1
|
Sedlov IA, Sluchanko NN. The Big, Mysterious World of Plant 14-3-3 Proteins. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S1-S35. [PMID: 40164151 DOI: 10.1134/s0006297924603319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 04/02/2025]
Abstract
14-3-3 is a family of small regulatory proteins found exclusively in eukaryotic organisms. They selectively bind to phosphorylated molecules of partner proteins and regulate their functions. 14-3-3 proteins were first characterized in the mammalian brain approximately 60 years ago and then found in plants, 30 years later. The multifunctionality of 14-3-3 proteins is exemplified by their involvement in coordination of protein kinase cascades in animal brain and regulation of flowering, growth, metabolism, and immunity in plants. Despite extensive studies of this diverse and complex world of plant 14-3-3 proteins, our understanding of functions of these enigmatic molecules is fragmentary and unsystematic. The results of studies are often contradictory and many questions remain unanswered, including biochemical properties of 14-3-3 isoforms, structure of protein-protein complexes, and direct mechanisms by which 14-3-3 proteins influence the functions of their partners in plants. Although many plant genes coding for 14-3-3 proteins have been identified, the isoforms for in vivo and in vitro studies are often selected at random. This rather limited approach is partly due to an exceptionally large number and variety of 14-3-3 homologs in plants and erroneous a priori assumptions on the equivalence of certain isoforms. The accumulated results provide an extensive but rather fragmentary picture, which poses serious challenges for making global generalizations. This review is aimed to demonstrate the diversity and scope of studies of the functions of plant 14-3-3 proteins, as well as to identify areas that require further systematic investigation and close scientific attention.
Collapse
Affiliation(s)
- Ilya A Sedlov
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nikolai N Sluchanko
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
2
|
Henderson SW, Nourmohammadi S, Hrmova M. Protein Structural Modeling and Transport Thermodynamics Reveal That Plant Cation-Chloride Cotransporters Mediate Potassium-Chloride Symport. Int J Mol Sci 2024; 25:12955. [PMID: 39684666 DOI: 10.3390/ijms252312955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/17/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Plant cation-chloride cotransporters (CCCs) are proposed to be Na+-K+-2Cl- transporting membrane proteins, although evolutionarily, they associate more closely with K+-Cl- cotransporters (KCCs). Here, we investigated grapevine (Vitis vinifera L.) VvCCC using 3D protein modeling, bioinformatics, and electrophysiology with a heterologously expressed protein. The 3D protein modeling revealed that the signatures of ion binding sites in plant CCCs resembled those of animal KCCs, which was supported by phylogenomic analyses and ancestral sequence reconstruction. The conserved features of plant CCCs and animal KCCs included predicted K+ and Cl--binding sites and the absence of a Na+-binding site. Measurements with VvCCC-injected Xenopus laevis oocytes with VvCCC localizing to plasma membranes indicated that the oocytes had depleted intracellular Cl- and net 86Rb fluxes, which agreed with thermodynamic predictions for KCC cotransport. The 86Rb uptake by VvCCC-injected oocytes was Cl--dependent, did not require external Na+, and was partially inhibited by the non-specific CCC-blocker bumetanide, implying that these properties are typical of KCC transporters. A loop diuretic-insensitive Na+ conductance in VvCCC-injected oocytes may account for earlier observations of Na+ uptake by plant CCC proteins expressed in oocytes. Our data suggest plant CCC membrane proteins are likely to function as K+-Cl- cotransporters, which opens the avenues to define their biophysical properties and roles in plant physiology.
Collapse
Affiliation(s)
- Sam W Henderson
- School of Agriculture, Food and Wine, Waite Research Institute, Faculty of Sciences, Engineering and Technology, University of Adelaide, Waite Campus Precinct, Glen Osmond, Adelaide, SA 5064, Australia
| | - Saeed Nourmohammadi
- School of Agriculture, Food and Wine, Waite Research Institute, Faculty of Sciences, Engineering and Technology, University of Adelaide, Waite Campus Precinct, Glen Osmond, Adelaide, SA 5064, Australia
| | - Maria Hrmova
- School of Agriculture, Food and Wine, Waite Research Institute, Faculty of Sciences, Engineering and Technology, University of Adelaide, Waite Campus Precinct, Glen Osmond, Adelaide, SA 5064, Australia
| |
Collapse
|
3
|
He Y, Wang Z, Cui W, Zhang Q, Zheng M, Li W, Gao J, Yang Z, You J. Comparative quantitative phosphoproteomic and parallel reaction monitoring analysis of soybean roots under aluminum stress identify candidate phosphoproteins involved in aluminum resistance capacity. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135485. [PMID: 39208632 DOI: 10.1016/j.jhazmat.2024.135485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Aluminum (Al) toxicity adversely impacts soybean (Glycine max) growth in acidic soil. Reversible protein phosphorylation plays an important role in adapting to adverse environmental conditions by regulating multiple physiological processes including signal transduction, energy coupling and metabolism adjustment in higher plant. This study aimed to reveal the Al-responsive phosphoproteins to understand their putative function and involvement in the regulation of Al resistance in soybean root. We used immobilized metal affinity chromatography to enrich the key phosphoproteins from soybean root apices at 0, 4, or 24 h Al exposure. These phosphoproteins were detected using liquid chromatography-tandem mass spectrometry measurement, verified by parallel reaction monitoring (PRM), and functionally characterized via overexpression in soybean hairy roots. A total of 638 and 686 phosphoproteins were identified as differentially enriched between the 4-h and 0-h, and the 24-h and 0-h Al treatment comparison groups, respectively. Typically, the phosphoproteins involved in biological processes including cell wall modification, and RNA and protein metabolic regulation displayed patterns of decreasing enrichment (clusters 3, 5 and 6), however, the phosphoproteins involved in the transport and metabolic processes of various substrates, and signal transduction pathways showed increased enrichment after 24 h of Al treatment. The enrichment of phosphoproteins in organelle organization bottomed after 4 h of Al treatment (cluster 1). Next, we selected 26 phosphoproteins from the phosphoproteomic profiles, assessed their enrichment status using PRM, and detected enrichment patterns similar to those observed via phosphoproteomic analysis. Among them, 15 phosphoproteins were found to reduce the accumulation of Al and callose in Al-stressed soybean root apices when their corresponding genes were individually overexpressed in soybean hairy roots. In summary, the findings of this study facilitated a comprehensive understanding of the protein phosphorylation events involved in Al resistance responses and revealed some critical phosphoproteins that enhance Al resistance in soybean roots.
Collapse
Affiliation(s)
- Ying He
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Zhengbiao Wang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Wenmo Cui
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Qingxiu Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Meihui Zheng
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Wen Li
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jie Gao
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Zhenming Yang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jiangfeng You
- College of Plant Science, Jilin University, Changchun 130062, China.
| |
Collapse
|
4
|
Rühle T, Leister D, Pasch V. Chloroplast ATP synthase: From structure to engineering. THE PLANT CELL 2024; 36:3974-3996. [PMID: 38484126 PMCID: PMC11449085 DOI: 10.1093/plcell/koae081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/27/2023] [Indexed: 10/05/2024]
Abstract
F-type ATP synthases are extensively researched protein complexes because of their widespread and central role in energy metabolism. Progress in structural biology, proteomics, and molecular biology has also greatly advanced our understanding of the catalytic mechanism, post-translational modifications, and biogenesis of chloroplast ATP synthases. Given their critical role in light-driven ATP generation, tailoring the activity of chloroplast ATP synthases and modeling approaches can be applied to modulate photosynthesis. In the future, advances in genetic manipulation and protein design tools will significantly expand the scope for testing new strategies in engineering light-driven nanomotors.
Collapse
Affiliation(s)
- Thilo Rühle
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, D-82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, D-82152 Planegg-Martinsried, Germany
| | - Viviana Pasch
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, D-82152 Planegg-Martinsried, Germany
| |
Collapse
|
5
|
Rui L, Kang P, Shao J, Lu M, Cui B, Zhao Y, Wang W, Cai H, Tang D, Loake GJ, Wang M, Shi H. The chloroplast-localized casein kinase II α subunit, CPCK2, negatively regulates plant innate immunity through promoting S-nitrosylation of SABP3. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:552-568. [PMID: 39189381 DOI: 10.1111/tpj.17000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/04/2024] [Accepted: 08/08/2024] [Indexed: 08/28/2024]
Abstract
The casein kinase II (CK2) complex consists of catalytic (α) and regulatory (β) subunits and is highly conserved throughout eukaryotes. Plant CK2 plays critical roles in multiple physiological processes; however, its function in plant immunity remains obscure. In this study, we demonstrated that the unique chloroplast-localized CK2 α subunit (CPCK2) is a negative regulator of Arabidopsis thaliana innate immunity. cpck2 mutants displayed enhanced resistance against the fungal pathogen powdery mildew, Golovinomyces cichoracearum and the virulent bacterial pathogen, Pseudomonas syringae pv. tomato (Pto) DC3000. Moreover, the cpck2-1 mutant accumulated higher salicylic acid (SA) levels and mutations that disabled SA biosynthesis or signaling inhibited cpck2-1-mediated disease resistance. CPCK2 interacted with the chloroplast-localized carbonic anhydrase (CA), SA-binding protein 3 (SABP3), which was required for cpck2-mediated immunity. Significantly, CPCK2 phosphorylated SABP3, which promoted S-nitrosylation of this enzyme. It has previously been established that S-nitrosylation of SABP3 reduces both its SA binding function and its CA activity, which compromises the immune-related function of SABP3. Taken together, our results establish CPCK2 as a negative regulator of SA accumulation and associated immunity. Importantly, our findings unveil a mechanism by which CPCK2 negatively regulates plant immunity by promoting S-nitrosylation of SABP3 through phosphorylation, which provides the first example in plants of S-nitrosylation being promoted by cognate phosphorylation.
Collapse
Affiliation(s)
- Lu Rui
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404120, China
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Ping Kang
- Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jing Shao
- Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Minfeng Lu
- Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Beimi Cui
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Yaofei Zhao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Huiren Cai
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Mo Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Hua Shi
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| |
Collapse
|
6
|
Levin G, Yasmin M, Pieńko T, Yehishalom N, Hanna R, Kleifeld O, Glaser F, Schuster G. The protein phosphorylation landscape in photosystem I of the desert algae Chlorella sp. THE NEW PHYTOLOGIST 2024; 242:544-557. [PMID: 38379464 DOI: 10.1111/nph.19603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/28/2024] [Indexed: 02/22/2024]
Abstract
The phosphorylation of photosystem II (PSII) and its antenna (LHCII) proteins has been studied, and its involvement in state transitions and PSII repair is known. Yet, little is known about the phosphorylation of photosystem I (PSI) and its antenna (LHCI) proteins. Here, we applied proteomics analysis to generate a map of the phosphorylation sites of the PSI-LHCI proteins in Chlorella ohadii cells that were grown under low or extreme high-light intensities (LL and HL). Furthermore, we analyzed the content of oxidized tryptophans and PSI-LHCI protein degradation products in these cells, to estimate the light-induced damage to PSI-LHCI. Our work revealed the phosphorylation of 17 of 22 PSI-LHCI subunits. The analyses detected the extensive phosphorylation of the LHCI subunits Lhca6 and Lhca7, which is modulated by growth light intensity. Other PSI-LHCI subunits were phosphorylated to a lesser extent, including PsaE, where molecular dynamic simulation proposed that a phosphoserine stabilizes ferredoxin binding. Additionally, we show that HL-grown cells accumulate less oxidative damage and degradation products of PSI-LHCI proteins, compared with LL-grown cells. The significant phosphorylation of Lhca6 and Lhca7 at the interface with other LHCI subunits suggests a physiological role during photosynthesis, possibly by altering light-harvesting characteristics and binding of other subunits.
