1
|
Kumar K, Durgesh K, Anjoy P, Srivastava H, Tribhuvan KU, Sevanthi AM, Singh A, Prabha R, Sharma S, Joshi R, Jain PK, Singh NK, Gaikwad K. Transcriptional Reprogramming and Allelic Variation in Pleiotropic QTL Regulates Days to Flowering and Growth Habit in Pigeonpea. PLANT, CELL & ENVIRONMENT 2025; 48:2783-2803. [PMID: 39704095 DOI: 10.1111/pce.15322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/16/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024]
Abstract
The present study investigated the linkage between days to flowering (DTF) and growth habit (GH) in pigeonpea using QTL mapping, QTL-seq, and GWAS approaches. The linkage map developed here is the largest to date, spanning 1825.56 cM with 7987 SNP markers. In total, eight and four QTLs were mapped for DTF and GH, respectively, harbouring 78 pigeonpea orthologs of Arabidopsis flowering time genes. Corroboratively, QTL-seq analysis identified a single linked QTL for both traits on chromosome 3, possessing 15 genes bearing genic variants. Together, these 91 genes were clustered primarily into autonomous, photoperiod, and epigenetic pathways. Further, we identified 39 associations for DTF and 111 associations for GH through GWAS in the QTL regions. Of these, nine associations were consistent and constituted nine haplotypes (five late, two early, one each for super-early and medium duration). The involvement of multiple genes explained the range of allelic effects and the presence of multiple LD blocks. Further, the linked QTL on chromosome 3 was fine-mapped to the 0.24-Mb region with an LOD score of 8.56, explaining 36.47% of the phenotypic variance. We identified a 10-bp deletion in the first exon of TFL1 gene of the ICPL 20338 variety, which may affect its interaction with the Apetala1 and Leafy genes, resulting in determinate GH and early flowering. Further, the genic marker developed for the deletion in the TFL1 gene could be utilized as a foreground marker in marker-assisted breeding programmes to develop early-flowering pigeonpea varieties.
Collapse
Affiliation(s)
- Kuldeep Kumar
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- ICAR-Indian Institute of Pulses Research, Kanpur, India
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Kumar Durgesh
- ICAR-Indian Agricultural Research Institute, Division of Genetics, New Delhi, India
| | - Priyanka Anjoy
- ICAR-Indian Agricultural Statistical Research Institute, New Delhi, India
| | | | | | | | - Anupam Singh
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Ratna Prabha
- Agricultural Knowledge Management Unit, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Rekha Joshi
- ICAR-Indian Agricultural Research Institute, Division of Genetics, New Delhi, India
| | | | | | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| |
Collapse
|
2
|
Chaurasia AK, Patil HB, Krishna B, Subramaniam VR, Sane PV, Sane AP. The transition from vegetative growth to flowering is associated with suppression of the MUSA CENTRORADIALIS (MCN) gene family in day neutral banana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112289. [PMID: 39414148 DOI: 10.1016/j.plantsci.2024.112289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/17/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
Control over flowering time is essential for reproductive success and survival of plants. The TERMINAL FLOWER1/CENTRORADIALIS/BROTHER OF FT AND TFL1 (TFL1/CEN/BFT) genes are key suppressor of flowering time that prevents premature conversion of the apical meristem into a floral meristem thereby allowing indeterminate vegetative growth. We have identified and characterized seven members of banana TFL1/CEN/BFT gene family (MCN1-7). All genes except MCN6 show overlapping expression in the shoot apical meristem as well as leaves from the initial to mid-vegetative phases. Their expression is collectively reduced to their lowest just prior to flowering initiation at around 171 days, 226 days and 297 days, respectively, in three differently flowering varieties. Thereafter, there is steady increase in their transcript levels in the apical meristem as well as leaves that correlates with the development and growth of the inflorescence. The ability of three of the genes, MCNs1-3, to functionally complement the tfl1-14 mutant of Arabidopsis provides additional evidence for structural and functional similarities of the MCN proteins to TFL1 even in a distantly related plant. Together, these results suggest that the MCN family in banana is associated with vegetative growth and suppression of flowering time initiation as well as indeterminate growth of inflorescence.
Collapse
Affiliation(s)
- Akhilesh K Chaurasia
- Plant Molecular Biology Lab, Jain R&D Lab, Jain Hills, Jain Irrigation Systems Limited, Jalgaon 425001, India
| | - Hemant B Patil
- Plant Molecular Biology Lab, Jain R&D Lab, Jain Hills, Jain Irrigation Systems Limited, Jalgaon 425001, India
| | - Bal Krishna
- Plant Molecular Biology Lab, Jain R&D Lab, Jain Hills, Jain Irrigation Systems Limited, Jalgaon 425001, India.
| | - Vadakanthara R Subramaniam
- Plant Molecular Biology Lab, Jain R&D Lab, Jain Hills, Jain Irrigation Systems Limited, Jalgaon 425001, India
| | - Prafullachandra V Sane
- Plant Molecular Biology Lab, Jain R&D Lab, Jain Hills, Jain Irrigation Systems Limited, Jalgaon 425001, India
| | - Aniruddha P Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India.
| |
Collapse
|
3
|
Kebrom TH. Shade signals activate distinct molecular mechanisms that induce dormancy and inhibit flowering in vegetative axillary buds of sorghum. PLANT DIRECT 2024; 8:e626. [PMID: 39166257 PMCID: PMC11333302 DOI: 10.1002/pld3.626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/09/2024] [Accepted: 07/20/2024] [Indexed: 08/22/2024]
Abstract
Shoot branches grow from axillary buds and play a crucial role in shaping shoot architecture and determining crop yield. Shade signals inactivate phytochrome B (phyB) and induce bud dormancy, thereby inhibiting shoot branching. Prior transcriptome profiling of axillary bud dormancy in a phyB-deficient mutant (58M, phyB-1) and bud outgrowth in wild-type (100M, PHYB) sorghum genotypes identified differential expression of genes associated with flowering, plant hormones, and sugars, including SbCN2, SbNCED3, SbCKX1, SbACO1, SbGA2ox1, and SbCwINVs. This study examined the expression of these genes during bud dormancy induced by shade and defoliation in 100M sorghum. The aim was to elucidate the molecular mechanisms activated by shade in axillary buds by comparing them with those activated by defoliation. The expression of marker genes for sugar levels suggests shade and defoliation reduce the sugar supply to the buds and induce bud dormancy. Intriguingly, both shade signals and defoliation downregulated SbNCED3, suggesting that ABA might not play a role in promoting axillary bud dormancy in sorghum. Whereas the cytokinin (CK) degrading gene SbCKX1 was upregulated solely by shade signals in the buds, the CK inducible genes SbCGA1 and SbCwINVs were downregulated during both shade- and defoliation-induced bud dormancy. This indicates a decrease in CK levels in the dormant buds. Shade signals dramatically upregulated SbCN2, an ortholog of the Arabidopsis TFL1 known for inhibiting flowering, whereas defoliation did not increase SbCN2 expression in the buds. Removing shade temporarily downregulated SbCN2 in dormant buds, further indicating its expression is not always correlated with bud dormancy. Because shade signals also trigger a systemic early flowering signal, SbCN2 might be activated to protect the buds from transitioning to flowering before growing into branches. In conclusion, this study demonstrates that shade signals activate two distinct molecular mechanisms in sorghum buds: one induces dormancy by reducing CK and sugars, whereas the other inhibits flowering by activating SbCN2. Given the agricultural significance of TFL1-like genes, the rapid regulation of SbCN2 by light signals in axillary buds revealed in this study warrants further investigation to explore its potential in crop improvement strategies.
Collapse
Affiliation(s)
- Tesfamichael H. Kebrom
- Cooperative Agricultural Research Center, College of Agriculture, Food, and Natural ResourcesPrairie View A&M UniversityPrairie ViewTexasUSA
- Center for Computational Systems Biology, College of EngineeringPrairie View A&M UniversityPrairie ViewTexasUSA
| |
Collapse
|
4
|
Wang H, Li X, Meng B, Fan Y, Khan SU, Qian M, Zhang M, Yang H, Lu K. Exploring silique number in Brassica napus L.: Genetic and molecular advances for improving yield. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1897-1912. [PMID: 38386569 PMCID: PMC11182599 DOI: 10.1111/pbi.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
Silique number is a crucial yield-related trait for the genetic enhancement of rapeseed (Brassica napus L.). The intricate molecular process governing the regulation of silique number involves various factors. Despite advancements in understanding the mechanisms regulating silique number in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), the molecular processes involved in controlling silique number in rapeseed remain largely unexplored. In this review, we identify candidate genes and review the roles of genes and environmental factors in regulating rapeseed silique number. We use genetic regulatory networks for silique number in Arabidopsis and grain number in rice to uncover possible regulatory pathways and molecular mechanisms involved in regulating genes associated with rapeseed silique number. A better understanding of the genetic network regulating silique number in rapeseed will provide a theoretical basis for the genetic improvement of this trait and genetic resources for the molecular breeding of high-yielding rapeseed.
Collapse
Affiliation(s)
- Hui Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Xiaodong Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Boyu Meng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Yonghai Fan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Mingchao Qian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Minghao Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Haikun Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
- Engineering Research Center of South Upland Agriculture, Ministry of EducationChongqingP.R. China
- Academy of Agricultural SciencesSouthwest UniversityBeibeiChongqingP.R. China
| |
Collapse
|
5
|
Machado R, Muchut SE, Dezar C, Reutemann AG, Alesso CA, Günthardt MM, Vegetti AC, Vogel J, Uberti Manassero NG. BdRCN4, a Brachypodium distachyon TFL1 homologue, is involved in regulation of apical meristem fate. PLANT MOLECULAR BIOLOGY 2024; 114:81. [PMID: 38940986 DOI: 10.1007/s11103-024-01467-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 05/13/2024] [Indexed: 06/29/2024]
Abstract
In higher plants, the shift from vegetative to reproductive development is governed by complex interplay of internal and external signals. TERMINALFLOWER1 (TFL1) plays a crucial role in the regulation of flowering time and inflorescence architecture in Arabidopsis thaliana. This study aimed to explore the function of BdRCN4, a homolog of TFL1 in Brachypodium distachyon, through functional analyses in mutant and transgenic plants. The results revealed that overexpression of BdRCN4 in B. distachyon leads to an extended vegetative phase and reduced production of spikelets. Similar results were found in A. thaliana, where constitutive expression of BdRCN4 promoted a delay in flowering time, followed by the development of hypervegetative shoots, with no flowers or siliques produced. Our results suggest that BdRCN4 acts as a flowering repressor analogous to TFL1, negatively regulating AP1, but no LFY expression. To further validate this hypothesis, a 35S::LFY-GR co-transformation approach on 35::BdRCN4 lines was performed. Remarkably, AP1 expression levels and flower formation were restored to normal in co-transformed plants when treated with dexamethasone. Although further molecular studies will be necessary, the evidence in B. distachyon support the idea that a balance between LFY and BdRCN4/TFL1 seems to be essential for activating AP1 expression and initiating floral organ identity gene expression. This study also demonstrates interesting conservation through the molecular pathways that regulate flowering meristem transition and identity across the evolution of monocot and dicot plants.
Collapse
Affiliation(s)
- Rodrigo Machado
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Concordia, Santa Fe, Argentina
| | - Sebastián Elias Muchut
- Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Esperanza, Santa Fe, 3080, Argentina
| | - Carlos Dezar
- ICiAgro Litoral, FCA, UNL-CONICET, Esperanza, Santa Fe, 3080, Argentina
| | | | | | - María Margarita Günthardt
- Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Esperanza, Santa Fe, 3080, Argentina
| | | | - John Vogel
- DOE Joint Genome Institute, Walnut Creek, CA, 94595, USA
| | - Nora G Uberti Manassero
- Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Esperanza, Santa Fe, 3080, Argentina.
| |
Collapse
|
6
|
Yoshikawa GV, Boden SA. Finding the right balance: The enduring role of florigens during cereal inflorescence development and their influence on fertility. CURRENT OPINION IN PLANT BIOLOGY 2024; 79:102539. [PMID: 38599051 DOI: 10.1016/j.pbi.2024.102539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/23/2024] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
Flowering is a vital process in a plant's lifecycle and variation for flowering-time has helped cereals adapt to diverse environments. Much cereal research has focused on understanding how flowering signals, or florigens, regulate the floral transition and timing of ear emergence. However, flowering genes also perform an enduring role during inflorescence development, with genotypes that elicit a weaker flowering signal producing more elaborately branched inflorescences with extra floret-bearing spikelets. While this outcome indicates that variable expression of flowering genes could boost yield potential, further analysis has shown that dampened florigen levels can compromise fertility, negating the benefit of extra grain-producing sites. Here, we discuss ways that florigens contribute to early and late inflorescence development, including their influence on branch/spikelet architecture and fertility. We propose that a deeper understanding of the role for florigens during inflorescence development could be used to balance the effects of florigens throughout flowering to improve productivity.
Collapse
Affiliation(s)
- Guilherme V Yoshikawa
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Scott A Boden
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia.
| |
Collapse
|
7
|
Zhang Y, Shen C, Shi J, Shi J, Zhang D. Boosting Triticeae crop grain yield by manipulating molecular modules to regulate inflorescence architecture: insights and knowledge from other cereal crops. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:17-35. [PMID: 37935244 DOI: 10.1093/jxb/erad386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
One of the challenges for global food security is to reliably and sustainably improve the grain yield of cereal crops. One solution is to modify the architecture of the grain-bearing inflorescence to optimize for grain number and size. Cereal inflorescences are complex structures, with determinacy, branching patterns, and spikelet/floret growth patterns that vary by species. Recent decades have witnessed rapid advancements in our understanding of the genetic regulation of inflorescence architecture in rice, maize, wheat, and barley. Here, we summarize current knowledge on key genetic factors underlying the different inflorescence morphologies of these crops and model plants (Arabidopsis and tomato), focusing particularly on the regulation of inflorescence meristem determinacy and spikelet meristem identity and determinacy. We also discuss strategies to identify and utilize these superior alleles to optimize inflorescence architecture and, ultimately, improve crop grain yield.
