1
|
Fu XZ, Wang X, Liu JJ, Chen YX, Wang AQ, Zhan J, Han ZQ, He LF, Xiao D. AhASRK1, a peanut dual-specificity kinase that activates the Ca 2+-ROS-MAPK signalling cascade to mediate programmed cell death induced by aluminium toxicity via ABA. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109538. [PMID: 39864296 DOI: 10.1016/j.plaphy.2025.109538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
Aluminium (Al)-induced programmed cell death (PCD) is thought to be a main cause of Al phytotoxicity. However, the underlying mechanism by which Al induces PCD in plants is unclear. In this study, we characterized the function of AhASRK1 (Aluminum Sensitive Receptor-like protein Kinase1), an Al-induced LRR-type receptor-like kinase gene. AhASRK1 was localized on the plasma membrane. A kinase assay of recombinant cytoplasmic domains of AhASRK1 revealed that this leucine-rich repeat-receptor-like protein kinase autophosphorylates both serine/threonine and tyrosine residues. The role of AhASRK1 in regulating Al-induced PCD was investigated in roots. Al treatment significantly inhibited root growth and promoted ROS production and cell death after AhASRK1 was overexpressed in Arabidopsis, whereas the knockdown of AhASRK1 in peanut increased Al tolerance. AhASRK1 overexpression resulted in increased accumulation of apical calcium ions (Ca2+) and increased MAPK signalling under Al treatment; however, the AhASRK1-knockdown peanut lines exhibited a decrease in the Ca2+ concentration under Al stress. Furthermore, inhibition of ABA biosynthesis mitigated PCD occurrence and ROS accumulation under Al stress, as did Al-induced Ca2+ and p MAPK signalling. These results suggest that AhASRK1 mediates the occurrence of PCD through the ABA pathway to mediate the accumulation of Ca2+ and the production of ROS, thereby activating MAPK signalling. Additionally, AhASRK1 overexpression promoted leaf senescence and induced the transcription of a multitude of ABA-related genes. This study provides new clues for improving the phytotoxicity of Al in acidic soils.
Collapse
Affiliation(s)
- Xue-Zhen Fu
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, College of Agriculture, GuangXi University, Nanning, 530004, China; National Demonstration Center for Experimental Plant Science Education/College of Agriculture, Nanning, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China
| | - Xin Wang
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, College of Agriculture, GuangXi University, Nanning, 530004, China; National Demonstration Center for Experimental Plant Science Education/College of Agriculture, Nanning, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China
| | - Jing-Jing Liu
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, College of Agriculture, GuangXi University, Nanning, 530004, China; National Demonstration Center for Experimental Plant Science Education/College of Agriculture, Nanning, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China
| | - Yu-Xi Chen
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, College of Agriculture, GuangXi University, Nanning, 530004, China; National Demonstration Center for Experimental Plant Science Education/College of Agriculture, Nanning, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China
| | - Ai-Qin Wang
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, College of Agriculture, GuangXi University, Nanning, 530004, China; National Demonstration Center for Experimental Plant Science Education/College of Agriculture, Nanning, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China
| | - Jie Zhan
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, College of Agriculture, GuangXi University, Nanning, 530004, China; National Demonstration Center for Experimental Plant Science Education/College of Agriculture, Nanning, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China
| | - Zhu-Qiang Han
- Cash Crops Research Institute, Guangxi Academy of Agricultural Science, Nanning, 530007, China
| | - Long-Fei He
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, College of Agriculture, GuangXi University, Nanning, 530004, China; National Demonstration Center for Experimental Plant Science Education/College of Agriculture, Nanning, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China.
| | - Dong Xiao
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, College of Agriculture, GuangXi University, Nanning, 530004, China; National Demonstration Center for Experimental Plant Science Education/College of Agriculture, Nanning, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China.
| |
Collapse
|
2
|
Bao G, Xu X, Yang J, Liu J, Shi T, Zhao X, Li X, Bian S. Identification and functional characterization of the MYB transcription factor GmMYBLJ in soybean leaf senescence. FRONTIERS IN PLANT SCIENCE 2025; 16:1533592. [PMID: 39926644 PMCID: PMC11802812 DOI: 10.3389/fpls.2025.1533592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025]
Abstract
Leaf senescence is an important agronomic trait that significantly influences the quality and yield of soybeans. v-Myb avian myeloblastosis viral oncogene homolog (MYB) transcription factors are considered crucial regulators governing leaf senescence, which can be utilized to improve agronomic traits in crops. However, our knowledge regarding the functional roles of soybean MYBs in leaf senescence is extremely limited. In this study, GmMYBLJ, a CCA1-like MYB, was identified and functionally characterized with respect to leaf senescence. The GmMYBLJ protein is localized in the nucleus, and a high accumulation of its transcripts was observed in nodules and embryos. Notably, GmMYBLJ was highly expressed in soybean senescent leaves and was transcriptionally induced by dark or NaCl treatment, as confirmed by histochemical GUS staining analysis. Ectopic overexpression of GmMYBLJ in Arabidopsis not only led to earlier leaf senescence, reduced chlorophyll content, and increased MDA accumulation but also promoted the expression of several WRKY family transcription factors and senescence-associated genes, such as SAG12 and ORE1. Further investigation showed that overexpression of GmMYBLJ accelerated Arabidopsis leaf senescence under darkness and in response to Pst DC3000 infection. Moreover, transgenic soybean plants overexpressing GmMYBLJ grew faster and exhibited accelerated senescence under salt stress. DAB staining analysis showed that GmMYBLJ induced ROS accumulation in soybean hairy roots and Arabidopsis leaves. Collectively, our results provided useful information into the functional roles of GmMYBLJ in both age-dependent and stress-induced senescence.
Collapse
Affiliation(s)
- Guohua Bao
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Xiao Xu
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Jing Yang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, Jilin, China
| | - Juanjuan Liu
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Tianran Shi
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Xiaoxuan Zhao
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Xuyan Li
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Shaomin Bian
- College of Plant Science, Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Mei Y, Wang NN. New insights into the regulation of ethylene biosynthesis during leaf senescence in Arabidopsis. THE NEW PHYTOLOGIST 2024; 244:5-6. [PMID: 38840567 DOI: 10.1111/nph.19890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
This article is a Commentary on Zhu et al. (2024), 244: 116–130.
Collapse
Affiliation(s)
- Yuanyuan Mei
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ning Ning Wang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
4
|
Zhu K, Liu J, Lyu A, Luo T, Chen X, Peng L, Hu L. Analysis of the Mechanism of Wood Vinegar and Butyrolactone Promoting Rapeseed Growth and Improving Low-Temperature Stress Resistance Based on Transcriptome and Metabolomics. Int J Mol Sci 2024; 25:9757. [PMID: 39273704 PMCID: PMC11395900 DOI: 10.3390/ijms25179757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Rapeseed is an important oil crop in the world. Wood vinegar could increase the yield and abiotic resistance of rapeseed. However, little is known about the underlying mechanisms of wood vinegar or its valid chemical components on rapeseed. In the present study, wood vinegar and butyrolactone (γ-Butyrolactone, one of the main components of wood vinegar) were applied to rapeseed at the seedling stage, and the molecular mechanisms of wood vinegar that affect rapeseed were studied by combining transcriptome and metabolomic analyses. The results show that applying wood vinegar and butyrolactone increases the biomass of rapeseed by increasing the leaf area and the number of pods per plant, and enhances the tolerance of rapeseed under low temperature by reducing membrane lipid oxidation and improving the content of chlorophyll, proline, soluble sugar, and antioxidant enzymes. Compared to the control, 681 and 700 differentially expressed genes were in the transcriptional group treated with wood vinegar and butyrolactone, respectively, and 76 and 90 differentially expressed metabolites were in the metabolic group. The combination of transcriptome and metabolomic analyses revealed the key gene-metabolic networks related to various pathways. Our research shows that after wood vinegar and butyrolactone treatment, the amino acid biosynthesis pathway of rapeseed may be involved in mediating the increase in rapeseed biomass, the proline metabolism pathway of wood vinegar treatment may be involved in mediating rapeseed's resistance to low-temperature stress, and the sphingolipid metabolism pathway of butyrolactone treatment may be involved in mediating rapeseed's resistance to low-temperature stress. It is suggested that the use of wood vinegar or butyrolactone are new approaches to increasing rapeseed yield and low-temperature resistance.
Collapse
Affiliation(s)
- Kunmiao Zhu
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430072, China
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Liu
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430072, China
| | - Ang Lyu
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430072, China
| | - Tao Luo
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Chen
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430072, China
| | - Lijun Peng
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430072, China
| | - Liyong Hu
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Xie Z, Zhang Q, Xia C, Dong C, Li D, Liu X, Kong X, Zhang L. Identification of the early leaf senescence gene ELS3 in bread wheat (Triticum aestivum L.). PLANTA 2023; 259:5. [PMID: 37994951 DOI: 10.1007/s00425-023-04278-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023]
Abstract
MAIN CONCLUSION Characterization of the early leaf senescence mutant els3 and identification of its causal gene ELS3, which encodes an LRR-RLK protein in wheat. Leaf senescence is an important agronomic trait that affects both crop yield and quality. However, few senescence-related genes in wheat have been cloned and functionally analyzed. Here, we report the characterization of the early leaf senescence mutant els3 and fine mapping of its causal gene ELS3 in wheat. Compared with wild-type Yanzhan4110 (YZ4110), the els3 mutant had a decreased chlorophyll content and a degraded chloroplast structure after the flowering stage. Further biochemical assays in flag leaves showed that the superoxide anion and hydrogen peroxide contents increased, while the activities of antioxidant enzymes, including catalase, superoxide dismutase and glutathione reductase, decreased gradually after the flowering stage in the els3 mutant. To clone the causal gene underlying the phenotype of leaf senescence, a genetic map was constructed using 10,133 individuals of F2:3 populations, and ELS3 was located in a 2.52 Mb region on chromosome 2DL containing 16 putative genes. Subsequent sequence analysis and gene annotation identified only one SNP (C to T) in the first exon of TraesCS2D02G332700, resulting in an amino acid substitution (Pro329Ser), and TraesCS2D02G332700 was preliminarily considered as the candidate gene of ELS3. ELS3 encodes a leucine-rich repeat receptor-like kinase (LRR-RLK) protein that is localized on the cell membrane. We also found that the transient expression of mutant TraesCS2D02G332700 can induce leaf senescence in N. benthamiana. Taken together, TraesCS2D02G332700 is likely to be the candidate gene of ELS3 and may have a function in regulating leaf senescence.
Collapse
Affiliation(s)
- Zhencheng Xie
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiang Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Chuan Xia
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunhao Dong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Danping Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xu Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xiuying Kong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Lichao Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
6
|
Wang Q, Li X, Guo C, Wen L, Deng Z, Zhang Z, Li W, Liu T, Guo Y. Senescence-related receptor kinase 1 functions downstream of WRKY53 in regulating leaf senescence in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5140-5152. [PMID: 37351601 DOI: 10.1093/jxb/erad240] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 06/22/2023] [Indexed: 06/24/2023]
Abstract
Receptor-like kinases (RLKs) are the most important class of cell surface receptors, and play crucial roles in plant development and stress responses. However, few studies have been reported about the biofunctions of RLKs in leaf senescence. Here, we characterized a novel Arabidopsis RLK-encoding gene, SENESCENCE-RELATED RECEPTOR KINASE 1 (SENRK1), which was significantly down-regulated during leaf senescence. Notably, the loss-of-function senrk1 mutants displayed an early leaf senescence phenotype, while overexpression of SENRK1 significantly delayed leaf senescence, indicating that SENRK1 negatively regulates age-dependent leaf senescence in Arabidopsis. Furthermore, the senescence-promoting transcription factor WRKY53 repressed the expression of SENRK1. While the wrky53 mutant showed a delayed senescence phenotype as previously reported, the wrky53 senrk1-1 double mutant exhibited precocious leaf senescence, suggesting that SENRK1 functions downstream of WRKY53 in regulating age-dependent leaf senescence in Arabidopsis.
