1
|
Zhang H, Luo B, Luo X, Li J, Ma J, Wang W, Zhao J, Quan Y, Zheng H, Hu Y, Liu X, Wang W, Ma P, Zhang X, Liu D, Wu L, Gao D, Gao S, Su S, Gao S. Response of ZmPHO1 family members to low phosphorus stress and association of natural variation in ZmPHO1;2a reveal the role of low phosphorus tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109417. [PMID: 39733726 DOI: 10.1016/j.plaphy.2024.109417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/01/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024]
Abstract
Phosphorus (Pi) is an essential nutrient for plants to sustain normal life processes. In this study, we found that the ZmPHO1 proteins had similar molecular weights and the same conserved domain. Phylogenetic and cis-acting element analysis showed that ZmPHO1s were divided into 4 subgroups, in which ZmPHO1;2a and ZmPHO1;2b were closely phylogenetic with OsPHO1;2b, and the promoter region of ZmPHO1s contained abundant abiotic stress-related elements. Quantitative real-time PCR (RT-qPCR) analyses showed that the expression of ZmPHO1s were induced under low-Pi stress, among ZmPHO1;2a and ZmPHO1;2b were up-regulated in 178 (low-Pi tolerance) roots. Further, pho1;2a mutant exhibited a reduction in Pi uptake, leading to decreased shoot biomass. Additionally, 196 single nucleotide polymorphism (SNPs) and 127 insertion-deletions (InDels) were detected in ZmPHO1;2a DNA region among the 278 inbred lines, and 14 natural variants were identified that were significantly associated with 14 phenotypic traits by using mixed linear model (MLM). Notably, we defined five haplotypes according to the variants that were significantly associated with low-Pi tolerance index and haplotype 2 can enhance biomass by promoting root diameter and volume. Similarly, 7 natural variants were detected in the promoter region of ZmPHO1;2a that were significantly associated with 18 phenotypic traits and included a pleiotropy variant (SNP-1302) whose allele G/G exhibited positive genetic effects on biomass. This study will provide a theoretical reference for further dissecting the molecular mechanism of ZmPHO1s regulating of the low-Pi stress response and contribute to the development of genetic markers.
Collapse
Affiliation(s)
- Haiying Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Bowen Luo
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, Sichuan, China.
| | - Xianfu Luo
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Jing Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Junchi Ma
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Wei Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Jin Zhao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Yucen Quan
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hao Zheng
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yaoyuan Hu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xinyue Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Weixiu Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Peng Ma
- Mianyang Academy of Agricultural Sciences, Mianyang, Sichuan, China
| | - Xiao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Dan Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Ling Wu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Duojiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Shiqiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Shunzong Su
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shibin Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
2
|
Roller S, Würschum T. Genetic architecture of phosphorus use efficiency across diverse environmental conditions: insights from maize elite and landrace lines. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:363-380. [PMID: 39435644 DOI: 10.1093/jxb/erae431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Phosphorus is an essential nutrient for all crops. Thus, a better understanding of the genetic control of phosphorus use efficiency evident in physiological, developmental, and morphological traits and its environmental plasticity is required to establish the basis for maintaining or enhancing yield while making agriculture more sustainable. In this study, we utilized a diverse panel of maize (Zea mays L.), including 398 elite and landrace lines, phenotyped across three environments and two phosphorus fertilization treatments. We performed genome-wide association mapping for 13 traits, including phosphorus uptake and allocation, that showed a strong environment dependency in their expression. Our results highlight the complex genetic architecture of phosphorus use efficiency as well as the substantial differences between the evaluated genetic backgrounds. Despite harboring more of the identified quantitative trait loci, almost all of the favorable alleles from landraces were found to be present in at least one of the two elite heterotic groups. Notably, we also observed trait-specific genetic control even among biologically related characteristics, as well as a substantial plasticity of the genetic architecture of several traits in response to the environment and phosphorus fertilization. Collectively, our work illustrates the difficulties in improving phosphorus use efficiency, but also presents possible solutions for the future contribution of plant breeding to improve the phosphorus cycle.
Collapse
Affiliation(s)
- Sandra Roller
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, D-70593, Germany
| | - Tobias Würschum
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, D-70593, Germany
| |
Collapse
|
3
|
Liu X, Cai Y, Yao W, Chen L, Hou W. The soybean NUCLEAR FACTOR-Y C4 and α-EXPANSIN 7 module influences phosphorus uptake by regulating root morphology. PLANT PHYSIOLOGY 2024; 197:kiae478. [PMID: 39250753 DOI: 10.1093/plphys/kiae478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 09/11/2024]
Abstract
Soybean (Glycine max) is a globally important crop; however, its productivity is severely impacted by phosphorus (P) deficiency. Understanding the transcriptional regulation of low P (LP) response mechanisms is essential for enhancing soybean P use efficiency. In this study, we found that the Nuclear Factor-Y (NF-Y) transcription factor GmNF-YC4, in addition to its previously discovered role in regulating flowering time, possesses other functions in modulating root morphology and P uptake. Knockout of GmNF-YC4 notably boosted root proliferation and P uptake while also influencing the expression of genes related to LP stress. GmNF-YC4 acts as a specific DNA-binding transcriptional repressor, modulating the expression of the soybean α-EXPANSIN 7 (GmEXPA7) gene, which encodes a cell-wall-loosening factor, through direct binding to its promoter region. Further investigation revealed that GmEXPA7 expression is predominantly root-specific and induced by LP. Moreover, overexpression of GmEXPA7 in soybean hairy roots enhanced LP tolerance by stimulating root growth and P uptake. We further screened and obtained more potential target genes of GmNF-YC4 via DNA affinity purification sequencing, including those related to LP stress. These findings underscore the pivotal role of the GmNF-YC4-GmEXPA7 module as a key regulator in mitigating LP stress in soybeans.
Collapse
Affiliation(s)
- Xiaoqian Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Yupeng Cai
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weiwei Yao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Li Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wensheng Hou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
4
|
Mishra S, Levengood H, Fan J, Zhang C. Plants Under Stress: Exploring Physiological and Molecular Responses to Nitrogen and Phosphorus Deficiency. PLANTS (BASEL, SWITZERLAND) 2024; 13:3144. [PMID: 39599353 PMCID: PMC11597474 DOI: 10.3390/plants13223144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
Nitrogen (N) and phosphorus (P) are essential mineral macronutrients critical for plant structure and function. Both contribute to processes ranging from cellular integrity to signal transduction. Since plants require these nutrients in high concentrations, replenishing them in soil often involves chemical fertilizers. However, the main source of P, rock phosphate, is non-renewable and in decline. N, second only to carbon, oxygen, and hydrogen in plant requirements, is vital for synthesizing proteins, nucleic acids, and plant pigments. Although N is available to plants through biological fixation or fertilizer application, the frequent application of N is not a sustainable solution due to environmental concerns like groundwater contamination and eutrophication. Plants have developed sophisticated mechanisms to adapt to nutrient deficiencies, such as changes in root architecture, local signaling, and long-distance signaling through the phloem. A dual deficiency of N and P is common in the field. In addition to individual N and P deficiency responses, this review also highlights some of the most recent discoveries in the responses of plants to the combined N and P deficiencies. Understanding the molecular and physiological responses in plants to mineral deficiency will help implement strategies to produce plants with high mineral use efficiency, leading to the reduced application of fertilizers, decreased mineral runoff, and improved environment.
Collapse
Affiliation(s)
| | | | | | - Cankui Zhang
- Department of Agronomy and Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA; (S.M.); (H.L.); (J.F.)
| |
Collapse
|
5
|
Abdullah SNA, Ariffin N, Hatta MAM, Kemat N. Opportunity for genome engineering to enhance phosphate homeostasis in crops. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1055-1070. [PMID: 39100872 PMCID: PMC11291846 DOI: 10.1007/s12298-024-01479-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 08/06/2024]
Abstract
Plants maintain cellular homeostasis of phosphate (Pi) through an integrated response pathway regulated by different families of transcription factors including MYB, WRKY, BHLH, and ZFP. The systemic response to Pi limitation showed the critical role played by inositol pyrophosphate (PP-InsPs) as signaling molecule and SPX (SYG1/PHO81/XPR1) domain proteins as sensor of cellular Pi status. Binding of SPX to PP-InsPs regulates the transcriptional activity of the MYB-CC proteins, phosphate starvation response factors (PHR/PHL) as the central regulator of Pi-deficiency response in plants. Vacuolar phosphate transporter, VPT may sense the cellular Pi status by its SPX domain, and vacuolar sequestration is activated under Pi replete condition and the stored Pi is an important resource to be mobilized under Pi deficiency. Proteomic approaches led to new discoveries of proteins associated with Pi-deficient response pathways and post-translational events that may influence plants in achieving Pi homeostasis. This review provides current understanding on the molecular mechanisms at the transcriptional and translational levels for achieving Pi homeostasis in plants. The potential strategies for employing the CRISPR technology to modify the gene sequences of key regulatory and response proteins for attaining plant Pi homeostasis are discussed.
Collapse
Affiliation(s)
- Siti Nor Akmar Abdullah
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan Malaysia
- Institute of Plantation Studies (IKP), Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan Malaysia
| | - Norazrin Ariffin
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan Malaysia
| | - Muhammad Asyraf Md Hatta
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan Malaysia
| | - Nurashikin Kemat
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan Malaysia
| |
Collapse
|
6
|
Yang SY, Lin WY, Hsiao YM, Chiou TJ. Milestones in understanding transport, sensing, and signaling of the plant nutrient phosphorus. THE PLANT CELL 2024; 36:1504-1523. [PMID: 38163641 PMCID: PMC11062440 DOI: 10.1093/plcell/koad326] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/03/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
As an essential nutrient element, phosphorus (P) is primarily acquired and translocated as inorganic phosphate (Pi) by plant roots. Pi is often sequestered in the soil and becomes limited for plant growth. Plants have developed a sophisticated array of adaptive responses, termed P starvation responses, to cope with P deficiency by improving its external acquisition and internal utilization. Over the past 2 to 3 decades, remarkable progress has been made toward understanding how plants sense and respond to changing environmental P. This review provides an overview of the molecular mechanisms that regulate or coordinate P starvation responses, emphasizing P transport, sensing, and signaling. We present the major players and regulators responsible for Pi uptake and translocation. We then introduce how P is perceived at the root tip, how systemic P signaling is operated, and the mechanisms by which the intracellular P status is sensed and conveyed. Additionally, the recent exciting findings about the influence of P on plant-microbe interactions are highlighted. Finally, the challenges and prospects concerning the interplay between P and other nutrients and strategies to enhance P utilization efficiency are discussed. Insights obtained from this knowledge may guide future research endeavors in sustainable agriculture.
Collapse
Affiliation(s)
- Shu-Yi Yang
- Institute of Plant Biology, National Taiwan University, Taipei 106319, Taiwan
| | - Wei-Yi Lin
- Department of Agronomy, National Taiwan University, Taipei 106319, Taiwan
| | - Yi-Min Hsiao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115201, Taiwan
| | - Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115201, Taiwan
| |
Collapse
|
7
|
Mohanta TK, Mohanta YK, Kaushik P, Kumar J. Physiology, genomics, and evolutionary aspects of desert plants. J Adv Res 2024; 58:63-78. [PMID: 37160225 PMCID: PMC10982872 DOI: 10.1016/j.jare.2023.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Despite the exposure to arid environmental conditions across the globe ultimately hampering the sustainability of the living organism, few plant species are equipped with several unique genotypic, biochemical, and physiological features to counter such harsh conditions. Physiologically, they have evolved with reduced leaf size, spines, waxy cuticles, thick leaves, succulent hydrenchyma, sclerophyll, chloroembryo, and photosynthesis in nonfoliar and other parts. At the biochemical level, they are evolved to perform efficient photosynthesis through Crassulacean acid metabolism (CAM) and C4 pathways with the formation of oxaloacetic acid (Hatch-Slack pathway) instead of the C3 pathway. Additionally, comparative genomics with existing data provides ample evidence of the xerophytic plants' positive selection to adapt to the arid environment. However, adding more high-throughput sequencing of xerophyte plant species is further required for a comparative genomic study toward trait discovery related to survival. Learning from the mechanism to survive in harsh conditions could pave the way to engineer crops for future sustainable agriculture. AIM OF THE REVIEW The distinct physiology of desert plants allows them to survive in harsh environments. However, the genomic composition also contributes significantly to this and requires great attention. This review emphasizes the physiological and genomic adaptation of desert plants. Other important parameters, such as desert biodiversity and photosynthetic strategy, are also discussed with recent progress in the field. Overall, this review discusses the different features of desert plants, which prepares them for harsh conditions intending to translate knowledge to engineer plant species for sustainable agriculture. KEY SCIENTIFIC CONCEPTS OF REVIEW This review comprehensively presents the physiology, molecular mechanism, and genomics of desert plants aimed towards engineering a sustainable crop.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 611, Oman.