Collapse
Affiliation(s)
- Yueya Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai 200240, China
| | - Chaoqun Shen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai 200240, China
| | - Jin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai 200240, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai 200240, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya 572025, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai 200240, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya 572025, China
- School of Agriculture, Food, and Wine, University of Adelaide, Adelaide, South Australia 5064, Australia
| |
Collapse
|
8
|
Zhang MM, Zhao X, He X, Zheng Q, Huang Y, Li Y, Ke S, Liu ZJ, Lan S. Genome-Wide Identification of PEBP Gene Family in Two Dendrobium Species and Expression Patterns in Dendrobium chrysotoxum. Int J Mol Sci 2023; 24:17463. [PMID: 38139293 PMCID: PMC10743876 DOI: 10.3390/ijms242417463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
The PEBP gene family plays a significant role in regulating flower development and formation. To understand its function in Dendrobium chrysotoxum and D. nobile flowering, we identified 22 PEBP genes (11 DchPEBPs and 11 DnoPEBPs) from both species. We conducted analyses on their conserved domains and motifs, phylogenetic relationships, chromosome distribution, collinear correlation, and cis elements. The classification results showed that the 22 PEBPs were mainly divided into three clades, as follows: FT, MFT, and TFL1. A sequence analysis showed that most PEBP proteins contained five conserved domains, while a gene structure analysis revealed that 77% of the total PEBP genes contained four exons and three introns. The promoter regions of the 22 PEBPs contained several cis elements related to hormone induction and light response. This suggests these PEBPs could play a role in regulating flower development by controlling photoperiod and hormone levels. Additionally, a collinearity analysis revealed three pairs of duplicate genes in the genomes of both D. chrysotoxum and D. nobile. Furthermore, RT-qPCR has found to influence the regulatory effect of DchPEBPs on the development of flower organs (sepals, petals, lip, ovary, and gynostemium) during the flowering process (bud, transparent stage, and initial bloom). The results obtained imply that DchPEBP8 and DchPEBP9 play a role in the initial bloom and that DchPEBP7 may inhibit flowering processes. Moreover, DchPEBP9 may potentially be involved in the development of reproductive functionality. PEBPs have regulatory functions that modulate flowering. FT initiates plant flowering by mediating photoperiod and temperature signals, while TFL1 inhibits flowering processes. These findings provide clues for future studies on flower development in Dendrobium.
Collapse
Affiliation(s)
- Meng-Meng Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-M.Z.); (X.Z.); (X.H.); (S.K.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.H.); (Y.L.)
| | - Xuewei Zhao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-M.Z.); (X.Z.); (X.H.); (S.K.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.H.); (Y.L.)
| | - Xin He
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-M.Z.); (X.Z.); (X.H.); (S.K.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.H.); (Y.L.)
| | - Qinyao Zheng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.H.); (Y.L.)
| | - Ye Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.H.); (Y.L.)
| | - Yuanyuan Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.H.); (Y.L.)
| | - Shijie Ke
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-M.Z.); (X.Z.); (X.H.); (S.K.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.H.); (Y.L.)
| | - Zhong-Jian Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-M.Z.); (X.Z.); (X.H.); (S.K.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.H.); (Y.L.)
| | - Siren Lan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-M.Z.); (X.Z.); (X.H.); (S.K.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.H.); (Y.L.)
| |
Collapse
|
9
|
Paull RE, Ksouri N, Kantar M, Zerpa‐Catanho D, Chen NJ, Uruu G, Yue J, Guo S, Zheng Y, Wai CMJ, Ming R. Differential gene expression during floral transition in pineapple. PLANT DIRECT 2023; 7:e541. [PMID: 38028646 PMCID: PMC10644199 DOI: 10.1002/pld3.541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023]
Abstract
Pineapple (Ananas comosus var. comosus) and ornamental bromeliads are commercially induced to flower by treatment with ethylene or its analogs. The apex is transformed from a vegetative to a floral meristem and shows morphological changes in 8 to 10 days, with flowers developing 8 to 10 weeks later. During eight sampling stages ranging from 6 h to 8 days after treatment, 7961 genes were found to exhibit differential expression (DE) after the application of ethylene. In the first 3 days after treatment, there was little change in ethylene synthesis or in the early stages of the ethylene response. Subsequently, three ethylene response transcription factors (ERTF) were up-regulated and the potential gene targets were predicted to be the positive flowering regulator CONSTANS-like 3 (CO), a WUSCHEL gene, two APETALA1/FRUITFULL (AP1/FUL) genes, an epidermal patterning gene, and a jasmonic acid synthesis gene. We confirm that pineapple has lost the flowering repressor FLOWERING LOCUS C. At the initial stages, the SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) was not significantly involved in this transition. Another WUSCHEL gene and a PHD homeobox transcription factor, though not apparent direct targets of ERTF, were up-regulated within a day of treatment, their predicted targets being the up-regulated CO, auxin response factors, SQUAMOSA, and histone H3 genes with suppression of abscisic acid response genes. The FLOWERING LOCUS T (FT), TERMINAL FLOWER (TFL), AGAMOUS-like APETELAR (AP2), and SEPETALA (SEP) increased rapidly within 2 to 3 days after ethylene treatment. Two FT genes were up-regulated at the apex and not at the leaf bases after treatment, suggesting that transport did not occur. These results indicated that the ethylene response in pineapple and possibly most bromeliads act directly to promote the vegetative to flower transition via APETALA1/FRUITFULL (AP1/FUL) and its interaction with SPL, FT, TFL, SEP, and AP2. A model based on AP2/ERTF DE and predicted DE target genes was developed to give focus to future research. The identified candidate genes are potential targets for genetic manipulation to determine their molecular role in flower transition.
Collapse
Affiliation(s)
- Robert E. Paull
- Tropical Plant & Soil SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Najla Ksouri
- Laboratory of Genomics, Genetics and Breeding of Fruits and Grapevine, Experimental Aula Dei‐CSICZaragozaSpain
| | - Michael Kantar
- Tropical Plant & Soil SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | | | - Nancy Jung Chen
- Tropical Plant & Soil SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Gail Uruu
- Tropical Plant & Soil SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Jingjing Yue
- Center for Genomics and BiotechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Shiyong Guo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnanChina
| | - Yun Zheng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnanChina
| | | | - Ray Ming
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Center for Genomics and BiotechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
10
|
Bhattacharjee S, Bhowmick R, Paul K, Venkat Raman K, Jaiswal S, Tilgam J, Saakre M, Kumari P, Baaniya M, Vijayan J, Sreevathsa R, Pattanayak D. Identification, characterization, and comprehensive expression profiling of floral master regulators in pigeon pea (Cajanus cajan [L.] Millspaugh). Funct Integr Genomics 2023; 23:311. [PMID: 37751043 DOI: 10.1007/s10142-023-01236-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 09/27/2023]
Abstract
Pigeon pea is an important protein-rich pulse crop. Identification of flowering master regulators in pigeon pea is highly imperative as indeterminacy and late flowering are impediments towards yield improvement. A genome-wide analysis was performed to explore flowering orthologous groups in pigeon pea. Among the 412 floral orthologs identified in pigeon pea, 148 genes belong to the meristem identity, photoperiod-responsive, and circadian clock-associated ortholog groups. Our comparative genomics study revealed purifying selection pressures (ka/ks) on floral orthologs, and duplication patterns and evolution through synteny with other model species. Phylogenetic analysis of floral genes substantiated a connection between pigeon pea plant architecture and flowering time as all the PEBP domain-containing genes belong to meristem identity floral networks of pigeon pea. Expression profiling of eleven major orthologs in contrasting determinate and indeterminate genotypes indicated that these orthologs might be involved in flowering regulation. Expression of floral inducer, FT, and floral repressor, TFL1, was non-comparable in indeterminate genotypes across all the developmental stages of pigeon pea. However, dynamic FT/TFL1 expression ratio detected in all tissues of both the genotypes suggested their role in floral transition. One TFL1 ortholog having high sequence conserveness across pigeon pea genotypes showed differential expression indicating genotype-dependent regulation of this ortholog. Presence of conserved 6mA-methylation patterns in light-responsive elements and in other cis-regulatory elements of FT and TFL1 across different plant genotypes indicated possible involvement of epigenetic regulation in flowering.
Collapse
Affiliation(s)
- Sougata Bhattacharjee
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rakesh Bhowmick
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata, India
| | - Krishnayan Paul
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - K Venkat Raman
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Sandeep Jaiswal
- ICAR Research Complex for North Eastern Hill Region, Barapani, Meghalaya, India
| | - Jyotsana Tilgam
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Manjesh Saakre
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Priyanka Kumari
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Mahi Baaniya
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Joshitha Vijayan
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Rohini Sreevathsa
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Debasis Pattanayak
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India.
| |
Collapse
|
11
|
Xia A, Zheng L, Wang Z, Wang Q, Lu M, Cui Z, He Y. The RHW1-ZCN4 regulatory pathway confers natural variation of husk leaf width in maize. THE NEW PHYTOLOGIST 2023; 239:2367-2381. [PMID: 37403373 DOI: 10.1111/nph.19116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/06/2023] [Indexed: 07/06/2023]
Abstract
Maize husk leaf - the outer leafy layers covering the ear - modulates kernel yield and quality. Despite its importance, however, the genetic controls underlying husk leaf development remain elusive. Our previous genome-wide association study identified a single nucleotide polymorphism located in the gene RHW1 (Regulator of Husk leaf Width) that is significantly associated with husk leaf-width diversity in maize. Here, we further demonstrate that a polymorphic 18-bp InDel (insertion/deletion) variant in the 3' untranslated region of RHW1 alters its protein abundance and accounts for husk leaf width variation. RHW1 encodes a putative MYB-like transcriptional repressor. Disruption of RHW1 altered cell proliferation and resulted in a narrower husk leaf, whereas RHW1 overexpression yielded a wider husk leaf. RHW1 positively regulated the expression of ZCN4, a well-known TFL1-like protein involved in maize ear development. Dysfunction of ZCN4 reduced husk leaf width even in the context of RHW1 overexpression. The InDel variant in RHW1 is subject to selection and is associated with maize husk leaf adaption from tropical to temperate regions. Overall, our results identify that RHW1-ZCN4 regulates a pathway conferring husk leaf width variation at a very early stage of husk leaf development in maize.
Collapse
Affiliation(s)
- Aiai Xia
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China
| | - Leiming Zheng
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China
| | - Zi Wang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China
| | - Qi Wang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China
| | - Ming Lu
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, 136100, China
| | - Zhenhai Cui
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Yan He
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| |
Collapse
|
12
|
Zheng R, Meng X, Hu Q, Yang B, Cui G, Li Y, Zhang S, Zhang Y, Ma X, Song X, Liang S, Li Y, Li J, Yu H, Luan W. OsFTL12, a member of FT-like family, modulates the heading date and plant architecture by florigen repression complex in rice. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1343-1360. [PMID: 36719169 PMCID: PMC10281609 DOI: 10.1111/pbi.14020] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
FLOWERING LOCUS T (FT), a florigen in Arabidopsis, plays critical roles in floral transition. Among 13 FT-like members in rice, OsFTL2 (Hd3a) and OsFTL3 (RFT1), two rice homologues of FT, have been well characterized to act as florigens to induce flowering under short-day (SD) and long-day (LD) conditions, respectively, but the functions of other rice FT-like members remain largely unclear. Here, we show that OsFTL12 plays an antagonistic function against Hd3a and RFT1 to modulate the heading date and plant architecture in rice. Unlike Hd3a and RFT1, OsFTL12 is not regulated by daylength and highly expressed in both SD and LD conditions, and delays the heading date under either SD or LD conditions. We further demonstrate that OsFTL12 interacts with GF14b and OsFD1, two key components of the florigen activation complex (FAC), to form the florigen repression complex (FRC) by competing with Hd3a for binding GF14b. Notably, OsFTL12-FRC can bind to the promoters of the floral identity genes OsMADS14 and OsMADS15 and suppress their expression. The osmads14 osmads15 double mutants could not develop panicles and showed erect leaves. Taken together, our results reveal that different FT-like members can fine-tune heading date and plant architecture by regulating the balance of FAC and FRC in rice.
Collapse
Affiliation(s)
- Rui Zheng
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant ResistanceTianjin Normal UniversityTianjinChina
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| | - Qingliang Hu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| | - Bo Yang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant ResistanceTianjin Normal UniversityTianjinChina
| | - Guicai Cui
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant BiologyInstitute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of SciencesBeijingChina
| | - Yingying Li
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant ResistanceTianjin Normal UniversityTianjinChina
| | - Siju Zhang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant ResistanceTianjin Normal UniversityTianjinChina
| | - Yu Zhang
- Institute for Advance StudiesWuhan UniversityWuhanChina
| | - Xuan Ma
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant ResistanceTianjin Normal UniversityTianjinChina
| | - Xiaoguang Song
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| | - Shanshan Liang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant ResistanceTianjin Normal UniversityTianjinChina
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant BiologyInstitute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Hainan Yazhou Bay Seed LaboratorySanyaChina
| | - Hong Yu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Weijiang Luan
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant ResistanceTianjin Normal UniversityTianjinChina
| |
Collapse
|
13
|
Sun J, Bie XM, Chu XL, Wang N, Zhang XS, Gao XQ. Genome-edited TaTFL1-5 mutation decreases tiller and spikelet numbers in common wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1142779. [PMID: 36895877 PMCID: PMC9989183 DOI: 10.3389/fpls.2023.1142779] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Tillering is a critical agronomic trait of wheat (Triticum aestivum L.) that determines the shoot architecture and affects grain yield. TERMINAL FLOWER 1 (TFL1), encoding a phosphatidylethanolamine-binding protein, is implicated in the transition to flowering and shoot architecture in plant development. However, the roles of TFL1 homologs is little known in wheat development. CRISPR/Cas9-mediated targeted mutagenesis was used in this study to generate a set of wheat (Fielder) mutants with single, double or triple-null tatfl1-5 alleles. The wheat tatfl1-5 mutations decreased the tiller number per plant in the vegetative growth stage and the effective tiller number per plant and spikelet number per spike at maturity in the field. RNA-seq analysis showed that the expression of the auxin signaling-related and cytokinin signaling-related genes was significantly changed in the axillary buds of tatfl1-5 mutant seedlings. The results suggested that wheat TaTFL1-5s were implicated in tiller regulation by auxin and cytokinin signaling.
