1
|
Zhao X, Mai C, Xia L, Jia G, Li X, Lu Y, Li Z, Yang H, Wang L. Molecular Insights into the Positive Role of Soybean Nodulation by GmWRKY17. Int J Mol Sci 2025; 26:2965. [PMID: 40243584 PMCID: PMC11988455 DOI: 10.3390/ijms26072965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/19/2025] [Accepted: 03/22/2025] [Indexed: 04/18/2025] Open
Abstract
Soybean is an important economic oilseed crop, being rich in protein and plant oil, it is widely cultivated around the world. Soybeans have been shown to establish a symbiotic nitrogen fixation (SNF) with their compatible rhizobia, resulting in the formation of nodules. Previous studies have demonstrated the critical roles of phytohormones, such as abscisic acid and cytokinin, in the process of legume nodulation. The present study investigated the role of GmWRKY17, a homolog of Rosa hybrida (Rh)WRKY13 in regulating plant immunity through cytokinin content and abscisic acid signaling in soybean nodulation. Utilizing real-time PCR and histochemical staining, we demonstrated that GmWRKY17 is predominantly expressed in soybean root nodules. Subsequently, we analyzed the function of GmWRKY17-overexpression, RNA interference (RNAi), and the CRISPR/Cas9 system. Overexpression of GmWRKY17 significantly increases soybean nodule number, while RNAi or CRISPR/Cas9-mediated knockout of GmWRKY17 resulted in a dramatic repression of nodule formation in soybeans. These results highlight that GmWRKY17 functions as a positive regulator involved in soybean nodulation. Furthermore, manipulation of GmWRKY17 expression impacts the expression of genes associated with the nod factor (NF) signaling pathway, thereby influencing soybean nodulation. This study demonstrated that WRKY-type transcription factors are involved in the regulation of legume nodulation, offering new light on the molecular basis of the symbiotic interaction between legumes and rhizobia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lixiang Wang
- Houji Laboratory in Shanxi Province, College of Agriculture, Shanxi Agricultural University, Taiyuan 030031, China; (X.Z.); (C.M.); (L.X.); (G.J.); (X.L.); (Y.L.); (Z.L.); (H.Y.)
| |
Collapse
|
2
|
Guillory A, Fournier J, Kelner A, Hobecker K, Auriac MC, Frances L, Delers A, Pedinotti L, Le Ru A, Keller J, Delaux PM, Gutjahr C, Frei Dit Frey N, de Carvalho-Niebel F. Annexin- and calcium-regulated priming of legume root cells for endosymbiotic infection. Nat Commun 2024; 15:10639. [PMID: 39638784 PMCID: PMC11621553 DOI: 10.1038/s41467-024-55067-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
Legumes establish endosymbioses with arbuscular mycorrhizal (AM) fungi or rhizobia bacteria to improve mineral nutrition. Symbionts are hosted in privileged habitats, root cortex (for AM fungi) or nodules (for rhizobia) for efficient nutrient exchange. To reach these habitats, plants form cytoplasmic cell bridges, key to predicting and guiding fungal hyphae or rhizobia-filled infection thread (IT) root entry. However, the underlying mechanisms are poorly studied. Here we show that unique ultrastructural changes and calcium (Ca2+) spiking signatures, closely associated with Medicago truncatula Annexin 1 (MtAnn1) accumulation, accompany rhizobia-related bridge formation. Loss of MtAnn1 function in M. truncatula affects Ca2+ spike amplitude, cytoplasmic configuration and rhizobia infection efficiency, consistent with a role of MtAnn1 in regulating infection priming. MtAnn1, which evolved in species establishing intracellular symbioses, is also AM-symbiosis-induced and required for proper arbuscule formation. Together, we propose that MtAnn1 is part of an ancient Ca2+-regulatory module for transcellular endosymbiotic infection.