| | - Yugal Kishore Mohanta
- Dept. of Applied Biology, University of Science and Technology Meghalaya, Baridua, Meghalaya 793101, India
| | - Prashant Kaushik
- Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Jitesh Kumar
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, United States
| |
Collapse
|
8
|
Luo B, Zhang Z, Li B, Zhang H, Ma J, Li J, Han Z, Zhang C, Zhang S, Yu T, Zhang G, Ma P, Lan Y, Zhang X, Liu D, Wu L, Gao D, Gao S, Su S, Zhang X, Gao S. Chromatin remodeling analysis reveals the RdDM pathway responds to low-phosphorus stress in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:33-52. [PMID: 37731059 DOI: 10.1111/tpj.16468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023]
Abstract
Chromatin in eukaryotes folds into a complex three-dimensional (3D) structure that is essential for controlling gene expression and cellular function and is dynamically regulated in biological processes. Studies on plant phosphorus signaling have concentrated on single genes and gene interactions. It is critical to expand the existing signaling pathway in terms of its 3D structure. In this study, low-Pi treatment led to greater chromatin volume. Furthermore, low-Pi stress increased the insulation score and the number of TAD-like domains, but the effects on the A/B compartment were not obvious. The methylation levels of target sites (hereafter as RdDM levels) peaked at specific TAD-like boundaries, whereas RdDM peak levels at conserved TAD-like boundaries shifted and decreased sharply. The distribution pattern of RdDM sites originating from the Helitron transposons matched that of genome-wide RdDM sites near TAD-like boundaries. RdDM pathway genes were upregulated in the middle or early stages and downregulated in the later stages under low-Pi conditions. The RdDM pathway mutant ddm1a showed increased tolerance to low-Pi stress, with shortened and thickened roots contributing to higher Pi uptake from the shallow soil layer. ChIP-seq results revealed that ZmDDM1A could bind to Pi- and root development-related genes. Strong associations were found between interacting genes in significantly different chromatin-interaction regions and root traits. These findings not only expand the mechanisms by which plants respond to low-Pi stress through the RdDM pathway but also offer a crucial framework for the analysis of biological issues using 3D genomics.
Collapse
Affiliation(s)
- Bowen Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Ziqi Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Binyang Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Haiying Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Junchi Ma
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Jing Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Zheng Han
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Chong Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Shuhao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Ting Yu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Guidi Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Peng Ma
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
- Mianyang Academy of Agricultural Sciences, Mianyang, 621023, Sichuan, China
- Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Province, Mianyang, China
| | - Yuzhou Lan
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 190, SE-23422, Lomma, Sweden
| | - Xiao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Dan Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Ling Wu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Duojiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Shiqiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Shunzong Su
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xuecai Zhang
- International Maize and Wheat Improvement Center, Texcoco, Mexico
| | - Shibin Gao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| |
Collapse
|
9
|
Liu L, Heidecker M, Depuydt T, Manosalva Perez N, Crespi M, Blein T, Vandepoele K. Transcription factors KANADI 1, MYB DOMAIN PROTEIN 44, and PHYTOCHROME INTERACTING FACTOR 4 regulate long intergenic noncoding RNAs expressed in Arabidopsis roots. PLANT PHYSIOLOGY 2023; 193:1933-1953. [PMID: 37345955 DOI: 10.1093/plphys/kiad360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023]
Abstract
Thousands of long intergenic noncoding RNAs (lincRNAs) have been identified in plant genomes. While some lincRNAs have been characterized as important regulators in different biological processes, little is known about the transcriptional regulation for most plant lincRNAs. Through the integration of 8 annotation resources, we defined 6,599 high-confidence lincRNA loci in Arabidopsis (Arabidopsis thaliana). For lincRNAs belonging to different evolutionary age categories, we identified major differences in sequence and chromatin features, as well as in the level of conservation and purifying selection acting during evolution. Spatiotemporal gene expression profiles combined with transcription factor (TF) chromatin immunoprecipitation (ChIP) data were used to construct a TF-lincRNA regulatory network containing 2,659 lincRNAs and 15,686 interactions. We found that properties characterizing lincRNA expression, conservation, and regulation differ between plants and animals. Experimental validation confirmed the role of 3 TFs, KANADI 1, MYB DOMAIN PROTEIN 44, and PHYTOCHROME INTERACTING FACTOR 4, as key regulators controlling root-specific lincRNA expression, demonstrating the predictive power of our network. Furthermore, we identified 58 lincRNAs, regulated by these TFs, showing strong root cell type-specific expression or chromatin accessibility, which are linked with genome-wide association studies genetic associations related to root system development and growth. The multilevel genome-wide characterization covering chromatin state information, promoter conservation, and chromatin immunoprecipitation-based TF binding, for all detectable lincRNAs across 769 expression samples, permits rapidly defining the biological context and relevance of Arabidopsis lincRNAs through regulatory networks.
Collapse
Affiliation(s)
- Li Liu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Michel Heidecker
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université Evry, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris Cité, 91190 Gif-sur-Yvette, France
| | - Thomas Depuydt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Nicolas Manosalva Perez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Martin Crespi
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université Evry, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris Cité, 91190 Gif-sur-Yvette, France
| | - Thomas Blein
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université Evry, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris Cité, 91190 Gif-sur-Yvette, France
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
10
|
Xing G, Jin M, Yue P, Ren C, Hao J, Zhao Y, Zhao X, Sun Z, Hou S. Role of SiPHR1 in the Response to Low Phosphate in Foxtail Millet via Comparative Transcriptomic and Co-Expression Network Analyses. Int J Mol Sci 2023; 24:12786. [PMID: 37628968 PMCID: PMC10454940 DOI: 10.3390/ijms241612786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Enhancing the absorption and utilization of phosphorus by crops is an important aim for ensuring food security worldwide. However, the gene regulatory network underlying phosphorus use in foxtail millet remains unclear. In this study, the molecular mechanism underlying low-phosphorus (LP) responsiveness in foxtail millet was evaluated using a comparative transcriptome analysis. LP reduced the chlorophyll content in shoots, increased the anthocyanin content in roots, and up-regulated purple acid phosphatase and phytase activities as well as antioxidant systems (CAT, POD, and SOD). Finally, 13 differentially expressed genes related to LP response were identified and verified using transcriptomic data and qRT-PCR. Two gene co-expression network modules related to phosphorus responsiveness were positively correlated with POD, CAT, and PAPs. Of these, SiPHR1, functionally annotated as PHOSPHATE STARVATION RESPONSE 1, was identified as an MYB transcription factor related to phosphate responsiveness. SiPHR1 overexpression in Arabidopsis significantly modified the root architecture. LP stress caused cellular, physiological, and phenotypic changes in seedlings. SiPHR1 functioned as a positive regulator by activating downstream genes related to LP tolerance. These results improve our understanding of the molecular mechanism underlying responsiveness to LP stress, thereby laying a theoretical foundation for the genetic modification and breeding of new LP-tolerant foxtail millet varieties.
Collapse
Affiliation(s)
- Guofang Xing
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (G.X.); (M.J.); (Z.S.)
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan 030031, China
| | - Minshan Jin
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (G.X.); (M.J.); (Z.S.)
| | - Peiyao Yue
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (G.X.); (M.J.); (Z.S.)
| | - Chao Ren
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (G.X.); (M.J.); (Z.S.)
| | - Jiongyu Hao
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (G.X.); (M.J.); (Z.S.)
| | - Yue Zhao
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (G.X.); (M.J.); (Z.S.)
| | - Xiongwei Zhao
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan 030031, China
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
| | - Zhaoxia Sun
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (G.X.); (M.J.); (Z.S.)
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan 030031, China
| | - Siyu Hou
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (G.X.); (M.J.); (Z.S.)
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan 030031, China
| |
Collapse
|
11
|
Wang R, Liu X, Zhu H, Yang Y, Cui R, Fan Y, Zhai X, Yang Y, Zhang S, Zhang J, Hu D, Zhang D. Transcription factors GmERF1 and GmWRKY6 synergistically regulate low phosphorus tolerance in soybean. PLANT PHYSIOLOGY 2023; 192:1099-1114. [PMID: 36932694 PMCID: PMC10231356 DOI: 10.1093/plphys/kiad170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 06/01/2023]
Abstract
Soybean (Glycine max) is a major grain and oil crop worldwide, but low phosphorus (LP) in soil severely limits the development of soybean production. Dissecting the regulatory mechanism of the phosphorus (P) response is crucial for improving the P use efficiency of soybean. Here, we identified a transcription factor, GmERF1 (ethylene response factor 1), that is mainly expressed in soybean root and localized in the nucleus. Its expression is induced by LP stress and differs substantially in extreme genotypes. The genomic sequences of 559 soybean accessions suggested that the allelic variation of GmERF1 has undergone artificial selection, and its haplotype is significantly related to LP tolerance. GmERF1 knockout or RNA interference resulted in significant increases in root and P uptake efficiency traits, while the overexpression of GmERF1 produced an LP-sensitive phenotype and affected the expression of 6 LP stress-related genes. In addition, GmERF1 directly interacted with GmWRKY6 to inhibit transcription of GmPT5 (phosphate transporter 5), GmPT7, and GmPT8, which affects plant P uptake and use efficiency under LP stress. Taken together, our results show that GmERF1 can affect root development by regulating hormone levels, thus promoting P absorption in soybean, and provide a better understanding of the role of GmERF1 in soybean P signal transduction. The favorable haplotypes from wild soybean will be conducive to the molecular breeding of high P use efficiency in soybean.
Collapse
Affiliation(s)
- Ruiyang Wang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoqian Liu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Soybean Biology, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongqing Zhu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuming Yang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Ruifan Cui
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Yukun Fan
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xuhao Zhai
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Yifei Yang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Shanshan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Jinyu Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Dandan Hu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
12
|
Wang X, Yuan D, Liu Y, Liang Y, He J, Yang X, Hang R, Jia H, Mo B, Tian F, Chen X, Liu L. INDETERMINATE1 autonomously regulates phosphate homeostasis upstream of the miR399-ZmPHO2 signaling module in maize. THE PLANT CELL 2023; 35:2208-2231. [PMID: 36943781 PMCID: PMC10226601 DOI: 10.1093/plcell/koad089] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 05/30/2023]
Abstract
The macronutrient phosphorus is essential for plant growth and development. Plants have evolved multiple strategies to increase the efficiency of phosphate (Pi) acquisition to protect themselves from Pi starvation. However, the crosstalk between Pi homeostasis and plant development remains to be explored. Here, we report that overexpressing microRNA399 (miR399) in maize (Zea mays) is associated with premature senescence after pollination. Knockout of ZmPHO2 (Phosphate 2), a miR399 target, resulted in a similar premature senescence phenotype. Strikingly, we discovered that INDETERMINATE1 (ID1), a floral transition regulator, inhibits the transcription of ZmMIR399 genes by directly binding to their promoters, alleviating the repression of ZmPHO2 by miR399 and ultimately contributing to the maintenance of Pi homeostasis in maize. Unlike ZmMIR399 genes, whose expression is induced by Pi deficiency, ID1 expression was independent of the external inorganic orthophosphate status, indicating that ID1 is an autonomous regulator of Pi homeostasis. Furthermore, we show that ZmPHO2 was under selection during maize domestication and cultivation, resulting in a more sensitive response to Pi starvation in temperate maize than in tropical maize. Our study reveals a direct functional link between Pi-deprivation sensing by the miR399-ZmPHO2 regulatory module and plant developmental regulation by ID1.
Collapse
Affiliation(s)
- Xufeng Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Dan Yuan
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Yanchun Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Yameng Liang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Juan He
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiaoyu Yang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Runlai Hang
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Hong Jia
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Feng Tian
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Lin Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
13
|
Su W, Zhou Z, Zeng J, Cao R, Zhang Y, Hu D, Liu J. Genome-wide identification of the WRKY gene family in Camellia oleifera and expression analysis under phosphorus deficiency. FRONTIERS IN PLANT SCIENCE 2023; 14:1082496. [PMID: 37304714 PMCID: PMC10249505 DOI: 10.3389/fpls.2023.1082496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/28/2023] [Indexed: 06/13/2023]
Abstract
Camellia oleifera Abel. is an economically important woody edible-oil species that is mainly cultivated in hilly areas of South China. The phosphorus (P) deficiency in the acidic soils poses severe challenges for the growth and productivity of C. oleifera. WRKY transcription factors (TFs) have been proven to play important roles in biological processes and plant responses to various biotic/abiotic stresses, including P deficiency tolerance. In this study, 89 WRKY proteins with conserved domain were identified from the C. oleifera diploid genome and divided into three groups, with group II further classified into five subgroups based on the phylogenetic relationships. WRKY variants and mutations were detected in the gene structure and conserved motifs of CoWRKYs. Segmental duplication events were considered as the primary driver in the expanding process of WRKY gene family in C. oleifera. Based on transcriptomic analysis of two C. oleifera varieties characterized with different P deficiency tolerances, 32 CoWRKY genes exhibited divergent expression patterns in response to P deficiency stress. qRT-PCR analysis demonstrated that CoWRKY11, -14, -20, -29 and -56 had higher positive impact on P-efficient CL40 variety compared with P-inefficient CL3 variety. Similar expression trends of these CoWRKY genes were further observed under P deficiency with longer treatment period of 120d. The result indicated the expression sensitivity of CoWRKYs on the P-efficient variety and the C. oleifera cultivar specificity on the P deficiency tolerance. Tissue expression difference showed CoWRKYs may play a crucial role in the transportation and recycling P in leaves by affecting diverse metabolic pathways. The available evidences in the study conclusively shed light on the evolution of the CoWRKY genes in C. oleifera genome and provided a valuable resource for further investigation of functional characterization of WRKY genes involved to enhance the P deficiency tolerance in C. oleifera.