Collapse
|
14
|
Wu Q, Bai X, Nie M, Li L, Luo Y, Fan Y, Liu C, Ye X, Zou L. Genome-wide identification and expression analysis disclose the pivotal PHOSPHATIDYLETHANOLAMINE BINDING PROTEIN members that may be utilized for yield improvement of Chenopodium quinoa. FRONTIERS IN PLANT SCIENCE 2023; 13:1119049. [PMID: 36704176 PMCID: PMC9871630 DOI: 10.3389/fpls.2022.1119049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Quinoa (Chenopodium quinoa) is a prospective orphan crop that needs yield improvement. Previous studies indicate PHOSPHATIDYLETHANOLAMINE BINDING PROTEIN (PEBP) family genes are highly associated with the key agronomic traits of crops. Characterizing the pivotal PEBP genes will speed up the domestication and yield improvement of quinoa. Previous investigations on PEBP genes of Chenopodium species indicated that, the PEBP genes, despite in the same subclade, may have experienced functional diversification. Especially, the allotetraploidy (AABB) and numerous segmental duplications and chromosomal rearrangements in quinoa make it more difficult to understand the functions of PEBP genes. More recently, 6 quinoa FT subfamily genes were predicted to be related to flowering of quinoa. However, investigation on the whole PEBP family members is still lacking. In this study, we obtained 23 PEBP genes, including 5 MFT, 11 FTL and 7 TFL genes. We found 7 orthologous gene pairs, from sub-genome A and sub-genome B, respectively, showing collinearities with sugar beet. Evolution analysis on PEBP genes of two quinoa sub-genomes, sugar beet and relatives of diploid ancestors indicated that, the reasons for gene duplication events varied and 4 tandem duplications are the major reason for PEBP family expansion. Tissue-specific expression analysis suggested that expression patterns are mostly differing between orthologous gene pairs. Analysis on gene expressions at 6 stages suggested the possible positive roles of CqFTL1/CqFTL2, CqFTL5, CqFTL8, CqFTL6/CqFTL9 and CqTFL6/CqTFL7, and negative roles of CqTFL1/CqTFL2/CqTFL3, CqTFL4/CqTFL5 in inflorescence branching. Expression analysis in ABA-treated seed, in combination with the cis-acting element distribution analysis, indicated that CqMFT2, CqMFT3 and CqMFT4 may regulate seed germination via ABA signaling. Observations on responses to night break and photoperiod changes highlighted the roles of CqFTL5 and CqFTL8 under short day, and CqFTL6 under long day for quinoa flowering. Further, co-expression network analysis indicated that 64 transcription factors may act upstream of CqFTL5 and CqFTL8 to regulate flowering. Together, this study will help us identify the pivotal PEBP genes that may be utilized for quinoa breeding in future.
Collapse
Affiliation(s)
- Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
- Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, Sichuan, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Xue Bai
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
- Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, Sichuan, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Mengping Nie
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
- Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, Sichuan, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Li Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
- Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, Sichuan, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Yiming Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
- Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, Sichuan, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Yu Fan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
- Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, Sichuan, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
- Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, Sichuan, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
- Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, Sichuan, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
- Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, Sichuan, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Liu H, Liu X, Chang X, Chen F, Lin Z, Zhang L. Large-scale analyses of angiosperm Flowering Locus T genes reveal duplication and functional divergence in monocots. FRONTIERS IN PLANT SCIENCE 2023; 13:1039500. [PMID: 36684773 PMCID: PMC9847362 DOI: 10.3389/fpls.2022.1039500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
FLOWERING LOCUS T (FT) are well-known key genes for initiating flowering in plants. Delineating the evolutionary history and functional diversity of FT genes is important for understanding the diversification of flowering time and how plants adapt to the changing surroundings. We performed a comprehensive phylogenetic analysis of FT genes in 47 sequenced flowering plants and the 1,000 Plant Transcriptomes (1KP) database with a focus on monocots, especially cereals. We revealed the evolutionary history of FT genes. The FT genes in monocots can be divided into three clades (I, II, and III), whereas only one monophyletic group was detected in early angiosperms, magnoliids, and eudicots. Multiple rounds of whole-genome duplications (WGD) events followed by gene retention contributed to the expansion and variation of FT genes in monocots. Amino acid sites in the clade II and III genes were preferentially under high positive selection, and some sites located in vital domain regions are known to change functions when mutated. Clade II and clade III genes exhibited high variability in important regions and functional divergence compared with clade I genes; thus, clade I is more conserved than clade II and III. Genes in clade I displayed higher expression levels in studied organs and tissues than the clade II and III genes. The co-expression modules showed that some of the FT genes might have experienced neofunctionalization and subfunctionalization, such as the acquisition of environmental resistance. Overall, FT genes in monocots might form three clades by the ancient gene duplication, and each clade was subsequently subjected to different selection pressures and amino acid substitutions, which eventually led to different expression patterns and functional diversification. Our study provides a global picture of FT genes' evolution in monocots, paving a road for investigating FT genes' function in future.
Collapse
Affiliation(s)
- Hongling Liu
- Hainan Institute of Zhejiang University, Sanya, China
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xing Liu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaojun Chang
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fei Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St Louis, MO, United States
| | - Liangsheng Zhang
- Hainan Institute of Zhejiang University, Sanya, China
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Qu G, Gao Y, Wang X, Fu W, Sun Y, Gao X, Wang W, Hao C, Feng H, Wang Y. Fine mapping and analysis of candidate genes for qFT7.1, a major quantitative trait locus controlling flowering time in Brassica rapa L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2233-2246. [PMID: 35532733 DOI: 10.1007/s00122-022-04108-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
qFT7.1, a major QTL for flowering time in Brassica rapa was fine-mapped to chromosome A07 in a 56.4-kb interval, in which the most likely candidate gene is BraA07g018240.3C. In Brassica rapa, flowering time (FT) is an important agronomic trait that affects the yield, quality, and adaption. FT is a complicated trait that is regulated by many genes and is affected greatly by the environment. In this study, a chromosome segment substitution line (CSSL), CSSL16, was selected that showed later flowering than the recurrent parent, a rapid-cycling inbred line of B. rapa (RcBr). Using Bulked Segregant RNA sequencing, we identified a late flowering quantitative trait locus (QTL), designated as qFT7.1, on chromosome A07, based on a secondary-F2 population derived from the cross between CSSL16 and RcBr. qFT7.1 was further validated by conventional QTL mapping. This QTL explained 39.9% (logarithm of odds = 32.2) of the phenotypic variations and was fine mapped to a 56.4-kb interval using recombinant analysis. Expression analysis suggested that BraA07g018240.3C, which is homologous to ATC (encoding Arabidopsis thaliana CENTRORADIALIS homologue), a gene for delayed flowering in Arabidopsis, as the most promising candidate gene. Sequence analysis demonstrated that two synonymous mutations existed in the coding region and numerous bases replacements existed in promoter region between BraA07g018240.3C from CSSL16 and RcBr. The results will increase our knowledge related to the molecular mechanism of late flowering in B. rapa and lays a solid foundation for the breeding of late bolting B. rapa.
Collapse
Affiliation(s)
- Gaoyang Qu
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Yue Gao
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Xian Wang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Wei Fu
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Yunxia Sun
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Xu Gao
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Wei Wang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Chunming Hao
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Hui Feng
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Yugang Wang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China.
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
17
|
Zhong J, Kong F. The control of compound inflorescences: insights from grasses and legumes. TRENDS IN PLANT SCIENCE 2022; 27:564-576. [PMID: 34973922 DOI: 10.1016/j.tplants.2021.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/16/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
A major challenge in biology is to understand how organisms have increased developmental complexity during evolution. Inflorescences, with remarkable variation in branching systems, are a fitting model to understand architectural complexity. Inflorescences bear flowers that may become fruits and/or seeds, impacting crop productivity and species fitness. Great advances have been achieved in understanding the regulation of complex inflorescences, particularly in economically and ecologically important grasses and legumes. Surprisingly, a synthesis is still lacking regarding the common or distinct principles underlying the regulation of inflorescence complexity. Here, we synthesize the similarities and differences in the regulation of compound inflorescences in grasses and legumes, and propose that the emergence of novel higher-order repetitive modules is key to the evolution of inflorescence complexity.
Collapse
Affiliation(s)
- Jinshun Zhong
- School of Life Sciences, South China Agricultural University, Wushan Street 483, Guangzhou 510642, China; Institute for Plant Genetics, Heinrich-Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany; Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Köln, Germany; Cluster of Excellence on Plant Sciences, 'SMART Plants for Tomorrow's Needs', Heinrich-Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
18
|
Zhu C, Box MS, Thiruppathi D, Hu H, Yu Y, Martin C, Doust AN, McSteen P, Kellogg EA. Pleiotropic and nonredundant effects of an auxin importer in Setaria and maize. PLANT PHYSIOLOGY 2022; 189:715-734. [PMID: 35285930 DOI: 10.1101/2021.10.14.464408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/16/2022] [Indexed: 05/26/2023]
Abstract
Directional transport of auxin is critical for inflorescence and floral development in flowering plants, but the role of auxin influx carriers (AUX1 proteins) has been largely overlooked. Taking advantage of available AUX1 mutants in green millet (Setaria viridis) and maize (Zea mays), we uncover previously unreported aspects of plant development that are affected by auxin influx, including higher order branches in the inflorescence, stigma branch number, glume (floral bract) development, and plant fertility. However, disruption of auxin flux does not affect all parts of the plant, with little obvious effect on inflorescence meristem size, time to flowering, and anther morphology. In double mutant studies in maize, disruptions of ZmAUX1 also affect vegetative development. A green fluorescent protein (GFP)-tagged construct of the Setaria AUX1 protein Sparse Panicle1 (SPP1) under its native promoter showed that SPP1 localizes to the plasma membrane of outer tissue layers in both roots and inflorescences, and accumulates specifically in inflorescence branch meristems, consistent with the mutant phenotype and expected auxin maxima. RNA-seq analysis indicated that most gene expression modules are conserved between mutant and wild-type plants, with only a few hundred genes differentially expressed in spp1 inflorescences. Using clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology, we disrupted SPP1 and the other four AUX1 homologs in S. viridis. SPP1 has a larger effect on inflorescence development than the others, although all contribute to plant height, tiller formation, and leaf and root development. The AUX1 importers are thus not fully redundant in S. viridis. Our detailed phenotypic characterization plus a stable GFP-tagged line offer tools for future dissection of the function of auxin influx proteins.
Collapse
Affiliation(s)
- Chuanmei Zhu
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Mathew S Box
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | | | - Hao Hu
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Oklahoma 74078, USA
| | - Yunqing Yu
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Callista Martin
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Andrew N Doust
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Oklahoma 74078, USA
| | - Paula McSteen
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
19
|
Zhu C, Box MS, Thiruppathi D, Hu H, Yu Y, Martin C, Doust AN, McSteen P, Kellogg EA. Pleiotropic and nonredundant effects of an auxin importer in Setaria and maize. PLANT PHYSIOLOGY 2022; 189:715-734. [PMID: 35285930 PMCID: PMC9157071 DOI: 10.1093/plphys/kiac115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Directional transport of auxin is critical for inflorescence and floral development in flowering plants, but the role of auxin influx carriers (AUX1 proteins) has been largely overlooked. Taking advantage of available AUX1 mutants in green millet (Setaria viridis) and maize (Zea mays), we uncover previously unreported aspects of plant development that are affected by auxin influx, including higher order branches in the inflorescence, stigma branch number, glume (floral bract) development, and plant fertility. However, disruption of auxin flux does not affect all parts of the plant, with little obvious effect on inflorescence meristem size, time to flowering, and anther morphology. In double mutant studies in maize, disruptions of ZmAUX1 also affect vegetative development. A green fluorescent protein (GFP)-tagged construct of the Setaria AUX1 protein Sparse Panicle1 (SPP1) under its native promoter showed that SPP1 localizes to the plasma membrane of outer tissue layers in both roots and inflorescences, and accumulates specifically in inflorescence branch meristems, consistent with the mutant phenotype and expected auxin maxima. RNA-seq analysis indicated that most gene expression modules are conserved between mutant and wild-type plants, with only a few hundred genes differentially expressed in spp1 inflorescences. Using clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology, we disrupted SPP1 and the other four AUX1 homologs in S. viridis. SPP1 has a larger effect on inflorescence development than the others, although all contribute to plant height, tiller formation, and leaf and root development. The AUX1 importers are thus not fully redundant in S. viridis. Our detailed phenotypic characterization plus a stable GFP-tagged line offer tools for future dissection of the function of auxin influx proteins.