Collapse
Affiliation(s)
- Ambre Guillory
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Joëlle Fournier
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Audrey Kelner
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Karen Hobecker
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Lisa Frances
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Anaïs Delers
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Léa Pedinotti
- LRSV, Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Aurélie Le Ru
- FRAIB-TRI imaging platform, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Jean Keller
- LRSV, Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Pierre-Marc Delaux
- LRSV, Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Caroline Gutjahr
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | | |
Collapse
|
3
|
Camuel A, Gully D, Pervent M, Teulet A, Nouwen N, Arrighi JF, Giraud E. Genetic and transcriptomic analysis of the Bradyrhizobium T3SS-triggered nodulation in the legume Aeschynomene evenia. THE NEW PHYTOLOGIST 2024; 244:1994-2007. [PMID: 39300950 DOI: 10.1111/nph.20139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Some Bradyrhizobium strains nodulate certain Aeschynomene species independently of Nod factors, but thanks to their type III secretion system (T3SS). While different T3 effectors triggering nodulation (ErnA and Sup3) have been identified, the plant signalling pathways they activate remain unknown. Here, we explored the intraspecies variability in T3SS-triggered nodulation within Aeschynomene evenia and investigated transcriptomic responses that occur during this symbiosis. Furthermore, Bradyrhizobium strains having different effector sets were tested on A. evenia mutants altered in various symbiotic signalling genes. We identified the A. evenia accession N21/PI 225551 as appropriate for deciphering the T3SS-dependent process. Comparative transcriptomic analysis of A. evenia N21 roots inoculated with ORS3257 strain and its ∆ernA mutant revealed genes differentially expressed, including some involved in plant defences and auxin signalling. In the other A. evenia accession N76, all tested strains nodulated the AeCRK mutant but not the AeNIN and AeNSP2 mutants, indicating a differential requirement of these genes for T3SS-dependent nodulation. Furthermore, the effects of AePOLLUX, AeCCaMK and AeCYCLOPS mutations differed between the strains. Notably, ORS86 nodulated these three mutant lines and required for this both ErnA and Sup3. Taken together, these results shed light on how the T3SS-dependent nodulation process is achieved in legumes.
Collapse
Affiliation(s)
- Alicia Camuel
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/Institut Agro Montpellier/INRAE/Université de Montpellier/CIRAD, TA-A82/J- Campus de Baillarguet, 34398, Montpellier Cedex 5, France
- PHIM Plant Health Institute of Montpellier, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34398, Montpellier Cedex 5, France
| | - Djamel Gully
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/Institut Agro Montpellier/INRAE/Université de Montpellier/CIRAD, TA-A82/J- Campus de Baillarguet, 34398, Montpellier Cedex 5, France
- PHIM Plant Health Institute of Montpellier, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34398, Montpellier Cedex 5, France
| | - Marjorie Pervent
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/Institut Agro Montpellier/INRAE/Université de Montpellier/CIRAD, TA-A82/J- Campus de Baillarguet, 34398, Montpellier Cedex 5, France
- PHIM Plant Health Institute of Montpellier, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34398, Montpellier Cedex 5, France
| | - Albin Teulet
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/Institut Agro Montpellier/INRAE/Université de Montpellier/CIRAD, TA-A82/J- Campus de Baillarguet, 34398, Montpellier Cedex 5, France
- University of Cambridge, Sainsbury Laboratory (SLCU), Cambridge, CB2 1LR, UK
| | - Nico Nouwen
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/Institut Agro Montpellier/INRAE/Université de Montpellier/CIRAD, TA-A82/J- Campus de Baillarguet, 34398, Montpellier Cedex 5, France
- PHIM Plant Health Institute of Montpellier, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34398, Montpellier Cedex 5, France
| | - Jean-François Arrighi
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/Institut Agro Montpellier/INRAE/Université de Montpellier/CIRAD, TA-A82/J- Campus de Baillarguet, 34398, Montpellier Cedex 5, France
- PHIM Plant Health Institute of Montpellier, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34398, Montpellier Cedex 5, France
| | - Eric Giraud
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/Institut Agro Montpellier/INRAE/Université de Montpellier/CIRAD, TA-A82/J- Campus de Baillarguet, 34398, Montpellier Cedex 5, France