Collapse
Affiliation(s)
- Qi Wang
- Shandong Peanut Research Institute, Qingdao, China
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xiaoxu Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Cun Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Lichao Wen
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zhichao Deng
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zenglin Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Wei Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Tao Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
7
|
Soltabayeva A, Dauletova N, Serik S, Sandybek M, Omondi JO, Kurmanbayeva A, Srivastava S. Receptor-like Kinases (LRR-RLKs) in Response of Plants to Biotic and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192660. [PMID: 36235526 PMCID: PMC9572924 DOI: 10.3390/plants11192660] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 05/14/2023]
Abstract
Plants live under different biotic and abiotic stress conditions, and, to cope with the adversity and severity, plants have well-developed resistance mechanisms. The mechanism starts with perception of the stimuli followed by molecular, biochemical, and physiological adaptive measures. The family of LRR-RLKs (leucine-rich repeat receptor-like kinases) is one such group that perceives biotic and abiotic stimuli and also plays important roles in different biological processes of development. This has been mostly studied in the model plant, Arabidopsis thaliana, and to some extent in other plants, such as Solanum lycopersicum, Nicotiana benthamiana, Brassica napus, Oryza sativa, Triticum aestivum, Hordeum vulgare, Brachypodium distachyon, Medicago truncatula, Gossypium barbadense, Phaseolus vulgaris, Solanum tuberosum, and Malus robusta. Most LRR-RLKs tend to form different combinations of LRR-RLKs-complexes (dimer, trimer, and tetramers), and some of them were observed as important receptors in immune responses, cell death, and plant development processes. However, less is known about the function(s) of LRR-RLKs in response to abiotic and biotic stresses. Here, we give recent updates about LRR-RLK receptors, specifically focusing on their involvement in biotic and abiotic stresses in the model plant, A. thaliana. Furthermore, the recent studies on LRR-RLKs that are homologous in other plants is also reviewed in relation to their role in triggering stress response processes against biotic and abiotic stimuli and/or in exploring their additional function(s). Furthermore, we present the interactions and combinations among LRR-RLK receptors that have been confirmed through experiments. Moreover, based on GENEINVESTIGATOR microarray database analysis, we predict some potential LRR-RLK genes involved in certain biotic and abiotic stresses whose function and mechanism may be explored.
Collapse
Affiliation(s)
- Aigerim Soltabayeva
- Biology Department, School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
- Correspondence:
| | - Nurbanu Dauletova
- Biology Department, School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Symbat Serik
- Biology Department, School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Margulan Sandybek
- Biology Department, School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - John Okoth Omondi
- International Institute of Tropical Agriculture, Lilongwe P.O. Box 30258, Malawi
| | - Assylay Kurmanbayeva
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan
| | - Sudhakar Srivastava
- NCS-TCP, National Institute of Plant Genome Research, New Delhi 110067, India
| |
Collapse
|
8
|
You X, Nasrullah, Wang D, Mei Y, Bi J, Liu S, Xu W, Wang NN. N 7 -SSPP fusion gene improves salt stress tolerance in transgenic Arabidopsis and soybean through ROS scavenging. PLANT, CELL & ENVIRONMENT 2022; 45:2794-2809. [PMID: 35815549 DOI: 10.1111/pce.14392] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/30/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Considerable signal crosstalk exists in the regulatory network of senescence and stress response. Numerous senescence-associated genes are also involved in plant stress tolerance. However, the underlying mechanisms and application potential of these genes in stress-tolerant crop breeding remain poorly explored. We found that overexpression of SENESCENCE-SUPPRESSED PROTEIN PHOSPHATASE (SSPP), a negative regulator of leaf senescence, significantly improved plant salt tolerance by increasing reactive oxygen species (ROS) scavenging in both Arabidopsis and soybean. However, overexpression of SSPP severely suppressed normal plant growth, limiting its direct use in agriculture. We previously revealed that the N-terminal 1-14 residues of ACS7 (termed 'N7 ') negatively regulated its protein stability through the ubiquitin/proteasome pathway, and the N7 -mediated protein degradation was suppressed by environmental and senescence signals. To avoid the adverse effects of SSPP, the N7 element was fused to the N-terminus of SSPP. We demonstrated that N7 -SSPP fusion gene effectively rescued SSPP-induced growth suppression but maintained enhanced salt tolerance in Arabidopsis and soybean. Particularly, N7 -SSPP enhanced tolerance to long-term salt stress and increased seed yield in soybean. These results suggest that N7 -SSPP overcomes the disadvantages of SSPP on plant growth inhibition and effectively improves salt tolerance through enhanced ROS scavenging, providing an effective strategy of using posttranslational regulatory element for salt-tolerant crop breeding.
Collapse
Affiliation(s)
- Xiang You
- College of Life Sciences, College of Agricultural Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin, China
| | - Nasrullah
- College of Life Sciences, College of Agricultural Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin, China
| | - Dan Wang
- College of Life Sciences, College of Agricultural Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin, China
| | - Yuanyuan Mei
- College of Life Sciences, College of Agricultural Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin, China
| | - Juanjuan Bi
- College of Life Sciences, College of Agricultural Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin, China
| | - Sheng Liu
- College of Life Sciences, College of Agricultural Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin, China
| | - Wei Xu
- College of Life Sciences, College of Agricultural Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin, China
| | - Ning Ning Wang
- College of Life Sciences, College of Agricultural Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin, China
| |
Collapse
|
9
|
Guo Z, Mei Y, Wang D, Xiao D, Tang X, Gong Y, Xu X, Wang NN. Identification and Functional Analysis of Key Autophosphorylation Residues of Arabidopsis Senescence Associated Receptor-like Kinase. Int J Mol Sci 2022; 23:ijms23168873. [PMID: 36012141 PMCID: PMC9408895 DOI: 10.3390/ijms23168873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/29/2022] [Accepted: 08/06/2022] [Indexed: 11/23/2022] Open
Abstract
Reversible protein phosphorylation mediated by protein kinases and phosphatases plays important roles in the regulation of leaf senescence. We previously reported that the senescence-associated leucine-rich repeat receptor-like kinase AtSARK autophosphorylates on both serine/threonine and tyrosine residues and functions as a positive regulator of Arabidopsis leaf senescence; the senescence-suppressed protein phosphatase SSPP interacts with and dephosphorylates the cytoplasmic domain of AtSARK, thereby negatively regulating leaf senescence. Here, 27 autophosphorylation residues of AtSARK were revealed by mass spectrometry analysis, and six of them, including two Ser, two Thr, and two Tyr residues, were further found to be important for the biological functions of AtSARK. All site-directed mutations of these six residues that resulted in decreased autophosphorylation level of AtSARK could significantly inhibit AtSARK-induced leaf senescence. In addition, mutations mimicking the dephosphorylation form of Ser384 (S384A) or the phosphorylation form of Tyr413 (Y413E) substantially reduced the interaction between AtSARK and SSPP. All results suggest that autophosphorylation of AtSARK is essential for its functions in promoting leaf senescence. The possible roles of S384 and Y413 residues in fine-tuning the interaction between AtSARK and SSPP are discussed herein.
Collapse
|
10
|
Sasi JM, Gupta S, Singh A, Kujur A, Agarwal M, Katiyar-Agarwal S. Know when and how to die: gaining insights into the molecular regulation of leaf senescence. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1515-1534. [PMID: 36389097 PMCID: PMC9530073 DOI: 10.1007/s12298-022-01224-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 06/16/2023]
Abstract
Senescence is the ultimate phase in the life cycle of leaves which is crucial for recycling of nutrients to maintain plant fitness and reproductive success. The earliest visible manifestation of leaf senescence is their yellowing, which usually commences with the breakdown of chlorophyll. The degradation process involves a gradual and highly coordinated disassembly of macromolecules resulting in the accumulation of nutrients, which are subsequently mobilized from the senescing leaves to the developing organs. Leaf senescence progresses under overly tight genetic and molecular control involving a well-orchestrated and intricate network of regulators that coordinate spatio-temporally with the influence of both internal and external cues. Owing to the advancements in omics technologies, the availability of mutant resources, scalability of molecular analyses methodologies and the advanced capacity to integrate multidimensional data, our understanding of the genetic and molecular basis of leaf ageing has greatly expanded. The review provides a compilation of the multitier regulation of senescence process and the interrelation between the environment and the terminal phase of leaf development. The knowledge gained would benefit in devising the strategies for manipulation of leaf senescence process to improve crop quality and productivity.
Collapse
Affiliation(s)
- Jyothish Madambikattil Sasi
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Shitij Gupta
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Apurva Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Alice Kujur
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
- USDA-ARS Plant Genetics Research Unit, The Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
- Centre of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana 502324 India
| | - Manu Agarwal
- Department of Botany, University of Delhi North Campus, Delhi, 110007 India
| | - Surekha Katiyar-Agarwal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| |
Collapse
|
11
|
Hajibarat Z, Saidi A. Senescence-associated proteins and nitrogen remobilization in grain filling under drought stress condition. J Genet Eng Biotechnol 2022; 20:101. [PMID: 35819732 PMCID: PMC9276853 DOI: 10.1186/s43141-022-00378-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022]
Abstract
Background Plants use escape strategies including premature senescence and leaf reduction to cope in response to drought stress, which in turn reduces plant leaves and photosynthesis. This strategy allows the new generation (seeds) to survive under drought but, plants experience more yield loss during stress condition. The amount of damage caused by drought stress is compensated by the expression of genes involved in regulating leaf aging. Leaf senescence alters the expression of thousands of genes and ultimately affecting grain protein content, grain yield, and nitrogen utilization efficiency. Also, under drought stress, nitrogen in the soil will not become as much available and causes the beginning and acceleration of the senescence process of leaves. The main body of the abstract This review identified proteins signaling and functional proteins involved in senescence. Further, transcription factors and cell wall degradation enzymes (proteases) related to senescence during drought stress were surveyed. We discuss the regulatory pathways of genes as a result of the degradation of proteins during senescence process. Senescence is strongly influenced by plant hormones and environmental factors including the availability of nitrogen. During maturity or drought stress, reduced nitrogen uptake can cause nitrogen to be remobilized from leaves and stems to seeds, eventually leading to leaf senescence. Under these conditions, genes involved in chloroplast degradation and proteases show increased expression. The functional (proteases) and regulatory proteins such as protein kinases and phosphatases as well as transcription factors (AP2/ERF, NAC, WRKY, MYB, and bZIP) are involved in leaf senescence and drought stress. Short conclusion In this review, senescence-associated proteins involved in leaf senescence and regulatory and functional proteins in response to drought stress during grain filling were surveyed. The present study predicts on the role of nitrogen transporters, transcription factors and regulatory genes involved in the late stages of plant growth with the aim of understanding their mechanisms of action during grain filling stage. For a better understanding, the relevant evidence for the balance between grain filling and protein breakdown during grain filling in cereals is presented.
Collapse
Affiliation(s)
- Zohreh Hajibarat
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Abbas Saidi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
12
|
Huang P, Li Z, Guo H. New Advances in the Regulation of Leaf Senescence by Classical and Peptide Hormones. FRONTIERS IN PLANT SCIENCE 2022; 13:923136. [PMID: 35837465 PMCID: PMC9274171 DOI: 10.3389/fpls.2022.923136] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Leaf senescence is the last stage of leaf development, manifested by leaf yellowing due to the loss of chlorophyll, along with the degradation of macromolecules and facilitates nutrient translocation from the sink to the source tissues, which is essential for the plants' fitness. Leaf senescence is controlled by a sophisticated genetic network that has been revealed through the study of the molecular mechanisms of hundreds of senescence-associated genes (SAGs), which are involved in multiple layers of regulation. Leaf senescence is primarily regulated by plant age, but also influenced by a variety of factors, including phytohormones and environmental stimuli. Phytohormones, as important signaling molecules in plant, contribute to the onset and progression of leaf senescence. Recently, peptide hormones have been reported to be involved in the regulation of leaf senescence, enriching the significance of signaling molecules in controlling leaf senescence. This review summarizes recent advances in the regulation of leaf senescence by classical and peptide hormones, aiming to better understand the coordinated network of different pathways during leaf senescence.