Collapse
Affiliation(s)
- Chuanmei Zhu
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Mathew S Box
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | | | - Hao Hu
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Oklahoma 74078, USA
| | - Yunqing Yu
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Callista Martin
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Andrew N Doust
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Oklahoma 74078, USA
| | - Paula McSteen
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
20
|
Luo Y, Zhang M, Liu Y, Liu J, Li W, Chen G, Peng Y, Jin M, Wei W, Jian L, Yan J, Fernie AR, Yan J. Genetic variation in YIGE1 contributes to ear length and grain yield in maize. THE NEW PHYTOLOGIST 2022; 234:513-526. [PMID: 34837389 DOI: 10.1111/nph.17882] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/18/2021] [Indexed: 05/12/2023]
Abstract
Ear length (EL), which is controlled by quantitative trait loci (QTLs), is an important component of grain yield and as such is a key target trait in maize breeding. However, very few EL QTLs have been cloned, and their molecular mechanisms are largely unknown. Here, using a genome wide association study (GWAS), we identified a QTL, YIGE1, which encodes an unknown protein that regulates EL by affecting pistillate floret number. Overexpression of YIGE1 increased female inflorescence meristem (IM) size, increased EL and kernel number per row (KNPR), and thus enhanced grain yield. By contrast, CRISPR/Cas9 knockout and Mutator insertion mutant lines of YIGE1 displayed decreased IM size and EL. A single-nucleotide polymorphism (SNP) located in the regulatory region of YIGE1 had a large effect on its promoter strength, which positively affected EL by increasing gene expression. Further analysis shows that YIGE1 may be involved in sugar and auxin signal pathways to regulate maize ear development, thus affecting IM activity and floret production in maize inflorescence morphogenesis. These findings provide new insights into ear development and will ultimately facilitate maize molecular breeding.
Collapse
Affiliation(s)
- Yun Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingliang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Wisconsin Institutes for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Wenqiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gengshen Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yong Peng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Min Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjie Wei
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liumei Jian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jin Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
21
|
Zhu W, Yang L, Wu D, Meng Q, Deng X, Huang G, Zhang J, Chen X, Ferrándiz C, Liang W, Dreni L, Zhang D. Rice SEPALLATA genes OsMADS5 and OsMADS34 cooperate to limit inflorescence branching by repressing the TERMINAL FLOWER1-like gene RCN4. THE NEW PHYTOLOGIST 2022; 233:1682-1700. [PMID: 34767634 DOI: 10.1111/nph.17855] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
The spatiotemporal control of meristem identity is critical for determining inflorescence architecture, and thus yield, of cereal plants. However, the precise mechanisms underlying inflorescence and spikelet meristem determinacy in cereals are still largely unclear. We have generated loss-of-function and overexpression mutants of the paralogous OsMADS5 and OsMADS34 genes in rice (Oryza sativa), and analysed their panicle phenotypes. Using chromatin immunoprecipitation, electrophoretic mobility-shift and dual-luciferase assays, we have also identified RICE CENTRORADIALIS 4 (RCN4), a TFL1-like gene, as a direct downstream target of both OsMADS proteins, and have analysed RCN4 mutants. The osmads5 osmads34 mutant lines had significantly enhanced panicle branching with increased secondary, and even tertiary and quaternary, branches, compared to wild-type (WT) and osmads34 plants. The osmads34 mutant phenotype could largely be rescued by also knocking out RCN4. Moreover, transgenic panicles overexpressing RCN4 had significantly increased branching, and initiated development of c. 7× more spikelets than WT. Our results reveal a role for OsMADS5 in panicle development, and show that OsMADS5 and OsMADS34 play similar functions in limiting branching and promoting the transition to spikelet meristem identity, in part by repressing RCN4 expression. These findings provide new insights to better understand the molecular regulation of rice inflorescence architecture.
Collapse
Affiliation(s)
- Wanwan Zhu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liu Yang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Di Wu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qingcai Meng
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiao Deng
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guoqiang Huang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiao Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaofei Chen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cristina Ferrándiz
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, 46022, Spain
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ludovico Dreni
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, 46022, Spain
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| |
Collapse
|
22
|
Dou J, Yang H, Sun D, Yang S, Sun S, Zhao S, Lu X, Zhu H, Liu D, Ma C, Liu W, Yang L. The branchless gene Clbl in watermelon encoding a TERMINAL FLOWER 1 protein regulates the number of lateral branches. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:65-79. [PMID: 34562124 DOI: 10.1007/s00122-021-03952-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
A SNP mutation in Clbl gene encoding TERMINAL FLOWER 1 protein is responsible for watermelon branchless. Lateral branching is one of the most important traits, which directly determines plant architecture and crop productivity. Commercial watermelon has the characteristics of multiple lateral branches, and it is time-consuming and labor-costing to manually remove the lateral branches in traditional watermelon cultivation. In our present study, a lateral branchless trait was identified in watermelon material WCZ, and genetic analysis revealed that it was controlled by a single recessive gene, which named as Clbl (Citrullus lanatus branchless). A bulked segregant sequencing (BSA-seq) and linkage analysis was conducted to primarily map Clbl on watermelon chromosome 4. Next-generation sequencing-aided marker discovery and a large mapping population consisting of 1406 F2 plants were used to further map Clbl locus into a 9011-bp candidate region, which harbored only one candidate gene Cla018392 encoding a TERMINAL FLOWER 1 protein. Sequence comparison of Cla018392 between two parental lines revealed that there was a SNP detected from C to A in the coding region in the branchless inbred line WCZ, which resulted in a mutation from alanine (GCA) to glutamate (GAA) at the fourth exon. A dCAPS marker was developed from the SNP locus, which was co-segregated with the branchless phenotype in both BC1 and F2 population, and it was further validated in 152 natural watermelon accessions. qRT-PCR and in situ hybridization showed that the expression level of Cla018392 was significantly reduced in the axillary bud and apical bud in branchless line WCZ. Ectopic expression of ClTFL1 in Arabidopsis showed an increased number of lateral branches. The results of this study will be helpful for better understanding the molecular mechanism of lateral branch development in watermelon and for the development of marker-assisted selection (MAS) for new branchless watermelon cultivars.
Collapse
Affiliation(s)
- Junling Dou
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Huihui Yang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Dongling Sun
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Sen Yang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Shouru Sun
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Shengjie Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Xuqiang Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Huayu Zhu
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Dongming Liu
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Changsheng Ma
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Wenge Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, 450002, China.
| | - Luming Yang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China.
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, 450002, China.
| |
Collapse
|
23
|
Su H, Chen Z, Dong Y, Ku L, Abou-Elwafa SF, Ren Z, Cao Y, Dou D, Liu Z, Liu H, Tian L, Zhang D, Zeng H, Han S, Zhu F, Du C, Chen Y. Identification of ZmNF-YC2 and its regulatory network for maize flowering time. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7792-7807. [PMID: 34338753 DOI: 10.1093/jxb/erab364] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Flowering time is an important agronomic trait that determines the distribution and adaptation of plants. The accurate prediction of flowering time in elite germplasm is critical for maize breeding. However, the molecular mechanisms underlying the photoperiod response remain elusive in maize. Here we cloned the flowering time-controlling gene, ZmNF-YC2, by map-based cloning and confirmed that ZmNF-YC2 is the nuclear transcription factor Y subunit C-2 protein and a positive regulator of flowering time in maize under long-day conditions. Our results show that ZmNF-YC2 promotes the expression of ZmNF-YA3. ZmNF-YA3 negatively regulates the transcription of ZmAP2. ZmAP2 suppresses the expression of ZMM4 to delay flowering time. We then developed a gene regulatory model of flowering time in maize using ZmNF-YC2, ZmNF-YA3, ZmAP2, ZMM4, and other key genes. The cascading regulation by ZmNF-YC2 of maize flowering time has not been reported in other species.
Collapse
Affiliation(s)
- Huihui Su
- Synergetic Innovation Center of Henan Grain Crops and National Key, Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan, 450046, China
| | - Zhihui Chen
- Synergetic Innovation Center of Henan Grain Crops and National Key, Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan, 450046, China
| | - Yahui Dong
- Synergetic Innovation Center of Henan Grain Crops and National Key, Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan, 450046, China
| | - Lixia Ku
- Synergetic Innovation Center of Henan Grain Crops and National Key, Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan, 450046, China
| | | | - Zhenzhen Ren
- Synergetic Innovation Center of Henan Grain Crops and National Key, Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan, 450046, China
| | - Yingying Cao
- Synergetic Innovation Center of Henan Grain Crops and National Key, Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan, 450046, China
| | - Dandan Dou
- Synergetic Innovation Center of Henan Grain Crops and National Key, Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan, 450046, China
| | - Zhixue Liu
- Synergetic Innovation Center of Henan Grain Crops and National Key, Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan, 450046, China
| | - Huafeng Liu
- Synergetic Innovation Center of Henan Grain Crops and National Key, Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan, 450046, China
| | - Lei Tian
- Synergetic Innovation Center of Henan Grain Crops and National Key, Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan, 450046, China
| | - Dongling Zhang
- Synergetic Innovation Center of Henan Grain Crops and National Key, Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan, 450046, China
| | - Haixia Zeng
- Synergetic Innovation Center of Henan Grain Crops and National Key, Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan, 450046, China
| | - Shengbo Han
- Synergetic Innovation Center of Henan Grain Crops and National Key, Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan, 450046, China
| | - Fangfang Zhu
- Synergetic Innovation Center of Henan Grain Crops and National Key, Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan, 450046, China
| | - Chunguang Du
- Department of Biology, Montclair State University, Montclair, NJ 07043, USA
| | - Yanhui Chen
- Synergetic Innovation Center of Henan Grain Crops and National Key, Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan, 450046, China
| |
Collapse
|
24
|
Liu Y, Gao Y, Yuan L, Zhang Q. Molecular Characterization and Expression Patterns of the HkSVP Gene Reveal Distinct Roles in Inflorescence Structure and Floral Organ Development in Hemerocallis fulva. Int J Mol Sci 2021; 22:12010. [PMID: 34769440 PMCID: PMC8585014 DOI: 10.3390/ijms222112010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/25/2022] Open
Abstract
SHORT VEGETATIVE PHASE (SVP) genes are members of the well-known MADS-box gene family that play a key role in regulating vital developmental processes in plants. Hemerocallis are perennial herbs that exhibit continuous flowering development and have been extensively used in landscaping. However, there are few reports on the regulatory mechanism of flowering in Hemerocallis. To better understand the molecular basis of floral formation of Hemerocallis, we identified and characterized the SVP-like gene HkSVP from the Hemerocallis cultivar 'Kanai Sensei'. Quantitative RT-PCR (qRT-PCR) indicated that HkSVP transcript was mainly expressed in the vegetative growth stage and had the highest expression in leaves, low expression in petals, pedicels and fruits, and no expression in pistils. The HkSVP encoded protein was localized in the nucleus of Arabidopsis protoplasts and the nucleus of onion epidermal cells. Yeast two hybrid assay revealed that HKSVP interacted with Hemerocallis AP1 and TFL1. Moreover, overexpression of HkSVP in Arabidopsis resulted in delayed flowering and abnormal phenotypes, including enriched trichomes, increased basal inflorescence branches and inhibition of inflorescence formation. These observations suggest that the HkSVP gene may play an important role in maintaining vegetative growth by participating in the construction of inflorescence structure and the development of flower organs.
Collapse
Affiliation(s)
- Yingzhu Liu
- National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Y.L.); (L.Y.); (Q.Z.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Yike Gao
- National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Y.L.); (L.Y.); (Q.Z.)
| | - Lin Yuan
- National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Y.L.); (L.Y.); (Q.Z.)
| | - Qixiang Zhang
- National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Y.L.); (L.Y.); (Q.Z.)
| |
Collapse
|
25
|
Yang J, Bertolini E, Braud M, Preciado J, Chepote A, Jiang H, Eveland AL. The SvFUL2 transcription factor is required for inflorescence determinacy and timely flowering in Setaria viridis. PLANT PHYSIOLOGY 2021; 187:1202-1220. [PMID: 33871654 PMCID: PMC8566296 DOI: 10.1093/plphys/kiab169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/22/2021] [Indexed: 05/22/2023]
Abstract
Inflorescence architecture in cereal crops directly impacts yield potential through regulation of seed number and harvesting ability. Extensive architectural diversity found in inflorescences of grass species is due to spatial and temporal activity and determinacy of meristems, which control the number and arrangement of branches and flowers, and underlie plasticity. Timing of the floral transition is also intimately associated with inflorescence development and architecture, yet little is known about the intersecting pathways and how they are rewired during development. Here, we show that a single mutation in a gene encoding an AP1/FUL-like MADS-box transcription factor significantly delays flowering time and disrupts multiple levels of meristem determinacy in panicles of the C4 model panicoid grass, Setaria viridis. Previous reports of AP1/FUL-like genes in cereals have revealed extensive functional redundancy, and in panicoid grasses, no associated inflorescence phenotypes have been described. In S. viridis, perturbation of SvFul2, both through chemical mutagenesis and gene editing, converted a normally determinate inflorescence habit to an indeterminate one, and also repressed determinacy in axillary branch and floral meristems. Our analysis of gene networks connected to disruption of SvFul2 identified regulatory hubs at the intersection of floral transition and inflorescence determinacy, providing insights into the optimization of cereal crop architecture.