- PHIM Plant Health Institute of Montpellier, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34398, Montpellier Cedex 5, France
| |
Collapse
|
4
|
Pancaldi F, Gulisano A, Severing EI, van Kaauwen M, Finkers R, Kodde L, Trindade LM. The genome of Lupinus mutabilis: Evolution and genetics of an emerging bio-based crop. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:881-900. [PMID: 39264984 DOI: 10.1111/tpj.17021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/02/2024] [Accepted: 08/23/2024] [Indexed: 09/14/2024]
Abstract
Lupinus mutabilis is an under-domesticated legume species from the Andean region of South America. It belongs to the New World lupins clade, which groups several lupin species displaying large genetic variation and adaptability to highly different environments. L. mutabilis is attracting interest as a potential multipurpose crop to diversify the European supply of plant proteins, increase agricultural biodiversity, and fulfill bio-based applications. This study reports the first high-quality L. mutabilis genome assembly, which is also the first sequenced assembly of a New World lupin species. Through comparative genomics and phylogenetics, the evolution of L. mutabilis within legumes and lupins is described, highlighting both genomic similarities and patterns specific to L. mutabilis, potentially linked to environmental adaptations. Furthermore, the assembly was used to study the genetics underlying important traits for the establishment of L. mutabilis as a novel crop, including protein and quinolizidine alkaloids contents in seeds, genomic patterns of classic resistance genes, and genomic properties of L. mutabilis mycorrhiza-related genes. These analyses pointed out copy number variation, differential genomic gene contexts, and gene family expansion through tandem duplications as likely important drivers of the genomic diversity observed for these traits between L. mutabilis and other lupins and legumes. Overall, the L. mutabilis genome assembly will be a valuable resource to conduct genetic research and enable genomic-based breeding approaches to turn L. mutabilis into a multipurpose legume crop.
Collapse
Affiliation(s)
- Francesco Pancaldi
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Agata Gulisano
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Edouard I Severing
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Martijn van Kaauwen
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
- Gennovation B.V, Agro Business Park 10, 6708PW, Wageningen, The Netherlands
| | - Richard Finkers
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
- Gennovation B.V, Agro Business Park 10, 6708PW, Wageningen, The Netherlands
| | - Linda Kodde
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Luisa M Trindade
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| |
Collapse
|
5
|
Bircheneder M, Schreiber T, Tissier A, Parniske M. A quantitative assay for the efficiency of RNA-guided genome editing in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2564-2577. [PMID: 39032106 DOI: 10.1111/tpj.16931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/23/2024] [Accepted: 06/18/2024] [Indexed: 07/22/2024]
Abstract
RNA-guided endonucleases originating from the bacterial CRISPR/Cas system are a versatile tool for targeted gene editing. To determine the functional relevance of a gene of interest, deletion of the entire open reading frame (ORF) by two independent double-strand breaks (DSBs) is particularly attractive. This strategy greatly benefits from high editing efficiency, which is strongly influenced by the Cas endonuclease version used. We developed two reporter switch-on assays, for quantitative comparison and optimization of Cas constructs. The assays are based on four components: (i) A reporter gene, the mRNA of which carries a hairpin (HP) loop targeted by (ii) the endoribonuclease Csy4. Cleavage of the mRNA at the HP loop by Csy4 abolishes the translation of the reporter. Csy4 was used as the target for full deletion. (iii) A Cas system targeting sites flanking the Csy4 ORF with a 20-bp spacer either side to preferentially detect full-deletion events. Loss of functional Csy4 would lead to reporter gene expression, allowing indirect quantification of Cas-mediated deletion events. (iv) A reference gene for normalization. We tested these assays on Nicotiana benthamiana leaves and Lotus japonicus calli induced on hypocotyl sections, using Firefly luciferase and mCitrine as reporter genes and Renilla luciferase and hygromycin phosphotransferase II as reference genes, respectively. We observed a >90% correlation between reporter expression and full Csy4 deletion events, demonstrating the validity of these assays. The principle of using the Csy4-HP module as Cas target should be applicable to other editing goals including single DSBs in all organisms.