Collapse
Affiliation(s)
- Peixin Huang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhonghai Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hongwei Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
13
|
Song W, Hu L, Ma Z, Yang L, Li J. Importance of Tyrosine Phosphorylation in Hormone-Regulated Plant Growth and Development. Int J Mol Sci 2022; 23:ijms23126603. [PMID: 35743047 PMCID: PMC9224382 DOI: 10.3390/ijms23126603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 02/01/2023] Open
Abstract
Protein phosphorylation is the most frequent post-translational modification (PTM) that plays important regulatory roles in a wide range of biological processes. Phosphorylation mainly occurs on serine (Ser), threonine (Thr), and tyrosine (Tyr) residues, with the phosphorylated Tyr sites accounting for ~1–2% of all phosphorylated residues. Tyr phosphorylation was initially believed to be less common in plants compared to animals; however, recent investigation indicates otherwise. Although they lack typical protein Tyr kinases, plants possess many dual-specificity protein kinases that were implicated in diverse cellular processes by phosphorylating Ser, Thr, and Tyr residues. Analyses of sequenced plant genomes also identified protein Tyr phosphatases and dual-specificity protein phosphatases. Recent studies have revealed important regulatory roles of Tyr phosphorylation in many different aspects of plant growth and development and plant interactions with the environment. This short review summarizes studies that implicated the Tyr phosphorylation in biosynthesis and signaling of plant hormones.
Collapse
Affiliation(s)
- Weimeng Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.S.); (L.H.); (Z.M.); (L.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Li Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.S.); (L.H.); (Z.M.); (L.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Zhihui Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.S.); (L.H.); (Z.M.); (L.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Lei Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.S.); (L.H.); (Z.M.); (L.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jianming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.S.); (L.H.); (Z.M.); (L.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence:
| |
Collapse
|
14
|
Yang F, Miao Y, Liu Y, Botella JR, Li W, Li K, Song CP. Function of Protein Kinases in Leaf Senescence of Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:864215. [PMID: 35548290 PMCID: PMC9083415 DOI: 10.3389/fpls.2022.864215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/14/2022] [Indexed: 06/15/2023]
Abstract
Leaf senescence is an evolutionarily acquired process and it is critical for plant fitness. During senescence, macromolecules and nutrients are disassembled and relocated to actively growing organs. Plant leaf senescence process can be triggered by developmental cues and environmental factors, proper regulation of this process is essential to improve crop yield. Protein kinases are enzymes that modify their substrates activities by changing the conformation, stability, and localization of those proteins, to play a crucial role in the leaf senescence process. Impressive progress has been made in understanding the role of different protein kinases in leaf senescence recently. This review focuses on the recent progresses in plant leaf senescence-related kinases. We summarize the current understanding of the function of kinases on senescence signal perception and transduction, to help us better understand how the orderly senescence degeneration process is regulated by kinases, and how the kinase functions in the intricate integration of environmental signals and leaf age information.
Collapse
Affiliation(s)
- Fengbo Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Yuyue Liu
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Jose R. Botella
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Weiqiang Li
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Kun Li
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
15
|
Zhong S, Sang L, Zhao Z, Deng Y, Liu H, Yu Y, Liu J. Phosphoproteome analysis reveals the involvement of protein dephosphorylation in ethylene-induced corolla senescence in petunia. BMC PLANT BIOLOGY 2021; 21:512. [PMID: 34732145 PMCID: PMC8565076 DOI: 10.1186/s12870-021-03286-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Senescence represents the last stage of flower development. Phosphorylation is the key posttranslational modification that regulates protein functions, and kinases may be more required than phosphatases during plant growth and development. However, little is known about global phosphorylation changes during flower senescence. RESULTS In this work, we quantitatively investigated the petunia phosphoproteome following ethylene or air treatment. In total, 2170 phosphosites in 1184 protein groups were identified, among which 2059 sites in 1124 proteins were quantified. To our surprise, treatment with ethylene resulted in 697 downregulated and only 117 upregulated phosphosites using a 1.5-fold threshold (FDR < 0.05), which showed that ethylene negatively regulates global phosphorylation levels and that phosphorylation of many proteins was not necessary during flower senescence. Phosphoproteome analysis showed that ethylene regulates ethylene and ABA signalling transduction pathways via phosphorylation levels. One of the major targets of ethylene-induced dephosphorylation is the plant mRNA splicing machinery, and ethylene treatment increases the number of alternative splicing events of precursor RNAs in petunia corollas. CONCLUSIONS Protein dephosphorylation could play an important role in ethylene-induced senescence, and ethylene treatment increased the number of AS precursor RNAs in petunia corollas.
Collapse
Affiliation(s)
- Shiwei Zhong
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
- School of Landscape Architecture School of Tourism and Health, Zhejiang A & F University, Zhejiang, 311300 Hangzhou China
| | - Lina Sang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
| | - Zhixia Zhao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
| | - Ying Deng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
| | - Haitao Liu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
| | - Yixun Yu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642 China
| | - Juanxu Liu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
- School of Landscape Architecture School of Tourism and Health, Zhejiang A & F University, Zhejiang, 311300 Hangzhou China
| |
Collapse
|
16
|
Yu Y, Qi Y, Xu J, Dai X, Chen J, Dong CH, Xiang F. Arabidopsis WRKY71 regulates ethylene-mediated leaf senescence by directly activating EIN2, ORE1 and ACS2 genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1819-1836. [PMID: 34296474 DOI: 10.1111/tpj.15433] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 05/13/2023]
Abstract
Leaf senescence is a pivotal step in the last stage of the plant life cycle and is influenced by various external and endogenous cues. A series of reports have indicated the involvement of the WRKY transcription factors in regulating leaf senescence, but the molecular mechanisms and signaling pathways remain largely unclear. Here we provide evidence demonstrating that WRKY71 acts as a positive regulator of leaf senescence in Arabidopsis. WRKY71-1D, an overexpressor of WRKY71, exhibited early leaf senescence, while wrky71-1, the WRKY71 loss-of-function mutant, displayed delayed leaf senescence. Accordingly, a set of senescence-associated genes (SAGs) were substantially elevated in WRKY71-1D but markedly decreased in wrky71-1. Chromatin immunoprecipitation assays indicated that WRKY71 can bind directly to the promoters of SAG13 and SAG201. Transcriptome analysis suggested that WRKY71 might mediate multiple cues to accelerate leaf senescence, such as abiotic stresses, dark and ethylene. WRKY71 was ethylene inducible, and treatment with the ethylene precursor 1-amino-cyclopropane-1-carboxylic acid enhanced leaf senescence in WRKY71-1D but caused only a marginal delay in leaf senescence in wrky71-1. In vitro and in vivo assays demonstrated that WRKY71 can directly regulate ETHYLENE INSENSITIVE2 (EIN2) and ORESARA1 (ORE1), genes of the ethylene signaling pathway. Consistently, leaf senescence of WRKY71-1D was obviously retarded in the ein2-5 and nac2-1 mutants. Moreover, WRKY71 was also proved to interact with ACS2 in vitro and in vivo. Treatment with AgNO3 and aminoethoxyvinylglycine and acs2-1 could greatly arrest the leaf senescence of WRKY71-1D. In conclusion, our data revealed that WRKY71 mediates ethylene signaling and synthesis to hasten leaf senescence in Arabidopsis.
Collapse
Affiliation(s)
- Yanchong Yu
- Shandong Key Laboratory of Plant Biotechnology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yanan Qi
- Shandong Key Laboratory of Plant Biotechnology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jinpeng Xu
- Shandong Key Laboratory of Plant Biotechnology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xuehuan Dai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jiacai Chen
- Shandong Key Laboratory of Plant Biotechnology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chun-Hai Dong
- Shandong Key Laboratory of Plant Biotechnology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fengning Xiang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
17
|
Guo Y, Ren G, Zhang K, Li Z, Miao Y, Guo H. Leaf senescence: progression, regulation, and application. MOLECULAR HORTICULTURE 2021; 1:5. [PMID: 37789484 PMCID: PMC10509828 DOI: 10.1186/s43897-021-00006-9] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/11/2021] [Indexed: 05/24/2023]
Abstract
Leaf senescence, the last stage of leaf development, is a type of postmitotic senescence and is characterized by the functional transition from nutrient assimilation to nutrient remobilization which is essential for plants' fitness. The initiation and progression of leaf senescence are regulated by a variety of internal and external factors such as age, phytohormones, and environmental stresses. Significant breakthroughs in dissecting the molecular mechanisms underpinning leaf senescence have benefited from the identification of senescence-altered mutants through forward genetic screening and functional assessment of hundreds of senescence-associated genes (SAGs) via reverse genetic research in model plant Arabidopsis thaliana as well as in crop plants. Leaf senescence involves highly complex genetic programs that are tightly tuned by multiple layers of regulation, including chromatin and transcription regulation, post-transcriptional, translational and post-translational regulation. Due to the significant impact of leaf senescence on photosynthesis, nutrient remobilization, stress responses, and productivity, much effort has been made in devising strategies based on known senescence regulatory mechanisms to manipulate the initiation and progression of leaf senescence, aiming for higher yield, better quality, or improved horticultural performance in crop plants. This review aims to provide an overview of leaf senescence and discuss recent advances in multi-dimensional regulation of leaf senescence from genetic and molecular network perspectives. We also put forward the key issues that need to be addressed, including the nature of leaf age, functional stay-green trait, coordination between different regulatory pathways, source-sink relationship and nutrient remobilization, as well as translational researches on leaf senescence.
Collapse
Affiliation(s)
- Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101 Shandong China
| | - Guodong Ren
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Kewei Zhang
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004 Zhejiang China
| | - Zhonghai Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083 China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Hongwei Guo
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, 518055 Guangdong China
| |
Collapse
|
18
|
Betegón‐Putze I, Mercadal J, Bosch N, Planas‐Riverola A, Marquès‐Bueno M, Vilarrasa‐Blasi J, Frigola D, Burkart RC, Martínez C, Conesa A, Sozzani R, Stahl Y, Prat S, Ibañes M, Caño‐Delgado AI. Precise transcriptional control of cellular quiescence by BRAVO/WOX5 complex in Arabidopsis roots. Mol Syst Biol 2021; 17:e9864. [PMID: 34132490 PMCID: PMC8207686 DOI: 10.15252/msb.20209864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 11/29/2022] Open
Abstract
Understanding stem cell regulatory circuits is the next challenge in plant biology, as these cells are essential for tissue growth and organ regeneration in response to stress. In the Arabidopsis primary root apex, stem cell-specific transcription factors BRAVO and WOX5 co-localize in the quiescent centre (QC) cells, where they commonly repress cell division so that these cells can act as a reservoir to replenish surrounding stem cells, yet their molecular connection remains unknown. Genetic and biochemical analysis indicates that BRAVO and WOX5 form a transcription factor complex that modulates gene expression in the QC cells to preserve overall root growth and architecture. Furthermore, by using mathematical modelling we establish that BRAVO uses the WOX5/BRAVO complex to promote WOX5 activity in the stem cells. Our results unveil the importance of transcriptional regulatory circuits in plant stem cell development.