Collapse
Affiliation(s)
- Jiani Yang
- Donald Danforth Plant Science Center, Saint Louis, Missouri, 63132, USA
| | - Edoardo Bertolini
- Donald Danforth Plant Science Center, Saint Louis, Missouri, 63132, USA
| | - Max Braud
- Donald Danforth Plant Science Center, Saint Louis, Missouri, 63132, USA
| | - Jesus Preciado
- National Science Foundation Research Experiences in Plant Science at the Danforth Center, Saint Louis, Missouri, 63132, USA
| | - Adriana Chepote
- Donald Danforth Plant Science Center, Saint Louis, Missouri, 63132, USA
| | - Hui Jiang
- Donald Danforth Plant Science Center, Saint Louis, Missouri, 63132, USA
| | - Andrea L Eveland
- Donald Danforth Plant Science Center, Saint Louis, Missouri, 63132, USA
| |
Collapse
|
26
|
Zhi H, He Q, Tang S, Yang J, Zhang W, Liu H, Jia Y, Jia G, Zhang A, Li Y, Guo E, Gao M, Li S, Li J, Qin N, Zhu C, Ma C, Zhang H, Chen G, Zhang W, Wang H, Qiao Z, Li S, Cheng R, Xing L, Wang S, Liu J, Liu J, Diao X. Genetic control and phenotypic characterization of panicle architecture and grain yield-related traits in foxtail millet (Setaria italica). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3023-3036. [PMID: 34081150 DOI: 10.1007/s00122-021-03875-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Multi-environment QTL mapping identified 23 stable loci and 34 co-located QTL clusters for panicle architecture and grain yield-related traits, which provide a genetic basis for foxtail millet yield improvement. Panicle architecture and grain weight, both of which are influenced by genetic and environmental factors, have significant effects on grain yield potential. Here, we used a recombinant inbred line (RIL) population of 333 lines of foxtail millet, which were grown in 13 trials with varying environmental conditions, to identify quantitative trait loci (QTL) controlling nine agronomic traits related to panicle architecture and grain yield. We found that panicle weight, grain weight per panicle, panicle length, panicle diameter, and panicle exsertion length varied across different geographical locations. QTL mapping revealed 159 QTL for nine traits. Of the 159 QTL, 34 were identified in 2 to 12 environments, suggesting that the genetic control of panicle architecture in foxtail millet is sensitive to photoperiod and/or other environmental factors. Eighty-eight QTL controlling different traits formed 34 co-located QTL clusters, including the triple QTL cluster qPD9.2/qPL9.5/qPEL9.3, which was detected 23 times in 13 environments. Several candidate genes, including Seita.2G388700, Seita.3G136000, Seita.4G185300, Seita.5G241500, Seita.5G243100, Seita.9G281300, and Seita.9G342700, were identified in the genomic intervals of multi-environmental QTL or co-located QTL clusters. Using available phenotypic and genotype data, we conducted haplotype analysis for Seita.2G002300 and Seita.9G064000,which showed high correlations with panicle weight and panicle exsertion length, respectively. These results not only provided a basis for further fine mapping, functional studies and marker-assisted selection of traits related to panicle architecture in foxtail millet, but also provide information for comparative genomics analyses of cereal crops.
Collapse
Affiliation(s)
- Hui Zhi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing, 100081, China
| | - Qiang He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing, 100081, China
| | - Sha Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing, 100081, China
| | - Junjun Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing, 100081, China
| | - Wei Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing, 100081, China
| | - Huifang Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing, 100081, China
| | - Yanchao Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing, 100081, China
| | - Guanqing Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing, 100081, China
| | - Aiying Zhang
- Institute of Millet Crops, Shanxi Agricultural University, Changzhi, 046000, Shanxi, China
| | - Yuhui Li
- Institute of Millet Crops, Shanxi Agricultural University, Changzhi, 046000, Shanxi, China
| | - Erhu Guo
- Institute of Millet Crops, Shanxi Agricultural University, Changzhi, 046000, Shanxi, China
| | - Ming Gao
- Institute of Crop Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, 136100, Jilin, China
| | - Shujie Li
- Institute of Crop Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, 136100, Jilin, China
| | - Junxia Li
- Cereal Crops Institute, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Na Qin
- Cereal Crops Institute, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Cancan Zhu
- Cereal Crops Institute, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Chunye Ma
- Cereal Crops Institute, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Haijin Zhang
- Institute of Dry-Land Agriculture and Forestry, Liaoning Academy of Agricultural Sciences, Chaoyang, 122000, Liaoning, China
| | - Guoqiu Chen
- Institute of Dry-Land Agriculture and Forestry, Liaoning Academy of Agricultural Sciences, Chaoyang, 122000, Liaoning, China
| | - Wenfei Zhang
- Institute of Dry-Land Agriculture and Forestry, Liaoning Academy of Agricultural Sciences, Chaoyang, 122000, Liaoning, China
| | - Haigang Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, 030031, Shanxi, China
| | - Zhijun Qiao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, 030031, Shanxi, China
| | - Shunguo Li
- Institute of Millet Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, China
| | - Ruhong Cheng
- Institute of Millet Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, China
| | - Lu Xing
- Anyang Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Suying Wang
- Anyang Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jinrong Liu
- Anyang Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing, 100081, China
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing, 100081, China.
| |
Collapse
|
27
|
Yue L, Li X, Fang C, Chen L, Yang H, Yang J, Chen Z, Nan H, Chen L, Zhang Y, Li H, Hou X, Dong Z, Weller JL, Abe J, Liu B, Kong F. FT5a interferes with the Dt1-AP1 feedback loop to control flowering time and shoot determinacy in soybean. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1004-1020. [PMID: 33458938 DOI: 10.1111/jipb.13070] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/08/2021] [Indexed: 05/29/2023]
Abstract
Flowering time and stem growth habit determine inflorescence architecture in soybean, which in turn influences seed yield. Dt1, a homolog of Arabidopsis TERMINAL FLOWER 1 (TFL1), is a major controller of stem growth habit, but its underlying molecular mechanisms remain unclear. Here, we demonstrate that Dt1 affects node number and plant height, as well as flowering time, in soybean under long-day conditions. The bZIP transcription factor FDc1 physically interacts with Dt1, and the FDc1-Dt1 complex directly represses the expression of APETALA1 (AP1). We propose that FT5a inhibits Dt1 activity via a competitive interaction with FDc1 and directly upregulates AP1. Moreover, AP1 represses Dt1 expression by directly binding to the Dt1 promoter, suggesting that AP1 and Dt1 form a suppressive regulatory feedback loop to determine the fate of the shoot apical meristem. These findings provide novel insights into the roles of Dt1 and FT5a in controlling the stem growth habit and flowering time in soybean, which determine the adaptability and grain yield of this important crop.
Collapse
Affiliation(s)
- Lin Yue
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
| | - Xiaoming Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Chao Fang
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
| | - Liyu Chen
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
| | - Hui Yang
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
| | - Jie Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Zhonghui Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyang Nan
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
| | - Linnan Chen
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
| | - Yuhang Zhang
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
| | - Haiyang Li
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xingliang Hou
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Zhicheng Dong
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
| | - James L Weller
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Jun Abe
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Baohui Liu
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, the Chinese Academy of Sciences, Harbin, 1500000, China
| | - Fanjiang Kong
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, the Chinese Academy of Sciences, Harbin, 1500000, China
| |
Collapse
|
28
|
Wang C, Yang X, Li G. Molecular Insights into Inflorescence Meristem Specification for Yield Potential in Cereal Crops. Int J Mol Sci 2021; 22:3508. [PMID: 33805287 PMCID: PMC8037405 DOI: 10.3390/ijms22073508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022] Open
Abstract
Flowering plants develop new organs throughout their life cycle. The vegetative shoot apical meristem (SAM) generates leaf whorls, branches and stems, whereas the reproductive SAM, called the inflorescence meristem (IM), forms florets arranged on a stem or an axis. In cereal crops, the inflorescence producing grains from fertilized florets makes the major yield contribution, which is determined by the numbers and structures of branches, spikelets and florets within the inflorescence. The developmental progression largely depends on the activity of IM. The proper regulations of IM size, specification and termination are outcomes of complex interactions between promoting and restricting factors/signals. Here, we focus on recent advances in molecular mechanisms underlying potential pathways of IM identification, maintenance and differentiation in cereal crops, including rice (Oryza sativa), maize (Zea mays), wheat (Triticum aestivum), and barley (Hordeum vulgare), highlighting the researches that have facilitated grain yield by, for example, modifying the number of inflorescence branches. Combinatorial functions of key regulators and crosstalk in IM determinacy and specification are summarized. This review delivers the knowledge to crop breeding applications aiming to the improvements in yield performance and productivity.
Collapse
Affiliation(s)
- Chengyu Wang
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Xiujuan Yang
- School of Agriculture, Food and Wine, Waite Research Institute, Waite Campus, The University of Adelaide, Glen Osmond, SA 5064, Australia;
| | - Gang Li
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
- School of Agriculture, Food and Wine, Waite Research Institute, Waite Campus, The University of Adelaide, Glen Osmond, SA 5064, Australia;
| |
Collapse
|
29
|
Zhang X, Ma C, Wang X, Wu M, Shao J, Huang L, Yuan L, Fu Z, Li W, Zhang X, Guo Z, Tang J. Global transcriptional profiling between inbred parents and hybrids provides comprehensive insights into ear-length heterosis of maize (Zea mays). BMC PLANT BIOLOGY 2021; 21:118. [PMID: 33637040 PMCID: PMC7908659 DOI: 10.1186/s12870-021-02890-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Maize (Zea mays) ear length, which is an important yield component, exhibits strong heterosis. Understanding the potential molecular mechanisms of ear-length heterosis is critical for efficient yield-related breeding. RESULTS Here, a joint netted pattern, including six parent-hybrid triplets, was designed on the basis of two maize lines harboring long (T121 line) and short (T126 line) ears. Global transcriptional profiling of young ears (containing meristem) was performed. Multiple comparative analyses revealed that 874 differentially expressed genes are mainly responsible for the ear-length variation between T121 and T126 lines. Among them, four key genes, Zm00001d049958, Zm00001d027359, Zm00001d048502 and Zm00001d052138, were identified as being related to meristem development, which corroborated their roles in the superior additive genetic effects on ear length in T121 line. Non-additive expression patterns were used to identify candidate genes related to ear-length heterosis. A non-additively expressed gene (Zm00001d050649) was associated with the timing of meristematic phase transition and was determined to be the homolog of tomato SELF PRUNING, which assists SINGLE FLOWER TRUSS in driving yield-related heterosis, indicating that Zm00001d050649 is a potential contributor to drive heterotic effect on ear length. CONCLUSION Our results suggest that inbred parents provide genetic and heterotic effects on the ear lengths of their corresponding F1 hybrids through two independent pathways. These findings provide comprehensive insights into the transcriptional regulation of ear length and improve the understanding of ear-length heterosis in maize.
Collapse
Affiliation(s)
- Xiangge Zhang
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450018, China
| | - Chenchen Ma
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450018, China
| | - Xiaoqing Wang
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450018, China
| | - Mingbo Wu
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450018, China
| | - Jingkuan Shao
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450018, China
| | - Li Huang
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450018, China
| | - Liang Yuan
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450018, China
| | - Zhiyuan Fu
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450018, China
| | - Weihua Li
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450018, China
| | - Xuehai Zhang
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450018, China
| | - Zhanyong Guo
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450018, China.
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450018, China.
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 433200, China.
| |
Collapse
|
30
|
McGarry RC, Ayre BG. Cotton architecture: examining the roles of SINGLE FLOWER TRUSS and SELF-PRUNING in regulating growth habits of a woody perennial crop. CURRENT OPINION IN PLANT BIOLOGY 2021; 59:101968. [PMID: 33418402 DOI: 10.1016/j.pbi.2020.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/09/2020] [Accepted: 10/01/2020] [Indexed: 06/12/2023]
Abstract
By specifying patterns of determinate and indeterminate growth, FLOWERING LOCUS T/SINGLE FLOWER TRUSS (SFT) and TERMINAL FLOWER 1/SELF-PRUNING (SP) regulate plant architecture. Though well characterized in Arabidopsis, the impacts of these genes on the architectures of diverse crops cultivated in different environments, and their potential to enhance crop productivity and management, are less well addressed. Cotton (Gossypium spp.) is naturally a short-day photoperiodic perennial that is now grown primarily as a day-neutral, annual row crop. Different environments and cultivation practices favor specific growth habits to optimize yield, and in cotton, especially in regions that rely heavily on mechanized harvest, the trend has been to more determinate varieties. Identifying and functionally characterizing SFT and SP homologs in cotton uncovered new aspects of how ratios of indeterminate and determinate growth are balanced, and unraveling their genetic networks emphasized how broadly these gene products affect cotton growth habits.
Collapse
Affiliation(s)
- Roisin C McGarry
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, TX 76203-5017, USA.
| | - Brian G Ayre
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, TX 76203-5017, USA
| |
Collapse
|
31
|
|
32
|
Molecular and genetic pathways for optimizing spikelet development and grain yield. ABIOTECH 2020; 1:276-292. [PMID: 36304128 PMCID: PMC9590455 DOI: 10.1007/s42994-020-00026-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/11/2020] [Indexed: 01/25/2023]
Abstract
The spikelet is a unique structure of inflorescence in grasses that generates one to many flowers depending on its determinate or indeterminate meristem activity. The growth patterns and number of spikelets, furthermore, define inflorescence architecture and yield. Therefore, understanding the molecular mechanisms underlying spikelet development and evolution are attractive to both biologists and breeders. Based on the progress in rice and maize, along with increasing numbers of genetic mutants and genome sequences from other grass families, the regulatory networks underpinning spikelet development are becoming clearer. This is particularly evident for domesticated traits in agriculture. This review focuses on recent progress on spikelet initiation, and spikelet and floret fertility, by comparing results from Arabidopsis with that of rice, sorghum, maize, barley, wheat, Brachypodium distachyon, and Setaria viridis. This progress may benefit genetic engineering and molecular breeding to enhance grain yield.