Collapse
Affiliation(s)
- Wenjuan Su
- Jiangxi Provincial Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Zengliang Zhou
- Jiangxi Provincial Key Laboratory of Camellia Germplasm Conservation and Utilization, Jiangxi Academy of Forestry, Nanchang, China
| | - Jin Zeng
- Jiangxi Provincial Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Ruilan Cao
- Jiangxi Provincial Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Yunyu Zhang
- Jiangxi Provincial Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Dongnan Hu
- Jiangxi Provincial Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Juan Liu
- Jiangxi Provincial Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
14
|
Srivastava S, Ranjan M, Bano N, Asif MH, Srivastava S. Comparative transcriptome analysis reveals the phosphate starvation alleviation mechanism of phosphate accumulating Pseudomonas putida in Arabidopsis thaliana. Sci Rep 2023; 13:4918. [PMID: 36966146 PMCID: PMC10039930 DOI: 10.1038/s41598-023-31154-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/07/2023] [Indexed: 03/27/2023] Open
Abstract
Phosphate starvation is one of the major factors limiting plant productivity globally. Soil microflora with an inherent trait of phosphate accumulation directly influences soil phosphorus level by regulating its labile form in soil solution. However, the detailed mechanism involved during their interaction with plants under phosphate deficient conditions is still unexplored. Hence, to dissect these complex gene regulatory networks, transcriptome analysis of A. thaliana roots grown under phosphate starved conditions in presence of phosphate accumulating bacteria (Pseudomonas putida; RAR) was performed. Plants grown under phosphate starved conditions showed upregulation of phosphate starvation responsive genes associated with cell biogenesis, stress, photosynthesis, senescence, and cellular transport. Inoculation of RAR upregulated genes linked to defense, cell wall remodeling, and hormone metabolism in stressed plants. Gene ontology analysis indicated the induction of S-glycoside, glucosinolate, and glycosinolate metabolic processes in RAR inoculated plants under phosphate stressed conditions. Further, protein-protein interaction analysis revealed upregulation of root development, cation transport, anion transport, sulfur compound metabolic process, secondary metabolic process, cellular amino metabolic process, and response to salicylic acid in RAR inoculated plants under phosphate starved conditions. These results indicate the potential role of phosphate accumulating bacteria in alleviating phosphate starvation in plants by involving multiple pathways.
Collapse
Affiliation(s)
- Sonal Srivastava
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, 201002, India
| | - Manish Ranjan
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Nasreen Bano
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, 201002, India
- Computational Biology Laboratory, Genetics and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Mehar Hasan Asif
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, 201002, India.
- Computational Biology Laboratory, Genetics and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India.
| | - Suchi Srivastava
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India.
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, 201002, India.
| |
Collapse
|
15
|
Park SH, Jeong JS, Huang CH, Park BS, Chua NH. Inositol polyphosphates-regulated polyubiquitination of PHR1 by NLA E3 ligase during phosphate starvation response in Arabidopsis. THE NEW PHYTOLOGIST 2023; 237:1215-1228. [PMID: 36377104 DOI: 10.1111/nph.18621] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Phosphate (Pi) availability is a major factor limiting plant growth and development. The key transcription factor controlling Pi-starvation response (PSR) is PHOSPHATE STARVATION RESPONSE 1 (PHR1) whose transcript levels do not change with changes in Pi levels. However, how PHR1 stability is regulated at the post-translational level is relatively unexplored in Arabidopsis thaliana. Inositol polyphosphates (InsPn) are important signal molecules that promote the association of stand-alone SPX domain proteins with PHR1 to regulate PSR. Here, we show that NITROGEN LIMITATION ADAPTATION (NLA) E3 ligase can associate with PHR1 through its conserved SPX domain and polyubiquitinate PHR1 in vitro. The association with PHR1 and its ubiquitination is enhanced by InsP6 but not by InsP5. Analysis of InsPn-related mutants and an overexpression plant shows PHR1 levels are more stable in itpk4-1 and vih2-4/VIH1amiRNA but less stable in ITPK4 overexpression plants. Under Pi-deficient conditions, nla seedlings contain high PHR1 levels, display long root hair and accumulate anthocyanin in shoots phenocopying PHR1 overexpression plants. By contrast, NLA overexpression plants phenocopy phr1 whose phenotypes are opposite to those of nla. Our results suggest NLA functions as a negative regulator of Pi response by modulating PHR1 stability and the NLA/PHR1 association depends on InsPn levels.
Collapse
Affiliation(s)
- Su-Hyun Park
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore City, 117604, Singapore
| | - Jin Seo Jeong
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore City, 117604, Singapore
| | - Chung-Hao Huang
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore City, 117604, Singapore
| | - Bong Soo Park
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore City, 117604, Singapore
| | - Nam-Hai Chua
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore City, 117604, Singapore
| |
Collapse
|
16
|
Wang H, Pak S, Yang J, Wu Y, Li W, Feng H, Yang J, Wei H, Li C. Two high hierarchical regulators, PuMYB40 and PuWRKY75, control the low phosphorus driven adventitious root formation in Populus ussuriensis. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1561-1577. [PMID: 35514032 PMCID: PMC9342623 DOI: 10.1111/pbi.13833] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 04/11/2022] [Accepted: 04/28/2022] [Indexed: 05/20/2023]
Abstract
Adventitious rooting is an essential biological process in the vegetative propagation of economically important horticultural and forest tree species. It enables utilization of the elite genotypes in breeding programmes and production. Promotion of adventitious root (AR) formation has been associated with starvation of inorganic phosphate and some factors involved in low phosphorus (LP) signalling. However, the regulatory mechanism underlying LP-mediated AR formation remains largely elusive. We established an efficient experimental system that guaranteed AR formation through short-term LP treatment in Populus ussuriensis. We then generated a time-course RNA-seq data set to recognize key regulatory genes and regulatory cascades positively regulating AR formation through data analysis and gene network construction, which were followed by experimental validation and characterization. We constructed a multilayered hierarchical gene regulatory network, from which PuMYB40, a typical R2R3-type MYB transcription factor (TF), and its interactive partner, PuWRKY75, as well as their direct targets, PuLRP1 and PuERF003, were identified to function upstream of the known adventitious rooting genes. These regulatory genes were functionally characterized and proved their roles in promoting AR formation in P. ussuriensis. In conclusion, our study unveiled a new hierarchical regulatory network that promoted AR formation in P. ussuriensis, which was activated by short-term LP stimulus and primarily governed by PuMYB40 and PuWRKY75.
Collapse
Affiliation(s)
- Hanzeng Wang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
- College of AgricultureJilin Agricultural Science and Technology UniversityJilinChina
| | - Solme Pak
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Jia Yang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Ye Wu
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Wenlong Li
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - He Feng
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Jingli Yang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Hairong Wei
- College of Forest Resources and Environmental ScienceMichigan Technological UniversityHoughtonMIUSA
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| |
Collapse
|
17
|
Zhang Y, Wang LF, Han SY, Ren F, Liu WC. Sorting Nexin1 negatively modulates phosphate uptake by facilitating Phosphate Transporter1;1 degradation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:72-84. [PMID: 35436372 DOI: 10.1111/tpj.15778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
High-affinity phosphate (Pi) transporters (PHTs) PHT1;1 and PHT1;4 are necessary for plant root Pi uptake especially under Pi-deficient conditions, but how their protein stability is modulated remains elusive. Here, we identified a Ttransfer DNA insertion mutant of Sorting Nexin1 (SNX1), which had more Pi content and less anthocyanin accumulation than the wild type under deficient Pi. By contrast, the snx1-2 mutant displayed higher sensitivity to exogenous arsenate in terms of seed germination and root elongation, revealing higher Pi uptake rates. Further study showed that SNX1 could co-localize and interact with PHT1;1 and PHT1;4 in vesicles and at the plasma membrane. Genetic analysis showed that increased Pi content in the snx1-2 mutant under low Pi conditions could be extensively compromised by mutating PHT1;1 in the double mutant snx1-2 pht1;1, revealing that SNX1 is epistatic to PHT1;1. In addition, SNX1 negatively controls PHT1;1 protein stability; therefore, PHT1;1 protein abundance in the plasma membrane was increased in the snx1-2 mutant compared with the wild type under either sufficient or deficient Pi. Together, our study (i) identifies SNX1 as a key modulator of the plant response to low Pi and (ii) unravels its role in the modulation of PHT1;1 protein stability, PHT1;1 accumulation at the plasma membrane, and root Pi uptake.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Lin-Feng Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Shu-Yue Han
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Feng Ren
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
18
|
Zhang Y, Li TT, Wang LF, Guo JX, Lu KK, Song RF, Zuo JX, Chen HH, Liu WC. Abscisic acid facilitates phosphate acquisition through the transcription factor ABA INSENSITIVE5 in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:269-281. [PMID: 35506310 DOI: 10.1111/tpj.15791] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/25/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Low phosphate (LP) in soil is a common nutrient stress that severely restricts agricultural production, but the role, if any, of the major stress phytohormone abscisic acid (ABA) in plant phosphate (Pi) starvation responses remains elusive. Here, we report that LP-induced ABA accumulation promotes Pi uptake in an ABA INSENSITIVE5 (ABI5)-dependent manner in Arabidopsis thaliana. LP significantly activated plant ABA biosynthesis, metabolism, and stress responses, suggesting a role of ABA in the plant response to Pi availability. LP-induced ABA accumulation and expression of two major high-affinity phosphate transporter genes PHOSPHATE TRANSPORTER1;1/1;4 (PHT1;1/1;4) were severely impaired in a mutant lacking BETA-GLUCOSIDASE1 (BG1), which converts conjugated ABA to active ABA, and the mutant had shorter roots and less Pi content than wild-type plants under LP conditions. Moreover, a mutant of ABI5, which encodes a central transcription factor in ABA signaling, also exhibited suppressed root elongation and had reduced Pi content under LP conditions. ABI5 facilitated Pi acquisition by activating the expression of PHT1;1 by directly binding to its promoter, while overexpression of PHT1;1 completely rescued its Pi content under LP conditions. Together, our findings illustrate a molecular mechanism by which ABA positively modulates phosphate acquisition through ABI5 in the Arabidopsis response to phosphate deficiency.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Ting-Ting Li
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Lin-Feng Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Jia-Xing Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Kai-Kai Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Ru-Feng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Jia-Xin Zuo
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Hui-Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
19
|
Ramaiah M, Jain A, Yugandhar P, Raghothama KG. ATL8, a RING E3 ligase, modulates root growth and phosphate homeostasis in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:90-99. [PMID: 35325659 DOI: 10.1016/j.plaphy.2022.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 05/17/2023]
Abstract
Ubiquitination-mediated post-translational modification of proteins is a pivotal regulatory mechanism involved in the growth and development of the plant. The Arabidopsis Tóxicos en Levadura (ATL) family is a group of RING-type ubiquitin ligases (E3) and ATL8 is a membrane-localized protein. Here, a reverse genetics approach was used to elucidate the role of ATL8 in phosphate (Pi) homeostasis. Deficiencies of Pi and sucrose (Suc) enhanced the relative expression level of ATL8 in different tissues of the wild-type (Wt). The relative expression level of ATL8 was attenuated and augmented in the mutant (atl8) and overexpression lines (Oe1 and Oe2), respectively. There were significant reductions in different root traits, root hairs, root to shoot ratio, and total Pi content in atl8 compared with the Wt under different Pi regimes. On the contrary, Oe1 and Oe2 lines exhibited enhancement in some of these traits. Noticeably, anthocyanin content was significantly reduced in Oe1 and Oe2 compared with the Wt and atl8 under P- condition. Abscisic acid (ABA) treatment led to an increase in the primary root length of atl8 compared with the Wt, suggesting a cross-talk between ABA and ATL8 on root growth. Furthermore, the relative expression levels of the genes involved in the maintenance of Pi homeostasis (WRKY75, RNS1, E3L, and ACP5) were differentially modulated in atl8, Oe1, and Oe2 compared with the Wt under different Pi regimes. The results revealed the pivotal role of ATL8 in mediating morphophysiological and molecular adaptive responses to Pi deficiency.