Collapse
Affiliation(s)
- Isabel Betegón‐Putze
- Department of Molecular GeneticsCentre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UB, Campus UAB (Cerdanyola del Vallès)BarcelonaSpain
| | - Josep Mercadal
- Departament de Matèria CondensadaFacultat de FísicaUniversitat de BarcelonaBarcelonaSpain
- Universitat de Barcelona Institute of Complex Systems (UBICS)BarcelonaSpain
| | - Nadja Bosch
- Department of Molecular GeneticsCentre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UB, Campus UAB (Cerdanyola del Vallès)BarcelonaSpain
| | - Ainoa Planas‐Riverola
- Department of Molecular GeneticsCentre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UB, Campus UAB (Cerdanyola del Vallès)BarcelonaSpain
| | - Mar Marquès‐Bueno
- Department of Molecular GeneticsCentre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UB, Campus UAB (Cerdanyola del Vallès)BarcelonaSpain
| | - Josep Vilarrasa‐Blasi
- Department of Molecular GeneticsCentre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UB, Campus UAB (Cerdanyola del Vallès)BarcelonaSpain
- Present address:
Department of BiologyStanford UniversityStanfordCAUSA
| | - David Frigola
- Departament de Matèria CondensadaFacultat de FísicaUniversitat de BarcelonaBarcelonaSpain
| | - Rebecca C Burkart
- Institute for Developmental GeneticsHeinrich‐Heine UniversityDüsseldorfGermany
| | - Cristina Martínez
- Department of Plant Molecular GeneticsCentro Nacional de Biotecnología (CNB)MadridSpain
| | - Ana Conesa
- Microbiology and Cell ScienceInstitute for Food and Agricultural ResearchGenetics InstituteUniversity of FloridaGainesvilleFLUSA
| | - Rosangela Sozzani
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
| | - Yvonne Stahl
- Institute for Developmental GeneticsHeinrich‐Heine UniversityDüsseldorfGermany
| | - Salomé Prat
- Department of Plant Molecular GeneticsCentro Nacional de Biotecnología (CNB)MadridSpain
| | - Marta Ibañes
- Departament de Matèria CondensadaFacultat de FísicaUniversitat de BarcelonaBarcelonaSpain
- Universitat de Barcelona Institute of Complex Systems (UBICS)BarcelonaSpain
| | - Ana I Caño‐Delgado
- Department of Molecular GeneticsCentre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UB, Campus UAB (Cerdanyola del Vallès)BarcelonaSpain
| |
Collapse
|
19
|
Zhang YM, Guo P, Xia X, Guo H, Li Z. Multiple Layers of Regulation on Leaf Senescence: New Advances and Perspectives. FRONTIERS IN PLANT SCIENCE 2021; 12:788996. [PMID: 34938309 PMCID: PMC8685244 DOI: 10.3389/fpls.2021.788996] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/03/2021] [Indexed: 05/22/2023]
Abstract
Leaf senescence is the last stage of leaf development and is an orderly biological process accompanied by degradation of macromolecules and nutrient recycling, which contributes to plant fitness. Forward genetic mutant screening and reverse genetic studies of senescence-associated genes (SAGs) have revealed that leaf senescence is a genetically regulated process, and the initiation and progression of leaf senescence are influenced by an array of internal and external factors. Recently, multi-omics techniques have revealed that leaf senescence is subjected to multiple layers of regulation, including chromatin, transcriptional and post-transcriptional, as well as translational and post-translational levels. Although impressive progress has been made in plant senescence research, especially the identification and functional analysis of a large number of SAGs in crop plants, we still have not unraveled the mystery of plant senescence, and there are some urgent scientific questions in this field, such as when plant senescence is initiated and how senescence signals are transmitted. This paper reviews recent advances in the multiple layers of regulation on leaf senescence, especially in post-transcriptional regulation such as alternative splicing.
Collapse
Affiliation(s)
- Yue-Mei Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Pengru Guo
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xinli Xia
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hongwei Guo
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Zhonghai Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- *Correspondence: Zhonghai Li,
| |
Collapse
|
20
|
Guo Y, Cheng L, Long W, Gao J, Zhang J, Chen S, Pu H, Hu M. Synergistic mutations of two rapeseed AHAS genes confer high resistance to sulfonylurea herbicides for weed control. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2811-2824. [PMID: 32556395 DOI: 10.1007/s00122-020-03633-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
A double mutant 5N of rapeseed was obtained with a synergistic effect of high resistance to sulfonylurea herbicide. Excellent weed control was observed in Ning R201 created by 5N resources. Sulfonylurea herbicides, which inhibit acetohydroxyacid synthase (AHAS), have become the most widely used herbicides worldwide. However, weed control in rapeseed crop production remains challenging in China due to the shortage of available herbicide-resistant cultivars. In this study, we developed a rapeseed line (PN19) with sulfonylurea herbicide resistance through seed mutagenesis. Molecular analysis revealed a Trp-574-Leu mutation in BnAHAS1-2R of PN19 according to the sequence of Arabidopsis thaliana, and an allele-specific cleaved amplified polymorphic sequence marker was developed to target the point mutation. A double mutant (5N) with very high sulfonylurea resistance was then created through pyramiding two mutant genes of PN19 and M342 by molecular marker-assisted selection. Herbicide resistance identification, toxicology testing, and an in vitro enzyme activity assay of AHAS in 5N indicated that each mutant was four and eight times more resistant to sulfonylurea than M342 and PN19, respectively. Protein structure analysis of AHAS1 demonstrated that the leucine of mutant Trp-574-Leu destroyed the original π-plane stacking effect of the local region for tribenuron-methyl binding, leading to herbicide tolerance. Isobole graph analysis showed a significant synergistic effect of the combination of two mutant genes in 5N for improved tolerance to sulfonylurea herbicides. Finally, we bred rapeseed variety Ning R201 using 5N herbicide resistance resources, and observed excellent weed control performance. Together, these results demonstrate the practical value of 5N application for optimizing and simplifying rapeseed cultivation in China.
Collapse
Affiliation(s)
- Yue Guo
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing Sub-center, National Center of Oil Crops Improvement, Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, 210014, China
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Li Cheng
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing Sub-center, National Center of Oil Crops Improvement, Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, 210014, China
| | - Weihua Long
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing Sub-center, National Center of Oil Crops Improvement, Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, 210014, China
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jianqin Gao
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing Sub-center, National Center of Oil Crops Improvement, Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, 210014, China
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jiefu Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing Sub-center, National Center of Oil Crops Improvement, Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, 210014, China
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Song Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing Sub-center, National Center of Oil Crops Improvement, Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, 210014, China
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Huiming Pu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing Sub-center, National Center of Oil Crops Improvement, Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, 210014, China.
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Maolong Hu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing Sub-center, National Center of Oil Crops Improvement, Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, 210014, China.
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
21
|
Li J, Chen G, Zhang J, Shen H, Kang J, Feng P, Xie Q, Hu Z. Suppression of a hexokinase gene, SlHXK1, leads to accelerated leaf senescence and stunted plant growth in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110544. [PMID: 32771157 DOI: 10.1016/j.plantsci.2020.110544] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 05/18/2023]
Abstract
Sugars are the key regulatory molecules that impact diverse biological processes in plants. Hexokinase, the key rate-limiting enzyme in hexose metabolism, takes part in the first step of glycolytic pathway. Acting as a sensor that mediates sugar regulation, hexokinase has been proved to play significant roles in regulating plant growth and development. Here, we isolated a hexokinase gene SlHXK1 from tomato. Its transcript levels were higher in flowers and leaves than in other organs and decreased during leaf and petiole development. SlHXK1-RNAi lines displayed advanced leaf senescence and stunted plant growth. Physiological features including plant height, leaf length, thickness and size, the contents of chlorophyll, starch and MDA, and hexokinase activity were dramatically altered in SlHXK1-RNAi plants. Dark-induced leaf senescence were advanced and the transcripts of senescence-related genes after darkness treatment were markedly increased in SlHXK1-RNAi plants. RNA-seq and qRT-PCR analyses showed that the transcripts of genes related to plant hormones, photosynthesis, chloroplast development, chlorophyll synthesis and metabolism, cellular process, starch and sucrose metabolism, and senescence were significantly altered in SlHXK1-RNAi plants. Taken together, our data demonstrate that SlHXK1 is a significant gene involved in leaf senescence and plant growth and development in tomato through affecting starch turnover.
Collapse
Affiliation(s)
- Jing Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Jianling Zhang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Hui Shen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Jing Kang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Panpan Feng
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| |
Collapse
|
22
|
Hong Y, Ni SJ, Zhang GP. Transcriptome and metabolome analysis reveals regulatory networks and key genes controlling barley malting quality in responses to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 152:1-11. [PMID: 32361397 DOI: 10.1016/j.plaphy.2020.04.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/05/2020] [Accepted: 04/20/2020] [Indexed: 05/22/2023]
Abstract
Malting quality will be greatly deteriorated when barley plants suffer from post-anthesis drought stress, however there is a marked difference among barley genotypes in the responses of malting quality to drought stress, and the molecular mechanisms underlying the genotypic difference remain unclear. We made transcriptome and metabolome analysis on the developing grains of two barley genotypes differing in the responses to drought stress. Post-anthesis drought treatments led to decreased grain weight and β-glucan content, increased grain protein content and β-amylase activity. Drought stress enhanced H2O2 and heat-shock protein accumulation in the two barley genotypes, with the drought-tolerant genotype showing higher capacity of scavenging H2O2 and reducing misfolded protein accumulation than the drought-susceptible genotype. Moreover, the drought-tolerant genotype was more efficient in redistributing assimilates stored in the vegetative tissues into the developing grains. After re-watering to relieve drought stress, the drought-tolerant genotype can further modify auxin transport and ethylene signaling, enhancing redistribution of assimilates into grains. Transcriptome comparisons and weighted correlation network analysis (WGCNA) identified some key genes regulating the responses of malting quality traits to drought stress, such as RLK-LRR, β-glucosidase and HSP . In conclusion, less change of main malting quality traits in the drought-tolerant genotype under post-anthesis drought stress is attributed to its higher capacity of alleviating the stress injury through scavenging ROS and redistributing the metabolites stored in the vegetative organs into the developing grains.
Collapse
Affiliation(s)
- Ye Hong
- Agronomy Department, Zhejiang Key Lab of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Sheng-Jing Ni
- Agronomy Department, Zhejiang Key Lab of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Guo-Ping Zhang
- Agronomy Department, Zhejiang Key Lab of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
23
|
Gou X, Li J. Paired Receptor and Coreceptor Kinases Perceive Extracellular Signals to Control Plant Development. PLANT PHYSIOLOGY 2020; 182:1667-1681. [PMID: 32144125 PMCID: PMC7140932 DOI: 10.1104/pp.19.01343] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/04/2020] [Indexed: 05/12/2023]
Abstract
Receptor-like protein kinase complexes regulate plant growth and development.
Collapse
Affiliation(s)
- Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
24
|
Wen Z, Mei Y, Zhou J, Cui Y, Wang D, Wang NN. SAUR49 Can Positively Regulate Leaf Senescence by Suppressing SSPP in Arabidopsis. PLANT & CELL PHYSIOLOGY 2020; 61:644-658. [PMID: 31851355 DOI: 10.1093/pcp/pcz231] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 12/12/2019] [Indexed: 05/22/2023]
Abstract
The involvement of SMALL AUXIN-UP RNA (SAUR) proteins in leaf senescence has been more and more acknowledged, but the detailed mechanisms remain unclear. In the present study, we performed yeast two-hybrid assays and identified SAUR49 as an interactor of SENESCENCE SUPPRESSED PROTEIN PHOSPHATASE (SSPP), which is a PP2C protein phosphatase that negatively regulates Arabidopsis leaf senescence by suppressing the leucine-rich repeat receptor-like protein kinase SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE (SARK), as reported previously by our group. The interaction between SAUR49 and SSPP was further confirmed in planta. Functional characterization revealed that SAUR49 is a positive regulator of leaf senescence. The accumulation level of SAUR49 protein increased during natural leaf senescence in Arabidopsis. The transcript level of SAUR49 was upregulated during SARK-induced premature leaf senescence but downregulated during SSPP-mediated delayed leaf senescence. Overexpression of SAUR49 significantly accelerated both natural and dark-induced leaf senescence in Arabidopsis. More importantly, SAUR49 overexpression completely reversed SSPP-induced delayed leaf senescence. In addition, overexpression of SAUR49 reversed the decreased plasma membrane H+-ATPase activity mediated by SSPP. Taken together, the results showed that SAUR49 functions in accelerating the leaf senescence process via the activation of SARK-mediated leaf senescence signaling by suppressing SSPP. We further identified four other SSPP-interacting SAURs, SAUR30, SAUR39, SAUR41 and SAUR72, that may act redundantly with SAUR49 in regulating leaf senescence. All these observations indicated that certain members of the SAUR family may serve as an important hub that integrates various hormonal and environmental signals with senescence signals in Arabidopsis.