Collapse
|
33
|
Zhang X, Campbell R, Ducreux LJM, Morris J, Hedley PE, Mellado‐Ortega E, Roberts AG, Stephens J, Bryan GJ, Torrance L, Chapman SN, Prat S, Taylor MA. TERMINAL FLOWER-1/CENTRORADIALIS inhibits tuberisation via protein interaction with the tuberigen activation complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2263-2278. [PMID: 32593210 PMCID: PMC7540344 DOI: 10.1111/tpj.14898] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/18/2020] [Accepted: 06/12/2020] [Indexed: 05/04/2023]
Abstract
Potato tuber formation is a secondary developmental programme by which cells in the subapical stolon region divide and radially expand to further differentiate into starch-accumulating parenchyma. Although some details of the molecular pathway that signals tuberisation are known, important gaps in our knowledge persist. Here, the role of a member of the TERMINAL FLOWER 1/CENTRORADIALIS gene family (termed StCEN) in the negative control of tuberisation is demonstrated for what is thought to be the first time. It is shown that reduced expression of StCEN accelerates tuber formation whereas transgenic lines overexpressing this gene display delayed tuberisation and reduced tuber yield. Protein-protein interaction studies (yeast two-hybrid and bimolecular fluorescence complementation) demonstrate that StCEN binds components of the recently described tuberigen activation complex. Using transient transactivation assays, we show that the StSP6A tuberisation signal is an activation target of the tuberigen activation complex, and that co-expression of StCEN blocks activation of the StSP6A gene by StFD-Like-1. Transcriptomic analysis of transgenic lines misexpressing StCEN identifies early transcriptional events in tuber formation. These results demonstrate that StCEN suppresses tuberisation by directly antagonising the function of StSP6A in stolons, identifying StCEN as a breeding marker to improve tuber initiation and yield through the selection of genotypes with reduced StCEN expression.
Collapse
Affiliation(s)
- Xing Zhang
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Raymond Campbell
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| | | | - Jennifer Morris
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| | - Pete E. Hedley
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| | - Elena Mellado‐Ortega
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| | - Alison G. Roberts
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| | - Jennifer Stephens
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| | - Glenn J. Bryan
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| | - Lesley Torrance
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
- School of BiologyBiomolecular Sciences BuildingUniversity of St AndrewsNorth HaughSt AndrewsFifeY16 9STUK
| | - Sean N. Chapman
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| | - Salomé Prat
- Centro Nacional de BiotecnologíaC/Darwin no. 3, Campus de CantoblancoMadrid28049Spain
| | - Mark A. Taylor
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| |
Collapse
|
34
|
Haider S, Gao Y, Gao Y. Standardized Genetic Transformation Protocol for Chrysanthemum cv. 'Jinba' with TERMINAL FLOWER 1 Homolog CmTFL1a. Genes (Basel) 2020; 11:genes11080860. [PMID: 32731555 PMCID: PMC7463584 DOI: 10.3390/genes11080860] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 01/07/2023] Open
Abstract
Chrysanthemum (Chrysanthemum x morifolium Ramat.) cultivar Jinba is a distinctive short-day chrysanthemum that can be exploited as a model organism for studying the molecular mechanism of flowering. The commercial value of Jinba can be increased in global flower markets by developing its proper regeneration and genetic transformation system. By addressing typical problems associated with Agrobacterium-mediated transformation in chrysanthemum, that is, low transformation efficiency and high cultivar specificity, we designed an efficient, stable transformation system. Here, we identify the features that significantly affect the genetic transformation of Jinba and standardize its transformation protocol by using CmTFL1a as a transgene. The appropriate concentrations of various antibiotics (kanamycin, meropenem and carbenicillin) and growth regulators (6-BA, 2,4-D and NAA) for the genetic transformation were determined to check their effects on in vitro plant regeneration from leaf segments of Jinba; thus, the transformation protocol was standardized through Agrobacterium tumefaciens (EHA105). In addition, the presence of the transgene and its stable expression in CmTFL1a transgenic plants were confirmed by polymerase chain reaction (PCR) analysis. The CmTFL1a transgene constitutively expressed in the transgenic plants was highly expressed in shoot apices as compared to stem and leaves. Overexpression of CmTFL1a led to a delay in transition to the reproductive phase and significantly affected plant morphology. This study will help to understand the biological phenomenon of TFL1 homolog in chrysanthemum. Moreover, our findings can explore innovative possibilities for genetic engineering and breeding of other chrysanthemum cultivars.
Collapse
Affiliation(s)
- Saba Haider
- National Flower Engineering Research Centre, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, College of Landscape Architecture of Beijing Forestry University, Beijing 100083, China;
| | - Yaohui Gao
- Architectural Institute, Inner Mongolia University of Science & Technology, Alding Street No.7, Kundulun District, Baotou 014010, China;
| | - Yike Gao
- National Flower Engineering Research Centre, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, College of Landscape Architecture of Beijing Forestry University, Beijing 100083, China;
- Correspondence: ; Tel.: +86-138-0102-1804
| |
Collapse
|
35
|
Zhu Y, Wagner D. Plant Inflorescence Architecture: The Formation, Activity, and Fate of Axillary Meristems. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a034652. [PMID: 31308142 DOI: 10.1101/cshperspect.a034652] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The above-ground plant body in different plant species can have very distinct forms or architectures that arise by recurrent redeployment of a finite set of building blocks-leaves with axillary meristems, stems or branches, and flowers. The unique architectures of plant inflorescences in different plant families and species, on which this review focuses, determine the reproductive success and yield of wild and cultivated plants. Major contributors to the inflorescence architecture are the activity and developmental trajectories adopted by axillary meristems, which determine the degree of branching and the number of flowers formed. Recent advances in genetic and molecular analyses in diverse flowering plants have uncovered both common regulatory principles and unique players and/or regulatory interactions that underlie inflorescence architecture. Modulating activity of these regulators has already led to yield increases in the field. Additional insight into the underlying regulatory interactions and principles will not only uncover how their rewiring resulted in altered plant form, but will also enhance efforts at optimizing plant architecture in desirable ways in crop species.
Collapse
Affiliation(s)
- Yang Zhu
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
36
|
Ospina-Zapata DA, Madrigal Y, Alzate JF, Pabón-Mora N. Evolution and Expression of Reproductive Transition Regulatory Genes FT/ TFL1 With Emphasis in Selected Neotropical Orchids. FRONTIERS IN PLANT SCIENCE 2020; 11:469. [PMID: 32373149 PMCID: PMC7186885 DOI: 10.3389/fpls.2020.00469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/30/2020] [Indexed: 05/23/2023]
Abstract
Flowering is a rigorously timed and morphologically complex shift in plant development. This change depends on endogenous as well as environmental factors. FLOWERING LOCUS T (FT) integrates several cues from different pathways acting as a flowering promoter. Contrary to the role of FT, its paralog TERMINAL FLOWER 1 (TFL1) delays floral transition. Although FT/TFL1 homologs have been studied in model eudicots and monocots, scarce studies are available in non-model monocots like the Orchidaceae. Orchids are very diverse and their floral complexity is translated into a unique aesthetic display, which appeals the ornamental plant market. Nonetheless, orchid trade faces huge limitations due to their long vegetative phase and intractable indoor flowering seasons. Little is known about the genetic basis that control reproductive transition in orchids and, consequently, manipulating their flowering time remains a challenge. In order to contribute to the understanding of the genetic bases that control flowering in orchids we present here the first broad-scale analysis of FT/TFL1-like genes in monocots with an expanded sampling in Orchidaceae. We also compare expression patterns in three selected species and propose hypotheses on the putative role of these genes in their reproductive transition. Our findings show that FT-like genes are by far more diversified than TFL1-like genes in monocots with six subclades in the former and only one in the latter. Within MonFT1, the comparative protein sequences of MonFT1A and MonFT1B suggest that they could have recruited functional roles in delaying flowering, a role typically assigned to TFL1-like proteins. On the other hand, MonFT2 proteins have retained their canonical motifs and roles in promoting flowering transition. This is also shown by their increased expression levels from the shoot apical meristem (SAM) and leaves to inflorescence meristems (IM) and floral buds (FBs). Finally, TFL1-like genes are retained as single copy and often times are lost. Their loss could be linked to the parallel recruitment of MonFT1A and MonFT1B homologs in delaying flowering and maintaining indeterminacy of the inflorescence meristem. These hypotheses lay the foundation for future functional validation in emerging model orchid species and comparative analyses in orchids with high horticultural potential in the market.
Collapse
Affiliation(s)
- Diego A. Ospina-Zapata
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Yesenia Madrigal
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Juan F. Alzate
- Centro Nacional de Secuenciación Genómica, Sede de Investigación Universitaria, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Natalia Pabón-Mora
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
- *Correspondence: Natalia Pabón-Mora,
| |
Collapse
|
37
|
Azodi CB, Pardo J, VanBuren R, de Los Campos G, Shiu SH. Transcriptome-Based Prediction of Complex Traits in Maize. THE PLANT CELL 2020; 32:139-151. [PMID: 31641024 PMCID: PMC6961623 DOI: 10.1105/tpc.19.00332] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/24/2019] [Accepted: 10/21/2019] [Indexed: 05/11/2023]
Abstract
The ability to predict traits from genome-wide sequence information (i.e., genomic prediction) has improved our understanding of the genetic basis of complex traits and transformed breeding practices. Transcriptome data may also be useful for genomic prediction. However, it remains unclear how well transcript levels can predict traits, particularly when traits are scored at different development stages. Using maize (Zea mays) genetic markers and transcript levels from seedlings to predict mature plant traits, we found that transcript and genetic marker models have similar performance. When the transcripts and genetic markers with the greatest weights (i.e., the most important) in those models were used in one joint model, performance increased. Furthermore, genetic markers important for predictions were not close to or identified as regulatory variants for important transcripts. These findings demonstrate that transcript levels are useful for predicting traits and that their predictive power is not simply due to genetic variation in the transcribed genomic regions. Finally, genetic marker models identified only 1 of 14 benchmark flowering-time genes, while transcript models identified 5. These data highlight that, in addition to being useful for genomic prediction, transcriptome data can provide a link between traits and variation that cannot be readily captured at the sequence level.
Collapse
Affiliation(s)
- Christina B Azodi
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- The DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824
| | - Jeremy Pardo
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824
| | - Robert VanBuren
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824
| | - Gustavo de Los Campos
- Epidemiology and Biostatistics and Statistics and Probability Departments, Michigan State University, East Lansing, Michigan 48824
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- The DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
38
|
Chen MS, Zhao ML, Wang GJ, He HY, Bai X, Pan BZ, Fu QT, Tao YB, Tang MY, Martínez-Herrera J, Xu ZF. Transcriptome analysis of two inflorescence branching mutants reveals cytokinin is an important regulator in controlling inflorescence architecture in the woody plant Jatropha curcas. BMC PLANT BIOLOGY 2019; 19:468. [PMID: 31684864 PMCID: PMC6830001 DOI: 10.1186/s12870-019-2069-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 10/09/2019] [Indexed: 06/08/2023]
Abstract
BACKGROUND In higher plants, inflorescence architecture is an important agronomic trait directly determining seed yield. However, little information is available on the regulatory mechanism of inflorescence development in perennial woody plants. Based on two inflorescence branching mutants, we investigated the transcriptome differences in inflorescence buds between two mutants and wild-type (WT) plants by RNA-Seq to identify the genes and regulatory networks controlling inflorescence architecture in Jatropha curcas L., a perennial woody plant belonging to Euphorbiaceae. RESULTS Two inflorescence branching mutants were identified in germplasm collection of Jatropha. The duo xiao hua (dxh) mutant has a seven-order branch inflorescence, and the gynoecy (g) mutant has a three-order branch inflorescence, while WT Jatropha has predominantly four-order branch inflorescence, occasionally the three- or five-order branch inflorescences in fields. Using weighted gene correlation network analysis (WGCNA), we identified several hub genes involved in the cytokinin metabolic pathway from modules highly associated with inflorescence phenotypes. Among them, Jatropha ADENOSINE KINASE 2 (JcADK2), ADENINE PHOSPHORIBOSYL TRANSFERASE 1 (JcAPT1), CYTOKININ OXIDASE 3 (JcCKX3), ISOPENTENYLTRANSFERASE 5 (JcIPT5), LONELY GUY 3 (JcLOG3) and JcLOG5 may participate in cytokinin metabolic pathway in Jatropha. Consistently, exogenous application of cytokinin (6-benzyladenine, 6-BA) on inflorescence buds induced high-branch inflorescence phenotype in both low-branch inflorescence mutant (g) and WT plants. These results suggested that cytokinin is an important regulator in controlling inflorescence branching in Jatropha. In addition, comparative transcriptome analysis showed that Arabidopsis homologous genes Jatropha AGAMOUS-LIKE 6 (JcAGL6), JcAGL24, FRUITFUL (JcFUL), LEAFY (JcLFY), SEPALLATAs (JcSEPs), TERMINAL FLOWER 1 (JcTFL1), and WUSCHEL-RELATED HOMEOBOX 3 (JcWOX3), were differentially expressed in inflorescence buds between dxh and g mutants and WT plants, indicating that they may participate in inflorescence development in Jatropha. The expression of JcTFL1 was downregulated, while the expression of JcLFY and JcAP1 were upregulated in inflorescences in low-branch g mutant. CONCLUSIONS Cytokinin is an important regulator in controlling inflorescence branching in Jatropha. The regulation of inflorescence architecture by the genes involved in floral development, including TFL1, LFY and AP1, may be conservative in Jatropha and Arabidopsis. Our results provide helpful information for elucidating the regulatory mechanism of inflorescence architecture in Jatropha.
