition, College of Resources and Environmental Sciences China Agricultural University, Beijing, China
| | - Chang-Jun Li
- Institute of Tobacco Research of Chongqing Tobacco Company China Tobacco Corporation, Chongqing, China
| | - Ming-Jie He
- Department of Crop Breeding, College of Agriculture Sciences Hunan Agricultural University, Changsha, China
| | - Yi-Yin Chen
- Institute of Tobacco Research of Chongqing Tobacco Company China Tobacco Corporation, Chongqing, China
| | - Lei Zhang
- Department of Plant Nutrition, College of Resources and Environmental Sciences China Agricultural University, Beijing, China
| | - Chao Yang
- Institute of Tobacco Research of Chongqing Tobacco Company China Tobacco Corporation, Chongqing, China
| | - Xiao-Yuan Cheng
- Department of Plant Nutrition, College of Resources and Environmental Sciences China Agricultural University, Beijing, China
| | - Xu Chen
- Institute of Tobacco Research of Chongqing Tobacco Company China Tobacco Corporation, Chongqing, China
| | - Di-Qin Li
- Department of Crop Breeding, College of Agriculture Sciences Hunan Agricultural University, Changsha, China
| | - Yi-Chen Sun
- Department of Plant Nutrition, College of Resources and Environmental Sciences China Agricultural University, Beijing, China
| |
Collapse
|
44
|
Beier MP, Obara M, Taniai A, Sawa Y, Ishizawa J, Yoshida H, Tomita N, Yamanaka T, Ishizuka Y, Kudo S, Yoshinari A, Takeuchi S, Kojima S, Yamaya T, Hayakawa T. Lack of ACTPK1, an STY kinase, enhances ammonium uptake and use, and promotes growth of rice seedlings under sufficient external ammonium. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:992-1006. [PMID: 29356222 DOI: 10.1111/tpj.13824] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/11/2017] [Accepted: 12/15/2017] [Indexed: 05/09/2023]
Abstract
Ammonium influx into plant roots via the high-affinity transport system (HATS) is down-modulated under elevated external ammonium, preventing ammonium toxicity. In ammonium-fed Arabidopsis, ammonium transporter 1 (AMT1) trimers responsible for HATS activity are allosterically inactivated in a dose-dependent manner via phosphorylation of the conserved threonine at the carboxyl-tail by the calcineurin B-like protein 1-calcineurin B-like protein-interacting protein kinase 23 complex and other yet unidentified protein kinases. Using transcriptome and reverse genetics in ammonium-preferring rice, we revealed the role of the serine/threonine/tyrosine protein kinase gene OsACTPK1 in down-modulation of HATS under sufficient ammonium. In wild-type roots, ACTPK1 mRNA and protein accumulated dose-dependently under sufficient ammonium. To determine the function of ACTPK1, two independent mutants lacking ACTPK1 were produced by retrotransposon Tos17 insertion. Compared with segregants lacking insertions, the two mutants showed decreased root growth and increased shoot growth under 1 mm ammonium due to enhanced ammonium acquisition, via aberrantly high HATS activity, and use. Furthermore, introduction of OsACTPK1 cDNA fused to the synthetic green fluorescence protein under its own promoter complemented growth and the HATS influx, and suggested plasma membrane localization. Root cellular expression of OsACTPK1 also overlapped with that of ammonium-induced OsAMT1;1 and OsAMT1;2. Meanwhile, threonine-phosphorylated AMT1 levels were substantially decreased in roots of ACTPK1-deficient mutants grown under sufficient ammonium. Bimolecular fluorescence complementation assay further confirmed interaction between ACTPK1 and AMT1;2 at the cell plasma membrane. Overall, these findings suggest that ACTPK1 directly phosphorylates and inactivates AMT1;2 in rice seedling roots under sufficient ammonium.