Collapse
Affiliation(s)
- Zewen Wen
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuanyuan Mei
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jie Zhou
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yanjiao Cui
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dan Wang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ning Ning Wang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
25
|
Lu J, Xu Y, Fan Y, Wang Y, Zhang G, Liang Y, Jiang C, Hong B, Gao J, Ma C. Proteome and Ubiquitome Changes during Rose Petal Senescence. Int J Mol Sci 2019; 20:E6108. [PMID: 31817087 PMCID: PMC6940906 DOI: 10.3390/ijms20246108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 12/25/2022] Open
Abstract
Petal senescence involves numerous programmed changes in biological and biochemical processes. Ubiquitination plays a critical role in protein degradation, a hallmark of organ senescence. Therefore, we investigated changes in the proteome and ubiquitome of senescing rose (Rosa hybrida) petals to better understand their involvement in petal senescence. Of 3859 proteins quantified in senescing petals, 1198 were upregulated, and 726 were downregulated during senescence. We identified 2208 ubiquitinated sites, including 384 with increased ubiquitination in 298 proteins and 1035 with decreased ubiquitination in 674 proteins. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that proteins related to peptidases in proteolysis and autophagy pathways were enriched in the proteome, suggesting that protein degradation and autophagy play important roles in petal senescence. In addition, many transporter proteins accumulated in senescing petals, and several transport processes were enriched in the ubiquitome, indicating that transport of substances is associated with petal senescence and regulated by ubiquitination. Moreover, several components of the brassinosteroid (BR) biosynthesis and signaling pathways were significantly altered at the protein and ubiquitination levels, implying that BR plays an important role in petal senescence. Our data provide a comprehensive view of rose petal senescence at the posttranslational level.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Chao Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China; (J.L.); (Y.X.); (Y.F.); (Y.W.); (G.Z.); (Y.L.); (C.J.); (B.H.); (J.G.)
| |
Collapse
|
26
|
Ahmad S, Guo Y. Signal Transduction in Leaf Senescence: Progress and Perspective. PLANTS 2019; 8:plants8100405. [PMID: 31658600 PMCID: PMC6843215 DOI: 10.3390/plants8100405] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023]
Abstract
Leaf senescence is a degenerative process that is genetically controlled and involves nutrient remobilization prior to the death of leaf tissues. Age is a key developmental determinant of the process along with other senescence inducing factors. At the cellular level, different hormones, signaling molecules, and transcription factors contribute to the regulation of senescence. This review summarizes the recent progress in understanding the complexity of the senescence process with primary focuses on perception and transduction of senescence signals as well as downstream regulatory events. Future directions in this field and potential applications of related techniques in crop improvement will be discussed.
Collapse
Affiliation(s)
- Salman Ahmad
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Plant Breeding & Genetics Division, Nuclear Institute for Food & Agriculture, Tarnab, Peshawar P.O. Box 446, Pakistan.
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
27
|
OsATG8c-Mediated Increased Autophagy Regulates the Yield and Nitrogen Use Efficiency in Rice. Int J Mol Sci 2019; 20:ijms20194956. [PMID: 31597279 PMCID: PMC6801700 DOI: 10.3390/ijms20194956] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/25/2022] Open
Abstract
Autophagy, a conserved pathway in eukaryotes, degrades and recycles cellular components, thus playing an important role in nitrogen (N) remobilization. N plays an important role in the growth and development of plants, which also affects plant yield and quality. In this research, it was found that the transcriptional level of a core autophagy gene of rice (Oryza sativa), OsATG8c, was increased during N starvation conditions. It was found that the overexpression of OsATG8c significantly enhanced the activity of autophagy and that the number of autophagosomes, dwarfed the plant height and increased the effective tillers’ number and yield. The nitrogen uptake efficiency (NUpE) and nitrogen use efficiency (NUE) significantly increased in the transgenic rice under both optimal and suboptimal N conditions. Based on our results, OsATG8c is considered to be a good candidate gene for increasing NUE, especially under suboptimal field conditions.
Collapse
|
28
|
Zhen X, Xu F, Zhang W, Li N, Li X. Overexpression of rice gene OsATG8b confers tolerance to nitrogen starvation and increases yield and nitrogen use efficiency (NUE) in Arabidopsis. PLoS One 2019; 14:e0223011. [PMID: 31553788 PMCID: PMC6760796 DOI: 10.1371/journal.pone.0223011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022] Open
Abstract
Nitrogen (N) is an important element required for plant growth and development, which also affects plant yield and quality. Autophagy, a conserved pathway in eukaryotes, degrades and recycles cellular components, thus playing an important role in N remobilization. However, only a few autophagy genes related to N remobilization in rice (Oryza sativa) have been reported. Here, we identified a core autophagy gene in rice, OsATG8b, with increased expression levels under N starvation conditions. It was investigated the function of OsATG8b by generating three independent homozygous 35S-OsATG8b transgenic Arabidopsis thaliana lines. The overexpression of OsATG8b significantly enhanced autophagic flux in the transgenic Arabidopsis plants. It was also showed that over-expressing OsATG8b promoted growth and development of Arabidopsis, in which the rosette leaves were larger than those of the wild type (WT), and the yield increased significantly by 25.25%. In addition, the transgenic lines accumulated more N in seeds than in the rosette leaves. Further examination revealed that overexpression of OsATG8b could effectively alleviate the growth inhibition of transgenic Arabidopsis under nitrogen (N) stress. N partitioning studies revealed that nitrogen-harvest index (NHI) and nitrogen use efficiency (NUE) were significantly increased in the transgenic Arabidopsis, as well as the 15N-tracer experiments revealing that the remobilization of N to seeds in the OsATG8b-overexpressing transgenic Arabidopsis was high and more than WT. Based on our findings, we consider OsATG8b to be a great candidate gene to increase NUE and yield, especially under suboptimal field conditions.
Collapse
Affiliation(s)
- Xiaoxi Zhen
- Rice Research Institute of Shenyang Agricultural University, Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Shenyang, China
| | - Fan Xu
- Rice Research Institute of Shenyang Agricultural University, Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Shenyang, China
- * E-mail: (FX); (WZ)
| | - Wenzhong Zhang
- Rice Research Institute of Shenyang Agricultural University, Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Shenyang, China
- * E-mail: (FX); (WZ)
| | - Nan Li
- Shen Yang Product Quality Supervision and Inspection Institute, Shenyang, China
| | - Xin Li
- Rice Research Institute of Shenyang Agricultural University, Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Shenyang, China
| |
Collapse
|
29
|
Yu T, Lu X, Bai Y, Mei X, Guo Z, Liu C, Cai Y. Overexpression of the maize transcription factor ZmVQ52 accelerates leaf senescence in Arabidopsis. PLoS One 2019; 14:e0221949. [PMID: 31469881 PMCID: PMC6716648 DOI: 10.1371/journal.pone.0221949] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/19/2019] [Indexed: 11/18/2022] Open
Abstract
Leaf senescence plays an important role in the improvement of maize kernel yields. However, the underlying regulatory mechanisms of leaf senescence in maize are largely unknown. We isolated ZmVQ52 and studied the function of ZmVQ52 which encoded, a VQ family transcription factor. ZmVQ52 is constitutively expressed in maize tissues, and mainly expressed in the leaf; it is located in the nucleus of maize protoplasts. Four WRKY family proteins-ZmWRKY20, ZmWRKY36, ZmWRKY50, and ZmWRKY71-were identified as interacting with ZmVQ52. The overexpression of ZmVQ52 in Arabidopsis accelerated premature leaf senescence. The leaf of the ZmVQ52-overexpression line showed a lower chlorophyll content and higher senescence rate than the WT. A number of leaf senescence regulating genes were up-regulated in the ZmVQ52-overexpression line. Additionally, hormone treatments revealed that the leaf of the ZmVQ52-overexpressed line was more sensitive to salicylic acid (SA) and jasmonic acid (JA), and had an enhanced tolerance to abscisic acid (ABA). Moreover, a transcriptome analysis of the ZmVQ52-overexpression line revealed that ZmVQ52 is mainly involved in the circadian pathway and photosynthetic pathways.
Collapse
Affiliation(s)
- Tingting Yu
- Maize Research Institute, Key Laboratory of Biotechnology and Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Xuefeng Lu
- Maize Research Institute, Key Laboratory of Biotechnology and Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yang Bai
- Maize Research Institute, Key Laboratory of Biotechnology and Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Xiupeng Mei
- Maize Research Institute, Key Laboratory of Biotechnology and Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Zhifeng Guo
- Maize Research Institute, Key Laboratory of Biotechnology and Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Chaoxian Liu
- Maize Research Institute, Key Laboratory of Biotechnology and Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yilin Cai
- Maize Research Institute, Key Laboratory of Biotechnology and Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- * E-mail:
| |
Collapse
|
30
|
Yu J, Zhen X, Li X, Li N, Xu F. Increased Autophagy of Rice Can Increase Yield and Nitrogen Use Efficiency (NUE). FRONTIERS IN PLANT SCIENCE 2019; 10:584. [PMID: 31134120 PMCID: PMC6514234 DOI: 10.3389/fpls.2019.00584] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/18/2019] [Indexed: 05/28/2023]
Abstract
Autophagy (self-eating), a conserved pathway in eukaryotes, which is designed to handle cytoplasmic material in bulk and plays an important role in the remobilization of nutrient, such as nitrogen (N) under suboptimal nutrient conditions. Here, we identified a core component of an autophagy gene in rice (Oryza sativa), OsATG8a, with increased expression levels under N starvation conditions. Overexpression of OsATG8a significantly enhanced the level of autophagy and the number of effective tillers in the transgenic rice. In addition, the transgenic lines accumulated more N in grains than in the dry remains and the yield was significantly increased under normal N conditions. Further N allocation studies revealed that the nitrogen uptake efficiency (NUpE) and nitrogen use efficiency (NUE) significantly increased. Otherwise, under suboptimal N conditions, overexpression of OsATG8a did not seem to have any effect on yield and NUE, but NUpE was still improved significantly. Based on our findings, we consider OsATG8a to be a great candidate gene to increase NUE and yield.
Collapse
Affiliation(s)
- Jinlei Yu
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province – Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Xiaoxi Zhen
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province – Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Xin Li
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province – Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Nan Li
- Shenyang Product Quality Supervision and Inspection Institute, Shenyang, China
| | - Fan Xu
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province – Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
31
|
Zheng X, Jehanzeb M, Zhang Y, Li L, Miao Y. Characterization of S40-like proteins and their roles in response to environmental cues and leaf senescence in rice. BMC PLANT BIOLOGY 2019; 19:174. [PMID: 31046677 PMCID: PMC6498481 DOI: 10.1186/s12870-019-1767-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/09/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND Senescence affects the quality and yield of plants by regulating different traits of plants. A few members of S40 gene family, the barley HvS40 and the Arabidopsis AtS40-3, have been shown to play a role in leaf senescence in Barley and Arabidopsis. Although we previously reported that S40 family exist in most of plants, up to now, no more function of S40 members in plant has been demonstrated. The aim of this study was to provide the senescence related information of S40 gene family in rice as rice is a major crop that feeds about half of the human population in the world. RESULTS A total of 16 OsS40 genes were identified from the genome database of Oryza sativa L. japonica by bioinformatics analysis. Phylogenetic analysis reveals that the 16 OsS40 proteins are classified into five groups, and 4 of the 16 members belong to group I to which also the HvS40 and AtS40-3 is assigned. S40 genes of rice show high structural similarities, as 13 out of the 16 genes have no intron and the other 3 genes have only 1 or 2 introns. The expression patterns of OsS40 genes were analyzed during natural as well as stress-induced leaf senescence in correspondence with senescence marker genes. We found that 6 of them displayed differential but clearly up-regulated transcript profiles under diverse situations of senescence, including darkness, nitrogen deficiency, hormone treatments as well as pathogen infection. Furthermore, three OsS40 proteins were identified as nuclear located proteins by transient protoplast transformation assay. CONCLUSIONS Taking all findings together, we concluded that OsS40-1, OsS40-2, OsS40-12 and OsS40-14 genes have potential regulatory function of crosstalk among abiotic, biotic and developmental senescence in rice. Our results provide valuable baseline for functional validation studies of the rice S40 genes in rice leaf senescence.