Collapse
Affiliation(s)
- Mao-Sheng Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303 Yunnan China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303 Yunnan China
| | - Mei-Li Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303 Yunnan China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Gui-Juan Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303 Yunnan China
| | - Hui-Ying He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303 Yunnan China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303 Yunnan China
| | - Xue Bai
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303 Yunnan China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Bang-Zhen Pan
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303 Yunnan China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303 Yunnan China
| | - Qian-Tang Fu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303 Yunnan China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303 Yunnan China
| | - Yan-Bin Tao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303 Yunnan China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303 Yunnan China
| | - Ming-Yong Tang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303 Yunnan China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303 Yunnan China
| | - Jorge Martínez-Herrera
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Huimanguillo, Huimanguillo, Tabasco Mexico
| | - Zeng-Fu Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303 Yunnan China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303 Yunnan China
| |
Collapse
|
39
|
Dalvi VS, Patil YA, Krishna B, Sane PV, Sane AP. Indeterminate growth of the umbel inflorescence and bulb is associated with increased expression of the TFL1 homologue, AcTFL1, in onion. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110165. [PMID: 31481221 DOI: 10.1016/j.plantsci.2019.110165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 06/02/2019] [Accepted: 06/04/2019] [Indexed: 05/24/2023]
Abstract
TERMINAL FLOWER1 (TFL1) is a key gene for maintenance of vegetative and inflorescence indeterminacy and architecture. In onion, flowering and bulbing are two distinct developmental phases, each under complex environmental regulatory control. We have identified two CEN/TFL1-like genes from onion designated as AcTFL1 and AcCEN1. AcTFL1 is expressed during bulbing and inflorescence development with expression increasing with indeterminate growth of the umbel and the bulb suggesting possible conservation of function. Increase in AcTFL1 expression during umbel growth is associated with a simultaneous reduction in expression of AcLFY. Expression of AcTFL1 within the bulb is lowest in the outermost layers and highest in the innermost (youngest) layers. Bulb storage at room temperature or in cold leads to a gradual reduction in AcTFL1 levels in the meristem-containing tissues, the decrease being faster in the variety not requiring vernalization. Constitutive expression of AcTFL1, but not AcCEN1 complements the Arabidopsis tfl1-14 mutant and delays flowering in wild type suggesting conservation of the AcTFL1 function even in the distantly related Arabidopsis. Taken together, AcTFL1 appears to be the functional counterpart of TFL1 and regulates indeterminate growth of the umbel inflorescence as well as bulb development in onion.
Collapse
Affiliation(s)
- Vijayendra S Dalvi
- Division of Plant Molecular Biology, Jain R&D laboratory, Jain Irrigation Systems Ltd, Agripark, Jain Hills, Shirsoli Road, Jalgaon, 425 001, India
| | - Yogesh A Patil
- Division of Plant Molecular Biology, Jain R&D laboratory, Jain Irrigation Systems Ltd, Agripark, Jain Hills, Shirsoli Road, Jalgaon, 425 001, India
| | - Bal Krishna
- Division of Plant Molecular Biology, Jain R&D laboratory, Jain Irrigation Systems Ltd, Agripark, Jain Hills, Shirsoli Road, Jalgaon, 425 001, India.
| | - Prafullachandra V Sane
- Division of Plant Molecular Biology, Jain R&D laboratory, Jain Irrigation Systems Ltd, Agripark, Jain Hills, Shirsoli Road, Jalgaon, 425 001, India
| | - Aniruddha P Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow, 226001, India.
| |
Collapse
|
40
|
Wu Q, Bai X, Zhao W, Shi X, Xiang D, Wan Y, Wu X, Sun Y, Zhao J, Peng L, Zhao G. Investigation into the underlying regulatory mechanisms shaping inflorescence architecture in Chenopodium quinoa. BMC Genomics 2019; 20:658. [PMID: 31419932 PMCID: PMC6698048 DOI: 10.1186/s12864-019-6027-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 08/12/2019] [Indexed: 11/10/2022] Open
Abstract
Background Inflorescence architecture is denoted by the spatial arrangement of various lateral branches and florets formed on them, which is shaped by a complex of regulators. Unveiling of the regulatory mechanisms underlying inflorescence architecture is pivotal for improving crop yield potential. Quinoa (Chenopodium quinoa Willd), a pseudo cereal originated from Andean region of South America, has been widely recognized as a functional super food due to its excellent nutritional elements. Increasing worldwide consumption of this crop urgently calls for its yield improvement. However, dissection of the regulatory networks underlying quinoa inflorescence patterning is lacking. Results In this study, we performed RNA-seq analysis on quinoa inflorescence samples collected from six developmental stages, yielding a total of 138.8 GB data. We screened 21,610 differentially expressed genes (DEGs) among all the stages through comparative analysis. Weighted Gene Co-Expression Network Analysis (WGCNA) was performed to categorize the DEGs into ten different modules. Subsequently, we placed emphasis on investigating the modules associated with none branched and branched inflorescence samples. We manually refined the coexpression networks with stringent edge weight cutoffs, and generated core networks using transcription factors and key inflorescence architecture related genes as seed nodes. The core networks were visualized and analyzed by Cytoscape to obtain hub genes in each network. Our finding indicates that the specific occurrence of B3, TALE, WOX, LSH, LFY, GRAS, bHLH, EIL, DOF, G2-like and YABBY family members in early reproductive stage modules, and of TFL, ERF, bZIP, HD-ZIP, C2H2, LBD, NAC, C3H, Nin-like and FAR1 family members in late reproductive stage modules, as well as the several different MADS subfamily members identified in both stages may account for shaping quinoa inflorescence architecture. Conclusion In this study we carried out comparative transcriptome analysis of six different stages quinoa inflorescences, and using WGCNA we obtained the most highly potential central hubs for shaping inflorescence. The data obtained from this study will enhance our understanding of the gene network regulating quinoa inflorescence architecture, as well will supply with valuable genetic resources for high-yield elite breeding in the future. Electronic supplementary material The online version of this article (10.1186/s12864-019-6027-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qi Wu
- Key Laboratory of Coarse Cereal Processing Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan province, People's Republic of China. .,National Research and Development Center for Coarse Cereal Processing, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, People's Republic of China.
| | - Xue Bai
- Key Laboratory of Coarse Cereal Processing Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan province, People's Republic of China.,National Research and Development Center for Coarse Cereal Processing, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, People's Republic of China
| | - Wei Zhao
- Key Laboratory of Coarse Cereal Processing Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan province, People's Republic of China.,National Research and Development Center for Coarse Cereal Processing, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, People's Republic of China
| | - Xiaodong Shi
- Key Laboratory of Coarse Cereal Processing Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan province, People's Republic of China.,National Research and Development Center for Coarse Cereal Processing, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, People's Republic of China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan province, People's Republic of China.,National Research and Development Center for Coarse Cereal Processing, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, People's Republic of China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan province, People's Republic of China.,National Research and Development Center for Coarse Cereal Processing, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, People's Republic of China
| | - Xiaoyong Wu
- Key Laboratory of Coarse Cereal Processing Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan province, People's Republic of China.,National Research and Development Center for Coarse Cereal Processing, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, People's Republic of China
| | - Yanxia Sun
- Key Laboratory of Coarse Cereal Processing Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan province, People's Republic of China.,National Research and Development Center for Coarse Cereal Processing, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, People's Republic of China
| | - Jianglin Zhao
- Key Laboratory of Coarse Cereal Processing Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan province, People's Republic of China.,National Research and Development Center for Coarse Cereal Processing, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, People's Republic of China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan province, People's Republic of China.,National Research and Development Center for Coarse Cereal Processing, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, People's Republic of China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan province, People's Republic of China.,National Research and Development Center for Coarse Cereal Processing, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, People's Republic of China
| |
Collapse
|
41
|
Zhao J, Gao P, Li C, Lin X, Guo X, Liu S. PhePEBP family genes regulated by plant hormones and drought are associated with the activation of lateral buds and seedling growth in Phyllostachys edulis. TREE PHYSIOLOGY 2019; 39:1387-1404. [PMID: 31115464 DOI: 10.1093/treephys/tpz056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/08/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Development of lateral buds on the underground rhizome in moso bamboo is essentially the early stage of the development of aboveground branching, which is regulated by Phosphatidyl-Ethanolamine Binding Protein (PEBP) family genes, but it is unknown whether the PEBP family genes are involved in the activation and development of lateral buds underground. By scanning the whole-genome sequence of moso bamboo, we identified 25 PhePEBP family genes and amplified their full-length open reading frames (ORFs). A sequence analysis revealed that they are composed of four exons and three introns, except for PheFT10, which contains six exons and five introns. PheFT10 underwent alternative splicing, resulting in at least four transcripts (PheFT10α, PheFT10β, PheFT10γ and PheFT10δ). Although PhePEBP genes are generally expressed at low levels and show dramatically organ-specific expressions, the transcription levels of most PhePEBP genes, including the transcripts of PheFT10, change with plant age. Together with the observation that the expression of PhePEBP family genes can be regulated by plant hormones and drought, our data suggest that PhePEBP family genes might be involved in the activation of lateral buds and seedling growth. Particularly, PheFT9, PheTFL2 and PheTFL8 may play vital roles during the activation of dormant buds based on the analysis of amino acid substitution and expression profile. These findings provide insights for in-depth exploration of the biological functions of the PhePEBP family genes in regulating the activation of dormant bud and the development of seedling in moso bamboo.
Collapse
Affiliation(s)
- Jianwen Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Peijun Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Chunlong Li
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Xinchun Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Xiaoqin Guo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Lin'An, Zhejiang, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
42
|
Wen C, Zhao W, Liu W, Yang L, Wang Y, Liu X, Xu Y, Ren H, Guo Y, Li C, Li J, Weng Y, Zhang X. CsTFL1 inhibits determinate growth and terminal flower formation through interaction with CsNOT2a in cucumber. Development 2019; 146:dev180166. [PMID: 31320327 PMCID: PMC6679365 DOI: 10.1242/dev.180166] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/21/2019] [Indexed: 12/11/2022]
Abstract
Cucumber (Cucumis sativus L.) is an important vegetable crop that carries on vegetative growth and reproductive growth simultaneously. Indeterminate growth is favourable for fresh market under protected environments, whereas determinate growth is preferred for pickling cucumber in the once-over mechanical harvest system. The genetic basis of determinacy is largely unknown in cucumber. In this study, map-based cloning of the de locus showed that the determinate growth habit is caused by a non-synonymous SNP in CsTFL1CsTFL1 is expressed in the subapical regions of the shoot apical meristem, lateral meristem and young stems. Ectopic expression of CsTFL1 rescued the terminal flower phenotype in the Arabidopsis tfl1-11 mutant and delayed flowering in wild-type Arabidopsis Knockdown of CsTFL1 resulted in determinate growth and formation of terminal flowers in cucumber. Biochemical analyses indicated that CsTFL1 interacts with a homolog of the miRNA biogenesis gene CsNOT2a; CsNOT2a interacts with FDP. Cucumber CsFT directly interacts with CsNOT2a and CsFD, and CsFD interacts with two 14-3-3 proteins. These data suggest that CsTFL1 competes with CsFT for interaction with CsNOT2a-CsFDP to inhibit determinate growth and terminal flower formation in cucumber.
Collapse
Affiliation(s)
- Changlong Wen
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Vegetable Germplasms Improvement, National Engineering Research Center for Vegetables, Beijing 100097, China
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wensheng Zhao
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Weilun Liu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Vegetable Germplasms Improvement, National Engineering Research Center for Vegetables, Beijing 100097, China
| | - Luming Yang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yuhui Wang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xingwang Liu
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Yong Xu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Vegetable Germplasms Improvement, National Engineering Research Center for Vegetables, Beijing 100097, China
| | - Huazhong Ren
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Yangdong Guo
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Cong Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yiqun Weng
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
- USDA-ARS, Vegetable Crops Research Unit, 1575 Linden Drive, Madison, WI 53706, USA
| | - Xiaolan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| |
Collapse
|
43
|
Manrique S, Friel J, Gramazio P, Hasing T, Ezquer I, Bombarely A. Genetic insights into the modification of the pre-fertilization mechanisms during plant domestication. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3007-3019. [PMID: 31152173 DOI: 10.1093/jxb/erz231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 05/02/2019] [Indexed: 05/26/2023]
Abstract
Plant domestication is the process of adapting plants to human use by selecting specific traits. The selection process often involves the modification of some components of the plant reproductive mechanisms. Allelic variants of genes associated with flowering time, vernalization, and the circadian clock are responsible for the adaptation of crops, such as rice, maize, barley, wheat, and tomato, to non-native latitudes. Modifications in the plant architecture and branching have been selected for higher yields and easier harvests. These phenotypes are often produced by alterations in the regulation of the transition of shoot apical meristems to inflorescences, and then to floral meristems. Floral homeotic mutants are responsible for popular double-flower phenotypes in Japanese cherries, roses, camellias, and lilies. The rise of peloric flowers in ornamentals such as snapdragon and florists' gloxinia is associated with non-functional alleles that control the relative expansion of lateral and ventral petals. Mechanisms to force outcrossing such as self-incompatibility have been removed in some tree crops cultivars such as almonds and peaches. In this review, we revisit some of these important concepts from the plant domestication perspective, focusing on four topics related to the pre-fertilization mechanisms: flowering time, inflorescence architecture, flower development, and pre-fertilization self-incompatibility mechanisms.