Collapse
Affiliation(s)
- Guy Levin
- Faculty of Biology, Technion, Haifa, 32000, Israel
| | | | - Tomasz Pieńko
- Schulich Faculty of Chemistry, Technion, Haifa, 32000, Israel
| | | | - Rawad Hanna
- Faculty of Biology, Technion, Haifa, 32000, Israel
| | | | - Fabian Glaser
- The Lorry I. Lokey Center for Life Sciences and Engineering, Technion, Haifa, 32000, Israel
| | - Gadi Schuster
- Faculty of Biology, Technion, Haifa, 32000, Israel
- Grand Technion Energy Program, Technion, Haifa, 32000, Israel
| |
Collapse
|
7
|
Smith MA, Benidickson KH, Plaxton WC. In Vivo Phosphorylation of the Cytosolic Glucose-6-Phosphate Dehydrogenase Isozyme G6PD6 in Phosphate-Resupplied Arabidopsis thaliana Suspension Cells and Seedlings. PLANTS (BASEL, SWITZERLAND) 2023; 13:31. [PMID: 38202338 PMCID: PMC10780934 DOI: 10.3390/plants13010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) catalyzes the first committed step of the oxidative pentose phosphate pathway (OPPP). Our recent phosphoproteomics study revealed that the cytosolic G6PD6 isozyme became hyperphosphorylated at Ser12, Thr13 and Ser18, 48 h following phosphate (Pi) resupply to Pi-starved (-Pi) Arabidopsis thaliana cell cultures. The aim of the present study was to assess whether G6PD6 phosphorylation also occurs in shoots or roots following Pi resupply to -Pi Arabidopsis seedlings, and to investigate its relationship with G6PD activity. Interrogation of phosphoproteomic databases indicated that N-terminal, multi-site phosphorylation of G6PD6 and its orthologs is quite prevalent. However, the functions of these phosphorylation events remain unknown. Immunoblotting with an anti-(pSer18 phosphosite-specific G6PD6) antibody confirmed that G6PD6 from Pi-resupplied, but not -Pi, Arabidopsis cell cultures or seedlings (i.e., roots) was phosphorylated at Ser18; this correlated with a significant increase in extractable G6PD activity, and biomass accumulation. Peptide kinase assays of Pi-resupplied cell culture extracts indicated that G6PD6 phosphorylation at Ser18 is catalyzed by a Ca2+-dependent protein kinase (CDPK), which correlates with the 'CDPK-like' targeting motif that flanks Ser18. Our results support the hypothesis that N-terminal phosphorylation activates G6PD6 to enhance OPPP flux and thus the production of reducing power (i.e., NADPH) and C-skeletons needed to establish the rapid resumption of growth that ensures Pi-resupply to -Pi Arabidopsis.
Collapse
Affiliation(s)
| | | | - William C. Plaxton
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.A.S.); (K.H.B.)
| |
Collapse
|
8
|
Siodmak A, Martinez-Seidel F, Rayapuram N, Bazin J, Alhoraibi H, Gentry-Torfer D, Tabassum N, Sheikh AH, Kise J, Blilou I, Crespi M, Kopka J, Hirt H. Dynamics of ribosome composition and ribosomal protein phosphorylation in immune signaling in Arabidopsis thaliana. Nucleic Acids Res 2023; 51:11876-11892. [PMID: 37823590 PMCID: PMC10681734 DOI: 10.1093/nar/gkad827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
In plants, the detection of microbe-associated molecular patterns (MAMPs) induces primary innate immunity by the activation of mitogen-activated protein kinases (MAPKs). We show here that the MAMP-activated MAPK MPK6 not only modulates defense through transcriptional regulation but also via the ribosomal protein translation machinery. To understand the effects of MPK6 on ribosomes and their constituent ribosomal proteins (RPs), polysomes, monosomes and the phosphorylation status of the RPs, MAMP-treated WT and mpk6 mutant plants were analysed. MAMP-activation induced rapid changes in RP composition of monosomes, polysomes and in the 60S ribosomal subunit in an MPK6-specific manner. Phosphoproteome analysis showed that MAMP-activation of MPK6 regulates the phosphorylation status of the P-stalk ribosomal proteins by phosphorylation of RPP0 and the concomitant dephosphorylation of RPP1 and RPP2. These events coincide with a significant decrease in the abundance of ribosome-bound RPP0s, RPP1s and RPP3s in polysomes. The P-stalk is essential in regulating protein translation by recruiting elongation factors. Accordingly, we found that RPP0C mutant plants are compromised in basal resistance to Pseudomonas syringae infection. These data suggest that MAMP-induced defense also involves MPK6-induced regulation of P-stalk proteins, highlighting a new role of ribosomal regulation in plant innate immunity.
Collapse
Affiliation(s)
- Anna Siodmak
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Federico Martinez-Seidel
- Willmitzer Department, Max Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Naganand Rayapuram
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Jeremie Bazin
- CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, Orsay, France
| | - Hanna Alhoraibi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21551 Jeddah, Saudi Arabia
| | - Dione Gentry-Torfer
- Willmitzer Department, Max Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Naheed Tabassum
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Arsheed H Sheikh
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - José Kenyi González Kise
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Ikram Blilou
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Martin Crespi
- CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, Orsay, France
| | - Joachim Kopka
- Willmitzer Department, Max Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Heribert Hirt
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, 1030 Vienna, Austria
| |
Collapse
|
9
|
Giese J, Eirich J, Walther D, Zhang Y, Lassowskat I, Fernie AR, Elsässer M, Maurino VG, Schwarzländer M, Finkemeier I. The interplay of post-translational protein modifications in Arabidopsis leaves during photosynthesis induction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1172-1193. [PMID: 37522418 DOI: 10.1111/tpj.16406] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Diurnal dark to light transition causes profound physiological changes in plant metabolism. These changes require distinct modes of regulation as a unique feature of photosynthetic lifestyle. The activities of several key metabolic enzymes are regulated by light-dependent post-translational modifications (PTM) and have been studied at depth at the level of individual proteins. In contrast, a global picture of the light-dependent PTMome dynamics is lacking, leaving the response of a large proportion of cellular function undefined. Here, we investigated the light-dependent metabolome and proteome changes in Arabidopsis rosettes in a time resolved manner to dissect their kinetic interplay, focusing on phosphorylation, lysine acetylation, and cysteine-based redox switches. Of over 24 000 PTM sites that were detected, more than 1700 were changed during the transition from dark to light. While the first changes, as measured 5 min after onset of illumination, occurred mainly in the chloroplasts, PTM changes at proteins in other compartments coincided with the full activation of the Calvin-Benson cycle and the synthesis of sugars at later timepoints. Our data reveal connections between metabolism and PTM-based regulation throughout the cell. The comprehensive multiome profiling analysis provides unique insight into the extent by which photosynthesis reprograms global cell function and adds a powerful resource for the dissection of diverse cellular processes in the context of photosynthetic function.
Collapse
Affiliation(s)
- Jonas Giese
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7-8, Münster, D-48149, Germany
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7-8, Münster, D-48149, Germany
| | - Dirk Walther
- Max-Planck-Institute of Molecular Plant Physiology (MPIMP), Am Mühlenberg 1, Potsdam, D-14476, Germany
| | - Youjun Zhang
- Max-Planck-Institute of Molecular Plant Physiology (MPIMP), Am Mühlenberg 1, Potsdam, D-14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Ines Lassowskat
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7-8, Münster, D-48149, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology (MPIMP), Am Mühlenberg 1, Potsdam, D-14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Marlene Elsässer
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7-8, Münster, D-48149, Germany
| | - Veronica G Maurino
- Institute of Cellular and Molecular Botany (IZMB), Rheinische Friedrich-Wilhelms-Universität Bonn, Kirschallee 1, Bonn, D-53115, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7-8, Münster, D-48149, Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7-8, Münster, D-48149, Germany
| |
Collapse
|
10
|
Holland A, Pitoulias M, Soultanas P, Janniere L. The Replicative DnaE Polymerase of Bacillus subtilis Recruits the Glycolytic Pyruvate Kinase (PykA) When Bound to Primed DNA Templates. Life (Basel) 2023; 13:life13040965. [PMID: 37109494 PMCID: PMC10143966 DOI: 10.3390/life13040965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The glycolytic enzyme PykA has been reported to drive the metabolic control of replication through a mechanism involving PykA moonlighting functions on the essential DnaE polymerase, the DnaC helicase and regulatory determinants of PykA catalytic activity in Bacillus subtilis. The mutants of this control suffer from critical replication and cell cycle defects, showing that the metabolic control of replication plays important functions in the overall rate of replication. Using biochemical approaches, we demonstrate here that PykA interacts with DnaE for modulating its activity when the replication enzyme is bound to a primed DNA template. This interaction is mediated by the CAT domain of PykA and possibly allosterically regulated by its PEPut domain, which also operates as a potent regulator of PykA catalytic activity. Furthermore, using fluorescence microscopy we show that the CAT and PEPut domains are important for the spatial localization of origins and replication forks, independently of their function in PykA catalytic activity. Collectively, our data suggest that the metabolic control of replication depends on the recruitment of PykA by DnaE at sites of DNA synthesis. This recruitment is likely highly dynamic, as DnaE is frequently recruited to and released from replication machineries to extend the several thousand RNA primers generated from replication initiation to termination. This implies that PykA and DnaE continuously associate and dissociate at replication machineries for ensuring a highly dynamic coordination of the replication rate with metabolism.
Collapse
Affiliation(s)
- Alexandria Holland
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Matthaios Pitoulias
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Panos Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Laurent Janniere
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057 Evry, CEDEX, France
| |
Collapse
|
11
|
Strand DD, Karcher D, Ruf S, Schadach A, Schöttler MA, Sandoval-Ibañez O, Hall D, Kramer DM, Bock R. Characterization of mutants deficient in N-terminal phosphorylation of the chloroplast ATP synthase subunit β. PLANT PHYSIOLOGY 2023; 191:1818-1835. [PMID: 36635853 PMCID: PMC10022623 DOI: 10.1093/plphys/kiad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Understanding the regulation of photosynthetic light harvesting and electron transfer is of great importance to efforts to improve the ability of the electron transport chain to supply downstream metabolism. A central regulator of the electron transport chain is ATP synthase, the molecular motor that harnesses the chemiosmotic potential generated from proton-coupled electron transport to synthesize ATP. ATP synthase is regulated both thermodynamically and post-translationally, with proposed phosphorylation sites on multiple subunits. In this study we focused on two N-terminal serines on the catalytic subunit β in tobacco (Nicotiana tabacum), previously proposed to be important for dark inactivation of the complex to avoid ATP hydrolysis at night. Here we show that there is no clear role for phosphorylation in the dark inactivation of ATP synthase. Instead, mutation of one of the two phosphorylated serine residues to aspartate to mimic constitutive phosphorylation strongly decreased ATP synthase abundance. We propose that the loss of N-terminal phosphorylation of ATPβ may be involved in proper ATP synthase accumulation during complex assembly.