Collapse
Affiliation(s)
- Xiangzi Zheng
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Muhammad Jehanzeb
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Yuanyuan Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Li Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China.
| |
Collapse
|
32
|
Wang Y, Zhang X, Cui Y, Li L, Wang D, Mei Y, Wang NN. AHK3-Mediated Cytokinin Signaling Is Required for the Delayed Leaf Senescence Induced by SSPP. Int J Mol Sci 2019; 20:ijms20082043. [PMID: 31027230 PMCID: PMC6514669 DOI: 10.3390/ijms20082043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/01/2022] Open
Abstract
Leaf senescence is a highly-programmed developmental process regulated by an array of multiple signaling pathways. Our group previously reported that overexpression of the protein phosphatase-encoding gene SSPP led to delayed leaf senescence and significantly enhanced cytokinin responses. However, it is still unclear how the delayed leaf senescence phenotype is associated with the enhanced cytokinin responses. In this study, we introduced a cytokinin receptor AHK3 knockout into the 35S:SSPP background. The phenotypic analysis of double mutant revealed that AHK3 loss-of-function reversed the delayed leaf senescence induced by SSPP. Moreover, we found the hypersensitivity of 35S:SSPP to exogenous cytokinin treatment disappeared due to the introduction of AHK3 knockout. Collectively, our results demonstrated that AHK3-mediated cytokinin signaling is required for the delayed leaf senescence caused by SSPP overexpression and the detailed mechanism remains to be further elucidated.
Collapse
Affiliation(s)
- Yanan Wang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Xiyu Zhang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Yanjiao Cui
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Lei Li
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Dan Wang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Yuanyuan Mei
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Ning Ning Wang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
33
|
Li X, Ahmad S, Ali A, Guo C, Li H, Yu J, Zhang Y, Gao X, Guo Y. Characterization of Somatic Embryogenesis Receptor-Like Kinase 4 as a Negative Regulator of Leaf Senescence in Arabidopsis. Cells 2019; 8:cells8010050. [PMID: 30646631 PMCID: PMC6356292 DOI: 10.3390/cells8010050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 11/16/2022] Open
Abstract
Leaf senescence is a genetically controlled process that involves the perception of extracellular signals and signal transduction. The receptor-like protein kinases (RLKs) are known to act as an important class of cell surface receptors and are involved in multiple biological processes such as development and stress responses. The functions of a number of RLK members have been characterized in Arabidopsis and other plant species, but only a limited number of RLK proteins have been reported to be associated with leaf senescence. In the present study, we have characterized the role of the somatic embryogenesis receptor kinase 4 (SERK4) gene in leaf senescence. The expression of SERK4 was up-regulated during leaf senescence and by several abiotic stress treatments in Arabidopsis. The serk4-1 knockout mutant was found to display a significant early leaf senescence phenotype. Furthermore, the results of overexpression analysis and complementary analysis supported the idea that SERK4 acts as a negative regulator in the process of leaf senescence.
Collapse
Affiliation(s)
- Xiaoxu Li
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Salman Ahmad
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Akhtar Ali
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Cun Guo
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Hong Li
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Jing Yu
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yan Zhang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiaoming Gao
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yongfeng Guo
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
34
|
Cui Y, Hu C, Zhu Y, Cheng K, Li X, Wei Z, Xue L, Lin F, Shi H, Yi J, Hou S, He K, Li J, Gou X. CIK Receptor Kinases Determine Cell Fate Specification during Early Anther Development in Arabidopsis. THE PLANT CELL 2018; 30:2383-2401. [PMID: 30201822 PMCID: PMC6241272 DOI: 10.1105/tpc.17.00586] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 07/05/2018] [Accepted: 08/31/2018] [Indexed: 05/20/2023]
Abstract
Appropriate cell division and differentiation ensure normal anther development in angiosperms. BARELY ANY MERISTEM 1/2 (BAM1/2) and RECEPTOR-LIKE PROTEIN KINASE2 (RPK2), two groups of leucine-rich repeat receptor-like protein kinases, are required for early anther cell specification. However, little is known about the molecular mechanisms underlying these two RLK-mediated signaling pathways. Here, we show that CLAVATA3 INSENSITIVE RECEPTOR KINASEs (CIKs), a group of novel coreceptor protein kinase-controlling stem cell homeostasis, play essential roles in BAM1/2- and RPK2-regulated early anther development in Arabidopsis thaliana The archesporial cells of cik1/2/3 triple and cik1/2/3/4 quadruple mutant anthers perform anticlinal division instead of periclinal division. Defective cell division and specification of the primary and inner secondary parietal cells occur in these mutant anthers. The disordered divisions and specifications of anther wall cells finally result in excess microsporocytes and a lack of one to three parietal cell layers in mutant anthers, resembling rpk2 or bam1/2 mutant anthers. Genetic and biochemical analyses indicate that CIKs function as coreceptors of BAM1/2 and RPK2 to regulate archesporial cell division and determine the specification of anther parietal cells.
Collapse
Affiliation(s)
- Yanwei Cui
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chong Hu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yafen Zhu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Kaili Cheng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaonan Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhuoyun Wei
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Li Xue
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fang Lin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hongyong Shi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jing Yi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Suiwen Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Kai He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
35
|
Li P, Yang H, Liu G, Ma W, Li C, Huo H, He J, Liu L. PpSARK Regulates Moss Senescence and Salt Tolerance through ABA Related Pathway. Int J Mol Sci 2018; 19:E2609. [PMID: 30177627 PMCID: PMC6163601 DOI: 10.3390/ijms19092609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 11/18/2022] Open
Abstract
Senescence-associated receptor-like kinase (SARK) family members in Arabidopsis, soybean, and rice are known to be positive regulators of leaf senescence. In the meantime, SARKs are extensively involved in stress response. However, their function and underlying molecular mechanism in stress responses in moss are not well known. Here, we investigated functional roles of SARK isolated from Physcomitrella patens (PpSARK) in salt stress response and senescence. PpSARK transcripts significantly accumulated under NaCl and abscisic acid (ABA) treatments, with higher expression in the moss gametophyte stage. Insertional gain-of-function mutants of PpSARK (PpSARKg) were more tolerant to salt stress and ABA than wild type (WT), whereas senescence of mutants was delayed during the protonema stage. Expression of stress-responsive genes in the ABA related pathway, such as PpABI3, PpABI5, PpPP2C, and PpLEA were significantly higher in PpSARKg and WT under salt stress conditions, suggesting that PpSARK might positively regulate salt tolerance via an ABA-related pathway. Endogenous ABA contents also increased 3-fold under salt stress conditions. These results indicate that PpSARK functions as a positive regulator in salt stress responses, while possibly functioning as a negative regulator in senescence in moss.
Collapse
Affiliation(s)
- Ping Li
- Key Laboratory of Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hong Yang
- Key Laboratory of Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Gaojing Liu
- Key Laboratory of Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, China.
| | - Wenzhang Ma
- Key Laboratory of Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, China.
| | - Chuanhong Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China.
| | - Heqiang Huo
- Mid-Florida Research and Education Center, Department of Environmental Horticulture, University of Florida, Apopka, FL 32703, USA.
| | - Jianfang He
- Key Laboratory of Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Li Liu
- Key Laboratory of Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, China.
| |
Collapse
|
36
|
Fan M, Zhang C, Shi L, Liu C, Ma W, Chen M, Liu K, Cai F, Wang G, Wei Z, Jiang M, Liu Z, Javeed A, Lin F. ZmSTK1 and ZmSTK2, encoding receptor-like cytoplasmic kinase, are involved in maize pollen development with additive effect. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1402-1414. [PMID: 29327510 PMCID: PMC6041449 DOI: 10.1111/pbi.12880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/26/2017] [Accepted: 01/05/2018] [Indexed: 05/11/2023]
Abstract
Pollen germination and pollen tube growth are important physiological processes of sexual reproduction of plants and also are involved in signal transduction. Our previous study reveals that ZmSTK1 and ZmSTK2 are two receptor-like cytoplasmic kinases (RLCK) homologs in Zea mays as members of receptor-like protein kinase (RLK) subfamily, sharing 86% identity at the amino acid level. Here, we report that ZmSTK1 and ZmSTK2, expressed at late stages of pollen development, regulate maize pollen development with additive effect. ZmSTK1 or ZmSTK2 mutation exhibited severe pollen transmission deficiency, which thus influenced pollen fertility. Moreover, the kinase domains of ZmSTKs were cross-interacted with C-terminus of enolases detected by co-immunoprecipitation (Co-IP) and yeast two-hybrid system (Y2H), respectively. Further, the detective ZmSTK1 or ZmSTK2 was associated with decreased activity of enolases and also reduced downstream metabolite contents, which enolases are involved in glycolytic pathway, such as phosphoenolpyruvate (PEP), pyruvate, ADP/ATP, starch, glucose, sucrose and fructose. This study reveals that ZmSTK1 and ZmSTK2 regulate maize pollen development and indirectly participate in glycolytic pathway.
Collapse
Affiliation(s)
- Mingxia Fan
- College of Bioscience and BiotechnologyShenyang Agricultural UniversityShenyangLiaoningChina
| | - Chunyu Zhang
- College of Bioscience and BiotechnologyShenyang Agricultural UniversityShenyangLiaoningChina
| | - Lei Shi
- Corn Research InstituteLiaoning Academy of Agricultural SciencesShenyangLiaoningChina
| | - Chen Liu
- College of Bioscience and BiotechnologyShenyang Agricultural UniversityShenyangLiaoningChina
| | - Wenjuan Ma
- College of Bioscience and BiotechnologyShenyang Agricultural UniversityShenyangLiaoningChina
| | - Meiming Chen
- College of Bioscience and BiotechnologyShenyang Agricultural UniversityShenyangLiaoningChina
| | - Kuichen Liu
- College of Bioscience and BiotechnologyShenyang Agricultural UniversityShenyangLiaoningChina
| | - Fengchun Cai
- College of Bioscience and BiotechnologyShenyang Agricultural UniversityShenyangLiaoningChina
| | - Guohong Wang
- Corn Research InstituteLiaoning Academy of Agricultural SciencesShenyangLiaoningChina
| | - Zhengyi Wei
- Laboratory of Plant Bioreactor and Genetics EngineeringJilin Provincial Key Laboratory of Agricultural BiotechnologyAgro‐Biotechnology Research InstituteJilin Academy of Agricultural SciencesJilinChangchunChina
| | - Min Jiang
- Corn Research InstituteLiaoning Academy of Agricultural SciencesShenyangLiaoningChina
| | - Zaochang Liu
- Shanghai Agrobiological Gene CenterShanghai Academy of Agricultural SciencesShanghaiChina
| | - Ansar Javeed
- College of Bioscience and BiotechnologyShenyang Agricultural UniversityShenyangLiaoningChina
| | - Feng Lin
- College of Bioscience and BiotechnologyShenyang Agricultural UniversityShenyangLiaoningChina
| |
Collapse
|
37
|
Anne P, Amiguet-Vercher A, Brandt B, Kalmbach L, Geldner N, Hothorn M, Hardtke CS. CLERK is a novel receptor kinase required for sensing of root-active CLE peptides in Arabidopsis. Development 2018; 145:145/10/dev162354. [PMID: 29789310 PMCID: PMC6001375 DOI: 10.1242/dev.162354] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/30/2018] [Indexed: 01/21/2023]
Abstract
CLAVATA3/EMBRYO SURROUNDING REGION (CLE) peptides are secreted endogenous plant ligands that are sensed by receptor kinases (RKs) to convey environmental and developmental inputs. Typically, this involves an RK with narrow ligand specificity that signals together with a more promiscuous co-receptor. For most CLEs, biologically relevant (co-)receptors are unknown. The dimer of the receptor-like protein CLAVATA 2 (CLV2) and the pseudokinase CORYNE (CRN) conditions perception of so-called root-active CLE peptides, the exogenous application of which suppresses root growth by preventing protophloem formation in the meristem. clv2 as well as crn null mutants are resistant to root-active CLE peptides, possibly because CLV2-CRN promotes expression of their cognate receptors. Here, we have identified the CLE-RESISTANT RECEPTOR KINASE (CLERK) gene, which is required for full sensing of root-active CLE peptides in early developing protophloem. CLERK protein can be replaced by its close homologs, SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE (SARK) and NSP-INTERACTING KINASE 1 (NIK1). Yet neither CLERK nor NIK1 ectodomains interact biochemically with described CLE receptor ectodomains. Consistently, CLERK also acts genetically independently of CLV2-CRN We, thus, have discovered a novel hub for redundant CLE sensing in the root.