Collapse
Affiliation(s)
- Martin Bircheneder
- Genetics, Faculty of Biology, LMU Munich, Grosshaderner Str. 2-4, Martinsried, D-82152, Germany
| | - Tom Schreiber
- Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), D-06120, Germany
| | - Alain Tissier
- Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), D-06120, Germany
| | - Martin Parniske
- Genetics, Faculty of Biology, LMU Munich, Grosshaderner Str. 2-4, Martinsried, D-82152, Germany
| |
Collapse
|
6
|
Ye K, Bu F, Zhong L, Dong Z, Ma Z, Tang Z, Zhang Y, Yang X, Xu X, Wang E, Lucas WJ, Huang S, Liu H, Zheng J. Mapping the molecular landscape of Lotus japonicus nodule organogenesis through spatiotemporal transcriptomics. Nat Commun 2024; 15:6387. [PMID: 39080318 PMCID: PMC11289483 DOI: 10.1038/s41467-024-50737-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Legumes acquire nitrogen-fixing ability by forming root nodules. Transferring this capability to more crops could reduce our reliance on nitrogen fertilizers, thereby decreasing environmental pollution and agricultural production costs. Nodule organogenesis is complex, and a comprehensive transcriptomic atlas is crucial for understanding the underlying molecular events. Here, we utilized spatial transcriptomics to investigate the development of nodules in the model legume, Lotus japonicus. Our investigation has identified the developmental trajectories of two critical regions within the nodule: the infection zone and peripheral tissues. We reveal the underlying biological processes and provide gene sets to achieve symbiosis and material exchange, two essential aspects of nodulation. Among the candidate regulatory genes, we illustrate that LjNLP3, a transcription factor belonging to the NIN-LIKE PROTEIN family, orchestrates the transition of nodules from the differentiation to maturation. In summary, our research advances our understanding of nodule organogenesis and provides valuable data for developing symbiotic nitrogen-fixing crops.
Collapse
Affiliation(s)
- Keyi Ye
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, China.
| | - Fengjiao Bu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, China
| | | | - Zhaonian Dong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, China
| | - Zhaoxu Ma
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, China
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhanpeng Tang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, China
| | - Yu Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, China
- School of Agriculture, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xueyong Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, 518083, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, China
| | - William J Lucas
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, China
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, 95616, USA
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, China
- National Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Huan Liu
- BGI Research, Wuhan, 430074, China.
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, 518083, China.
| | - Jianshu Zheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, China.
| |
Collapse
|
7
|
Soyano T, Akamatsu A, Takeda N, Watahiki MK, Goh T, Okuma N, Suganuma N, Kojima M, Takebayashi Y, Sakakibara H, Nakajima K, Kawaguchi M. Periodic cytokinin responses in Lotus japonicus rhizobium infection and nodule development. Science 2024; 385:288-294. [PMID: 39024445 DOI: 10.1126/science.adk5589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 04/26/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024]
Abstract
Host plants benefit from legume root nodule symbiosis with nitrogen-fixing bacteria under nitrogen-limiting conditions. In this interaction, the hosts must regulate nodule numbers and distribution patterns to control the degree of symbiosis and maintain root growth functions. The host response to symbiotic bacteria occurs discontinuously but repeatedly at the region behind the tip of the growing roots. Here, live-imaging and transcriptome analyses revealed oscillating host gene expression with approximately 6-hour intervals upon bacterial inoculation. Cytokinin response also exhibited a similar oscillation pattern. Cytokinin signaling is crucial to maintaining the periodicity, as observed in cytokinin receptor mutants displaying altered infection foci distribution. This periodic regulation influences the size of the root region responsive to bacteria, as well as the nodulation process progression.