Collapse
Affiliation(s)
- Madhuvanthi Ramaiah
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA.
| | - Ajay Jain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India.
| | - Poli Yugandhar
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India.
| | - Kashchandra G Raghothama
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
20
|
Deng YA, Li L, Peng Q, Feng LF, Yang JF, Zhan RT, Ma DM. Isolation and characterization of AaZFP1, a C2H2 zinc finger protein that regulates the AaIPPI1 gene involved in artemisinin biosynthesis in Artemisia annua. PLANTA 2022; 255:122. [PMID: 35554686 DOI: 10.1007/s00425-022-03892-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/03/2022] [Indexed: 06/15/2023]
Abstract
AaZFP1, a C2H2-type transcription factor, was found to bind the AGT-N1-10-AGT box of AaIPPI1pro and activate the expression of AaIPPI1 involved in artemisinin biosynthesis. Artemisinin, an endoperoxide sesquiterpene lactone, is a widely used antimalarial drug isolated from Artemisia annua L. Isopentenyl pyrophosphate isomerase (AaIPPI1) catalyzes the interconversion of isopentenyl diphosphate and dimethylallyl diphosphate and is the key gene involved in the biosynthesis of artemisinin. However, the AaIPPI1 gene regulation network remains largely unknown. Here, we isolated the AaIPPI1 promoter (AaIPPI1pro) and predicted that it contains cis-elements involved in stress responses, including the TGACG motif (a methyl jasmonate-responsive element), GARE motif (a gibberellin-responsive element), ABRE (an abscisic acid-responsive element), TC-rich repeats (a stress-responsive element), and the AGT-N1-10-AGT box, which is the binding site of Cys/His2 zinc finger protein (C2H2 ZFP). The C2H2 ZFP gene AaZFP1 was discovered by screening a cDNA library using AaIPPI1pro as bait in yeast. AaZFP1 contains two conserved C2H2 regions, a nuclear localization domain (B box), a Leu-rich domain (L box), and a conserved DLN sequence (DLN box) close to its C terminus. A subcellular localization assay indicated that AaZFP1 protein is localized in the nucleus and cytoplasm. An electrophoretic mobility shift assay demonstrated that AaZFP1 binds to the AGT-N1-10-AGT box of AaIPPI1pro. A dual-luciferase assay indicated that AaZFP1 enhanced the promoter activity of AaIPPI1 in vivo. Transient overexpression of AaZFP1 in A. annua increased the expression of AaIPPI1 and the content of artemisinin. Our data demonstrated that AaZFP1 functions as a transcriptional activator that regulates the expression of AaIPPI1 by directly binding to its promoter. The present study provides insights into the transcriptional regulation of genes involved in artemisinin biosynthesis in A. annua.
Collapse
Affiliation(s)
- Yin-Ai Deng
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Li Li
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Qian Peng
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Ling-Fang Feng
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Jin-Fen Yang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Ruo-Ting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China.
| | - Dong-Ming Ma
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
21
|
Wang Q, Du W, Yu W, Zhang W, Huang F, Cheng H, Yu D. Genome-wide association analysis discovered new loci and candidate genes associated with low-phosphorus tolerance based on shoot mineral elements concentrations in soybean. Mol Genet Genomics 2022; 297:843-858. [PMID: 35441900 DOI: 10.1007/s00438-022-01895-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
Abstract
Phosphorus (P) deficiency is one of the major limitations for soybean production. Moreover, it has been well reported P and other mineral elements function interdependently or antagonistically to control nutrients homeostasis in plants. Thus, it is urgently needed to understand the genetic mechanism of the accumulation of mineral elements in response to low-P stress. In this study, to identify single nucleotide polymorphisms (SNPs) and candidate genes controlling the accumulation of mineral elements suffering low-P stress in seedling stage of soybean plants, we measured concentrations of mineral elements, including P, Zn, Fe, Mn, Mg and Ca, in shoots of 211 soybean accessions under normal phosphorus (+P) and low phosphorus (-P) conditions in two hydroponic experiments. And genome-wide association study (GWAS) using high density NJAU 355K SoySNP array and concentrations of five of these mineral elements except P was performed. A total of 36 SNPs distributed on 13 chromosomes were identified to be significantly associated with low-P tolerance, and nine SNPs on chromosome 10 formed a SNP cluster. Meanwhile, the candidate gene GmFeB1 was found to serve as a negative regulator element involved in soybean P metabolism and the haplotype1 (Hap1) of GmFeB1 showed significantly higher shoot Fe concentration under -P condition than that of Hap2. In summary, we uncover 36 SNPs significantly associated with shoot mineral elements concentrations under different P conditions and a soybean low-P related gene GmFeB1, which will provide additional genetic information for soybean low-P tolerance and new gene resources for P-efficient soybean varieties breeding.
Collapse
Affiliation(s)
- Qing Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenkai Du
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenqing Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weihao Zhang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang Huang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Cheng
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
22
|
Gladman N, Hufnagel B, Regulski M, Liu Z, Wang X, Chougule K, Kochian L, Magalhães J, Ware D. Sorghum root epigenetic landscape during limiting phosphorus conditions. PLANT DIRECT 2022; 6:e393. [PMID: 35600998 PMCID: PMC9107021 DOI: 10.1002/pld3.393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/07/2022] [Accepted: 02/26/2022] [Indexed: 06/15/2023]
Abstract
Efficient acquisition and use of available phosphorus from the soil is crucial for plant growth, development, and yield. With an ever-increasing acreage of croplands with suboptimal available soil phosphorus, genetic improvement of sorghum germplasm for enhanced phosphorus acquisition from soil is crucial to increasing agricultural output and reducing inputs, while confronted with a growing world population and uncertain climate. Sorghum bicolor is a globally important commodity for food, fodder, and forage. Known for robust tolerance to heat, drought, and other abiotic stresses, its capacity for optimal phosphorus use efficiency (PUE) is still being investigated for optimized root system architectures (RSA). Whilst a few RSA-influencing genes have been identified in sorghum and other grasses, the epigenetic impact on expression and tissue-specific activation of candidate PUE genes remains elusive. Here, we present transcriptomic, epigenetic, and regulatory network profiling of RSA modulation in the BTx623 sorghum background in response to limiting phosphorus (LP) conditions. We show that during LP, sorghum RSA is remodeled to increase root length and surface area, likely enhancing its ability to acquire P. Global DNA 5-methylcytosine and H3K4 and H3K27 trimethylation levels decrease in response to LP, while H3K4me3 peaks and DNA hypomethylated regions contain recognition motifs of numerous developmental and nutrient responsive transcription factors that display disparate expression patterns between different root tissues (primary root apex, elongation zone, and lateral root apex).
Collapse
Affiliation(s)
| | - Barbara Hufnagel
- Centre National de la Recherche ScientifiqueMontpellierLanguedoc‐RoussillonFrance
| | | | - Zhigang Liu
- Global Institute for Food SecurityUniversity of SaskatchewanSaskatoonCanada
| | - Xiaofei Wang
- Cold Spring Harbor LaboratoryCold Spring HarborNew YorkUSA
| | | | - Leon Kochian
- Global Institute for Food SecurityUniversity of SaskatchewanSaskatoonCanada
| | | | - Doreen Ware
- Cold Spring Harbor LaboratoryCold Spring HarborNew YorkUSA
- U.S. Department of Agriculture‐Agricultural Research Service, NEA Robert W. Holley Center for Agriculture and HealthCornell UniversityIthacaNew YorkUSA
| |
Collapse
|
23
|
Yadava P, Dayaman V, Agarwal A, Kumar K, Singh I, Verma R, Kaul T. Fine-tuning the transcriptional regulatory model of adaptation response to phosphate stress in maize ( Zea mays L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:885-898. [PMID: 35592478 PMCID: PMC9110616 DOI: 10.1007/s12298-022-01155-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/07/2022] [Accepted: 02/25/2022] [Indexed: 05/11/2023]
Abstract
UNLABELLED The post green revolution agriculture is based on generous application of fertilizers and high-yielding genotypes that are suited for such high input regimes. Cereals, like maize (Zea mays L.) are capable of utilizing less than 20% of the applied inorganic phosphate (Pi) - a non-renewable fertilizer resource. A greater understanding of the molecular mechanisms underlying the acquisition, transportation and utilization of Pi may lead to engineering genotypes with high phosphorus use efficiency. In this study, we carried out functional domain similarity analysis, promoter analysis and comparative transcriptional expression profiling of 12 selected Pi responsive genes in the Pi stress tolerant maize inbred line HKI-163 under sufficient and deficient Pi conditions. Pi starvation led to significant increase in root length; marked proliferation of root hairs and lesser number of crown roots. Eleven genes were significantly up or down regulated in Pi deficient condition. The putative acid phosphatase, ZmACP5 expression was up regulated by 162.81 and 74.40 fold in root and leaf tissues, respectively. The RNase, ZmRNS1 showed 115 fold up regulation in roots under Pi deprivation. Among the two putative high affinity Pi transporters ZmPht1;4 was found specific to root, whereas ZmPht2 was found to be up regulated in both root and leaf tissues. The genes involved in Pi homeostasis pathway (ZmSIZ1, SPX1 and Pho2) were up regulated in root and leaf. In light of the expression profiling of selected regulatory genes, an updated model of transcriptional regulation under Pi starvation in maize has been presented. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01155-x.
Collapse
Affiliation(s)
- Pranjal Yadava
- Indian Council of Agricultural Research- Indian Institute of Maize Research, Pusa Campus, 110012 New Delhi, India
- Division of Plant Physiology, Indian Agricultural Research Institute, Pusa, 110012 New Delhi, India
| | - Vikram Dayaman
- Indian Council of Agricultural Research- Indian Institute of Maize Research, Pusa Campus, 110012 New Delhi, India
| | - Astha Agarwal
- Indian Council of Agricultural Research- Indian Institute of Maize Research, Pusa Campus, 110012 New Delhi, India
| | - Krishan Kumar
- Indian Council of Agricultural Research- Indian Institute of Maize Research, Pusa Campus, 110012 New Delhi, India
| | - Ishwar Singh
- Indian Council of Agricultural Research- Indian Institute of Maize Research, Pusa Campus, 110012 New Delhi, India
| | - Rachana Verma
- Indian Council of Agricultural Research- Indian Institute of Maize Research, Pusa Campus, 110012 New Delhi, India
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110067 New Delhi, India
| | - Tanushri Kaul
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110067 New Delhi, India
| |
Collapse
|
24
|
Liu Y, Khan AR, Gan Y. C2H2 Zinc Finger Proteins Response to Abiotic Stress in Plants. Int J Mol Sci 2022; 23:ijms23052730. [PMID: 35269875 PMCID: PMC8911255 DOI: 10.3390/ijms23052730] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/14/2022] Open
Abstract
Abiotic stresses have already exhibited the negative effects on crop growth and development, thereby influencing crop quality and yield. Therefore, plants have developed regulatory mechanisms to adopt against such harsh changing environmental conditions. Recent studies have shown that zinc finger protein transcription factors play a crucial role in plant growth and development as well as in stress response. C2H2 zinc finger proteins are one of the best-studied types and have been shown to play diverse roles in the plant abiotic stress responses. However, the C2H2 zinc finger network in plants is complex and needs to be further studied in abiotic stress responses. Here in this review, we mainly focus on recent findings on the regulatory mechanisms, summarize the structural and functional characterization of C2H2 zinc finger proteins, and discuss the C2H2 zinc finger proteins involved in the different signal pathways in plant responses to abiotic stress.
Collapse
Affiliation(s)
- Yihua Liu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China
- Correspondence: (Y.L.); (Y.G.)
| | - Ali Raza Khan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Yinbo Gan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
- Correspondence: (Y.L.); (Y.G.)
| |
Collapse
|
25
|
The Genetic Basis of Phosphorus Utilization Efficiency in Plants Provide New Insight into Woody Perennial Plants Improvement. Int J Mol Sci 2022; 23:ijms23042353. [PMID: 35216469 PMCID: PMC8877309 DOI: 10.3390/ijms23042353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 01/01/2023] Open
Abstract
Soil nutrient restrictions are the main environmental conditions limiting plant growth, development, yield, and quality. Phosphorus (P), an essential macronutrient, is one of the most significant factors that vastly restrains the growth and development of plants. Although the total P is rich in soil, its bio-available concentration is still unable to meet the requirements of plants. To maintain P homeostasis, plants have developed lots of intricate responsive and acclimatory mechanisms at different levels, which contribute to administering the acquisition of inorganic phosphate (Pi), translocation, remobilization, and recycling of Pi. In recent years, significant advances have been made in the exploration of the utilization of P in annual plants, while the research progress in woody perennial plants is still vague. In the meanwhile, compared to annual plants, relevant reviews about P utilization in woody perennial plants are scarce. Therefore, based on the importance of P in the growth and development of plants, we briefly reviewed the latest advances on the genetic and molecular mechanisms of plants to uphold P homeostasis, P sensing, and signaling, ion transporting and metabolic regulation, and proposed the possible sustainable management strategies to fasten the P cycle in modern agriculture and new directions for future studies.