Collapse
Affiliation(s)
- Pauline Anne
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Amelia Amiguet-Vercher
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Benjamin Brandt
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Lothar Kalmbach
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Michael Hothorn
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| |
Collapse
|
38
|
Hu C, Zhu Y, Cui Y, Cheng K, Liang W, Wei Z, Zhu M, Yin H, Zeng L, Xiao Y, Lv M, Yi J, Hou S, He K, Li J, Gou X. A group of receptor kinases are essential for CLAVATA signalling to maintain stem cell homeostasis. NATURE PLANTS 2018; 4:205-211. [PMID: 29581511 DOI: 10.1038/s41477-018-0123-z] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 02/19/2018] [Indexed: 05/21/2023]
Abstract
Continuous organ initiation and outgrowth in plants relies on the proliferation and differentiation of stem cells maintained by the CLAVATA (CLV)-WUSCHEL (WUS) negative-feedback loop1-3. Leucine-rich repeat receptor-like protein kinases (LRR-RLKs), including CLV1, BARELY ANY MERISTEMS and RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2), a receptor-like protein CLV2 and a pseudokinase CORYNE (CRN) are involved in the perception of the CLV3 signal to repress WUS expression4-10. WUS, a homeodomain transcription factor, in turn directly activates CLV3 expression and promotes stem cell activity in the shoot apical meristem11,12. However, the signalling mechanism immediately following the perception of CLV3 by its receptors is poorly understood. Here, we show that a group of LRR-RLKs, designated as CLAVATA3 INSENSITIVE RECEPTOR KINASES (CIKs), have essential roles in regulating CLV3-mediated stem cell homeostasis. The cik1 2 3 4 quadruple mutant exhibits a significantly enlarged SAM, resembling clv mutants. Genetic analyses and biochemical assays demonstrated that CIKs function as co-receptors of CLV1, CLV2/CRN and RPK2 to mediate CLV3 signalling through phosphorylation. Our findings not only widen the understanding of the underlying mechanism of CLV3 signal transduction in regulating stem cell fate but also reveal a novel group of RLKs that function as co-receptors to possibly mediate multiple extrinsic and intrinsic signals during plant growth and development.
Collapse
Affiliation(s)
- Chong Hu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yafen Zhu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yanwei Cui
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Kaili Cheng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Wan Liang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhuoyun Wei
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Mingsong Zhu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hongju Yin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Li Zeng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ya Xiao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Minghui Lv
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jing Yi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Suiwen Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Kai He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
39
|
Sun G, Mei Y, Deng D, Xiong L, Sun L, Zhang X, Wen Z, Liu S, You X, Wang D, Wang NN. N-Terminus-Mediated Degradation of ACS7 Is Negatively Regulated by Senescence Signaling to Allow Optimal Ethylene Production during Leaf Development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:2066. [PMID: 29270180 PMCID: PMC5723933 DOI: 10.3389/fpls.2017.02066] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/17/2017] [Indexed: 05/26/2023]
Abstract
Senescence is the final phase of leaf development, characterized by key processes by which resources trapped in deteriorating leaves are degraded and recycled to sustain the growth of newly formed organs. As the gaseous hormone ethylene exerts a profound effect on the progression of leaf senescence, both the optimal timing and amount of its biosynthesis are essential for controlled leaf development. The rate-limiting enzyme that controls ethylene synthesis in higher plants is ACC synthase (ACS). In this study, we evaluated the production of ethylene and revealed an up-regulation of ACS7 during leaf senescence in Arabidopsis. We further showed that the promoter activity of ACS7 was maintained at a relatively high level throughout the whole rosette development process. However, the accumulation level of ACS7 protein was extremely low in the light-grown young seedlings, and it was gradually restored as plants aging. We previously demonstrated that degradation of ACS7 is regulated by its first 14 N-terminal residues, here we compared the phenotypes of transgenic Arabidopsis overexpressing a truncated ACS7 lacking the 14 residues with transgenic plants overexpressing the full-length protein. Results showed that seedlings overexpressing the truncated ACS7 exhibited a senescence phenotype much earlier than their counterparts overexpressing the full-length gene. Fusion of the 14 residues to SSPP, a PP2C-type senescence-suppressed protein phosphatase, effectively rescued the SSPP-induced suppression of rosette growth and development but had no effect on the delayed senescence. This observation further supported that N-terminus-mediated degradation of ACS7 is negatively regulated by leaf senescence signaling. All results of this study therefore suggest that ACS7 is one of the major contributors to the synthesis of 'senescence ethylene'. And more importantly, the N-terminal 14 residue-mediated degradation of this protein is highly regulated by senescence signaling to enable plants to produce the appropriate levels of ethylene required.
Collapse
|
40
|
Geng J, Li L, Lv Q, Zhao Y, Liu Y, Zhang L, Li X. TaGW2-6A allelic variation contributes to grain size possibly by regulating the expression of cytokinins and starch-related genes in wheat. PLANTA 2017; 246:1153-1163. [PMID: 28825220 DOI: 10.1007/s00425-017-2759-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/11/2017] [Indexed: 05/21/2023]
Abstract
Functional allelic variants of TaGW2 - 6A produce large grains, possibly via changes in endosperm cells and dry matter by regulating the expression of cytokinins and starch-related genes via the ubiquitin-proteasome system. In wheat, TaGW2-6A coding region allelic variants are closely related to the grain width and weight, but how this region affects grain development has not been fully elucidated; thus, we explored its influence on grain development based mainly on histological and grain filling analyses. We found that the insertion type (NIL31) TaGW2-6A allelic variants exhibited increases in cell numbers and cell size, thereby resulting in a larger (wider) grain size with an accelerated grain milk filling rate, and increases in grain width and weight. We also found that cytokinin (CK) synthesis genes and key starch biosynthesis enzyme AGPase genes were significantly upregulated in the TaGW2-6A allelic variants, while CK degradation genes and starch biosynthesis-negative regulators were downregulated in the TaGW2-6A allelic variants, which was consistent with the changes in cells and grain filling. Thus, we speculate that TaGW2-6A allelic variants are linked with CK signaling, but they also influence the accumulation of starch by regulating the expression of related genes via the ubiquitin-proteasome system to control the grain size and grain weight.
Collapse
Affiliation(s)
- Juan Geng
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, People's Republic of China
| | - Liqun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qian Lv
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yi Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yan Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, People's Republic of China
| | - Li Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xuejun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
41
|
Redekar N, Pilot G, Raboy V, Li S, Saghai Maroof MA. Inference of Transcription Regulatory Network in Low Phytic Acid Soybean Seeds. FRONTIERS IN PLANT SCIENCE 2017; 8:2029. [PMID: 29250090 PMCID: PMC5714895 DOI: 10.3389/fpls.2017.02029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/14/2017] [Indexed: 05/26/2023]
Abstract
A dominant loss of function mutation in myo-inositol phosphate synthase (MIPS) gene and recessive loss of function mutations in two multidrug resistant protein type-ABC transporter genes not only reduce the seed phytic acid levels in soybean, but also affect the pathways associated with seed development, ultimately resulting in low emergence. To understand the regulatory mechanisms and identify key genes that intervene in the seed development process in low phytic acid crops, we performed computational inference of gene regulatory networks in low and normal phytic acid soybeans using a time course transcriptomic data and multiple network inference algorithms. We identified a set of putative candidate transcription factors and their regulatory interactions with genes that have functions in myo-inositol biosynthesis, auxin-ABA signaling, and seed dormancy. We evaluated the performance of our unsupervised network inference method by comparing the predicted regulatory network with published regulatory interactions in Arabidopsis. Some contrasting regulatory interactions were observed in low phytic acid mutants compared to non-mutant lines. These findings provide important hypotheses on expression regulation of myo-inositol metabolism and phytohormone signaling in developing low phytic acid soybeans. The computational pipeline used for unsupervised network learning in this study is provided as open source software and is freely available at https://lilabatvt.github.io/LPANetwork/.
Collapse
Affiliation(s)
- Neelam Redekar
- Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Guillaume Pilot
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, United States
| | - Victor Raboy
- National Small Grains Germplasm Research Center, Agricultural Research Service (USDA), Aberdeen, ID, United States
| | - Song Li
- Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - M. A. Saghai Maroof
- Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
42
|
Kale PB, Jadhav PV, Wakekar RS, Moharil MP, Deshmukh AG, Dudhare MS, Nandanwar RS, Mane SS, Manjaya JG, Dani RG. Cytological behaviour of floral organs and in silico characterization of differentially expressed transcript-derived fragments associated with 'floral bud distortion' in soybean. J Genet 2016; 95:787-799. [PMID: 27994177 DOI: 10.1007/s12041-016-0693-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An attempt was made to understand the 'floral bud distortion' (FBD), an unexplored disorder prevailing in soybean. Cytological behaviour of floral reproductive organs and in silico characterization of differentially expressed transcript-derived fragments (TDFs) in symptomatic and asymptomatic soybean plants were carried out. Pollens in asymptomatic plants do not have defects in number, size, shape and function. However, in symptomatic plant, pollens were found nonviable, abnormal in shape and with reduced germination ability. Here, we employed a computational approach, exploring invaluable resources. The tissue-specific transcript profile of symptomatic and asymptomatic sources was compared to determine differentially expressed TDFs associated with FBD to improve its basic understanding. A total of 60 decamer primers produced 197 scorable amplicons, ranged 162-1130 bp, of which 171 were monomorphic and 26 were differentially regulated. Reproducible TDFs were sequenced and characterized for their homology analysis, annotation, protein-protein interaction, subcellular localization and their physical mapping. Homology-based annotation of TDFs in soybean revealed presence of two characterized and seven uncharacterized hits. Annotation of characterized sequences showed presence of genes, namely auxin response factor 9 (ARF9) and forkhead-associated (FHA) domain, which are directly involved in plant development through various pathways, such as hormonal regulation, plant morphology, embryogenesis and DNA repair.