Collapse
Affiliation(s)
- Takashi Soyano
- Division of Symbiotic Systems, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Basic Biology Program, Graduate University for Advanced Studies, SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Akira Akamatsu
- Graduate School of Biological and Environmental Sciences, Kwansei Gakuin University, Gakuen Uegahara 1, Sanda, Hyogo 669-1330, Japan
| | - Naoya Takeda
- Graduate School of Biological and Environmental Sciences, Kwansei Gakuin University, Gakuen Uegahara 1, Sanda, Hyogo 669-1330, Japan
| | - Masaaki K Watahiki
- Faculty of Science, Division of Biological Sciences, Hokkaido University, Kitaku Kita 10, Nishi 8, Sapporo 060-0810, Japan
| | - Tatsuaki Goh
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Biological Science, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Nao Okuma
- Division of Symbiotic Systems, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Norio Suganuma
- Department of Life Science, Aichi University of Education, Kariya, Aichi 448-8542, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Keiji Nakajima
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Biological Science, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Basic Biology Program, Graduate University for Advanced Studies, SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
8
|
Ferrer-Orgaz S, Tiwari M, Isidra-Arellano MC, Pozas-Rodriguez EA, Vernié T, Rich MK, Mbengue M, Formey D, Delaux PM, Ané JM, Valdés-López O. Early Phosphorylated Protein 1 is required to activate the early rhizobial infection program. THE NEW PHYTOLOGIST 2024; 241:962-968. [PMID: 38009302 DOI: 10.1111/nph.19423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/09/2023] [Indexed: 11/28/2023]
Affiliation(s)
- Susana Ferrer-Orgaz
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, 54090, Mexico
- Department of Plant Pathology, Russell Laboratories, University of Wisconsin, 1630 Linden Dr., Madison, WI, 53706, USA
| | - Manish Tiwari
- Department of Bacteriology, University of Wisconsin, Microbial Science Building, 1550 Linden Dr., Madison, WI, 53706, USA
| | - Mariel C Isidra-Arellano
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, 54090, Mexico
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Eithan A Pozas-Rodriguez
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, 54090, Mexico
- Department of Plant Pathology, Russell Laboratories, University of Wisconsin, 1630 Linden Dr., Madison, WI, 53706, USA
| | - Tatiana Vernié
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 3126, Castanet Tolosan, France
| | - Mélanie K Rich
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 3126, Castanet Tolosan, France
| | - Malick Mbengue
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 3126, Castanet Tolosan, France
| | - Damien Formey
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, 62210, Morelos, Mexico
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 3126, Castanet Tolosan, France
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin, Microbial Science Building, 1550 Linden Dr., Madison, WI, 53706, USA
- Department of Agronomy, University of Wisconsin, 1575 Linden Dr., Madison, WI, 53706, USA
| | - Oswaldo Valdés-López
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, 54090, Mexico
| |
Collapse
|
9
|
Roda C, Clúa J, Eylenstein A, Greco M, Ariel F, Zanetti ME, Blanco FA. The C subunit of the nuclear factor Y binds to the Cyclin P4;1 promoter to modulate nodule organogenesis and infection during symbiosis in Phaseolus vulgaris. THE NEW PHYTOLOGIST 2024; 241:525-531. [PMID: 38009979 DOI: 10.1111/nph.19419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Affiliation(s)
- Carla Roda
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-La Plata, CONICET, La Plata, 1900, Argentina
| | - Joaquín Clúa
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-La Plata, CONICET, La Plata, 1900, Argentina
| | - Andrés Eylenstein
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-La Plata, CONICET, La Plata, 1900, Argentina
| | - Micaela Greco
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-La Plata, CONICET, La Plata, 1900, Argentina
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, CCT Santa Fe, CONICET-Universidad Nacional del Litoral, Santa Fe, 3000, Argentina