Collapse
Affiliation(s)
- Marcel P Beier
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, Miyagi, 981-8555, Japan
| | - Mitsuhiro Obara
- Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan
| | - Akiko Taniai
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, Miyagi, 981-8555, Japan
| | - Yuki Sawa
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, Miyagi, 981-8555, Japan
| | - Jin Ishizawa
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, Miyagi, 981-8555, Japan
| | - Haruki Yoshida
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, Miyagi, 981-8555, Japan
| | - Narumi Tomita
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, Miyagi, 981-8555, Japan
| | - Tsuyoshi Yamanaka
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, Miyagi, 981-8555, Japan
| | - Yawara Ishizuka
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, Miyagi, 981-8555, Japan
| | - Syuko Kudo
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, Miyagi, 981-8555, Japan
| | - Akira Yoshinari
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, Miyagi, 981-8555, Japan
| | - Shiho Takeuchi
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, Miyagi, 981-8555, Japan
| | - Soichi Kojima
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, Miyagi, 981-8555, Japan
| | - Tomoyuki Yamaya
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, Miyagi, 981-8555, Japan
| | - Toshihiko Hayakawa
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, Miyagi, 981-8555, Japan
| |
Collapse
|
45
|
Gao L, Lu Z, Ding L, Guo J, Wang M, Ling N, Guo S, Shen Q. Role of Aquaporins in Determining Carbon and Nitrogen Status in Higher Plants. Int J Mol Sci 2018; 19:E35. [PMID: 29342938 PMCID: PMC5795985 DOI: 10.3390/ijms19010035] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/17/2017] [Accepted: 12/19/2017] [Indexed: 01/01/2023] Open
Abstract
Aquaporins (AQPs) are integral membrane proteins facilitating the transport of water and some small neutral molecules across cell membranes. In past years, much effort has been made to reveal the location of AQPs as well as their function in water transport, photosynthetic processes, and stress responses in higher plants. In the present review, we paid attention to the character of AQPs in determining carbon and nitrogen status. The role of AQPs during photosynthesis is characterized as its function in transporting water and CO₂ across the membrane of chloroplast and thylakoid; recalculated results from published studies showed that over-expression of AQPs contributed to 25% and 50% increases in stomatal conductance (gs) and mesophyll conductance (gm), respectively. The nitrogen status in plants is regulated by AQPs through their effect on water flow as well as urea and NH₄⁺ uptake, and the potential role of AQPs in alleviating ammonium toxicity is discussed. At the same time, root and/or shoot AQP expression is quite dependent on both N supply amounts and forms. Future research directions concerning the function of AQPs in regulating plant carbon and nitrogen status as well as C/N balance are also highlighted.
Collapse
Affiliation(s)
- Limin Gao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhifeng Lu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lei Ding
- Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve B-1348, Belgium.
| | - Junjie Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Min Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ning Ling
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shiwei Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
46
|
Li H, Yang QS, Liu W, Lin J, Chang YH. The AMT1 family genes from Malus robusta display differential transcription features and ammonium transport abilities. Mol Biol Rep 2017; 44:379-390. [PMID: 28840433 DOI: 10.1007/s11033-017-4119-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 08/19/2017] [Indexed: 11/28/2022]
Abstract
Ammonium is an important nitrogen sources for plant growth. In this study, we report on the gene characterization of the ammonium transporter AMT1 subfamily in the apple rootstock Malus robusta Rehd. Thirteen AMT genes were comprehensively evaluated from the apple genome (version 1.0). Then the gene features and expression patterns of five AMT1 members from M. robusta were analyzed. These genes fell into four clusters in the AMT phylogenetic tree: clade I (MrAMT1;1 and MrAMT1;3), clade II (MrAMT1;4), clade III (MrAMT1;2), and clade IV (MrAMT1;5). All the AMT1s, apart from MrAMT1;4, were expressed in vegetative organs and strongly responded to nitrogen concentration changes. For example, MrAMT1;2 and MrAMT1;3 had high transcript accumulation levels in the leaves and roots, respectively. Finally, the functions of these AMT1s were studied in detail by heterologous expression in yeast. These genes allowed strain 31019b to assimilate nitrogen, but their 15NH4+ uptake kinetics varied. These results revealed the functional roles of AMT1 during ammonium absorption in the AMT-defective mutant yeast system.
Collapse
Affiliation(s)
- Hui Li
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Qing-Song Yang
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Wei Liu
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Jing Lin
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - You-Hong Chang
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China.
| |
Collapse
|
47
|
Transporter oligomerization: form and function. Biochem Soc Trans 2017; 44:1737-1744. [PMID: 27913684 PMCID: PMC5134999 DOI: 10.1042/bst20160217] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/16/2016] [Accepted: 09/19/2016] [Indexed: 12/22/2022]
Abstract
Transporters are integral membrane proteins with central roles in the efficient movement of molecules across biological membranes. Many transporters exist as oligomers in the membrane. Depending on the individual transport protein, oligomerization can have roles in membrane trafficking, function, regulation and turnover. For example, our recent studies on UapA, a nucleobase ascorbate transporter, from Aspergillus nidulans, have revealed both that dimerization of this protein is essential for correct trafficking to the membrane and the structural basis of how one UapA protomer can affect the function of the closely associated adjacent protomer. Here, we review the roles of oligomerization in many particularly well-studied transporters and transporter families.