Collapse
Affiliation(s)
- Prashant B Kale
- Biotechnology Centre, Post Graduate Institute, Dr Panjabrao Deshmukh Krishi Vidyapeeth, Akola 444 104, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Physiological and molecular studies of staygreen caused by pod removal and seed injury in soybean. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.cj.2016.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
|
45
|
Li Y, Chang Y, Zhao C, Yang H, Ren D. Expression of the inactive ZmMEK1 induces salicylic acid accumulation and salicylic acid-dependent leaf senescence. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:724-36. [PMID: 26822341 DOI: 10.1111/jipb.12465] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/28/2016] [Indexed: 05/18/2023]
Abstract
Leaf senescence is the final leaf developmental process that is regulated by both intracellular factors and environmental conditions. The mitogen-activated protein kinase (MAPK) signaling cascades have been shown to play important roles in regulating leaf senescence; however, the component(s) downstream of the MAPK cascades in regulating leaf senescence are not fully understood. Here we showed that the transcriptions of ZmMEK1, ZmSIMK1, and ZmMPK3 were induced during dark-induced maize leaf senescence. Furthermore, in-gel kinase analysis revealed the 42 kDa MAPK was activated. ZmMEK1 interacted with ZmSIMK1 in yeast and maize mesophyll protoplasts and ZmSIMK1 was activated by ZmMEK1 in vitro. Expression of a dominant negative mutant of ZmMEK1 in Arabidopsis transgenic plants induced salicylic acid (SA) accumulation and SA-dependent leaf senescence. ZmMEK1 interacted with Arabidopsis MPK4 in yeast and activated MPK4 in vitro. SA treatment accelerated dark-induced maize leaf senescence. Moreover, blockage of MAPK signaling increased endogenous SA accumulation in maize leaves. These findings suggest that ZmMEK1-ZmSIMK1 cascade and its modulating SA levels play important roles in regulating leaf senescence.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Chang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chongchong Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hailian Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dongtao Ren
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
46
|
Sallam A, Arbaoui M, El-Esawi M, Abshire N, Martsch R. Identification and Verification of QTL Associated with Frost Tolerance Using Linkage Mapping and GWAS in Winter Faba Bean. FRONTIERS IN PLANT SCIENCE 2016; 7:1098. [PMID: 27540381 PMCID: PMC4972839 DOI: 10.3389/fpls.2016.01098] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/11/2016] [Indexed: 05/05/2023]
Abstract
Frost stress is one of the abiotic stresses that causes a significant reduction in winter faba bean yield in Europe. The main objective of this work is to genetically improve frost tolerance in winter faba bean by identifying and validating QTL associated with frost tolerance to be used in marker-assisted selection (MAS). Two different genetic backgrounds were used: a biparental population (BPP) consisting of 101 inbred lines, and 189 genotypes from single seed descent (SSD) from the Gottingen Winter bean Population (GWBP). All experiments were conducted in a frost growth chamber under controlled conditions. Both populations were genotyped using the same set of 189 SNP markers. Visual scoring for frost stress symptoms was used to define frost tolerance in both populations. In addition, leaf fatty acid composition (FAC) and proline content were analyzed in BPP as physiological traits. QTL mapping (for BPP) and genome wide association studies (for GWBP) were performed to detect QTL associated with frost tolerance. High genetic variation between genotypes, and repeatability estimates, were found for all traits. QTL mapping and GWAS identified new putative QTL associated with promising frost tolerance and related traits. A set of 54 SNP markers common in both genetic backgrounds showed a high genetic diversity with polymorphic information content (PIC) ranging from 0.31 to 0.37 and gene diversity ranging from 0.39 to 0.50. This indicates that these markers may be polymorphic for many faba bean populations. Five SNP markers showed a significant marker-trait association with frost tolerance and related traits in both populations. Moreover, synteny analysis between Medicago truncatula (a model legume) and faba bean genomes was performed to identify candidate genes for these markers. Collinearity was evaluated between the faba bean genetic map constructed in this study and the faba bean consensus map, resulting in identifying possible genomic regions in faba bean which may control frost tolerance genes. The two genetic backgrounds were useful in detecting new variation for improving frost tolerance in winter faba bean. Of the five validated SNP markers, one (VF_Mt3g086600) was found to be associated with frost tolerance and FAC in both populations. This marker was also associated with winter hardiness and high yield in earlier studies. This marker is located in a gene of unknown function.
Collapse
Affiliation(s)
- Ahmed Sallam
- Department of Genetics, Faculty of Agriculture, Assiut UniversityAssiut, Egypt
- Department of Agronomy and Horticulture, University of Nebraska-LincolnLincoln, NE, USA
- *Correspondence: Ahmed Sallam
| | - Mustapha Arbaoui
- Unit of Genetics, Biotechnologies and Plant Breeding, Department of Production, Protection and Biotechnology of Plants, Hassan II Institute of Agronomy and Veterinary MedicineRabat, Morocco
| | - Mohamed El-Esawi
- Botany Department, Faculty of Science, Tanta UniversityTanta, Egypt
- Division of Crop Biotechnics, KU LeuvenLeuven, Belgium
| | - Nathan Abshire
- Department of Agronomy and Horticulture, University of Nebraska-LincolnLincoln, NE, USA
| | - Regina Martsch
- Department of Crop Sciences, Georg-August-Univeristät GöttingenGöttingen, Germany
| |
Collapse
|
47
|
Xiao D, Cui Y, Xu F, Xu X, Gao G, Wang Y, Guo Z, Wang D, Wang NN. SENESCENCE-SUPPRESSED PROTEIN PHOSPHATASE Directly Interacts with the Cytoplasmic Domain of SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE and Negatively Regulates Leaf Senescence in Arabidopsis. PLANT PHYSIOLOGY 2015; 169:1275-91. [PMID: 26304848 PMCID: PMC4587474 DOI: 10.1104/pp.15.01112] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 08/21/2015] [Indexed: 05/22/2023]
Abstract
Reversible protein phosphorylation mediated by protein kinases and phosphatases plays an important role in the regulation of leaf senescence. We previously reported that the leucine-rich repeat receptor-like kinase SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE (AtSARK) positively regulates leaf senescence in Arabidopsis (Arabidopsis thaliana). Here, we report the involvement of a protein serine/threonine phosphatase 2C-type protein phosphatase, SENESCENCE-SUPPRESSED PROTEIN PHOSPHATASE (SSPP), in the negative regulation of Arabidopsis leaf senescence. SSPP transcript levels decreased greatly during both natural senescence and SARK-induced precocious senescence. Overexpression of SSPP significantly delayed leaf senescence in Arabidopsis. Protein pull-down and bimolecular fluorescence complementation assays demonstrated that the cytosol-localized SSPP could interact with the cytoplasmic domain of the plasma membrane-localized AtSARK. In vitro assays showed that SSPP has protein phosphatase function and can dephosphorylate the cytosolic domain of AtSARK. Consistent with these observations, overexpression of SSPP effectively rescued AtSARK-induced precocious leaf senescence and changes in hormonal responses. All our results suggested that SSPP functions in sustaining proper leaf longevity and preventing early senescence by suppressing or perturbing SARK-mediated senescence signal transduction.
Collapse
Affiliation(s)
- Dong Xiao
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yanjiao Cui
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fan Xu
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinxin Xu
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guanxiao Gao
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yaxin Wang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhaoxia Guo
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dan Wang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ning Ning Wang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
48
|
Häffner E, Konietzki S, Diederichsen E. Keeping Control: The Role of Senescence and Development in Plant Pathogenesis and Defense. PLANTS (BASEL, SWITZERLAND) 2015; 4:449-88. [PMID: 27135337 PMCID: PMC4844401 DOI: 10.3390/plants4030449] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 06/24/2015] [Accepted: 07/03/2015] [Indexed: 12/12/2022]
Abstract
Many plant pathogens show interactions with host development. Pathogens may modify plant development according to their nutritional demands. Conversely, plant development influences pathogen growth. Biotrophic pathogens often delay senescence to keep host cells alive, and resistance is achieved by senescence-like processes in the host. Necrotrophic pathogens promote senescence in the host, and preventing early senescence is a resistance strategy of plants. For hemibiotrophic pathogens both patterns may apply. Most signaling pathways are involved in both developmental and defense reactions. Increasing knowledge about the molecular components allows to distinguish signaling branches, cross-talk and regulatory nodes that may influence the outcome of an infection. In this review, recent reports on major molecular players and their role in senescence and in pathogen response are reviewed. Examples of pathosystems with strong developmental implications illustrate the molecular basis of selected control strategies. A study of gene expression in the interaction between the hemibiotrophic vascular pathogen Verticillium longisporum and its cruciferous hosts shows processes that are fine-tuned to counteract early senescence and to achieve resistance. The complexity of the processes involved reflects the complex genetic control of quantitative disease resistance, and understanding the relationship between disease, development and resistance will support resistance breeding.
Collapse
Affiliation(s)
- Eva Häffner
- Freie Universität Berlin, Fachbereich Biologie, Chemie, Pharmazie, Institut für Biologie, Dahlem Centre of Plant Sciences, Angewandte Genetik, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany.
| | - Sandra Konietzki
- Freie Universität Berlin, Fachbereich Biologie, Chemie, Pharmazie, Institut für Biologie, Dahlem Centre of Plant Sciences, Angewandte Genetik, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| | - Elke Diederichsen
- Freie Universität Berlin, Fachbereich Biologie, Chemie, Pharmazie, Institut für Biologie, Dahlem Centre of Plant Sciences, Angewandte Genetik, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany.
- Norddeutsche Pflanzenzucht H.G. Lembke KG, Hohenlieth, D-24363 Holtsee, Germany.
| |
Collapse
|
49
|
Huang CK, Lo PC, Huang LF, Wu SJ, Yeh CH, Lu CA. A single-repeat MYB transcription repressor, MYBH, participates in regulation of leaf senescence in Arabidopsis. PLANT MOLECULAR BIOLOGY 2015; 88:269-86. [PMID: 25920996 DOI: 10.1007/s11103-015-0321-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 04/17/2015] [Indexed: 05/07/2023]
Abstract
Leaf senescence, the final stage of leaf development, is regulated tightly by endogenous and environmental signals. MYBS3, a MYB transcription factor with a single DNA-binding domain, mediates sugar signaling in rice. Here we report that an Arabidopsis MYBS3 homolog, MYBH, plays a critical role in developmentally regulated and dark-induced leaf senescence by repressing transcription. Expression of MYBH was enhanced in older and dark-treated leaves. Gain- and loss-of-function analysis indicated that MYBH was involved in the onset of leaf senescence. Plants constitutively overexpressing MYBH underwent premature leaf senescence and showed enhanced expression of leaf senescence marker genes. In contrast, the MYBH mutant line, mybh-1, exhibited a delayed-senescence phenotype. The EAR repression domain was required for MYBH-regulated leaf senescence. Overexpression and knockout of MYBH repressed and enhanced auxin-responsive gene expression, respectively. MYBH repressed the auxin-amido synthase genes DFL1/GH3.6 and DFL2/GH3.10, which regulate auxin homoeostasis, by binding directly to the TA box in each of their regulatory regions. An auxin-responsive phenotype was enhanced in MYBH overexpression lines and reduced in mybh knockout lines. Overexpression of MYBH enhanced gene expression of SAUR36, an auxin-promoted leaf senescence key regulator, and accelerated ABA- and ethylene-induced leaf senescence in transgenic Arabidopsis plants. Our results suggest that the role of MYBH in controlling auxin homeostasis accounts for its capacity to participate in regulation of age- and darkness-induced leaf senescence in Arabidopsis.
Collapse
Affiliation(s)
- Chun-Kai Huang
- Department of Life Science, National Central University, Jhongli City, 320, Taoyuan County, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
50
|
Kitazumi A, Kawahara Y, Onda TS, De Koeyer D, de los Reyes BG. Implications of miR166 and miR159 induction to the basal response mechanisms of an andigena potato (Solanum tuberosum subsp. andigena) to salinity stress, predicted from network models in Arabidopsis. Genome 2015; 58:13-24. [PMID: 25955479 DOI: 10.1139/gen-2015-0011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNA (miRNA) mediated changes in gene expression by post-transcriptional modulation of major regulatory transcription factors is a potent mechanism for integrating growth and stress-related responses. Exotic plants including many traditional varieties of Andean potatoes (Solanum tuberosum subsp. andigena) are known for better adaptation to marginal environments. Stress physiological studies confirmed earlier reports on the salinity tolerance potentials of certain andigena cultivars. Guided by the hypothesis that certain miRNAs play important roles in growth modulation under suboptimal conditions, we identified and characterized salinity stress-responsive miRNA-target gene pairs in the andigena cultivar Sullu by parallel analysis of noncoding and coding RNA transcriptomes. Inverse relationships were established by the reverse co-expression between two salinity stress-regulated miRNAs (miR166, miR159) and their target transcriptional regulators HD-ZIP-Phabulosa/Phavulota and Myb101, respectively. Based on heterologous models in Arabidopsis, the miR166-HD-ZIP-Phabulosa/Phavulota network appears to be involved in modulating growth perhaps by mediating vegetative dormancy, with linkages to defense-related pathways. The miR159-Myb101 network may be important for the modulation of vegetative growth while also controlling stress-induced premature transition to reproductive phase. We postulate that the induction of miR166 and miR159 under salinity stress represents important network hubs for balancing gene expression required for basal growth adjustments.
Collapse
Affiliation(s)
- Ai Kitazumi
- School of Biology and Ecology, University of Maine, 5735 Hitchner Hall, Orono, ME 04469, USA
| | | | | | | | | |
Collapse
|