| | - María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-La Plata, CONICET, La Plata, 1900, Argentina
| | - Flavio Antonio Blanco
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-La Plata, CONICET, La Plata, 1900, Argentina
| |
Collapse
|
10
|
Frank M, Fechete LI, Tedeschi F, Nadzieja M, Nørgaard MMM, Montiel J, Andersen KR, Schierup MH, Reid D, Andersen SU. Single-cell analysis identifies genes facilitating rhizobium infection in Lotus japonicus. Nat Commun 2023; 14:7171. [PMID: 37935666 PMCID: PMC10630511 DOI: 10.1038/s41467-023-42911-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023] Open
Abstract
Legume-rhizobium signaling during establishment of symbiotic nitrogen fixation restricts rhizobium colonization to specific cells. A limited number of root hair cells allow infection threads to form, and only a fraction of the epidermal infection threads progress to cortical layers to establish functional nodules. Here we use single-cell analysis to define the epidermal and cortical cell populations that respond to and facilitate rhizobium infection. We then identify high-confidence nodulation gene candidates based on their specific expression in these populations, pinpointing genes stably associated with infection across genotypes and time points. We show that one of these, which we name SYMRKL1, encodes a protein with an ectodomain predicted to be nearly identical to that of SYMRK and is required for normal infection thread formation. Our work disentangles cellular processes and transcriptional modules that were previously confounded due to lack of cellular resolution, providing a more detailed understanding of symbiotic interactions.
Collapse
Affiliation(s)
- Manuel Frank
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000, Aarhus C, Denmark
| | - Lavinia Ioana Fechete
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000, Aarhus C, Denmark
| | - Francesca Tedeschi
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000, Aarhus C, Denmark
| | - Marcin Nadzieja
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000, Aarhus C, Denmark
| | | | - Jesus Montiel
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000, Aarhus C, Denmark
- Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, Mexico
| | - Kasper Røjkjær Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000, Aarhus C, Denmark
| | - Mikkel H Schierup
- Bioinformatics Research Centre, Aarhus University, Universitetsbyen 81, DK-8000, Aarhus C, Denmark
| | - Dugald Reid
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000, Aarhus C, Denmark.
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia.
| | - Stig Uggerhøj Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
11
|
Liu Z, Yang J, Long Y, Zhang C, Wang D, Zhang X, Dong W, Zhao L, Liu C, Zhai J, Wang E. Single-nucleus transcriptomes reveal spatiotemporal symbiotic perception and early response in Medicago. NATURE PLANTS 2023; 9:1734-1748. [PMID: 37749242 DOI: 10.1038/s41477-023-01524-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 08/25/2023] [Indexed: 09/27/2023]
Abstract
Establishing legume-rhizobial symbiosis requires precise coordination of complex responses in a time- and cell type-specific manner. Encountering Rhizobium, rapid changes of gene expression levels in host plants occur in the first few hours, which prepare the plants to turn off defence and form a symbiotic relationship with the microbes. Here, we applied single-nucleus RNA sequencing to characterize the roots of Medicago truncatula at 30 min, 6 h and 24 h after nod factor treatment. We found drastic global gene expression reprogramming at 30 min in the epidermis and cortex and most of these changes were restored at 6 h. Moreover, plant defence response genes are activated at 30 min and subsequently suppressed at 6 h in non-meristem cells. Only in the cortical cells but not in other cell types, we found the flavonoid synthase genes required to recruit rhizobia are highly expressed 30 min after inoculation with nod factors. A gene module enriched for symbiotic nitrogen fixation genes showed that MtFER (MtFERONIA) and LYK3 (LysM domain receptor-like kinase 3) share similar responses to symbiotic signals. We further found that MtFER can be phosphorylated by LYK3 and it participates in rhizobial symbiosis. Our results expand our understanding of dynamic spatiotemporal symbiotic responses at the single-cell level.