Collapse
Affiliation(s)
| | - Daniel Karcher
- Max-Planck-Institut für Molecular Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Stephanie Ruf
- Max-Planck-Institut für Molecular Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Anne Schadach
- Max-Planck-Institut für Molecular Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mark A Schöttler
- Max-Planck-Institut für Molecular Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Omar Sandoval-Ibañez
- Max-Planck-Institut für Molecular Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - David Hall
- DOE Plant Research Laboratory, Michigan State University, 612 Wilson Rd 106, East Lansing, Michigan, 48824, USA
| | - David M Kramer
- DOE Plant Research Laboratory, Michigan State University, 612 Wilson Rd 106, East Lansing, Michigan, 48824, USA
| | | |
Collapse
|
12
|
Vallet A, Martin-Laffon J, Favier A, Revel B, Bonnot T, Vidaud C, Armengaud J, Gaillard JC, Delangle P, Devime F, Figuet S, Serre NBC, Erba EB, Brutscher B, Ravanel S, Bourguignon J, Alban C. The plasma membrane-associated cation-binding protein PCaP1 of Arabidopsis thaliana is a uranyl-binding protein. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130668. [PMID: 36608581 DOI: 10.1016/j.jhazmat.2022.130668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Uranium (U) is a naturally-occurring radionuclide that is toxic to living organisms. Given that proteins are primary targets of U(VI), their identification is an essential step towards understanding the mechanisms of radionuclide toxicity, and possibly detoxification. Here, we implemented a chromatographic strategy including immobilized metal affinity chromatography to trap protein targets of uranyl in Arabidopsis thaliana. This procedure allowed the identification of 38 uranyl-binding proteins (UraBPs) from root and shoot extracts. Among them, UraBP25, previously identified as plasma membrane-associated cation-binding protein 1 (PCaP1), was further characterized as a protein interacting in vitro with U(VI) and other metals using spectroscopic and structural approaches, and in planta through analyses of the fate of U(VI) in Arabidopsis lines with altered PCaP1 gene expression. Our results showed that recombinant PCaP1 binds U(VI) in vitro with affinity in the nM range, as well as Cu(II) and Fe(III) in high proportions, and that Ca(II) competes with U(VI) for binding. U(VI) induces PCaP1 oligomerization through binding at the monomer interface, at both the N-terminal structured domain and the C-terminal flexible region. Finally, U(VI) translocation in Arabidopsis shoots was affected in pcap1 null-mutant, suggesting a role for this protein in ion trafficking in planta.
Collapse
Affiliation(s)
- Alicia Vallet
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, IBS, 38000 Grenoble, France
| | | | - Adrien Favier
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, IBS, 38000 Grenoble, France
| | - Benoît Revel
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | - Titouan Bonnot
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | - Claude Vidaud
- BIAM, CEA, CNRS, Univ. Aix-Marseille, 13108 Saint-Paul-lez-Durance, France
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, F-F-30200 Bagnols-sur-Cèze, France
| | - Jean-Charles Gaillard
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, F-F-30200 Bagnols-sur-Cèze, France
| | - Pascale Delangle
- Univ. Grenoble Alpes, CEA, CNRS, GRE-INP, IRIG, SyMMES, 38000 Grenoble, France
| | - Fabienne Devime
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | - Sylvie Figuet
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | - Nelson B C Serre
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | | | | | - Stéphane Ravanel
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | | | - Claude Alban
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France.
| |
Collapse
|
13
|
Redox Signaling in Plant Heat Stress Response. Antioxidants (Basel) 2023; 12:antiox12030605. [PMID: 36978852 PMCID: PMC10045013 DOI: 10.3390/antiox12030605] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The increase in environmental temperature due to global warming is a critical threat to plant growth and productivity. Heat stress can cause impairment in several biochemical and physiological processes. Plants sense and respond to this adverse environmental condition by activating a plethora of defense systems. Among them, the heat stress response (HSR) involves an intricate network of heat shock factors (HSFs) and heat shock proteins (HSPs). However, a growing amount of evidence suggests that reactive oxygen species (ROS), besides potentially being responsible for cellular oxidative damage, can act as signal molecules in HSR, leading to adaptative responses. The role of ROS as toxic or signal molecules depends on the fine balance between their production and scavenging. Enzymatic and non-enzymatic antioxidants represent the first line of defense against oxidative damage and their activity is critical to maintaining an optimal redox environment. However, the HS-dependent ROS burst temporarily oxidizes the cellular environment, triggering redox-dependent signaling cascades. This review provides an overview of the redox-activated mechanisms that participate in the HSR.
Collapse
|
14
|
Espinoza‐Corral R, Schwenkert S, Schneider A. Characterization of the preferred cation cofactors of chloroplast protein kinases in Arabidopsis thaliana. FEBS Open Bio 2023; 13:511-518. [PMID: 36683405 PMCID: PMC9989932 DOI: 10.1002/2211-5463.13563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/09/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Chloroplasts sense a variety of stimuli triggering several acclimation responses. One prominent response is the mechanism of state transitions, which enables rapid adaption to changes in illumination. Here, we investigated the link between divalent cations (calcium, magnesium, and manganese) and protein kinase activity in Arabidopsis chloroplasts. Our results show that manganese ions are the strongest activator of kinase activity in chloroplasts followed by magnesium ions, whereas calcium ions are not able to induce kinase activity. Additionally, the phosphorylation of specific protein bands is strongly reduced in chloroplasts of a cmt1 mutant, which is impaired in manganese import into chloroplasts, as compared to the wild-type. These findings provide insights for the future characterization of chloroplast protein kinase activity and potential target proteins.
Collapse
Affiliation(s)
| | - Serena Schwenkert
- Plant Molecular Biology, Faculty of BiologyLudwig Maximilians University MunichPlaneggGermany
| | - Anja Schneider
- Plant Molecular Biology, Faculty of BiologyLudwig Maximilians University MunichPlaneggGermany
| |
Collapse
|
15
|
Fatima U, Balasubramaniam D, Khan WA, Kandpal M, Vadassery J, Arockiasamy A, Senthil‐Kumar M. AtSWEET11 and AtSWEET12 transporters function in tandem to modulate sugar flux in plants. PLANT DIRECT 2023; 7:e481. [PMID: 36911252 PMCID: PMC9995347 DOI: 10.1002/pld3.481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/25/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
The sugar will eventually be exported transporter (SWEET) members in Arabidopsis, AtSWEET11 and AtSWEET12 are the important sucrose efflux transporters that act synergistically to perform distinct physiological roles. These two transporters are involved in apoplasmic phloem loading, seed filling, and sugar level alteration at the site of pathogen infection. Here, we performed the structural analysis of the sucrose binding pocket of AtSWEET11 and AtSWEET12 using molecular docking followed by rigorous molecular dynamics (MD) simulations. We observed that the sucrose molecule binds inside the central cavity and in the middle of the transmembrane (TM) region of AtSWEET11 and AtSWEET12, that allows the alternate access to the sucrose molecule from either side of the membrane during transport. Both AtSWEET11 and AtSWEET12, shares the similar amino acid residues that interact with sucrose molecule. Further, to achieve more insights on the role of these two transporters in other plant species, we did the phylogenetic and the in-silico analyses of AtSWEET11 and AtSWEET12 orthologs from 39 economically important plants. We reported the extensive information on the gene structure, protein domain and cis-acting regulatory elements of AtSWEET11 and AtSWEET12 orthologs from different plants. The cis-elements analysis indicates the involvement of AtSWEET11 and AtSWEET12 orthologs in plant development and also during abiotic and biotic stresses. Both in silico and in planta expression analysis indicated AtSWEET11 and AtSWEET12 are well-expressed in the Arabidopsis leaf tissues. However, the orthologs of AtSWEET11 and AtSWEET12 showed the differential expression pattern with high or no transcript expression in the leaf tissues of different plants. Overall, these results offer the new insights into the functions and regulation of AtSWEET11 and AtSWEET12 orthologs from different plant species. This might be helpful in conducting the future studies to understand the role of these two crucial transporters in Arabidopsis and other crop plants.
Collapse
Affiliation(s)
- Urooj Fatima
- National Institute of Plant Genome ResearchNew DelhiIndia
| | | | - Wajahat Ali Khan
- Membrane Protein Biology GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Manu Kandpal
- National Institute of Plant Genome ResearchNew DelhiIndia
| | | | - Arulandu Arockiasamy
- Membrane Protein Biology GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | | |
Collapse
|
16
|
Strand DD, Walker BJ. Energetic considerations for engineering novel biochemistries in photosynthetic organisms. FRONTIERS IN PLANT SCIENCE 2023; 14:1116812. [PMID: 36814754 PMCID: PMC9939686 DOI: 10.3389/fpls.2023.1116812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Humans have been harnessing biology to make valuable compounds for generations. From beer and biofuels to pharmaceuticals, biology provides an efficient alternative to industrial processes. With the continuing advancement of molecular tools to genetically modify organisms, biotechnology is poised to solve urgent global problems related to environment, increasing population, and public health. However, the light dependent reactions of photosynthesis are constrained to produce a fixed stoichiometry of ATP and reducing equivalents that may not match the newly introduced synthetic metabolism, leading to inefficiency or damage. While photosynthetic organisms have evolved several ways to modify the ATP/NADPH output from their thylakoid electron transport chain, it is unknown if the native energy balancing mechanisms grant enough flexibility to match the demands of the synthetic metabolism. In this review we discuss the role of photosynthesis in the biotech industry, and the energetic considerations of using photosynthesis to power synthetic biology.
Collapse
Affiliation(s)
- Deserah D. Strand
- U. S. Department of Energy (DOE) Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Berkley J. Walker
- U. S. Department of Energy (DOE) Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
17
|
The MAPK-Alfin-like 7 module negatively regulates ROS scavenging genes to promote NLR-mediated immunity. Proc Natl Acad Sci U S A 2023; 120:e2214750120. [PMID: 36623197 PMCID: PMC9934166 DOI: 10.1073/pnas.2214750120] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Nucleotide-binding leucine-rich repeat (NLR) receptor-mediated immunity includes rapid production of reactive oxygen species (ROS) and transcriptional reprogramming, which is controlled by transcription factors (TFs). Although some TFs have been reported to participate in NLR-mediated immune response, most TFs are transcriptional activators, and whether and how transcriptional repressors regulate NLR-mediated plant defenses remains largely unknown. Here, we show that the Alfin-like 7 (AL7) interacts with N NLR and functions as a transcriptional repressor. Knockdown and knockout of AL7 compromise N NLR-mediated resistance against tobacco mosaic virus, whereas AL7 overexpression enhances defense, indicating a positive regulatory role for AL7 in immunity. AL7 binds to the promoters of ROS scavenging genes to inhibit their transcription during immune responses. Mitogen-activated protein kinases (MAPKs), salicylic acid-induced protein kinase (SIPK), and wound-induced protein kinase (WIPK) directly interact with and phosphorylate AL7, which impairs the AL7-N interaction and enhances its DNA binding activity, which promotes ROS accumulation and enables immune activation. In addition to N, AL7 is also required for the function of other Toll interleukin 1 receptor/nucleotide-binding/leucine-rich repeats (TNLs) including Roq1 and RRS1-R/RPS4. Our findings reveal a hitherto unknown MAPK-AL7 module that negatively regulates ROS scavenging genes to promote NLR-mediated immunity.
Collapse
|
18
|
Li Y, Fan K, Shen J, Wang Y, Jeyaraj A, Hu S, Chen X, Ding Z, Li X. Glycine-Induced Phosphorylation Plays a Pivotal Role in Energy Metabolism in Roots and Amino Acid Metabolism in Leaves of Tea Plant. Foods 2023; 12:foods12020334. [PMID: 36673426 PMCID: PMC9858451 DOI: 10.3390/foods12020334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Phosphorylation is the most extensive post-translational modification of proteins and thus regulates plant growth. However, the regulatory mechanism of phosphorylation modification on the growth of tea plants caused by organic nitrogen is still unclear. In order to explore the phosphorylation modification mechanism of tea plants in response to organic nitrogen, we used glycine as the only nitrogen source and determined and analyzed the phosphorylated proteins in tea plants by phosphoproteomic analysis. The results showed that the phosphorylation modification induced by glycine-supply played important roles in the regulation of energy metabolism in tea roots and amino acid metabolism in tea leaves. In roots, glycine-supply induced dephosphorylation of proteins, such as fructose-bisphosphate aldolase cytoplasmic isozyme, glyceraldehyde-3-phosphate dehydrogenase, and phosphoenolpyruvate carboxylase, resulted in increased intensity of glycolysis and decreased intensity of tricarboxylic acid cycle. In leaves, the glycine-supply changed the phosphorylation levels of glycine dehydrogenase, aminomethyltransferase, glutamine synthetase, and ferredoxin-dependent glutamate synthase, which accelerated the decomposition of glycine and enhanced the ability of ammonia assimilation. In addition, glycine-supply could improve the tea quality by increasing the intensity of amino acids, such as theanine and alanine. This research clarified the important regulatory mechanism of amino acid nitrogen on tea plant growth and development through protein phosphorylation.