Collapse
|
26
|
Xu H, Hassan MA, Sun D, Wu Z, Jiang G, Liu B, Ni Q, Yang W, Fang H, Li J, Chen X. Effects of Low Temperature Stress on Source-Sink Organs in Wheat and Phosphorus Mitigation Strategies. FRONTIERS IN PLANT SCIENCE 2022; 13:807844. [PMID: 35222472 PMCID: PMC8873184 DOI: 10.3389/fpls.2022.807844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
The 21st century presents many challenges to mankind, including climate change, fast growing human population, and serious concerns over food security. Wheat is a leading cereal crop that largely fulfills the global food needs. Low temperature stress accompanied by nutrient-starved soils is badly disrupting the source-sink relationship of wheat, thus causing an acute decline in final yield and deteriorating the grain quality. This review paper aimed to understand how low temperature stress affects wheat source-sink organs (i.e., leaves, roots, and spikes) and how phosphorus application reliefs in alleviating its harmful consequences. Also, we discussed mitigation strategies to enhance wheat capacity to adapt to varying temperature extremes and made rational recommendations based on modern agronomic and breeding approaches. Therefore, this study is likely to establish a solid foundation for improving the tolerance to low temperature stress and to improve its phosphorus utilization efficiency in wheat.
Collapse
Affiliation(s)
- Hui Xu
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | | | - Dongyue Sun
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Zhaochen Wu
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Gang Jiang
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Binbin Liu
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Qianqian Ni
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Wenkang Yang
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Hao Fang
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Jincai Li
- College of Agronomy, Anhui Agricultural University, Hefei, China
- Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing, China
| | - Xiang Chen
- College of Agronomy, Anhui Agricultural University, Hefei, China
| |
Collapse
|
27
|
Ma J, Zhao D, Tang X, Yuan M, Zhang D, Xu M, Duan Y, Ren H, Zeng Q, Wu J, Han D, Li T, Jiang L. Genome-Wide Association Study on Root System Architecture and Identification of Candidate Genes in Wheat (Triticum aestivum L.). Int J Mol Sci 2022; 23:ijms23031843. [PMID: 35163763 PMCID: PMC8836572 DOI: 10.3390/ijms23031843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
The root tissues play important roles in water and nutrient acquisition, environmental adaptation, and plant development. In this study, a diversity panel of 388 wheat accessions was collected to investigate nine root system architecture (RSA) traits at the three-leaf stage under two growing environments: outdoor pot culture (OPC) and indoor pot culture (IPC). Phenotypic analysis revealed that root development was faster under OPC than that under IPC and a significant correlation was observed between the nine RSA traits. The 660K single-nucleotide polymorphism (SNP) chip was used for a genome-wide association study (GWAS). Significant SNPs with a threshold of −log10 (p-value) ≥ 4 were considered. Thus, 36 quantitative trait loci (QTLs), including 13 QTL clusters that were associated with more than one trait, were detected, and 31 QTLs were first identified. The QTL clusters on chromosomes 3D and 5B were associated with four and five RSA traits, respectively. Two candidate genes, TraesCS2A01G516200 and TraesCS7B01G036900, were found to be associated with more than one RSA trait using haplotype analysis, and preferentially expressed in the root tissues. These favourable alleles for RSA traits identified in this study may be useful to optimise the root system in wheat.
Collapse
Affiliation(s)
- Jianhui Ma
- College of Life Science, Henan Normal University, Xinxiang 453007, China; (J.M.); (D.Z.); (X.T.); (M.Y.); (D.Z.); (M.X.); (Y.D.); (H.R.)
| | - Dongyang Zhao
- College of Life Science, Henan Normal University, Xinxiang 453007, China; (J.M.); (D.Z.); (X.T.); (M.Y.); (D.Z.); (M.X.); (Y.D.); (H.R.)
| | - Xiaoxiao Tang
- College of Life Science, Henan Normal University, Xinxiang 453007, China; (J.M.); (D.Z.); (X.T.); (M.Y.); (D.Z.); (M.X.); (Y.D.); (H.R.)
| | - Meng Yuan
- College of Life Science, Henan Normal University, Xinxiang 453007, China; (J.M.); (D.Z.); (X.T.); (M.Y.); (D.Z.); (M.X.); (Y.D.); (H.R.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Xianyang 712100, China; (Q.Z.); (J.W.); (D.H.)
| | - Daijing Zhang
- College of Life Science, Henan Normal University, Xinxiang 453007, China; (J.M.); (D.Z.); (X.T.); (M.Y.); (D.Z.); (M.X.); (Y.D.); (H.R.)
| | - Mengyuan Xu
- College of Life Science, Henan Normal University, Xinxiang 453007, China; (J.M.); (D.Z.); (X.T.); (M.Y.); (D.Z.); (M.X.); (Y.D.); (H.R.)
| | - Yingze Duan
- College of Life Science, Henan Normal University, Xinxiang 453007, China; (J.M.); (D.Z.); (X.T.); (M.Y.); (D.Z.); (M.X.); (Y.D.); (H.R.)
| | - Haiyue Ren
- College of Life Science, Henan Normal University, Xinxiang 453007, China; (J.M.); (D.Z.); (X.T.); (M.Y.); (D.Z.); (M.X.); (Y.D.); (H.R.)
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Xianyang 712100, China; (Q.Z.); (J.W.); (D.H.)
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Xianyang 712100, China; (Q.Z.); (J.W.); (D.H.)
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Xianyang 712100, China; (Q.Z.); (J.W.); (D.H.)
| | - Tian Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (T.L.); (L.J.)
| | - Lina Jiang
- College of Life Science, Henan Normal University, Xinxiang 453007, China; (J.M.); (D.Z.); (X.T.); (M.Y.); (D.Z.); (M.X.); (Y.D.); (H.R.)
- Correspondence: (T.L.); (L.J.)
| |
Collapse
|
28
|
Gao Y, Li Z, Yang C, Li G, Zeng H, Li Z, Zhang Y, Yang X. Pseudomonas syringae activates ZAT18 to inhibit salicylic acid accumulation by repressing EDS1 transcription for bacterial infection. THE NEW PHYTOLOGIST 2022; 233:1274-1288. [PMID: 34797591 DOI: 10.1111/nph.17870] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Phytopathogens can manipulate plant hormone signaling to counteract immune responses; however, the underlying mechanism is mostly unclear. Here, we report that Pseudomonas syringae pv tomato (Pst) DC3000 induces expression of C2H2 zinc finger transcription factor ZAT18 in a jasmonic acid (JA)-signaling-dependent manner. Biochemical assays further confirmed that ZAT18 is a direct target of MYC2, which is a very important regulator in JA signaling. CRISPR/Cas9-generated zat18-cr mutants exhibited enhanced resistance to Pst DC3000, while overexpression of ZAT18 resulted in impaired disease resistance. Genetic characterization of ZAT18 mutants demonstrated that ZAT18 represses defense responses by inhibiting the accumulation of the key plant immune signaling molecule salicylic acid (SA), which is dependent on its EAR motif. ZAT18 exerted this inhibitory effect by directly repressing the transcription of Enhanced Disease Susceptibility 1 (EDS1), which is the key signaling component of pathogen-induced SA accumulation. Overexpression of ZAT18 resulted in decreased SA content, while loss of function of ZAT18 showed enhanced SA accumulation upon pathogen infection. Furthermore, enhanced resistance and SA content in zat18-cr mutants was abolished by the mutation in EDS1. Our data indicate that pathogens induce ZAT18 expression to repress the transcription of EDS1, further antagonising SA accumulation for bacterial infection.
Collapse
Affiliation(s)
- Yuhan Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ze Li
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chenyu Yang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Guangyue Li
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hongmei Zeng
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhonghai Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yi Zhang
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Xiufen Yang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
29
|
Wu R, Liu Z, Wang J, Guo C, Zhou Y, Bawa G, Rochaix JD, Sun X. COE2 Is Required for the Root Foraging Response to Nitrogen Limitation. Int J Mol Sci 2022; 23:ijms23020861. [PMID: 35055047 PMCID: PMC8778332 DOI: 10.3390/ijms23020861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 01/10/2023] Open
Abstract
There are numerous exchanges of signals and materials between leaves and roots, including nitrogen, which is one of the essential nutrients for plant growth and development. In this study we identified and characterized the Chlorophyll A/B-Binding Protein (CAB) (named coe2 for CAB overexpression 2) mutant, which is defective in the development of chloroplasts and roots under normal growth conditions. The phenotype of coe2 is caused by a mutation in the Nitric Oxide Associated (NOA1) gene that is implicated in a wide range of chloroplast functions including the regulation of metabolism and signaling of nitric oxide (NO). A transcriptome analysis reveals that expression of genes involved in metabolism and lateral root development are strongly altered in coe2 seedlings compared with WT. COE2 is expressed in hypocotyls, roots, root hairs, and root caps. Both the accumulation of NO and the growth of lateral roots are enhanced in WT but not in coe2 under nitrogen limitation. These new findings suggest that COE2-dependent signaling not only coordinates gene expression but also promotes chloroplast development and function by modulating root development and absorption of nitrogen compounds.
Collapse
Affiliation(s)
- Rui Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (R.W.); (Z.L.); (J.W.); (C.G.); (Y.Z.); (G.B.)
| | - Zhixin Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (R.W.); (Z.L.); (J.W.); (C.G.); (Y.Z.); (G.B.)
| | - Jiajing Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (R.W.); (Z.L.); (J.W.); (C.G.); (Y.Z.); (G.B.)
| | - Chenxi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (R.W.); (Z.L.); (J.W.); (C.G.); (Y.Z.); (G.B.)
| | - Yaping Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (R.W.); (Z.L.); (J.W.); (C.G.); (Y.Z.); (G.B.)
| | - George Bawa
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (R.W.); (Z.L.); (J.W.); (C.G.); (Y.Z.); (G.B.)
| | - Jean-David Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, 1211 Geneva, Switzerland;
| | - Xuwu Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (R.W.); (Z.L.); (J.W.); (C.G.); (Y.Z.); (G.B.)
- Correspondence:
| |
Collapse
|
30
|
Bhadouria J, Giri J. Purple acid phosphatases: roles in phosphate utilization and new emerging functions. PLANT CELL REPORTS 2022; 41:33-51. [PMID: 34402946 DOI: 10.1007/s00299-021-02773-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Plants strive for phosphorus (P), which is an essential mineral for their life. Since P availability is limiting in most of the world's soils, plants have evolved with a complex network of genes and their regulatory mechanisms to cope with soil P deficiency. Among them, purple acid phosphatases (PAPs) are predominantly associated with P remobilization within the plant and acquisition from the soil by hydrolyzing organic P compounds. P in such compounds remains otherwise unavailable to plants for assimilation. PAPs are ubiquitous in plants, and similar enzymes exist in bacteria, fungi, mammals, and unicellular eukaryotes, but having some differences in their catalytic center. In the recent past, PAPs' roles have been extended to multiple plant processes like flowering, seed development, senescence, carbon metabolism, response to biotic and abiotic stresses, signaling, and root development. While new functions have been assigned to PAPs, the underlying mechanisms remained understood poorly. Here, we review the known functions of PAPs, the regulatory mechanisms, and their relevance in crop improvement for P-use-efficiency. We then discuss the mechanisms behind their functions and propose areas worthy of future research. Finally, we argue that PAPs could be a potential target for improving P utilization in crops. In turn, this is essential for sustainable agriculture.
Collapse
Affiliation(s)
- Jyoti Bhadouria
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
31
|
Li D, Wang H, Wang M, Li G, Chen Z, Leiser WL, Weiß TM, Lu X, Wang M, Chen S, Chen F, Yuan L, Würschum T, Liu W. Genetic Dissection of Phosphorus Use Efficiency in a Maize Association Population under Two P Levels in the Field. Int J Mol Sci 2021; 22:9311. [PMID: 34502218 PMCID: PMC8430673 DOI: 10.3390/ijms22179311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022] Open
Abstract
Phosphorus (P) deficiency is an important challenge the world faces while having to increase crop yields. It is therefore necessary to select maize (Zea may L.) genotypes with high phosphorus use efficiency (PUE). Here, we extensively analyzed the biomass, grain yield, and PUE-related traits of 359 maize inbred lines grown under both low-P and normal-P conditions. A significant decrease in grain yield per plant and biomass, an increase in PUE under low-P condition, as well as significant correlations between the two treatments were observed. In a genome-wide association study, 49, 53, and 48 candidate genes were identified for eleven traits under low-P, normal-P conditions, and in low-P tolerance index (phenotype under low-P divided by phenotype under normal-P condition) datasets, respectively. Several gene ontology pathways were enriched for the genes identified under low-P condition. In addition, seven key genes related to phosphate transporter or stress response were molecularly characterized. Further analyses uncovered the favorable haplotype for several core genes, which is less prevalent in modern lines but often enriched in a specific subpopulation. Collectively, our research provides progress in the genetic dissection and molecular characterization of PUE in maize.