Collapse
Affiliation(s)
- Silvia Manrique
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - James Friel
- Genetics and Biotechnology Laboratory, Plant and AgriBioscience Research Center (PABC), Ryan Institute, National University of Ireland Galway, Galway, Ireland
- School of Plant and Environmental Sciences (SPES), Virginia Tech, Blacksburg, VA, USA
| | - Pietro Gramazio
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Valencia, Spain
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tomas Hasing
- School of Plant and Environmental Sciences (SPES), Virginia Tech, Blacksburg, VA, USA
| | - Ignacio Ezquer
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Aureliano Bombarely
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
- School of Plant and Environmental Sciences (SPES), Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
44
|
Bi X, van Esse W, Mulki MA, Kirschner G, Zhong J, Simon R, von Korff M. CENTRORADIALIS Interacts with FLOWERING LOCUS T-Like Genes to Control Floret Development and Grain Number. PLANT PHYSIOLOGY 2019; 180:1013-1030. [PMID: 31004004 PMCID: PMC6548242 DOI: 10.1104/pp.18.01454] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/08/2019] [Indexed: 05/20/2023]
Abstract
CENTRORADIALIS (CEN) is a key regulator of flowering time and inflorescence architecture in plants. Natural variation in the barley (Hordeum vulgare) homolog HvCEN is important for agricultural range expansion of barley cultivation, but its effects on shoot and spike architecture and consequently yield have not yet been characterized. Here, we evaluated 23 independent hvcen, also termed mat-c, mutants to determine the pleiotropic effects of HvCEN on developmental timing and shoot and spike morphologies of barley under outdoor and controlled conditions. All hvcen mutants flowered early and showed a reduction in spikelet number per spike, tiller number, and yield in the outdoor experiments. Mutations in hvcen accelerated spikelet initiation and reduced axillary bud number in a photoperiod-independent manner but promoted floret development only under long days (LDs). The analysis of a flowering locus t3 (hvft3) hvcen double mutant showed that HvCEN interacts with HvFT3 to control spikelet initiation. Furthermore, early flowering3 (hvelf3) hvcen double mutants with high HvFT1 expression levels under short days suggested that HvCEN interacts with HvFT1 to repress floral development. Global transcriptome profiling in developing shoot apices and inflorescences of mutant and wild-type plants revealed that HvCEN controlled transcripts involved in chromatin remodeling activities, cytokinin and cell cycle regulation and cellular respiration under LDs and short days, whereas HvCEN affected floral homeotic genes only under LDs. Understanding the stage and organ-specific functions of HvCEN and downstream molecular networks will allow the manipulation of different shoot and spike traits and thereby yield.
Collapse
Affiliation(s)
- Xiaojing Bi
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
- Institute of Plant Genetics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Wilma van Esse
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Mohamed Aman Mulki
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Gwendolyn Kirschner
- Cluster of Excellence on Plant Sciences "SMART Plants for Tomorrow's Needs" 40225 Düsseldorf, Germany
- Institute for Developmental Genetics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Jinshun Zhong
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
- Institute of Plant Genetics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Rüdiger Simon
- Cluster of Excellence on Plant Sciences "SMART Plants for Tomorrow's Needs" 40225 Düsseldorf, Germany
- Institute for Developmental Genetics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Maria von Korff
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
- Institute of Plant Genetics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences "SMART Plants for Tomorrow's Needs" 40225 Düsseldorf, Germany
| |
Collapse
|
45
|
Périlleux C, Bouché F, Randoux M, Orman-Ligeza B. Turning Meristems into Fortresses. TRENDS IN PLANT SCIENCE 2019; 24:431-442. [PMID: 30853243 DOI: 10.1016/j.tplants.2019.02.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/25/2019] [Accepted: 02/04/2019] [Indexed: 05/18/2023]
Abstract
TERMINAL FLOWER1 (TFL1) was named from knockout Arabidopsis thaliana mutants in which the inflorescence abnormally terminates into a flower. In wild type plants, the expression of TFL1 in the center of the inflorescence meristem represses the flower meristem identity genes LEAFY (LFY) and APETALA1 (AP1) to maintain indeterminacy. LFY and AP1 are activated by flowering signals that antagonize TFL1. Its characterization in numerous species revealed that the TFL1-mediated regulation of meristem fate has broader impacts on plant development than originally depicted in A. thaliana. By blocking floral transition, TFL1 genes participate in the control of juvenility, shoot growth pattern, inflorescence architecture, and the establishment of life history strategies. Here, we contextualize the role of the TFL1-mediated protection of meristem indeterminacy throughout plant development.
Collapse
Affiliation(s)
| | | | - Marie Randoux
- University of Liège, InBioS-PhytoSYSTEMS, Liège, Belgium
| | - Beata Orman-Ligeza
- University of Liège, InBioS-PhytoSYSTEMS, Liège, Belgium; Current address: National Institute of Agricultural Botany, Cambridge, UK
| |
Collapse
|
46
|
Wedow JM, Yendrek CR, Mello TR, Creste S, Martinez CA, Ainsworth EA. Metabolite and transcript profiling of Guinea grass (Panicum maximum Jacq) response to elevated [CO 2] and temperature. Metabolomics 2019; 15:51. [PMID: 30911851 PMCID: PMC6434026 DOI: 10.1007/s11306-019-1511-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/18/2019] [Indexed: 11/30/2022]
Abstract
INTRODUCTION By mid-century, global atmospheric carbon dioxide concentration ([CO2]) is predicted to reach 600 μmol mol-1 with global temperatures rising by 2 °C. Rising [CO2] and temperature will alter the growth and productivity of major food and forage crops across the globe. Although the impact is expected to be greatest in tropical regions, the impact of climate-change has been poorly studied in those regions. OBJECTIVES This experiment aimed to understand the effects of elevated [CO2] (600 μmol mol-1) and warming (+ 2 °C), singly and in combination, on Panicum maximum Jacq. (Guinea grass) metabolite and transcript profiles. METHODS We created a de novo assembly of the Panicum maximum transcriptome. Leaf samples were taken at two time points in the Guinea grass growing season to analyze transcriptional and metabolite profiles in plants grown at ambient and elevated [CO2] and temperature, and statistical analyses were used to integrate the data. RESULTS Elevated temperature altered the content of amino acids and secondary metabolites. The transcriptome of Guinea grass shows a clear time point separations, with the changes in the elevated temperature and [CO2] combination plots. CONCLUSION Field transcriptomics and metabolomics revealed that elevated temperature and [CO2] result in alterations in transcript and metabolite profiles associated with environmental response, secondary metabolism and stomatal function. These metabolic responses are consistent with greater growth and leaf area production under elevated temperature and [CO2]. These results show that tropical C4 grasslands may have unpredicted responses to global climate change, and that warming during a cool growing season enhances growth and alleviates stress.
Collapse
Affiliation(s)
- Jessica M Wedow
- Department of Plant Biology & Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1201 W. Gregory Drive, 147 ERML, Urbana, IL, 61801, USA
| | - Craig R Yendrek
- Department of Plant Biology & Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1201 W. Gregory Drive, 147 ERML, Urbana, IL, 61801, USA
| | - Tathyana R Mello
- Department of Biology, FFCLRP, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Silvana Creste
- Instituto Agronômico (IAC), Centro de Cana, Ribeirão Preto, Brazil
| | - Carlos A Martinez
- Department of Biology, FFCLRP, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Elizabeth A Ainsworth
- Department of Plant Biology & Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1201 W. Gregory Drive, 147 ERML, Urbana, IL, 61801, USA.
- USDA Agricultural Research Service, Global Change and Photosynthesis Research Unit, Urbana, IL, USA.
| |
Collapse
|
47
|
Stephenson E, Estrada S, Meng X, Ourada J, Muszynski MG, Habben JE, Danilevskaya ON. Over-expression of the photoperiod response regulator ZmCCT10 modifies plant architecture, flowering time and inflorescence morphology in maize. PLoS One 2019; 14:e0203728. [PMID: 30726207 PMCID: PMC6364868 DOI: 10.1371/journal.pone.0203728] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/11/2019] [Indexed: 11/19/2022] Open
Abstract
Maize originated as a tropical plant that required short days to transition from vegetative to reproductive development. ZmCCT10 [CO, CONSTANS, CO-LIKE and TIMING OF CAB1 (CCT) transcription factor family] is a regulator of photoperiod response and was identified as a major QTL controlling photoperiod sensitivity in maize. We modulated expression of ZmCCT10 in transgenic maize using two constitutive promoters with different expression levels. Transgenic plants over expressing ZmCCT10 with either promoter were delayed in their transition from vegetative to reproductive development but were not affected in their switch from juvenile-to-adult vegetative growth. Strikingly, transgenic plants containing the stronger expressing construct had a prolonged period of vegetative growth accompanied with dramatic modifications to plant architecture that impacted both vegetative and reproductive traits. These plants did not produce ears, but tassels were heavily branched. In more than half of the transgenic plants, tassels were converted into a branched leafy structure resembling phyllody, often composed of vegetative plantlets. Analysis of expression modules controlling the floral transition and meristem identity linked these networks to photoperiod dependent regulation, whereas phase change modules appeared to be photoperiod independent. Results from this study clarified the influence of the photoperiod pathway on vegetative and reproductive development and allowed for the fine-tuning of the maize flowering time model.
Collapse
Affiliation(s)
- Elizabeth Stephenson
- CORTEVA Agrisciences, Agriculture Division of DowDuPont; Johnston, Iowa, United States of America
| | - Stacey Estrada
- CORTEVA Agrisciences, Agriculture Division of DowDuPont; Johnston, Iowa, United States of America
| | - Xin Meng
- CORTEVA Agrisciences, Agriculture Division of DowDuPont; Johnston, Iowa, United States of America
| | - Jesse Ourada
- CORTEVA Agrisciences, Agriculture Division of DowDuPont; Johnston, Iowa, United States of America
| | - Michael G. Muszynski
- University of Hawaii at Manoa, Tropical Plant and Soil Sciences, Honolulu, Hawaii; United States of America
| | - Jeffrey E. Habben
- CORTEVA Agrisciences, Agriculture Division of DowDuPont; Johnston, Iowa, United States of America
| | - Olga N. Danilevskaya
- CORTEVA Agrisciences, Agriculture Division of DowDuPont; Johnston, Iowa, United States of America
- * E-mail:
| |
Collapse
|
48
|
Zhou Y, Srinivasan S, Mirnezami SV, Kusmec A, Fu Q, Attigala L, Salas Fernandez MG, Ganapathysubramanian B, Schnable PS. Semiautomated Feature Extraction from RGB Images for Sorghum Panicle Architecture GWAS. PLANT PHYSIOLOGY 2019; 179:24-37. [PMID: 30389784 PMCID: PMC6324233 DOI: 10.1104/pp.18.00974] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/21/2018] [Indexed: 05/20/2023]
Abstract
Because structural variation in the inflorescence architecture of cereal crops can influence yield, it is of interest to identify the genes responsible for this variation. However, the manual collection of inflorescence phenotypes can be time consuming for the large populations needed to conduct genome-wide association studies (GWAS) and is difficult for multidimensional traits such as volume. A semiautomated phenotyping pipeline, TIM (Toolkit for Inflorescence Measurement), was developed and used to extract unidimensional and multidimensional features from images of 1,064 sorghum (Sorghum bicolor) panicles from 272 genotypes comprising a subset of the Sorghum Association Panel. GWAS detected 35 unique single-nucleotide polymorphisms associated with variation in inflorescence architecture. The accuracy of the TIM pipeline is supported by the fact that several of these trait-associated single-nucleotide polymorphisms (TASs) are located within chromosomal regions associated with similar traits in previously published quantitative trait locus and GWAS analyses of sorghum. Additionally, sorghum homologs of maize (Zea mays) and rice (Oryza sativa) genes known to affect inflorescence architecture are enriched in the vicinities of TASs. Finally, our TASs are enriched within genomic regions that exhibit high levels of divergence between converted tropical lines and cultivars, consistent with the hypothesis that these chromosomal intervals were targets of selection during modern breeding.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
| | | | | | - Aaron Kusmec
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
| | - Qi Fu
- College of Agronomy, China Agricultural University, 100083 Beijing, China
| | | | | | | | - Patrick S Schnable
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
- College of Agronomy, China Agricultural University, 100083 Beijing, China
| |
Collapse
|
49
|
Liu H, Song S, Xing Y. Beyond heading time: FT-like genes and spike development in cereals. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1-3. [PMID: 30590673 PMCID: PMC6305181 DOI: 10.1093/jxb/ery408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This article comments on: Shaw LM, Lyu B, Turner R, Li C, Chen F, Han X, Fu D, Dubcovsky J. 2018. FLOWERING LOCUS T2 regulates spike development and fertility in temperate cereals. Journal of Experimental Botany 70, 193–204.
Collapse
Affiliation(s)
- Haiyang Liu
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Song Song
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yongzhong Xing
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
50
|
Shah S, Karunarathna NL, Jung C, Emrani N. An APETALA1 ortholog affects plant architecture and seed yield component in oilseed rape (Brassica napus L.). BMC PLANT BIOLOGY 2018; 18:380. [PMID: 30594150 PMCID: PMC6310979 DOI: 10.1186/s12870-018-1606-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 12/17/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Increasing the productivity of rapeseed as one of the widely cultivated oil crops in the world is of upmost importance. As flowering time and plant architecture play a key role in the regulation of rapeseed yield, understanding the genetic mechanism underlying these traits can boost the rapeseed breeding. Meristem identity genes are known to have pleiotropic effects on plant architecture and seed yield in various crops. To understand the function of one of the meristem identity genes, APETALA1 (AP1) in rapeseed, we performed phenotypic analysis of TILLING mutants under greenhouse conditions. Three stop codon mutant families carrying a mutation in Bna.AP1.A02 paralog were analyzed for different plant architecture and seed yield-related traits. RESULTS It was evident that stop codon mutation in the K domain of Bna.AP1.A02 paralog caused significant changes in flower morphology as well as plant architecture related traits like plant height, branch height, and branch number. Furthermore, yield-related traits like seed yield per plant and number of seeds per plants were also significantly altered in the same mutant family. Apart from phenotypic changes, stop codon mutation in K domain of Bna.AP1.A02 paralog also altered the expression of putative downstream target genes like Bna.TFL1 and Bna.FUL in shoot apical meristem (SAM) of rapeseed. Mutant plants carrying stop codon mutations in the COOH domain of Bna.AP1.A02 paralog did not have a significant effect on plant architecture, yield-related traits or the expression of the downstream targets. CONCLUSIONS We found that Bna.AP1.A02 paralog has pleiotropic effect on plant architecture and yield-related traits in rapeseed. The allele we found in the current study with a beneficial effect on seed yield can be incorporated into rapeseed breeding pool to develop new varieties.
Collapse
Affiliation(s)
- Smit Shah
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| | - Nirosha L. Karunarathna
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| | - Nazgol Emrani
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| |
Collapse
|