Collapse
Affiliation(s)
- Yuchen Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Fan
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiazhi Shen
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China
| | - Anburaj Jeyaraj
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shunkai Hu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaotang Ding
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Correspondence: (Z.D.); (X.L.); Tel.: +86-(53)-288030231 (Z.D.); +86-(25)-84396651 (X.L.)
| | - Xinghui Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (Z.D.); (X.L.); Tel.: +86-(53)-288030231 (Z.D.); +86-(25)-84396651 (X.L.)
| |
Collapse
|
19
|
Reiter B, Rosenhammer L, Marino G, Geimer S, Leister D, Rühle T. CGL160-mediated recruitment of the coupling factor CF1 is required for efficient thylakoid ATP synthase assembly, photosynthesis, and chloroplast development in Arabidopsis. THE PLANT CELL 2023; 35:488-509. [PMID: 36250886 PMCID: PMC9806626 DOI: 10.1093/plcell/koac306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Chloroplast ATP synthases consist of a membrane-spanning coupling factor (CFO) and a soluble coupling factor (CF1). It was previously demonstrated that CONSERVED ONLY IN THE GREEN LINEAGE160 (CGL160) promotes the formation of plant CFO and performs a similar function in the assembly of its c-ring to that of the distantly related bacterial Atp1/UncI protein. Here, we show that in Arabidopsis (Arabidopsis thaliana) the N-terminal portion of CGL160 (AtCGL160N) is required for late steps in CF1-CFO assembly. In plants that lacked AtCGL160N, CF1-CFO content, photosynthesis, and chloroplast development were impaired. Loss of AtCGL160N did not perturb c-ring formation, but led to a 10-fold increase in the numbers of stromal CF1 subcomplexes relative to that in the wild type. Co-immunoprecipitation and protein crosslinking assays revealed an association of AtCGL160 with CF1 subunits. Yeast two-hybrid assays localized the interaction to a stretch of AtCGL160N that binds to the DELSEED-containing CF1-β subdomain. Since Atp1 of Synechocystis (Synechocystis sp. PCC 6803) could functionally replace the membrane domain of AtCGL160 in Arabidopsis, we propose that CGL160 evolved from a cyanobacterial ancestor and acquired an additional function in the recruitment of a soluble CF1 subcomplex, which is critical for the modulation of CF1-CFO activity and photosynthesis.
Collapse
Affiliation(s)
- Bennet Reiter
- Plant Molecular Biology Faculty of Biology I, Ludwig-Maximilians-Universität Munich, D-82152 Planegg-Martinsried, Germany
| | - Lea Rosenhammer
- Plant Molecular Biology Faculty of Biology I, Ludwig-Maximilians-Universität Munich, D-82152 Planegg-Martinsried, Germany
| | - Giada Marino
- Plant Molecular Biology Faculty of Biology I, Ludwig-Maximilians-Universität Munich, D-82152 Planegg-Martinsried, Germany
| | - Stefan Geimer
- Zellbiologie/Elektronenmikroskopie NW I/B1, Universität Bayreuth, 95447 Bayreuth, Germany
| | - Dario Leister
- Plant Molecular Biology Faculty of Biology I, Ludwig-Maximilians-Universität Munich, D-82152 Planegg-Martinsried, Germany
| | | |
Collapse
|
20
|
Gao ZF, Yang X, Mei Y, Zhang J, Chao Q, Wang BC. A dynamic phosphoproteomic analysis provides insight into the C4 plant maize (Zea mays L.) response to natural diurnal changes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:291-307. [PMID: 36440987 DOI: 10.1111/tpj.16047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 06/16/2023]
Abstract
As sessile organisms, plants need to respond to rapid changes in numerous environmental factors, mainly diurnal changes of light, temperature, and humidity. Maize is the world's most grown crop, and as a C4 plant it exhibits high photosynthesis capacity, reaching the highest rate of net photosynthesis at midday; that is, there is no "midday depression." Revealing the physiological responses to diurnal changes and underlying mechanisms will be of great significance for guiding maize improvement efforts. In this study, we collected maize leaf samples and analyzed the proteome and phosphoproteome at nine time points during a single day/night cycle, quantifying 7424 proteins and 5361 phosphosites. The new phosphosites identified in our study increased the total maize phosphoproteome coverage by 8.5%. Kinase-substrate network analysis indicated that 997 potential substrates were phosphorylated by 20 activated kinases. Through analysis of proteins with significant changes in abundance and phosphorylation, we found that the response to a heat stimulus involves a change in the abundance of numerous proteins. By contrast, the high light at noon and rapidly changing light conditions induced changes in the phosphorylation level of proteins involved in processes such as chloroplast movement, photosynthesis, and C4 pathways. Phosphorylation is involved in regulating the activity of large number of enzymes; for example, phosphorylation of S55 significantly enhanced the activity of maize phosphoenolpyruvate carboxykinase1 (ZmPEPCK1). Overall, the database of dynamic protein abundance and phosphorylation we have generated provides a resource for the improvement of C4 crop plants.
Collapse
Affiliation(s)
- Zhi-Fang Gao
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiu Yang
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingchang Mei
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiao Zhang
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Chao
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| | - Bai-Chen Wang
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
21
|
Vetoshkina D, Balashov N, Ivanov B, Ashikhmin A, Borisova-Mubarakshina M. Light harvesting regulation: A versatile network of key components operating under various stress conditions in higher plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:576-588. [PMID: 36529008 DOI: 10.1016/j.plaphy.2022.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/22/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Light harvesting is finetuned through two main strategies controlling energy transfer to the reaction centers of photosystems: i) regulating the amount of light energy at the absorption level, ii) regulating the amount of the absorbed energy at the utilization level. The first strategy is ensured by changes in the cross-section, i.e., the size of the photosynthetic antenna. These changes can occur in a short-term (state transitions) or long-term way (changes in antenna protein biosynthesis) depending on the light conditions. The interrelation of these two ways is still underexplored. Regulating light absorption through the long-term modulation of photosystem II antenna size has been mostly considered as an acclimatory mechanism to light conditions. The present review highlights that this mechanism represents one of the most versatile mechanisms of higher plant acclimation to various conditions including drought, salinity, temperature changes, and even biotic factors. We suggest that H2O2 is the universal signaling agent providing the switch from the short-term to long-term modulation of photosystem II antenna size under these factors. The second strategy of light harvesting is represented by redirecting energy to waste mainly via thermal energy dissipation in the photosystem II antenna in high light through PsbS protein and xanthophyll cycle. In the latter case, H2O2 also plays a considerable role. This circumstance may explain the maintenance of the appropriate level of zeaxanthin not only upon high light but also upon other stress factors. Thus, the review emphasizes the significance of both strategies for ensuring plant sustainability under various environmental conditions.
Collapse
Affiliation(s)
- Daria Vetoshkina
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya St., 2, Pushchino, Russia.
| | - Nikolay Balashov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya St., 2, Pushchino, Russia
| | - Boris Ivanov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya St., 2, Pushchino, Russia
| | - Aleksandr Ashikhmin
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya St., 2, Pushchino, Russia
| | - Maria Borisova-Mubarakshina
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya St., 2, Pushchino, Russia.
| |
Collapse
|
22
|
Gámez-Arcas S, Muñoz FJ, Ricarte-Bermejo A, Sánchez-López ÁM, Baslam M, Baroja-Fernández E, Bahaji A, Almagro G, De Diego N, Doležal K, Novák O, Leal-López J, León Morcillo RJ, Castillo AG, Pozueta-Romero J. Glucose-6-P/phosphate translocator2 mediates the phosphoglucose-isomerase1-independent response to microbial volatiles. PLANT PHYSIOLOGY 2022; 190:2137-2154. [PMID: 36111879 PMCID: PMC9706466 DOI: 10.1093/plphys/kiac433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), the plastidial isoform of phosphoglucose isomerase (PGI1) mediates photosynthesis, metabolism, and development, probably due to its involvement in the synthesis of isoprenoid-derived signals in vascular tissues. Microbial volatile compounds (VCs) with molecular masses of <45 Da promote photosynthesis, growth, and starch overaccumulation in leaves through PGI1-independent mechanisms. Exposure to these compounds in leaves enhances the levels of GLUCOSE-6-PHOSPHATE/PHOSPHATE TRANSLOCATOR2 (GPT2) transcripts. We hypothesized that the PGI1-independent response to microbial volatile emissions involves GPT2 action. To test this hypothesis, we characterized the responses of wild-type (WT), GPT2-null gpt2-1, PGI1-null pgi1-2, and pgi1-2gpt2-1 plants to small fungal VCs. In addition, we characterized the responses of pgi1-2gpt2-1 plants expressing GPT2 under the control of a vascular tissue- and root tip-specific promoter to small fungal VCs. Fungal VCs promoted increases in growth, starch content, and photosynthesis in WT and gpt2-1 plants. These changes were substantially weaker in VC-exposed pgi1-2gpt2-1 plants but reverted to WT levels with vascular and root tip-specific GPT2 expression. Proteomic analyses did not detect enhanced levels of GPT2 protein in VC-exposed leaves and showed that knocking out GPT2 reduced the expression of photosynthesis-related proteins in pgi1-2 plants. Histochemical analyses of GUS activity in plants expressing GPT2-GUS under the control of the GPT2 promoter showed that GPT2 is mainly expressed in root tips and vascular tissues around hydathodes. Overall, the data indicated that the PGI1-independent response to microbial VCs involves resetting of the photosynthesis-related proteome in leaves through long-distance GPT2 action.
Collapse
Affiliation(s)
- Samuel Gámez-Arcas
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | | | - Adriana Ricarte-Bermejo
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Ángela María Sánchez-López
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Marouane Baslam
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Abdellatif Bahaji
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Goizeder Almagro
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Nuria De Diego
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Olomouc, Czech Republic
| | - Karel Doležal
- Department of Chemical Biology, Faculty of Science, Palacký University, Olomouc CZ-78371, Czech Republic
- Laboratory of Growth Regulators, Faculty of Science of Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc CZ-78371, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science of Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc CZ-78371, Czech Republic
| | - Jesús Leal-López
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM), CSIC-UMA, 29010 Málaga, Spain
| | - Rafael Jorge León Morcillo
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM), CSIC-UMA, 29010 Málaga, Spain
| | - Araceli G Castillo
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM), CSIC-UMA, 29010 Málaga, Spain
| | | |
Collapse
|
23
|
Shibata M, Favero DS, Takebayashi R, Takebayashi A, Kawamura A, Rymen B, Hosokawa Y, Sugimoto K. Trihelix transcription factors GTL1 and DF1 prevent aberrant root hair formation in an excess nutrient condition. THE NEW PHYTOLOGIST 2022; 235:1426-1441. [PMID: 35713645 PMCID: PMC9544051 DOI: 10.1111/nph.18255] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Root hair growth is tuned in response to the environment surrounding plants. While most previous studies focused on the enhancement of root hair growth during nutrient starvation, few studies investigated the root hair response in the presence of excess nutrients. We report that the post-embryonic growth of wild-type Arabidopsis plants is strongly suppressed with increasing nutrient availability, particularly in the case of root hair growth. We further used gene expression profiling to analyze how excess nutrient availability affects root hair growth, and found that RHD6 subfamily genes, which are positive regulators of root hair growth, are downregulated in this condition. However, defects in GTL1 and DF1, which are negative regulators of root hair growth, cause frail and swollen root hairs to form when excess nutrients are supplied. Additionally, we observed that the RHD6 subfamily genes are mis-expressed in gtl1-1 df1-1. Furthermore, overexpression of RSL4, an RHD6 subfamily gene, induces swollen root hairs in the face of a nutrient overload, while mutation of RSL4 in gtl1-1 df1-1 restore root hair swelling phenotype. In conclusion, our data suggest that GTL1 and DF1 prevent unnecessary root hair formation by repressing RSL4 under excess nutrient conditions.