Collapse
Affiliation(s)
- Dongdong Li
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, Key Laboratory of Crop Genetic Improvement, Beijing Municipality, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (D.L.); (H.W.); (M.W.); (G.L.); (X.L.); (M.W.); (S.C.)
| | - Haoying Wang
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, Key Laboratory of Crop Genetic Improvement, Beijing Municipality, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (D.L.); (H.W.); (M.W.); (G.L.); (X.L.); (M.W.); (S.C.)
| | - Meng Wang
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, Key Laboratory of Crop Genetic Improvement, Beijing Municipality, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (D.L.); (H.W.); (M.W.); (G.L.); (X.L.); (M.W.); (S.C.)
| | - Guoliang Li
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, Key Laboratory of Crop Genetic Improvement, Beijing Municipality, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (D.L.); (H.W.); (M.W.); (G.L.); (X.L.); (M.W.); (S.C.)
| | - Zhe Chen
- Key Laboratory of Plant-Soil Interaction, the Ministry of Education, Center for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Z.C.); (F.C.); (L.Y.)
| | - Willmar L. Leiser
- State Plant Breeding Institute, University of Hohenheim, 70593 Stuttgart, Germany; (W.L.L.); (T.M.W.)
| | - Thea Mi Weiß
- State Plant Breeding Institute, University of Hohenheim, 70593 Stuttgart, Germany; (W.L.L.); (T.M.W.)
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany;
| | - Xiaohuan Lu
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, Key Laboratory of Crop Genetic Improvement, Beijing Municipality, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (D.L.); (H.W.); (M.W.); (G.L.); (X.L.); (M.W.); (S.C.)
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ming Wang
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, Key Laboratory of Crop Genetic Improvement, Beijing Municipality, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (D.L.); (H.W.); (M.W.); (G.L.); (X.L.); (M.W.); (S.C.)
| | - Shaojiang Chen
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, Key Laboratory of Crop Genetic Improvement, Beijing Municipality, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (D.L.); (H.W.); (M.W.); (G.L.); (X.L.); (M.W.); (S.C.)
| | - Fanjun Chen
- Key Laboratory of Plant-Soil Interaction, the Ministry of Education, Center for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Z.C.); (F.C.); (L.Y.)
| | - Lixing Yuan
- Key Laboratory of Plant-Soil Interaction, the Ministry of Education, Center for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Z.C.); (F.C.); (L.Y.)
| | - Tobias Würschum
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany;
| | - Wenxin Liu
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, Key Laboratory of Crop Genetic Improvement, Beijing Municipality, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (D.L.); (H.W.); (M.W.); (G.L.); (X.L.); (M.W.); (S.C.)
| |
Collapse
|
32
|
Li Y, Sun A, Wu Q, Zou X, Chen F, Cai R, Xie H, Zhang M, Guo X. Comprehensive genomic survey, structural classification and expression analysis of C 2H 2-type zinc finger factor in wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2021; 21:380. [PMID: 34407757 PMCID: PMC8375173 DOI: 10.1186/s12870-021-03016-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/06/2021] [Indexed: 06/04/2023]
Abstract
BACKGROUND The C2H2-type zinc finger proteins (C2H2-ZFPs) are one of major classes of transcription factors that play important roles in plant growth, development and stress responses. Limit information about the C2H2-ZF genes hinders the molecular breeding in bread wheat (Triticum aestivum). RESULTS In this study, 457 C2H2-ZFP proteins (including 253 splice variants), which contain four types of conserved domain (named Q, M, Z, and D), could be further classified into ten subsets. They were identified to be distributed in 21 chromosomes in T. aestivum. Subset-specific motifs, like NPL-, SFP1-, DL- (EAR-like-motif), R-, PL-, L- and EK-, might make C2H2-ZFP diverse multifunction. Interestingly, NPL- and SFP1-box were firstly found to be located in C2H2-ZFP proteins. Synteny analyses showed that only 4 pairs of C2H2 family genes in T. aestivum, 65 genes in B. distachyon, 66 genes in A. tauschii, 68 genes in rice, 9 genes in Arabidopsis, were syntenic relationships respectively. It indicated that TaZFPs were closely related to genes in Poaceae. From the published transcriptome data, totally 198 of 204 TaC2H2-ZF genes have expression data. Among them, 25 TaC2H2-ZF genes were certificated to be significantly differentially expressed in 5 different organs and 15 different development stages by quantitative RT-PCR. The 18 TaC2H2-ZF genes were verified in response to heat, drought, and heat & drought stresses. According to expression pattern analysis, several TaZFPs, like Traes_5BL_D53A846BE.1, were not only highly expressed in L2DAAs, RTLS, RMS, but also endowed tolerance to drought and heat stresses, making them good candidates for molecular breeding. CONCLUSIONS This study systematically characterized the TaC2H2-ZFPs and their potential roles in T. aestivum. Our findings provide new insights into the C2H2-ZF genes in T. aestivum as well as a foundation for further studies on the roles of TaC2H2-ZF genes in T. aestivum molecular breeding.
Collapse
Affiliation(s)
- Yongliang Li
- College of Biology, Hunan University, Changsha, 410082, China
| | - Aolong Sun
- College of Biology, Hunan University, Changsha, 410082, China
| | - Qun Wu
- College of Biology, Hunan University, Changsha, 410082, China
| | - Xiaoxiao Zou
- College of Biology, Hunan University, Changsha, 410082, China
| | - Fenglin Chen
- College of Biology, Hunan University, Changsha, 410082, China
| | - Ruqiong Cai
- College of Biology, Hunan University, Changsha, 410082, China
| | - Hai Xie
- College of Biology, Hunan University, Changsha, 410082, China
| | - Meng Zhang
- College of Biology, Hunan University, Changsha, 410082, China.
| | - Xinhong Guo
- College of Biology, Hunan University, Changsha, 410082, China.
| |
Collapse
|
33
|
Yang Z, Gao Z, Zhou H, He Y, Liu Y, Lai Y, Zheng J, Li X, Liao H. GmPTF1 modifies root architecture responses to phosphate starvation primarily through regulating GmEXPB2 expression in soybean. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:525-543. [PMID: 33960526 DOI: 10.1111/tpj.15307] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Though root architecture modifications may be critically important for improving phosphorus (P) efficiency in crops, the regulatory mechanisms triggering these changes remain unclear. In this study, we demonstrate that genotypic variation in GmEXPB2 expression is strongly correlated with root elongation and P acquisition efficiency, and enhancing its transcription significantly improves soybean yield in the field. Promoter deletion analysis was performed using 5' truncation fragments (P1-P6) of GmEXPB2 fused with the GUS gene in soybean transgenic hairy roots, which revealed that the P1 segment containing three E-box elements significantly enhances induction of gene expression in response to phosphate (Pi) starvation. Further experimentation demonstrated that GmPTF1, a basic-helix-loop-helix transcription factor, is the regulatory factor responsible for the induction of GmEXPB2 expression in response to Pi starvation. In short, Pi starvation induced expression of GmPTF1, with the GmPTF1 product directly binding to the E-box motif in the P1 region of the GmEXPB2 promoter. Plus, both GmPTF1 and GmEXPB2 highly expressed in lateral roots, and were significantly enhanced by P deficiency. Further work with soybean stable transgenic plants through RNA sequencing analysis showed that altering GmPTF1 expression significantly impacted the transcription of a series of cell wall genes, including GmEXPB2, and thereby affected root growth, biomass and P uptake. Taken together, this work identifies a novel regulatory factor, GmPTF1, involved in changing soybean root architecture partially through regulation of the expression of GmEXPB2 by binding the E-box motif in its promoter region.
Collapse
Affiliation(s)
- Zhaojun Yang
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhi Gao
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huiwen Zhou
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ying He
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yanxing Liu
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yelin Lai
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiakun Zheng
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinxin Li
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hong Liao
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
34
|
Identification of C 2H 2 subfamily ZAT genes in Gossypium species reveals GhZAT34 and GhZAT79 enhanced salt tolerance in Arabidopsis and cotton. Int J Biol Macromol 2021; 184:967-980. [PMID: 34197850 DOI: 10.1016/j.ijbiomac.2021.06.166] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 01/04/2023]
Abstract
Soil salinization is a vital factor that restricts the efficient and sustainable development of global agriculture. Studies enlightened that the C2H2 zinc finger proteins (C2H2-ZFP) were involved in regulating the stress response in plants. However, knowledge of the C2H2-ZFP subfamily C1 (ZAT; Zinc finger of Arabidopsis thaliana) in cotton is still a mystery. In this study, 47, 45, 94, and 88 ZAT genes were obtained from diploid A2, D5 and tetraploid AD1, AD2 cotton genomes, respectively. The function of hybridization and allopolyploidy in the evolutionary linkage of allotetraploid cotton was explained by the family of ZAT gene in 4 species. Duplication of gene activities indicates that the family of ZAT gene of cotton evolution was under strong purifying selection. The integration of previous transcriptome data related to NaCl stress, strongly suggests the GhZAT34 and GhZAT79 may interact with salt resistance in upland cotton. The expression level of certain ZAT genes, higher seed germination rate of transgenic Arabidopsis and gene- silenced cotton revealed that both genes were involved in the salt tolerance of upland cotton. This study may pave the substantial understandings into the role of ZATs genes in plants as well as suggest appropriate candidate genes for breeding of cotton varieties against salinity tolerance.
Collapse
|
35
|
Mo F, Li H, Li Y, Chen X, Wang M, Li Z, Deng N, Yang Y, Huang X, Zhang R, Deng W. Physiological, biochemical, and transcriptional regulation in a leguminous forage Trifolium pratense L. responding to silver ions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:531-546. [PMID: 33773229 DOI: 10.1016/j.plaphy.2021.02.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Trifolium pratense L. (red clover) is an important leguminous crop with great potential for Ag-contaminated environment remediation. Whereas, the molecular mechanisms of Ag tolerance in red clover are largely unknown. Red clover seedlings were used for physiological and transcriptomic investigation under 0, 20, 50, and 100 mg/L Ag+ stress in our research to reveal potential molecular resistance mechanism. Research showed that red clover possessed fairly strong Ag absorbance capacity, the Ag level reached 0.14 and 2.35 mg/g·FW in the leaves and roots under 100 mg/L AgNO3 stress condition. Root fresh weight, root dry weight, root water content, and photosynthetic pigments contents were significantly decreased with elevating AgNO3 concentration. Obvious withered plant tissue, microstructure disorder, and disrupted organelles were observed. In vitro evaluations (e.g., PI and DCFH-DA staining) represented that AgNO3 at high concentration (100 mg/L) exhibited obvious inhibition on cell viability, which was due possibly to the induction of reactive oxygen species (ROS) accumulation. A total of 44643 differentially expressed genes (DEGs) were identified under Ag stress, covering 27155 upregulated and 17488 downregulated genes. 12 stress-responsive DEGs was authenticated utilizing real-time quantitative PCR (qRT-PCR). Gene ontology (GO) analysis revealed that the DEGs were mostly related to metal ion binding (molecular function), nucleus (cellular component), and defense response (biological process). Involved DEGs in sequence-specific DNA binding transcription factor activity, response to various hormones (e.g., abscisic acid, IAA/Auxin, salicylic acid, and etc), calcium signal transduction, and protein ubiquitination were concluded to play crucial roles in Ag tolerance of red clover. On the other hand, Kyoto Encyclopedia of Genes and Genomes (KEGG) database annotated several stress responsive pathways such as plant-pathogen interaction, phenylpropanoid biosynthesis, ubiquitin mediated proteolysis, hormone signal transduction, and autophagy. Several down-regulated genes (e.g., RSF2, RCD1, DOX1, and etc) were identified indicating possible metabolic disturbance. Besides, protein-protein interaction network (PPI) identified several pivotal genes such as ribosomal proteins, TIR, and ZAT.
Collapse
Affiliation(s)
- Fan Mo
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Haibo Li
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Yinghua Li
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Xi Chen
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Mingshuai Wang
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Zhe Li
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Ningcan Deng
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Yue Yang
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Xin Huang
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Ran Zhang
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Wenhe Deng
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| |
Collapse
|
36
|
Arrey-Salas O, Caris-Maldonado JC, Hernández-Rojas B, Gonzalez E. Comprehensive Genome-Wide Exploration of C2H2 Zinc Finger Family in Grapevine ( Vitis vinifera L.): Insights into the Roles in the Pollen Development Regulation. Genes (Basel) 2021; 12:302. [PMID: 33672655 PMCID: PMC7924211 DOI: 10.3390/genes12020302] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 01/02/2023] Open
Abstract
Some C2H2 zinc-finger proteins (ZFP) transcription factors are involved in the development of pollen in plants. In grapevine (Vitis vinifera L.), it has been suggested that abnormalities in pollen development lead to the phenomenon called parthenocarpy that occurs in some varieties of this cultivar. At present, a network involving several transcription factors types has been revealed and key roles have been assigned to members of the C2H2 zinc-finger proteins (ZFP) family in model plants. However, particularities of the regulatory mechanisms controlling pollen formation in grapevine remain unknown. In order to gain insight into the participation of ZFPs in grapevine gametophyte development, we performed a genome-wide identification and characterization of genes encoding ZFP (VviZFP family). A total of 98 genes were identified and renamed based on the gene distribution into grapevine genome. The analysis performed indicate significant changes throughout VviZFP genes evolution explained by high heterogeneity in sequence, length, number of ZF and presence of another conserved domains. Moreover, segmental duplication participated in the gene family expansion in grapevine. The VviZFPs were classified based on domain and phylogenetic analysis into three sets and different groups. Heat-map demonstrated differential and tissue-specific expression patterns of these genes and k-means clustering allowed to identify a group of putative orthologs to some ZFPs related to pollen development. In transgenic plants carrying the promVviZFP13::GUS and promVviZFP68::GUS constructs, GUS signals were detectable in the anther and mature pollen grains. Expression profiling of selected VviZFP genes showed differential expression pattern during flower development and provides a basis for deepening in the understanding of VviZFPs role on grapevine reproductive development.