Collapse
|
48
|
Liu Y, von Wirén N. Ammonium as a signal for physiological and morphological responses in plants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2581-2592. [PMID: 28369490 DOI: 10.1093/jxb/erx086] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Ammonium is a major inorganic nitrogen source for plants. At low external supplies, ammonium promotes plant growth, while at high external supplies it causes toxicity. Ammonium triggers rapid changes in cytosolic pH, in gene expression, and in post-translational modifications of proteins, leading to apoplastic acidification, co-ordinated ammonium uptake, enhanced ammonium assimilation, altered oxidative and phytohormonal status, and reshaped root system architecture. Some of these responses are dependent on AMT-type ammonium transporters and are not linked to a nutritional effect, indicating that ammonium is perceived as a signaling molecule by plant cells. This review summarizes current knowledge of ammonium-triggered physiological and morphological responses and highlights existing and putative mechanisms mediating ammonium signaling and sensing events in plants. We put forward the hypothesis that sensing of ammonium takes place at multiple steps along its transport, storage, and assimilation pathways.
Collapse
Affiliation(s)
- Ying Liu
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| |
Collapse
|
49
|
Straub T, Ludewig U, Neuhäuser B. The Kinase CIPK23 Inhibits Ammonium Transport in Arabidopsis thaliana. THE PLANT CELL 2017; 29:409-422. [PMID: 28188265 PMCID: PMC5354196 DOI: 10.1105/tpc.16.00806] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/20/2017] [Accepted: 02/07/2017] [Indexed: 05/18/2023]
Abstract
Ion transport in plants is not only strictly regulated on a transcriptional level, but it is also regulated posttranslationally. Enzyme modifications such as phosphorylation provide rapid regulation of many plant ion transporters and channels. Upon exposure to high ammonium concentrations in the rhizosphere, the high-affinity ammonium transporters (AMTs) in Arabidopsis thaliana are efficiently inactivated by phosphorylation to avoid toxic accumulation of cytoplasmic ammonium. External ammonium stimulates the phosphorylation of a conserved threonine in the cytosolic AMT1 C terminus, which allosterically inactivates AMT1 trimers. Using a genetic screen, we found that CALCINEURIN B-LIKE INTERACTING PROTEIN KINASE23 (CIPK23), a kinase that also regulates the most abundant NO3- transporter, NPF6;3, and activates the K+ channel AKT1, inhibits ammonium transport and modulates growth sensitivity to ammonium. Loss of CIPK23 increased root NH4+ uptake after ammonium shock and conferred hypersensitivity to ammonium and to the transport analog methylammonium. CIPK23 interacts with AMT1;1 and AMT1;2 in yeast, oocytes, and in planta. Inactivation of AMT1;2 by direct interaction with CIPK23 requires kinase activity and the calcineurin B-like binding protein CBL1. Since K+, NO3-, and NH4+ are major ions taken up by plants, CIPK23 appears to occupy a key position in controlling ion balance and ion homeostasis in the plant cell.
Collapse
Affiliation(s)
- Tatsiana Straub
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, D-70593 Stuttgart, Germany
| | - Uwe Ludewig
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, D-70593 Stuttgart, Germany
| | - Benjamin Neuhäuser
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, D-70593 Stuttgart, Germany
| |
Collapse
|
50
|
Hao D, Yang S, Huang Y, Su Y. Identification of structural elements involved in fine-tuning of the transport activity of the rice ammonium transporter OsAMT1;3. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 108:99-108. [PMID: 27423220 DOI: 10.1016/j.plaphy.2016.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/01/2016] [Accepted: 07/03/2016] [Indexed: 05/13/2023]
Abstract
Ammonium transporters (AMTs) are major routes for plant uptake of the NH4+-form nitrogen. Plant AMTs mediate predominantly the uptake of NH4+ and to a lesser extent, its organic analog methylammonium (MeA+). Mutagenesis studies on potential phosphorylation residues have achieved solid recognition that alteration of the phosphorylation status can result in allosteric regulation and impair the functionality of plant AMTs. However, molecular insights to the fine-tuning of a functional ammonium transporter remain less clear. In this report, we demonstrate that the rice root expressed OsAMT1;3 (Oryza sativa ammonium transporter 1;3) functions as a typical high-affinity NH4+ transporter and is weakly permeable to MeA+ using growth assays in NH4+ uptake defective yeast cells and electrophysiological measurements in Xenopus oocytes. Upon screening of six point mutations generated with the transporter, we identified two amino acid residues involved in the functional modulation of OsAMT1;3. The H199E mutation caused loss of transport activity whereas other five mutations retained the functionality of OsAMT1;3. Furthermore, the L56F mutation enabled respectively 5- and 3.5 -fold increased capability for NH4+ and MeA+ uptake with several-fold decreased affinity (Km) and accelerated Vmax values. Surprisingly, yeast cells expressing the L56F mutation shown increased Na+ toxicity leading to a speculation that enhanced Na+ permeation occurred with this mutation. The phenomenon was further supported by the observation of significant Na+ uptake current in oocytes. Our results seemingly support a speculation that the L56F mutation of OsAMT1;3 widens the substrate passage tunnel and allows enhanced permeability to NH4+ and larger ions MeA+ and Na+.
Collapse
Affiliation(s)
- Dongli Hao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunying Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yanan Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanhua Su
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|