Collapse
Affiliation(s)
| | - David S. Favero
- RIKEN Center for Sustainable Resource ScienceYokohama230‐0045Japan
| | - Ryu Takebayashi
- Division of Materials Science, Graduate School of Science and TechnologyNara Institute of Science and TechnologyIkoma630‐0192Japan
| | | | - Ayako Kawamura
- RIKEN Center for Sustainable Resource ScienceYokohama230‐0045Japan
| | - Bart Rymen
- RIKEN Center for Sustainable Resource ScienceYokohama230‐0045Japan
- KU Leuven Plant Institute (LPI)KU LeuvenKasteelpark Arenberg 31LeuvenB‐3001Belgium
| | - Yoichiroh Hosokawa
- Division of Materials Science, Graduate School of Science and TechnologyNara Institute of Science and TechnologyIkoma630‐0192Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource ScienceYokohama230‐0045Japan
- Department of Biological SciencesUniversity of TokyoTokyo119‐0033Japan
| |
Collapse
|
24
|
Jonwal S, Verma N, Sinha AK. Regulation of photosynthetic light reaction proteins via reversible phosphorylation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111312. [PMID: 35696912 DOI: 10.1016/j.plantsci.2022.111312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/10/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The regulation of photosynthesis occurs at different levels including the control of nuclear and plastid genes transcription, RNA processing and translation, protein translocation, assemblies and their post translational modifications. Out of all these, post translational modification enables rapid response of plants towards changing environmental conditions. Among all post-translational modifications, reversible phosphorylation is known to play a crucial role in the regulation of light reaction of photosynthesis. Although, phosphorylation of PS II subunits has been extensively studied but not much attention is given to other photosynthetic complexes such as PS I, Cytochrome b6f complex and ATP synthase. Phosphorylation reaction is known to protect photosynthetic apparatus in challenging environment conditions such as high light, elevated temperature, high salinity and drought. Recent studies have explored the role of photosynthetic protein phosphorylation in conferring plant immunity against the rice blast disease. The evolution of phosphorylation of different subunits of photosynthetic proteins occurred along with the evolution of plant lineage for their better adaptation to the changing environment conditions. In this review, we summarize the progress made in the research field of phosphorylation of photosynthetic proteins and highlights the missing links that need immediate attention.
Collapse
Affiliation(s)
- Sarvesh Jonwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Neetu Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
25
|
Kochetova GV, Avercheva OV, Bassarskaya EM, Zhigalova TV. Light quality as a driver of photosynthetic apparatus development. Biophys Rev 2022; 14:779-803. [PMID: 36124269 PMCID: PMC9481803 DOI: 10.1007/s12551-022-00985-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/13/2022] [Indexed: 12/18/2022] Open
Abstract
Light provides energy for photosynthesis and also acts as an important environmental signal. During their evolution, plants acquired sophisticated sensory systems for light perception and light-dependent regulation of their growth and development in accordance with the local light environment. Under natural conditions, plants adapted by using their light sensors to finely distinguish direct sunlight and dark in the soil, deep grey shade under the upper soil layer or litter, green shade under the canopy and even lateral green reflectance from neighbours. Light perception also allows plants to evaluate in detail the weather, time of day, day length and thus the season. However, in artificial lighting conditions, plants are confronted with fundamentally different lighting conditions. The advent of new light sources - light-emitting diodes (LEDs), which emit narrow-band light - allows growing plants with light of different spectral bands or their combinations. This sets the task of finding out how light of different quality affects the development and functioning of plants, and in particular, their photosynthetic apparatus (PSA), which is one of the basic processes determining plant yield. In this review, we briefly describe how plants perceive environment light signals by their five families of photoreceptors and by the PSA as a particular light sensor, and how they use this information to form their PSA under artificial narrow-band LED-based lighting of different spectral composition. We consider light regulation of the biosynthesis of photosynthetic pigments, photosynthetic complexes and chloroplast ATP synthase function, PSA photoprotection mechanisms, carbon assimilation reactions and stomatal development and function.
Collapse
|
26
|
G-Protein Phosphorylation: Aspects of Binding Specificity and Function in the Plant Kingdom. Int J Mol Sci 2022; 23:ijms23126544. [PMID: 35742988 PMCID: PMC9224535 DOI: 10.3390/ijms23126544] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/22/2022] Open
Abstract
Plant survival depends on adaptive mechanisms that constantly rely on signal recognition and transduction. The predominant class of signal discriminators is receptor kinases, with a vast member composition in plants. The transduction of signals occurs in part by a simple repertoire of heterotrimeric G proteins, with a core composed of α-, β-, and γ-subunits, together with a 7-transmembrane Regulator G Signaling (RGS) protein. With a small repertoire of G proteins in plants, phosphorylation by receptor kinases is critical in regulating the active state of the G-protein complex. This review describes the in vivo detected phosphosites in plant G proteins and conservation scores, and their in vitro corresponding kinases. Furthermore, recently described outcomes, including novel arrestin-like internalization of RGS and a non-canonical phosphorylation switching mechanism that drives G-protein plasticity, are discussed.
Collapse
|
27
|
Wang M, Garneau MG, Poudel AN, Lamm D, Koo AJ, Bates PD, Thelen JJ. Overexpression of pea α-carboxyltransferase in Arabidopsis and camelina increases fatty acid synthesis leading to improved seed oil content. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1035-1046. [PMID: 35220631 DOI: 10.1111/tpj.15721] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
SUMMARYHeteromeric acetyl‐CoA carboxylase (htACCase) catalyzes the committed step of de novo fatty acid biosynthesis in most plant plastids. Plant htACCase is comprised of four subunits: α‐ and β‐carboxyltransferase (α‐ and β‐CT), biotin carboxylase, and biotin carboxyl carrier protein. Based on in vivo absolute quantification of htACCase subunits, α‐CT is 3‐ to 10‐fold less abundant than its partner subunit β‐CT in developing Arabidopsis seeds [Wilson and Thelen, J. Proteome Res., 2018, 17 (5)]. To test the hypothesis that low expression of α‐CT limits htACCase activity and flux through fatty acid synthesis in planta, we overexpressed Pisum sativum α‐CT, either with or without its C‐terminal non‐catalytic domain, in both Arabidopsis thaliana and Camelina sativa. First‐generation Arabidopsis seed of 35S::Ps α‐CT (n = 25) and 35S::Ps α‐CTΔ406‐875 (n = 47) were on average 14% higher in oil content (% dry weight) than wild type co‐cultivated in a growth chamber. First‐generation camelina seed showed an average 8% increase compared to co‐cultivated wild type. Biochemical analyses confirmed the accumulation of Ps α‐CT and Ps α‐CTΔ406‐875 protein and higher htACCase activity in overexpression lines during early seed development. Overexpressed Ps α‐CT co‐migrated with native At β‐CT during anion exchange chromatography, indicating co‐association. By successfully increasing seed oil content upon heterologous overexpression of α‐CT, we demonstrate how absolute quantitation of in vivo protein complex stoichiometry can be used to guide rational metabolic engineering.
Collapse
Affiliation(s)
- Minmin Wang
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, USA
| | - Matthew G Garneau
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, DC, 99164, USA
| | - Arati N Poudel
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA
| | - Daniel Lamm
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA
| | - Abraham J Koo
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA
| | - Philip D Bates
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, DC, 99164, USA
| | - Jay J Thelen
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, USA
| |
Collapse
|
28
|
Shedding Light on the Role of Phosphorylation in Plant Autophagy. FEBS Lett 2022; 596:2172-2185. [DOI: 10.1002/1873-3468.14352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 11/07/2022]
|
29
|
Horemans S, Pitoulias M, Holland A, Pateau E, Lechaplais C, Ekaterina D, Perret A, Soultanas P, Janniere L. Pyruvate kinase, a metabolic sensor powering glycolysis, drives the metabolic control of DNA replication. BMC Biol 2022; 20:87. [PMID: 35418203 PMCID: PMC9009071 DOI: 10.1186/s12915-022-01278-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/11/2022] [Indexed: 12/04/2022] Open
Abstract
Background In all living organisms, DNA replication is exquisitely regulated in a wide range of growth conditions to achieve timely and accurate genome duplication prior to cell division. Failures in this regulation cause DNA damage with potentially disastrous consequences for cell viability and human health, including cancer. To cope with these threats, cells tightly control replication initiation using well-known mechanisms. They also couple DNA synthesis to nutrient richness and growth rate through a poorly understood process thought to involve central carbon metabolism. One such process may involve the cross-species conserved pyruvate kinase (PykA) which catalyzes the last reaction of glycolysis. Here we have investigated the role of PykA in regulating DNA replication in the model system Bacillus subtilis. Results On analysing mutants of the catalytic (Cat) and C-terminal (PEPut) domains of B. subtilis PykA we found replication phenotypes in conditions where PykA is dispensable for growth. These phenotypes are independent from the effect of mutations on PykA catalytic activity and are not associated with significant changes in the metabolome. PEPut operates as a nutrient-dependent inhibitor of initiation while Cat acts as a stimulator of replication fork speed. Disruption of either PEPut or Cat replication function dramatically impacted the cell cycle and replication timing even in cells fully proficient in known replication control functions. In vitro, PykA modulates activities of enzymes essential for replication initiation and elongation via functional interactions. Additional experiments showed that PEPut regulates PykA activity and that Cat and PEPut determinants important for PykA catalytic activity regulation are also important for PykA-driven replication functions. Conclusions We infer from our findings that PykA typifies a new family of cross-species replication control regulators that drive the metabolic control of replication through a mechanism involving regulatory determinants of PykA catalytic activity. As disruption of PykA replication functions causes dramatic replication defects, we suggest that dysfunctions in this new family of universal replication regulators may pave the path to genetic instability and carcinogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01278-3.
Collapse
Affiliation(s)
- Steff Horemans
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Matthaios Pitoulias
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Alexandria Holland
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Emilie Pateau
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Christophe Lechaplais
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Dariy Ekaterina
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Alain Perret
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Panos Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Laurent Janniere
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France.
| |
Collapse
|
30
|
Wang B, Andargie M, Fang R. The function and biosynthesis of callose in high plants. Heliyon 2022; 8:e09248. [PMID: 35399384 PMCID: PMC8991245 DOI: 10.1016/j.heliyon.2022.e09248] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/11/2022] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
The two main glucan polymers cellulose and callose in plant cell wall are synthesized at the plasma membrane by cellulose or callose synthase complexes. Cellulose is the prevalent glucan in cell wall and provides strength to the walls to support directed cell expansion. By contrast, callose is mainly produced in special cell wall and exercises important functions during development and stress responses. However, the structure and precise regulatory mechanism of callose synthase complex is not very clear. This review therefore compares and analyzes the regulation of callose and cellulose synthesis, and further emphasize the future research direction of callose synthesis.