Collapse
Affiliation(s)
- Oscar Arrey-Salas
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, 3460000 Talca, Chile;
| | | | - Bairon Hernández-Rojas
- Ph.D Program in Sciences Mention in Modeling of Chemical and Biological Systems, Faculty of Engineering, University of Talca, Calle 1 Poniente, 1141, 3462227 Talca, Chile;
| | - Enrique Gonzalez
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, 3460000 Talca, Chile;
| |
Collapse
|
37
|
Kong SL, Abdullah SNA, Ho CL, Musa MHB, Yeap WC. Comparative transcriptome analysis reveals novel insights into transcriptional responses to phosphorus starvation in oil palm (Elaeis guineensis) root. BMC Genom Data 2021; 22:6. [PMID: 33568046 PMCID: PMC7863428 DOI: 10.1186/s12863-021-00962-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phosphorus (P), in its orthophosphate form (Pi) is an essential macronutrient for oil palm early growth development in which Pi deficiency could later on be reflected in lower biomass production. Application of phosphate rock, a non-renewable resource has been the common practice to increase Pi accessibility and maintain crop productivity in Malaysia. However, high fixation rate of Pi in the native acidic tropical soils has led to excessive utilization of P fertilizers. This has caused serious environmental pollutions and cost increment. Even so, the Pi deficiency response mechanism in oil palm as one of the basic prerequisites for crop improvement remains largely unknown. RESULTS Using total RNA extracted from young roots as template, we performed a comparative transcriptome analysis on oil palm responding to 14d and 28d of Pi deprivation treatment and under adequate Pi supply. By using Illumina HiSeq4000 platform, RNA-Seq analysis was successfully conducted on 12 paired-end RNA-Seq libraries and generated more than 1.2 billion of clean reads in total. Transcript abundance estimated by fragments per kilobase per million fragments (FPKM) and differential expression analysis revealed 36 and 252 genes that are differentially regulated in Pi-starved roots at 14d and 28d, respectively. Genes possibly involved in regulating Pi homeostasis, nutrient uptake and transport, hormonal signaling and gene transcription were found among the differentially expressed genes. CONCLUSIONS Our results showed that the molecular response mechanism underlying Pi starvation in oil palm is complexed and involved multilevel regulation of various sensing and signaling components. This contribution would generate valuable genomic resources in the effort to develop oil palm planting materials that possess Pi-use efficient trait through molecular manipulation and breeding programs.
Collapse
Affiliation(s)
- Sze-Ling Kong
- Laboratory of Sustainable Agronomy and Crop Protection, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Siti Nor Akmar Abdullah
- Laboratory of Sustainable Agronomy and Crop Protection, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Agriculture Technology, Faculty of Agriculture, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Chai-Ling Ho
- Laboratory of Sustainable Agronomy and Crop Protection, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohamed Hanafi Bin Musa
- Department of Land Management, Faculty of Agriculture, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Wan-Chin Yeap
- Sime Darby Technology Centre Sdn. Bhd., Block A, UPM-MTDC Technology Centre III, Lebuh Silikon, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
38
|
Cai J, Cai W, Huang X, Yang S, Wen J, Xia X, Yang F, Shi Y, Guan D, He S. Ca14-3-3 Interacts With CaWRKY58 to Positively Modulate Pepper Response to Low-Phosphorus Starvation. FRONTIERS IN PLANT SCIENCE 2021; 11:607878. [PMID: 33519860 PMCID: PMC7840522 DOI: 10.3389/fpls.2020.607878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Low-phosphorus stress (LPS) and pathogen attack are two important stresses frequently experienced by plants in their natural habitats, but how plant respond to them coordinately remains under-investigated. Here, we demonstrate that CaWRKY58, a known negative regulator of the pepper (Capsicum annuum) response to attack by Ralstonia solanacearum, is upregulated by LPS. Virus-induced gene silencing (VIGS) and overexpression of CaWRKY58 in Nicotiana benthamiana plants in combination with chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assays (EMSA) demonstrated that CaWRKY58 positively regulates the response of pepper to LPS by directly targeting and regulating genes related to phosphorus-deficiency tolerance, including PHOSPHATE STARVATION RESPONSE1 (PHR1). Yeast two-hybrid assays revealed that CaWRKY58 interacts with a 14-3-3 protein (Ca14-3-3); this interaction was confirmed by pull-down, bimolecular fluorescence complementation (BiFC), and microscale thermophoresis (MST) assays. The interaction between Ca14-3-3 and CaWRKY58 enhanced the activation of PHR1 expression by CaWRKY58, but did not affect the expression of the immunity-related genes CaNPR1 and CaDEF1, which are negatively regulated by CaWRKY58 in pepper upon Ralstonia solanacearum inoculation. Collectively, our data indicate that CaWRKY58 negatively regulates immunity against Ralstonia solanacearum, but positively regulates tolerance to LPS and that Ca14-3-3 transcriptionally activates CaWRKY58 in response to LPS.
Collapse
Affiliation(s)
- Jinsen Cai
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weiwei Cai
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xueying Huang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sheng Yang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiayu Wen
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoqin Xia
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feng Yang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Shi
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Deyi Guan
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuilin He
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
39
|
Wang Y, Chen YF, Wu WH. Potassium and phosphorus transport and signaling in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:34-52. [PMID: 33325114 DOI: 10.1111/jipb.13053] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/10/2020] [Indexed: 05/26/2023]
Abstract
Nitrogen (N), potassium (K), and phosphorus (P) are essential macronutrients for plant growth and development, and their availability affects crop yield. Compared with N, the relatively low availability of K and P in soils limits crop production and thus threatens food security and agricultural sustainability. Improvement of plant nutrient utilization efficiency provides a potential route to overcome the effects of K and P deficiencies. Investigation of the molecular mechanisms underlying how plants sense, absorb, transport, and use K and P is an important prerequisite to improve crop nutrient utilization efficiency. In this review, we summarize current understanding of K and P transport and signaling in plants, mainly taking Arabidopsis thaliana and rice (Oryza sativa) as examples. We also discuss the mechanisms coordinating transport of N and K, as well as P and N.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yi-Fang Chen
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wei-Hua Wu
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
40
|
Ajeesh Krishna TP, Maharajan T, Victor Roch G, Ignacimuthu S, Antony Ceasar S. Structure, Function, Regulation and Phylogenetic Relationship of ZIP Family Transporters of Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:662. [PMID: 32536933 PMCID: PMC7267038 DOI: 10.3389/fpls.2020.00662] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/29/2020] [Indexed: 05/24/2023]
Abstract
Zinc (Zn) is an essential micronutrient for plants and humans. Nearly 50% of the agriculture soils of world are Zn-deficient. The low availability of Zn reduces the yield and quality of the crops. The zinc-regulated, iron-regulated transporter-like proteins (ZIP) family and iron-regulated transporters (IRTs) are involved in cellular uptake of Zn, its intracellular trafficking and detoxification in plants. In addition to Zn, ZIP family transporters also transport other divalent metal cations (such as Cd2+, Fe2+, and Cu2+). ZIP transporters play a crucial role in biofortification of grains with Zn. Only a very limited information is available on structural features and mechanism of Zn transport of plant ZIP family transporters. In this article, we present a detailed account on structure, function, regulations and phylogenetic relationships of plant ZIP transporters. We give an insight to structure of plant ZIPs through homology modeling and multiple sequence alignment with Bordetella bronchiseptica ZIP (BbZIP) protein whose crystal structure has been solved recently. We also provide details on ZIP transporter genes identified and characterized in rice and other plants till date. Functional characterization of plant ZIP transporters will help for the better crop yield and human health in future.
Collapse
Affiliation(s)
- T. P. Ajeesh Krishna
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College, University of Madras, Chennai, India
| | - T. Maharajan
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College, University of Madras, Chennai, India
| | - G. Victor Roch
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College, University of Madras, Chennai, India
| | | | - Stanislaus Antony Ceasar
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College, University of Madras, Chennai, India
| |
Collapse
|
41
|
Cloning, Characterization and Expression Analysis of the Phosphate Starvation Response Gene, ClPHR1, from Chinese Fir. FORESTS 2020. [DOI: 10.3390/f11010104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The study on the function and sequence of PHR1 (Phosphate Starvation Response gene 1) gene, which plays a central role in plant phosphorus (Pi) signal regulatory network, is of great significance to further study response mechanisms to Pi deficiency. In this work, the previously selected Pi-efficient Chinese fir clone M32 was used as research material to obtain the full-length sequence of ClPHR1 transcription factors in Chinese fir by RACE (Rapid Amplification of cDNA Ends) full-length cloning technique, and the structure, function and subcellular localization of ClPHR1 gene encoding protein were analyzed. The temporal and spatial expression characteristics of ClPHR1 transcription factors in Chinese fir under low Pi stress were also analyzed, and the overexpression of ClPHR1 gene in transgenic Arabidopsis thaliana was obtained to verify the function of ClPHR1 gene under low Pi stress. The results showed that the length of the ClPHR1 gene obtained by rapid amplification of cDNA ends technique was 1954 bp, of which 1512 bp was an open reading frame. ClPHR1 was predicted to be an unstable hydrophilic protein with only one possible transmembrane domain. The ClPHR1 gene had a highly conserved MYB-CC domain, which is similar to the PHR1 gene of other plants. Phylogenetic tree analysis showed that the sequence had high homology with PHR1 genes in the Prunus species. The ClPHR1 was expressed in all organs of Chinese fir, with the highest expression in the roots, followed by the leaves with the lowest expression in stems. ClPHR1 expression in roots was reduced dramatically at the beginning of Pi stress treatment and followed by an increase at 7days; in leaves, it increased dramatically at the beginning of Pi starvation treatment and showed a decreasing trend after 3 days; in stems, the expression level of ClPHR1 increased after 7 days of Pi stress treatment. The transient expression vector was introduced into plant cells, and it was found that ClPHR1 was located in the nucleus and was a MYB-CC transcription factor expressed in the cell nucleus. The ClPHR1 overexpression vector was constructed, and then introduced into Arabidopsis thaliana by agrobacterium infection inflorescence method. The expressions of Pi transporter genes, AtPHT1;1, AtPHT1;2, AtPHT1;8 and AtPHT1;9, was significantly higher in the overexpressing strain than that in the wild type strain. The results suggest that the ClPHR1 transcription factor could regulate the regulation of downstream Pi transporter gene and increase Pi utilization efficiency of the Chinese fir under Pi stress.
Collapse
|
42
|
Yang YY, Ren YR, Zheng PF, Qu FJ, Song LQ, You CX, Wang XF, Hao YJ. Functional identification of apple MdMYB2 gene in phosphate-starvation response. JOURNAL OF PLANT PHYSIOLOGY 2020; 244:153089. [PMID: 31812904 DOI: 10.1016/j.jplph.2019.153089] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 05/26/2023]
Abstract
Inorganic phosphate (Pi) starvation severely affects the normal growth and development of plants. Here, a Pi-responsive gene, named MdMYB2 (MDP0000823458), was cloned and functionally identified in apple. Overexpression of MdMYB2 regulated the expression of Pi starvation-induced (PSI) genes and then promoted phosphate assimilation and utilization. The ectopic expression of MdMYB2 in Arabidopsis influenced plant growth and flowering, which was partially rescued by application of exogenous gibberellin (GA). These results indicated that MdMYB2 may be an essential regulator in phosphate utilization and GA-regulated plant growth and development.
Collapse
Affiliation(s)
- Yu-Ying Yang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production With High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China; Yantai Academy of Agricultural Sciences, Yan-Tai, 2655599, Shandong, China
| | - Yi-Ran Ren
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production With High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Peng-Fei Zheng
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production With High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Feng-Jia Qu
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production With High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Lai-Qing Song
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production With High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production With High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production With High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China; Yantai Academy of Agricultural Sciences, Yan-Tai, 2655599, Shandong, China.
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production With High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
43
|
Zhang N, Zhou S, Yang D, Fan Z. Revealing Shared and Distinct Genes Responding to JA and SA Signaling in Arabidopsis by Meta-Analysis. FRONTIERS IN PLANT SCIENCE 2020; 11:908. [PMID: 32670328 PMCID: PMC7333171 DOI: 10.3389/fpls.2020.00908] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 06/03/2020] [Indexed: 05/22/2023]
Abstract
Plant resistance against biotrophic and necrotrophic pathogens is mediated by mutually synergistic and antagonistic effects of salicylic acid (SA) and jasmonic acid (JA) signals. However, the unique and shared genes responding to the defense mediated by JA/SA signals were largely unclear. To reveal discrete, synergistic and antagonistic JA/SA responsive genes in Arabidopsis thaliana, Meta-Analysis was employed with 257 publicly available Arabidopsis thaliana RNA-Seq gene expression profiles following treatment of mock, JA or SA analogs. JA/SA signalings were found to co-induce broad-spectrum disease-response genes, co-repress the genes related to photosynthesis, auxin, and gibberellin, and reallocate resources of growth toward defense. JA might attenuate SA induced immune response by inhibiting the expression of resistance genes and receptor-like proteins/kinases. Strikingly, co-expression network analysis revealed that JA/SA uniquely regulated genes showing highly coordinated co-expression only in their respective treatment. Using principal component analysis, and hierarchical cluster analysis, JA/SA analogs were segregated into separate entities based on the global differential expression matrix rather than the expression matrix. To accurately classify JA/SA analogs with as few genes as possible, 87 genes, including the SA receptor NPR4, and JA biosynthesis gene AOC1 and JA response biomarkers VSP1/2, were identified by three feature selection algorithms as JA/SA markers. The results were confirmed by independent datasets and provided valuable resources for further functional analyses in JA- or SA- mediated plant defense. These methods would provide cues to build a promising approach for probing the mode of action of potential elicitors.
Collapse
|
44
|
Hu X, Zhu L, Zhang Y, Xu L, Li N, Zhang X, Pan Y. Genome-wide identification of C2H2 zinc-finger genes and their expression patterns under heat stress in tomato ( Solanum lycopersicum L.). PeerJ 2019; 7:e7929. [PMID: 31788352 PMCID: PMC6882421 DOI: 10.7717/peerj.7929] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
The C2H2 zinc finger protein (C2H2-ZFP) transcription factor family regulates the expression of a wide variety of genes in response to various developmental processes or abiotic stresses; however, these proteins have not yet been comprehensively analyzed in tomato (Solanum lycopersicum). In this study, a total of 104 C2H2-ZFs were identified in an uneven distribution across the entire tomato genome, and include seven segmental duplication events. Based on their phylogenetic relationships, these genes were clustered into nine distinct categories analogous to those in Arabidopsis thaliana. High similarities were found between the exon–intron structures and conserved motifs of the genes within each group. Correspondingly, the expression patterns of the C2H2-ZF genes indicated that they function in different tissues and at different developmental stages. Additionally, quantitative real-time PCR (qRT-PCR) results demonstrated that the expression levels of 34 selected C2H2-ZFs are changed dramatically among the roots, stems, and leaves at different time points of a heat stress treatment, suggesting that the C2H2-ZFPs are extensively involved in the heat stress response but have potentially varying roles. These results form the basis for the further molecular and functional analysis of the C2H2-ZFPs, especially for those members that significantly varied under heat treatment, which may be targeted to improve the heat tolerance of tomato and other Solanaceae species.
Collapse
Affiliation(s)
- Xin Hu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Lili Zhu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yi Zhang
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Li Xu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Na Li
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xingguo Zhang
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yu Pan
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
45
|
Liu Z, Marella CBN, Hartmann A, Hajirezaei MR, von Wirén N. An Age-Dependent Sequence of Physiological Processes Defines Developmental Root Senescence. PLANT PHYSIOLOGY 2019; 181:993-1007. [PMID: 31515448 PMCID: PMC6836830 DOI: 10.1104/pp.19.00809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/02/2019] [Indexed: 05/22/2023]
Abstract
Aging-related processes in plant tissues are associated with changes in developmental and physiological processes relevant for stress tolerance and plant performance. While senescence-regulated processes have been extensively characterized in leaves, they remain poorly described in roots. Here, we investigated the physiological processes and molecular determinants underlying the senescence of seminal roots in hydroponically grown barley (Hordeum vulgare). Transcriptome profiling in apical and basal root tissues revealed that several NAC-, WRKY-, and APETALA2 (AP2)-type transcription factors were upregulated just before the arrest of root elongation, when root cortical cell lysis and nitrate uptake, as well as cytokinin concentrations ceased. At this time point, root abscisic acid levels peaked, suggesting that abscisic acid is involved in root aging-related processes characterized by expression changes of genes involved in oxidative stress responses. This temporal sequence of aging-related processes in roots is highly reminiscent of typical organ senescence, with the exception of evidence for the retranslocation of nutrients from roots. Supported by the identification of senescence-related transcription factors, some of which are not expressed in leaves, our study indicates that roots undergo an intrinsic genetically determined senescence program, predominantly influenced by plant age.
Collapse
Affiliation(s)
- Zhaojun Liu
- Molecular Plant Nutrition, Department Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Chakravarthy B N Marella
- Molecular Plant Nutrition, Department Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Anja Hartmann
- Molecular Plant Nutrition, Department Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Mohammad R Hajirezaei
- Molecular Plant Nutrition, Department Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Department Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstrasse 3, 06466 Gatersleben, Germany vonwiren@ipk-gatersleben
| |
Collapse
|
46
|
The Roles of Arabidopsis C1-2i Subclass of C2H2-type Zinc-Finger Transcription Factors. Genes (Basel) 2019; 10:genes10090653. [PMID: 31466344 PMCID: PMC6770587 DOI: 10.3390/genes10090653] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/19/2019] [Accepted: 08/27/2019] [Indexed: 01/07/2023] Open
Abstract
The Cys2His2 (C2H2)-type zinc-finger protein (ZFP) family, which includes 176 members in Arabidopsis thaliana, is one of the largest families of putative transcription factors in plants. Of the Arabidopsis ZFP members, only 33 members are conserved in other eukaryotes, with 143 considered to be plant specific. C2H2-type ZFPs have been extensively studied and have been shown to play important roles in plant development and environmental stress responses by transcriptional regulation. The ethylene-responsive element binding-factor-associated amphiphilic repression (EAR) domain (GCC box) has been found to have a critical role in the tolerance response to abiotic stress. Many of the plant ZFPs containing the EAR domain, such as AZF1/2/3, ZAT7, ZAT10, and ZAT12, have been shown to function as transcriptional repressors. In this review, we mainly focus on the C1-2i subclass of C2H2 ZFPs and summarize the latest research into their roles in various stress responses. The role of C2H2-type ZFPs in response to the abiotic and biotic stress signaling network is not well explained, and amongst them, C1-2i is one of the better-characterized classifications in response to environmental stresses. These studies of the C1-2i subclass ought to furnish the basis for future studies to discover the pathways and receptors concerned in stress defense. Research has implied possible protein-protein interactions between members of C1-2i under various stresses, for which we have proposed a hypothetical model.
Collapse
|
47
|
Crombez H, Motte H, Beeckman T. Tackling Plant Phosphate Starvation by the Roots. Dev Cell 2019; 48:599-615. [PMID: 30861374 DOI: 10.1016/j.devcel.2019.01.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 10/16/2018] [Accepted: 12/31/2018] [Indexed: 12/17/2022]
Abstract
Plant responses to phosphate deprivation encompass a wide range of strategies, varying from altering root system architecture, entering symbiotic interactions to excreting root exudates for phosphorous release, and recycling of internal phosphate. These processes are tightly controlled by a complex network of proteins that are specifically upregulated upon phosphate starvation. Although the different effects of phosphate starvation have been intensely studied, the full extent of its contribution to altered root system architecture remains unclear. In this review, we focus on the effect of phosphate starvation on the developmental processes that shape the plant root system and their underlying molecular pathways.
Collapse
Affiliation(s)
- Hanne Crombez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium
| | - Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium.
| |
Collapse
|
48
|
Zhang J, Jiang F, Shen Y, Zhan Q, Bai B, Chen W, Chi Y. Transcriptome analysis reveals candidate genes related to phosphorus starvation tolerance in sorghum. BMC PLANT BIOLOGY 2019; 19:306. [PMID: 31296169 PMCID: PMC6624980 DOI: 10.1186/s12870-019-1914-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 06/30/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Phosphorus (P) deficiency in soil is a worldwide issue and a major constraint on the production of sorghum, which is an important staple food, forage and energy crop. The depletion of P reserves and the increasing price of P fertilizer make fertilizer application impractical, especially in developing countries. Therefore, identifying sorghum accessions with low-P tolerance and understanding the underlying molecular basis for this tolerance will facilitate the breeding of P-efficient plants, thereby resolving the P crisis in sorghum farming. However, knowledge in these areas is very limited. RESULTS The 29 sorghum accessions used in this study demonstrated great variability in their tolerance to low-P stress. The internal P content in the shoot was correlated with P tolerance. A low-P-tolerant accession and a low-P-sensitive accession were chosen for RNA-seq analysis to identify potential underlying molecular mechanisms. A total of 2089 candidate genes related to P starvation tolerance were revealed and found to be enriched in 11 pathways. Gene Ontology (GO) enrichment analyses showed that the candidate genes were associated with oxidoreductase activity. In addition, further study showed that malate affected the length of the primary root and the number of tips in sorghum suffering from low-P stress. CONCLUSIONS Our results show that acquisition of P from soil contributes to low-P tolerance in different sorghum accessions; however, the underlying molecular mechanism is complicated. Plant hormone (including auxin, ethylene, jasmonic acid, salicylic acid and abscisic acid) signal transduction related genes and many transcriptional factors were found to be involved in low-P tolerance in sorghum. The identified accessions will be useful for breeding new sorghum varieties with enhanced P starvation tolerance.
Collapse
Affiliation(s)
- Jinglong Zhang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province China
| | - Fangfang Jiang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province China
| | - Yixin Shen
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province China
| | - Qiuwen Zhan
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Binqiang Bai
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province China
| | - Wei Chen
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province China
| | - Yingjun Chi
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province China
| |
Collapse
|
49
|
Noman A, Aqeel M, Khalid N, Islam W, Sanaullah T, Anwar M, Khan S, Ye W, Lou Y. Zinc finger protein transcription factors: Integrated line of action for plant antimicrobial activity. Microb Pathog 2019; 132:141-149. [PMID: 31051192 DOI: 10.1016/j.micpath.2019.04.042] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 03/11/2019] [Accepted: 04/29/2019] [Indexed: 11/17/2022]
Abstract
The plants resist/tolerate unfavorable conditions in their natural habitats by using different but aligned and integrated defense mechanisms. Such defense responses include not only morphological and physiological adaptations but also the genomic and transcriptomic reconfiguration. Microbial attack on plants activates multiple pro-survival pathways such as transcriptional reprogramming, hypersensitive response (HR), antioxidant defense system and metabolic remodeling. Up-regulation of these processes during biotic stress conditions directly relates with plant survival. Over the years, hundreds of plant transcription factors (TFs) belonging to diverse families have been identified. Zinc finger protein (ZFP) TFs have crucial role in phytohormone response, plant growth and development, stress tolerance, transcriptional regulation, RNA binding and protein-protein interactions. Recent research progress has revealed regulatory and biological functions of ZFPs in incrementing plant resistance to pathogens. Integration of transcriptional activity with metabolic modulations has miniaturized plant innate immunity. However, the precise roles of different zinc finger TFs in plant immunity to pathogens have not been thoroughly analyzed. This review consolidates the pivotal functioning of zinc finger TFs and proposes the integrative understanding as foundation for the plant growth and development including the stress responses.
Collapse
Affiliation(s)
- Ali Noman
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, PR China; Department of Botany, Government College University, Faisalabad, Pakistan; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, PR China.
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Science, Lanzhou University, Lanzhou, Gansu, PR China
| | - Noreen Khalid
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Waqar Islam
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China; Institute of Geography, Fujian Normal University, Fuzhou, 350007, China
| | - Tayyaba Sanaullah
- Institute of Pure and Applied Biology, Bahaud Din Zakria University, Multan, Pakistan
| | - Muhammad Anwar
- College of Life Science and Oceanology, Shenzhen University, Shenzhen, PR China
| | - Shahbaz Khan
- College of Agriculture, Shangxi Agricultural University, Jinzhong, PR China
| | - Wenfeng Ye
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, PR China
| | - Yonggen Lou
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
50
|
Quan C, Bai Z, Zheng S, Zhou J, Yu Q, Xu Z, Gao X, Li L, Zhu J, Jia X, Chen R. Genome-wide analysis and environmental response profiling of phosphate-induced-1 family genes in rice (Oryza sativa). BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1604157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Changqian Quan
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhigang Bai
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shiwei Zheng
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jingming Zhou
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiang Yu
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhengjun Xu
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoling Gao
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lihua Li
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jianqing Zhu
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaomei Jia
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Rongjun Chen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|