Collapse
|
31
|
Feike D, Pike M, Gurrieri L, Graf A, Smith AM. A dominant mutation in β-AMYLASE1 disrupts nighttime control of starch degradation in Arabidopsis leaves. PLANT PHYSIOLOGY 2022; 188:1979-1992. [PMID: 34958379 PMCID: PMC8968401 DOI: 10.1093/plphys/kiab603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) leaves possess a mechanism that couples the rate of nighttime starch degradation to the anticipated time of dawn, thus preventing premature exhaustion of starch and nighttime starvation. To shed light on the mechanism, we screened a mutagenized population of a starvation reporter line and isolated a mutant that starved prior to dawn. The mutant had accelerated starch degradation, and the rate was not adjusted to time of dawn. The mutation responsible led to a single amino acid change (S132N) in the starch degradation enzyme BETA-AMYLASE1 (BAM1; mutant allele named bam1-2D), resulting in a dominant, gain-of-function phenotype. Complete loss of BAM1 (in bam1-1) did not affect rates of starch degradation, while expression of BAM1(S132N) in bam1-1 recapitulated the accelerated starch degradation phenotype of bam1-2D. In vitro analysis of recombinant BAM1 and BAM1(S132N) proteins revealed no differences in kinetic or stability properties, but in leaf extracts, BAM1(S132N) apparently had a higher affinity than BAM1 for an established binding partner required for normal rates of starch degradation, LIKE SEX FOUR1 (LSF1). Genetic approaches showed that BAM1(S132N) itself is likely responsible for accelerated starch degradation in bam1-2D and that this activity requires LSF1. Analysis of plants expressing BAM1 with alanine or aspartate rather than serine at position 132 indicated that the gain-of-function phenotype is not related to phosphorylation status at this position. Our results strengthen the view that control of starch degradation in wild-type plants involves dynamic physical interactions of degradative enzymes and related proteins with a central role for complexes containing LSF1.
Collapse
Affiliation(s)
| | | | - Libero Gurrieri
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Alexander Graf
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | |
Collapse
|
32
|
Schwenk P, Hiltbrunner A. Phytochrome A Mediates the Disassembly of Processing Bodies in Far-Red Light. FRONTIERS IN PLANT SCIENCE 2022; 13:828529. [PMID: 35283917 PMCID: PMC8905148 DOI: 10.3389/fpls.2022.828529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/18/2022] [Indexed: 05/27/2023]
Abstract
Phytochromes are red- and far-red light receptors that control the growth and development of plants, enabling them to respond adequately to changing light conditions. It has been shown that halted mRNAs stored in RNA granules called processing bodies are released upon light perception and contribute to the adaptation to the light environment. However, the photophysiological background of this process is largely unknown. We found that light of different wavelengths can trigger the disassembly of processing bodies in a dose- and time-dependent manner. We show that phytochromes control this process in red- and far-red light and that cytoplasmic phytochrome A is sufficient and necessary for the far-red light-induced disassembly of processing bodies. This adds a novel, unexpected cytoplasmic function to the processes controlled by phytochrome A. Overall, our findings suggest a role of phytochromes in the control of translationally halted mRNAs that are stored in processing bodies. We expect our findings to facilitate understanding of how light and environmental cues control the assembly and disassembly of processing bodies, which could have broader implications for the regulation of non-membranous organelles in general.
Collapse
Affiliation(s)
- Philipp Schwenk
- Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Hiltbrunner
- Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
33
|
Matiolli CC, Soares RC, Alves HLS, Abreu IA. Turning the Knobs: The Impact of Post-translational Modifications on Carbon Metabolism. FRONTIERS IN PLANT SCIENCE 2022; 12:781508. [PMID: 35087551 PMCID: PMC8787203 DOI: 10.3389/fpls.2021.781508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Plants rely on the carbon fixed by photosynthesis into sugars to grow and reproduce. However, plants often face non-ideal conditions caused by biotic and abiotic stresses. These constraints impose challenges to managing sugars, the most valuable plant asset. Hence, the precise management of sugars is crucial to avoid starvation under adverse conditions and sustain growth. This review explores the role of post-translational modifications (PTMs) in the modulation of carbon metabolism. PTMs consist of chemical modifications of proteins that change protein properties, including protein-protein interaction preferences, enzymatic activity, stability, and subcellular localization. We provide a holistic view of how PTMs tune resource distribution among different physiological processes to optimize plant fitness.
Collapse
|
34
|
Xavier LR, Almeida FA, Pinto VB, Passamani LZ, Santa-Catarina C, de Souza Filho GA, Mooney BP, Thelen JJ, Silveira V. Integrative proteomics and phosphoproteomics reveals phosphorylation networks involved in the maintenance and expression of embryogenic competence in sugarcane callus. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153587. [PMID: 34906795 DOI: 10.1016/j.jplph.2021.153587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/14/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Plant embryogenic cell culture allows mass propagation and genetic manipulation, but the mechanisms that determine the fate of these totipotent cells in somatic embryos have not yet been elucidated. Here, we performed label-free quantitative proteomics and phosphoproteomics analyses to determine signaling events related to sugarcane somatic embryo differentiation, especially those related to protein phosphorylation. Embryogenic calli were compared at multiplication (EC0, dedifferentiated cells) and after 14 days of maturation (EC14, onset of embryo differentiation). Metabolic pathway analysis showed enriched lysine degradation and starch/sucrose metabolism proteins during multiplication, whereas the differentiation of somatic embryos was found to involve the enrichment of energy metabolism, including the TCA cycle and oxidative phosphorylation. Multiplication-related phosphoproteins were associated with transcriptional regulation, including SNF1 kinase homolog 10 (KIN10), SEUSS (SEU), and LEUNIG_HOMOLOG (LUH). The regulation of multiple light harvesting complex photosystem II proteins and phytochrome interacting factor 3-LIKE 5 were predicted to promote bioenergetic metabolism and carbon fixation during the maturation stage. A motif analysis revealed 15 phosphorylation motifs. The [D-pS/T-x-D] motif was overrepresented during somatic embryo differentiation. A protein-protein network analysis predicted interactions among SNF1-related protein kinase 2 (SnRK2), abscisic acid-responsive element-binding factor 2 (ABF2), and KIN10, which indicated the role of these proteins in embryogenic competence. The predicted interactions between TOPLESS (TPL) and histone deacetylase 19 (HD19) may be involved in posttranslational protein regulation during somatic embryo differentiation. These results reveal the protein regulation dynamics of somatic embryogenesis and new players in somatic embryo differentiation, including their predicted phosphorylation motifs and phosphosites.
Collapse
Affiliation(s)
- Lucas R Xavier
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Campos dos Goytacazes, RJ, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Felipe A Almeida
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Campos dos Goytacazes, RJ, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Vitor B Pinto
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Campos dos Goytacazes, RJ, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil.
| | - Lucas Z Passamani
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Campos dos Goytacazes, RJ, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | | | - Gonçalo A de Souza Filho
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Campos dos Goytacazes, RJ, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Brian P Mooney
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, 65211, Columbia, MO, USA
| | - Jay J Thelen
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, 65211, Columbia, MO, USA
| | - Vanildo Silveira
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Campos dos Goytacazes, RJ, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil.
| |
Collapse
|
35
|
Nitrogen assimilation in plants: current status and future prospects. J Genet Genomics 2021; 49:394-404. [PMID: 34973427 DOI: 10.1016/j.jgg.2021.12.006] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/30/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022]
Abstract
Nitrogen (N) is the driving force for crop yields, however, excessive N application in agriculture not only increases production cost, but also causes severe environmental problems. Therefore, comprehensively understanding the molecular mechanisms of N use efficiency (NUE) and breeding crops with higher NUE is essential to tackle these problems. NUE of crops is determined by N uptake, transport, assimilation, and remobilization. In the process of N assimilation, nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamine-2-oxoglutarate aminotransferase (GOGAT, also known as glutamate synthase) are the major enzymes. NR and NiR mediate the initiation of inorganic N utilization, and GS/GOGAT cycle converts inorganic N to organic N, playing a vital role in N assimilation and the final NUE of crops. Besides, asparagine synthetase (ASN), glutamate dehydrogenase (GDH), and carbamoylphosphate synthetase (CPSase) are also involved. In this review, we summarize the function and regulation of these enzymes reported in three major crops, rice, maize, wheat, also in the model plant Arabidopsis, and we highlight their application in improving NUE of crops via manipulating N assimilation. Anticipated challenges and prospects toward fully understanding the function of N assimilation and further exploring the potential for NUE improvement are discussed.
Collapse
|
36
|
Fuglsang AT, Palmgren M. Proton and calcium pumping P-type ATPases and their regulation of plant responses to the environment. PLANT PHYSIOLOGY 2021; 187:1856-1875. [PMID: 35235671 PMCID: PMC8644242 DOI: 10.1093/plphys/kiab330] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/23/2021] [Indexed: 05/10/2023]
Abstract
Plant plasma membrane H+-ATPases and Ca2+-ATPases maintain low cytoplasmic concentrations of H+ and Ca2+, respectively, and are essential for plant growth and development. These low concentrations allow plasma membrane H+-ATPases to function as electrogenic voltage stats, and Ca2+-ATPases as "off" mechanisms in Ca2+-based signal transduction. Although these pumps are autoregulated by cytoplasmic concentrations of H+ and Ca2+, respectively, they are also subject to exquisite regulation in response to biotic and abiotic events in the environment. A common paradigm for both types of pumps is the presence of terminal regulatory (R) domains that function as autoinhibitors that can be neutralized by multiple means, including phosphorylation. A picture is emerging in which some of the phosphosites in these R domains appear to be highly, nearly constantly phosphorylated, whereas others seem to be subject to dynamic phosphorylation. Thus, some sites might function as major switches, whereas others might simply reduce activity. Here, we provide an overview of the relevant transport systems and discuss recent advances that address their relation to external stimuli and physiological adaptations.
Collapse
Affiliation(s)
- Anja T Fuglsang
- Department for Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Michael Palmgren
- Department for Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Author for communication:
| |
Collapse
|
37
|
Subba P, Prasad TSK. Plant Phosphoproteomics: Known Knowns, Known Unknowns, and Unknown Unknowns of an Emerging Systems Science Frontier. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:750-769. [PMID: 34882020 DOI: 10.1089/omi.2021.0192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plant systems science research depends on the dynamic functional maps of the biological substrates of plant phenotypes and host/environment interactions in diverse ecologies. In this context, high-resolution mass spectrometry platforms offer comprehensive insights into the molecular pathways regulated by protein phosphorylation. Reversible protein phosphorylation is a ubiquitous reaction in signal transduction mechanisms in biological systems. In contrast to human and animal biology research, a plethora of experimental options for functional mapping and regulation of plant biology are, however, not currently available. Plant phosphoproteomics is an emerging field of research that aims at addressing this gap in systems science and plant omics, and thus has a large scope to empower fundamental discoveries. To date, large-scale data-intensive identification of phosphorylation events in plants remained technically challenging. In this expert review, we present a critical analysis and overview of phosphoproteomic studies performed in the model plant Arabidopsis thaliana. We discuss the technical strategies used for the enrichment of phosphopeptides and methods used for their quantitative assessment. Various types of mass spectrometry data acquisition and fragmentation methods are also discussed. The insights gathered here can allow plant biology and systems science researchers to design high-throughput function-oriented experimental workflows that elucidate the regulatory signaling mechanisms impacting plant physiology and plant diseases.
Collapse
Affiliation(s)
- Pratigya Subba
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | |
Collapse
|
38
|
Zhong S, Sang L, Zhao Z, Deng Y, Liu H, Yu Y, Liu J. Phosphoproteome analysis reveals the involvement of protein dephosphorylation in ethylene-induced corolla senescence in petunia. BMC PLANT BIOLOGY 2021; 21:512. [PMID: 34732145 PMCID: PMC8565076 DOI: 10.1186/s12870-021-03286-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Senescence represents the last stage of flower development. Phosphorylation is the key posttranslational modification that regulates protein functions, and kinases may be more required than phosphatases during plant growth and development. However, little is known about global phosphorylation changes during flower senescence. RESULTS In this work, we quantitatively investigated the petunia phosphoproteome following ethylene or air treatment. In total, 2170 phosphosites in 1184 protein groups were identified, among which 2059 sites in 1124 proteins were quantified. To our surprise, treatment with ethylene resulted in 697 downregulated and only 117 upregulated phosphosites using a 1.5-fold threshold (FDR < 0.05), which showed that ethylene negatively regulates global phosphorylation levels and that phosphorylation of many proteins was not necessary during flower senescence. Phosphoproteome analysis showed that ethylene regulates ethylene and ABA signalling transduction pathways via phosphorylation levels. One of the major targets of ethylene-induced dephosphorylation is the plant mRNA splicing machinery, and ethylene treatment increases the number of alternative splicing events of precursor RNAs in petunia corollas. CONCLUSIONS Protein dephosphorylation could play an important role in ethylene-induced senescence, and ethylene treatment increased the number of AS precursor RNAs in petunia corollas.
Collapse
Affiliation(s)
- Shiwei Zhong
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
- School of Landscape Architecture School of Tourism and Health, Zhejiang A & F University, Zhejiang, 311300 Hangzhou China
| | - Lina Sang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
| | - Zhixia Zhao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
| | - Ying Deng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
| | - Haitao Liu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
| | - Yixun Yu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642 China
| | - Juanxu Liu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
- School of Landscape Architecture School of Tourism and Health, Zhejiang A & F University, Zhejiang, 311300 Hangzhou China
| |
Collapse
|
39
|
Xue H, Zhang Q, Wang P, Cao B, Jia C, Cheng B, Shi Y, Guo WF, Wang Z, Liu ZX, Cheng H. qPTMplants: an integrative database of quantitative post-translational modifications in plants. Nucleic Acids Res 2021; 50:D1491-D1499. [PMID: 34718741 PMCID: PMC8728288 DOI: 10.1093/nar/gkab945] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022] Open
Abstract
As a crucial molecular mechanism, post-translational modifications (PTMs) play critical roles in a wide range of biological processes in plants. Recent advances in mass spectrometry-based proteomic technologies have greatly accelerated the profiling and quantification of plant PTM events. Although several databases have been constructed to store plant PTM data, a resource including more plant species and more PTM types with quantitative dynamics still remains to be developed. In this paper, we present an integrative database of quantitative PTMs in plants named qPTMplants (http://qptmplants.omicsbio.info), which hosts 1 242 365 experimentally identified PTM events for 429 821 nonredundant sites on 123 551 proteins under 583 conditions for 23 PTM types in 43 plant species from 293 published studies, with 620 509 quantification events for 136 700 PTM sites on 55 361 proteins under 354 conditions. Moreover, the experimental details, such as conditions, samples, instruments and methods, were manually curated, while a variety of annotations, including the sequence and structural characteristics, were integrated into qPTMplants. Then, various search and browse functions were implemented to access the qPTMplants data in a user-friendly manner. Overall, we anticipate that the qPTMplants database will be a valuable resource for further research on PTMs in plants.
Collapse
Affiliation(s)
- Han Xue
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qingfeng Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Panqin Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bijin Cao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chongchong Jia
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ben Cheng
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuhua Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wei-Feng Guo
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ze-Xian Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Han Cheng
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
40
|
Novel Translational and Phosphorylation Modification Regulation Mechanisms of Tomato ( Solanum lycopersicum) Fruit Ripening Revealed by Integrative Proteomics and Phosphoproteomics. Int J Mol Sci 2021; 22:ijms222111782. [PMID: 34769214 PMCID: PMC8584006 DOI: 10.3390/ijms222111782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 11/26/2022] Open
Abstract
The tomato is a research model for fruit-ripening, however, its fruit-ripening mechanism still needs more extensive and in-depth exploration. Here, using TMT and LC-MS, the proteome and phosphoproteome of AC++ (wild type) and rin (ripening-inhibitor) mutant fruits were studied to investigate the translation and post-translational regulation mechanisms of tomato fruit-ripening. A total of 6141 proteins and 4011 phosphorylation sites contained quantitative information. One-hundred proteins were identified in both omics’ profiles, which were mainly found in ethylene biosynthesis and signal transduction, photosynthesis regulation, carotenoid and flavonoid biosynthesis, chlorophyll degradation, ribosomal subunit expression changes, MAPK pathway, transcription factors and kinases. The affected protein levels were correlated with their corresponding gene transcript levels, such as NAC-NOR, MADS-RIN, IMA, TAGL1, MADS-MC and TDR4. Changes in the phosphorylation levels of NAC-NOR and IMA were involved in the regulation of tomato fruit-ripening. Although photosynthesis was inhibited, there were diverse primary and secondary metabolic pathways, such as glycolysis, fatty acid metabolism, vitamin metabolism and isoprenoid biosynthesis, regulated by phosphorylation. These data constitute a map of protein—protein phosphorylation in the regulation of tomato fruit-ripening, which lays the foundation for future in-depth study of the sophisticated molecular mechanisms of fruit-ripening and provide guidance for molecular breeding.
Collapse
|
41
|
Longoni FP, Goldschmidt-Clermont M. Thylakoid Protein Phosphorylation in Chloroplasts. PLANT & CELL PHYSIOLOGY 2021; 62:1094-1107. [PMID: 33768241 DOI: 10.1093/pcp/pcab043] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Because of their abundance and extensive phosphorylation, numerous thylakoid proteins stand out amongst the phosphoproteins of plants and algae. In particular, subunits of light-harvesting complex II (LHCII) and of photosystem II (PSII) are dynamically phosphorylated and dephosphorylated in response to light conditions and metabolic demands. These phosphorylations are controlled by evolutionarily conserved thylakoid protein kinases and counteracting protein phosphatases, which have distinct but partially overlapping substrate specificities. The best characterized are the kinases STATE TRANSITION 7 (STN7/STT7) and STATE TRANSITION 8 (STN8), and the antagonistic phosphatases PROTEIN PHOSPHATASE 1/THYLAKOID-ASSOCIATED PHOSPHATASE 38 (PPH1/TAP38) and PHOTOSYSTEM II CORE PHOSPHATASE (PBCP). The phosphorylation of LHCII is mainly governed by STN7 and PPH1/TAP38 in plants. LHCII phosphorylation is essential for state transitions, a regulatory feedback mechanism that controls the allocation of this antenna to either PSII or PSI, and thus maintains the redox balance of the electron transfer chain. Phosphorylation of several core subunits of PSII, regulated mainly by STN8 and PBCP, correlates with changes in thylakoid architecture, the repair cycle of PSII after photodamage as well as regulation of light harvesting and of alternative routes of photosynthetic electron transfer. Other kinases, such as the PLASTID CASEIN KINASE II (pCKII), also intervene in thylakoid protein phosphorylation and take part in the chloroplast kinase network. While some features of thylakoid phosphorylation were conserved through the evolution of photosynthetic eukaryotes, others have diverged in different lineages possibly as a result of their adaptation to varied environments.
Collapse
Affiliation(s)
- Fiamma Paolo Longoni
- Laboratory of Plant Physiology, Institute of Biology, University of Neuchâtel, Neuchâtel 2000, Switzerland
| | | |
Collapse
|
42
|
Rodriguez MC, Mehta D, Tan M, Uhrig RG. Quantitative Proteome and PTMome Analysis of Arabidopsis thaliana Root Responses to Persistent Osmotic and Salinity Stress. PLANT & CELL PHYSIOLOGY 2021; 62:1012-1029. [PMID: 34059891 DOI: 10.1093/pcp/pcab076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/12/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Abiotic stresses such as drought result in large annual economic losses around the world. As sessile organisms, plants cannot escape the environmental stresses they encounter but instead must adapt to survive. Studies investigating plant responses to osmotic and/or salt stress have largely focused on short-term systemic responses, leaving our understanding of intermediate to longer-term adaptation (24 h to d) lacking. In addition to protein abundance and phosphorylation changes, evidence suggests reversible lysine acetylation may also be important for abiotic stress responses. Therefore, to characterize the protein-level effects of osmotic and salt stress, we undertook a label-free proteomic analysis of Arabidopsis thaliana roots exposed to 300 mM mannitol and 150 mM NaCl for 24 h. We assessed protein phosphorylation, lysine acetylation and changes in protein abundance, detecting significant changes in 245, 35 and 107 total proteins, respectively. Comparison with available transcriptome data indicates that transcriptome- and proteome-level changes occur in parallel, while post-translational modifications (PTMs) do not. Further, we find significant changes in PTMs, and protein abundance involve different proteins from the same networks, indicating a multifaceted regulatory approach to prolonged osmotic and salt stress. In particular, we find extensive protein-level changes involving sulfur metabolism under both osmotic and salt conditions as well as changes in protein kinases and transcription factors that may represent new targets for drought stress signaling. Collectively, we find that protein-level changes continue to occur in plant roots 24 h from the onset of osmotic and salt stress and that these changes differ across multiple proteome levels.
Collapse
Affiliation(s)
- Maria C Rodriguez
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB T6G 2E9, Canada
- These authors contributed equally to the work
| | - Devang Mehta
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB T6G 2E9, Canada
- These authors contributed equally to the work
| | - Maryalle Tan
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB T6G 2E9, Canada
| | - Richard G Uhrig
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
43
|
Exploration of the lactation function of protein phosphorylation sites in goat mammary tissues by phosphoproteome analysis. BMC Genomics 2021; 22:703. [PMID: 34583635 PMCID: PMC8479986 DOI: 10.1186/s12864-021-07993-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Protein phosphorylation plays an important role in lactation. Differentially modified phosphorylation sites and phosphorylated proteins between peak lactation (PL, 90 days postpartum) and late lactation (LL, 280 days postpartum) were investigated using an integrated approach, namely, liquid chromatography with tandem mass spectrometry (LC-MS/MS) and tandem mass tag (TMT) labeling, to determine the molecular changes in the mammary tissues during the different stages of goat lactation. RESULTS A total of 1,938 (1,111 upregulated, 827 downregulated) differentially modified phosphorylation sites of 1,172 proteins were identified (P values < 0.05 and fold change of phosphorylation ratios > 1.5). Multiple phosphorylation sites of FASN, ACACA, mTOR, PRKAA, IRS1, RPS6KB, EIF4EBP1, JUN, and TSC2 were different in PL compared with LL. In addition, the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the calcium signaling pathway, oxytocin signaling pathway and MAPK signaling pathway were enriched. The western blot results showed that the phosphorylation levels of ACACA (Ser80), EIF4EBP1 (Thr46) and IRS1 (Ser312) increased and JUN (Ser63) decreased in PL compared with LL. These results were consistent with the phosphoproteome results. CONCLUSIONS In this study, we identified for the first time the differentially modified phosphorylation sites in goat mammary tissues between PL and LL. These results indicate that the multiple differentially modified phosphorylation sites of FASN, ACACA, mTOR, PRKAA, IRS1, RPS6KB, EIF4EBP1, TSC2, and JUN and proteins involved in the calcium signaling pathway, oxytocin signaling pathway, and MAPK signaling pathway are worthy of further exploration.
Collapse
|
44
|
Wang W, Li A, Zhang Z, Chu C. Posttranslational Modifications: Regulation of Nitrogen Utilization and Signaling. PLANT & CELL PHYSIOLOGY 2021; 62:543-552. [PMID: 33493288 PMCID: PMC8462382 DOI: 10.1093/pcp/pcab008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/07/2021] [Indexed: 05/08/2023]
Abstract
Nitrogen is the most important macroelement required for the composition of key molecules, such as nucleic acids, proteins and other organic compounds. As sessile organisms, plants have evolved sophisticated mechanisms to acquire nitrogen for their normal growth and development. Besides the transcriptional and translational regulation of nitrogen uptake, assimilation, remobilization and signal transduction, posttranslational modifications (PTMs) are shown to participate in these processes in plants. In addition to alterations in protein abundance, PTMs may dramatically increase the complexity of the proteome without the concomitant changes in gene transcription and have emerged as an important type of protein regulation in terms of protein function, subcellular localization and protein activity and stability. Herein, we briefly summarize recent advances on the posttranslational regulation of nitrogen uptake, assimilation, remobilization and nitrogen signaling and discuss the underlying mechanisms of PTMs as well as the signal output of such PTMs. Understanding these regulation mechanisms will provide novel insights for improving the nitrogen use efficiency of plants.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Aifu Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhihua Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Chengcai Chu
- * Corresponding author: E-mail, ; Fax, +86-10-64806608
| |
Collapse
|
45
|
Waidmann S, Petutschnig E, Rozhon W, Molnár G, Popova O, Mechtler K, Jonak C. GSK3-mediated phosphorylation of DEK3 regulates chromatin accessibility and stress tolerance in Arabidopsis. FEBS J 2021; 289:473-493. [PMID: 34492159 DOI: 10.1111/febs.16186] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/19/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022]
Abstract
Chromatin dynamics enable the precise control of transcriptional programmes. The balance between restricting and opening of regulatory sequences on the DNA needs to be adjusted to prevailing conditions and is fine-tuned by chromatin remodelling proteins. DEK is an evolutionarily conserved chromatin architectural protein regulating important chromatin-related processes. However, the molecular link between DEK-induced chromatin reconfigurations and upstream signalling events remains unknown. Here, we show that ASKβ/AtSK31 is a salt stress-activated glycogen synthase kinase 3 (GSK3) from Arabidopsis thaliana that phosphorylates DEK3. This specific phosphorylation alters nuclear DEK3 protein complex composition and affects nucleosome occupancy and chromatin accessibility that is translated into changes in gene expression, contributing to salt stress tolerance. These findings reveal that DEK3 phosphorylation is critical for chromatin function and cellular stress response and provide a mechanistic example of how GSK3-based signalling is directly linked to chromatin, facilitating a transcriptional response.
Collapse
Affiliation(s)
- Sascha Waidmann
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Austria
| | - Elena Petutschnig
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Austria
| | - Wilfried Rozhon
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Austria
| | - Gergely Molnár
- AIT Austrian Institute of Technology, Center for Health & Bioresources, Tulln, Austria
| | - Olga Popova
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology, Vienna BioCenter, Austria
| | - Claudia Jonak
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Austria.,AIT Austrian Institute of Technology, Center for Health & Bioresources, Tulln, Austria
| |
Collapse
|
46
|
López-Marqués RL. Lipid flippases as key players in plant adaptation to their environment. NATURE PLANTS 2021; 7:1188-1199. [PMID: 34531559 DOI: 10.1038/s41477-021-00993-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Lipid flippases (P4 ATPases) are active transporters that catalyse the translocation of lipids between the two sides of the biological membranes in the secretory pathway. This activity modulates biological membrane properties, contributes to vesicle formation, and is the trigger for lipid signalling events, which makes P4 ATPases essential for eukaryotic cell survival. Plant P4 ATPases (also known as aminophospholipid ATPases (ALAs)) are crucial for plant fertility and proper development, and are involved in key adaptive responses to biotic and abiotic stress, including chilling tolerance, heat adaptation, nutrient deficiency responses and pathogen defence. While ALAs present many analogies to mammalian and yeast P4 ATPases, they also show characteristic features as the result of their independent evolution. In this Review, the main properties, roles, regulation and mechanisms of action of ALA proteins are discussed.
Collapse
Affiliation(s)
- Rosa L López-Marqués
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
47
|
Okuzaki A, Rühle T, Leister D, Schmitz-Linneweber C. The acidic domain of the chloroplast RNA-binding protein CP31A supports cold tolerance in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4904-4914. [PMID: 33872351 DOI: 10.1093/jxb/erab165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
The processing of chloroplast RNA requires a large number of nuclear-encoded RNA-binding proteins (RBPs) that are imported post-translationally into the organelle. The chloroplast ribonucleoprotein 31A (CP31A) supports RNA editing at 13 sites and also supports the accumulation of multiple chloroplast mRNAs. In cp31a mutants it is the ndhF mRNA (coding for a subunit of the NDH complex) that is most strongly affected. CP31A becomes particularly important at low temperatures, where it is essential for chloroplast development in young tissue. Next to two RNA-recognition motifs (RRMs), CP31A has an N-terminal acidic domain that is phosphorylated at several sites. We investigated the function of the acidic domain in the role of CP31A in RNA metabolism and cold resistance. Using point mutagenesis, we demonstrate that the known phosphorylation sites within the acidic domain are irrelevant for any of the known functions of CP31A, both at normal and at low temperatures. Even when the entire acidic domain is removed, no effects on RNA editing were observed. By contrast, loss of the acidic domain reduced the ability of CP31A to stabilize the ndhF mRNA, which was associated with reduced NDH complex activity. Most importantly, acidic domain-less CP31A lines displayed bleached young tissue in the cold. Together, these data show that the different functions of CP31A can be assigned to different regions of the protein: the RRMs are sufficient to maintain RNA editing and to allow the accumulation of basal amounts of ndhF mRNA, while chloroplast development under cold conditions critically depends on the acidic domain.
Collapse
Affiliation(s)
- Ayako Okuzaki
- Molecular Genetics, Humboldt-University Berlin, Philippstr.13, Berlin, Germany
| | - Thilo Rühle
- Plant Molecular Biology, Department of Biology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Dario Leister
- Plant Molecular Biology, Department of Biology, Ludwig Maximilian University of Munich, Munich, Germany
| | | |
Collapse
|
48
|
Mehta D, Krahmer J, Uhrig RG. Closing the protein gap in plant chronobiology. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1509-1522. [PMID: 33783885 DOI: 10.1111/tpj.15254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Our modern understanding of diel cell regulation in plants stems from foundational work in the late 1990s that analysed the dynamics of selected genes and mutants in Arabidopsis thaliana. The subsequent rise of transcriptomics technologies such as microarrays and RNA sequencing has substantially increased our understanding of anticipatory (circadian) and reactive (light- or dark-triggered) diel events in plants. However, it is also becoming clear that gene expression data fail to capture critical events in diel regulation that can only be explained by studying protein-level dynamics. Over the past decade, mass spectrometry technologies and quantitative proteomic workflows have significantly advanced, finally allowing scientists to characterise diel protein regulation at high throughput. Initial proteomic investigations suggest that the diel transcriptome and proteome generally lack synchrony and that the timing of daily regulatory events in plants is impacted by multiple levels of protein regulation (e.g., post-translational modifications [PTMs] and protein-protein interactions [PPIs]). Here, we highlight and summarise how the use of quantitative proteomics to elucidate diel plant cell regulation has advanced our understanding of these processes. We argue that this new understanding, coupled with the extraordinary developments in mass spectrometry technologies, demands greater focus on protein-level regulation of, and by, the circadian clock. This includes hitherto unexplored diel dynamics of protein turnover, PTMs, protein subcellular localisation and PPIs that can be masked by simple transcript- and protein-level changes. Finally, we propose new directions for how the latest advancements in quantitative proteomics can be utilised to answer outstanding questions in plant chronobiology.
Collapse
Affiliation(s)
- Devang Mehta
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Johanna Krahmer
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - R Glen Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
49
|
Espinoza-Corral R, Schwenkert S, Lundquist PK. Molecular changes of Arabidopsis thaliana plastoglobules facilitate thylakoid membrane remodeling under high light stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1571-1587. [PMID: 33783866 DOI: 10.1111/tpj.15253] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 05/21/2023]
Abstract
Plants require rapid responses to adapt to environmental stresses. This includes dramatic changes in the size and number of plastoglobule lipid droplets within chloroplasts. Although the morphological changes of plastoglobules are well documented, little is known about the corresponding molecular changes. To address this gap, we have compared the quantitative proteome, oligomeric state, prenyl-lipid content and kinase activities of Arabidopsis thaliana plastoglobules under unstressed and 5-day light-stressed conditions. Our results show a specific recruitment of proteins related to leaf senescence and jasmonic acid biosynthesis under light stress, and identify nearly half of the plastoglobule proteins in high native molecular weight masses. Additionally, a specific increase in plastoglobule carotenoid abundance under the light stress was consistent with enhanced thylakoid disassembly and leaf senescence, supporting a specific role for plastoglobules in senescence and thylakoid remodeling as an intermediate storage site for photosynthetic pigments. In vitro kinase assays of isolated plastoglobules demonstrated kinase activity towards multiple target proteins, which was more pronounced in the plastoglobules of unstressed than light-stressed leaf tissue, and which was diminished in plastoglobules of the abc1k1/abc1k3 double-mutant. These results strongly suggest that plastoglobule-localized ABC1 kinases hold endogenous kinase activity, as these were the only known or putative kinases identified in the isolated plastoglobules by deep bottom-up proteomics. Collectively, our study reveals targeted changes to the protein and prenyl-lipid composition of plastoglobules under light stress that present strategies by which plastoglobules appear to facilitate stress adaptation within chloroplasts.
Collapse
Affiliation(s)
- Roberto Espinoza-Corral
- Department of Biochemistry and Molecular Biology, Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - Serena Schwenkert
- Department I, Plant Biochemistry, Ludwig Maximilians University Munich, Großhadernerstr. 2-4, Planegg-Martinsried, 82152, Germany
| | - Peter K Lundquist
- Department of Biochemistry and Molecular Biology, Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
50
|
Liang W, Yan F, Wang M, Li X, Zhang Z, Ma X, Hu J, Wang J, Wang L. Comprehensive Phosphoproteomic Analysis of Nostoc flagelliforme in Response to Dehydration Provides Insights into Plant ROS Signaling Transduction. ACS OMEGA 2021; 6:13554-13566. [PMID: 34095650 PMCID: PMC8173544 DOI: 10.1021/acsomega.0c06111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/05/2021] [Indexed: 05/27/2023]
Abstract
Terrestrial cyanobacteria, originated from aquatic cyanobacteria, exhibit a unique mechanism for drought adaptation during long-term evolution. To elucidate this diverse adaptive mechanism exhibited by terrestrial cyanobacteria from the post-translation modification aspect, we performed a global phosphoproteome analysis on the abundance of phosphoproteins in response to dehydration using Nostoc flagelliforme, a kind of terrestrial cyanobacteria having strong ecological adaptability to xeric environments. A total of 329 phosphopeptides from 271 phosphoproteins with 1168 phosphorylation sites were identified. Among these, 76 differentially expressed phosphorylated proteins (DEPPs) were identified for each dehydration treatment (30, 75, and 100% water loss), compared to control. The identified DEPPs were functionally categorized to be mainly involved in a two-component signaling pathway, photosynthesis, energy and carbohydrate metabolism, and an antioxidant system. We concluded that protein phosphorylation modifications related to the reactive oxygen species (ROS) signaling pathway might play an important role in coordinating enzyme activity involved in the antioxidant system in N. flagelliforme to adapt to dehydration stress. This study provides deep insights into the extensive modification of phosphorylation in terrestrial cyanobacteria using a phosphoproteomic approach, which may help to better understand the role of protein phosphorylation in key cellular mechanisms in terrestrial cyanobacteria in response to dehydration.
Collapse
Affiliation(s)
- Wenyu Liang
- School
of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Fengkun Yan
- School
of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Meng Wang
- School
of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Xiaoxu Li
- School
of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Zheng Zhang
- School
of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Xiaorong Ma
- School
of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Jinhong Hu
- School
of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Jun Wang
- College
Education for Nationalities, Ningxia University, Yinchuan 750021, China
| | - Lingxia Wang
- School
of Life Sciences, Ningxia University, Yinchuan 750021, China
| |
Collapse
|