Collapse
Affiliation(s)
- Zhijian Liu
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Jun Yang
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yanping Long
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Chi Zhang
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Dapeng Wang
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaowei Zhang
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Wentao Dong
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Li Zhao
- School of Life Sciences, Division of Life Sciences and Medicine, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei, China
| | - Chengwu Liu
- School of Life Sciences, Division of Life Sciences and Medicine, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei, China
| | - Jixian Zhai
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, China.
| | - Ertao Wang
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
12
|
Libourel C, Keller J, Brichet L, Cazalé AC, Carrère S, Vernié T, Couzigou JM, Callot C, Dufau I, Cauet S, Marande W, Bulach T, Suin A, Masson-Boivin C, Remigi P, Delaux PM, Capela D. Comparative phylotranscriptomics reveals ancestral and derived root nodule symbiosis programmes. NATURE PLANTS 2023:10.1038/s41477-023-01441-w. [PMID: 37322127 PMCID: PMC10356618 DOI: 10.1038/s41477-023-01441-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023]
Abstract
Symbiotic interactions such as the nitrogen-fixing root nodule symbiosis (RNS) have structured ecosystems during the evolution of life. Here we aimed at reconstructing ancestral and intermediate steps that shaped RNS observed in extant flowering plants. We compared the symbiotic transcriptomic responses of nine host plants, including the mimosoid legume Mimosa pudica for which we assembled a chromosome-level genome. We reconstructed the ancestral RNS transcriptome composed of most known symbiotic genes together with hundreds of novel candidates. Cross-referencing with transcriptomic data in response to experimentally evolved bacterial strains with gradual symbiotic proficiencies, we found the response to bacterial signals, nodule infection, nodule organogenesis and nitrogen fixation to be ancestral. By contrast, the release of symbiosomes was associated with recently evolved genes encoding small proteins in each lineage. We demonstrate that the symbiotic response was mostly in place in the most recent common ancestor of the RNS-forming species more than 90 million years ago.
Collapse
Affiliation(s)
- Cyril Libourel
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Jean Keller
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Lukas Brichet
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | | | - Sébastien Carrère
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Tatiana Vernié
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Jean-Malo Couzigou
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Caroline Callot
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Isabelle Dufau
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Stéphane Cauet
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - William Marande
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Tabatha Bulach
- INRAE, US1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Amandine Suin
- INRAE, US1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | | | - Philippe Remigi
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France.
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France.
| | - Delphine Capela
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France.
| |
Collapse
|
13
|
Wang J, Pislariu CI, Liu CW, Tsyganov VE, DasGupta M. Editorial: Molecular and cellular mechanisms of the legume-rhizobia symbiosis, volume II. FRONTIERS IN PLANT SCIENCE 2023; 14:1208904. [PMID: 37313254 PMCID: PMC10258313 DOI: 10.3389/fpls.2023.1208904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/03/2023] [Indexed: 06/15/2023]
Affiliation(s)
- Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Catalina Iulia Pislariu
- School of the Sciences, Division of Biology, Texas Woman’s University, Denton, TX, United States
| | - Cheng-Wu Liu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Viktor E. Tsyganov
- Laboratory of Molecular and Cellular Biology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | | |
Collapse
|
14
|
Lu W, Zheng Z, Kang Q, Liu H, Jia H, Yu F, Zhang Y, Han D, Zhang X, Yan X, Huo M, Wang J, Chen Q, Zhao Y, Xin D. Detection of type III effector-induced transcription factors that regulate phytohormone content during symbiosis establishment in soybean. PHYSIOLOGIA PLANTARUM 2023; 175:e13872. [PMID: 36764699 DOI: 10.1111/ppl.13872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/14/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Soybean is a pivotal protein and oil crop that utilizes atmospheric nitrogen via symbiosis with rhizobium soil bacteria. Rhizobial type III effectors (T3Es) are essential regulators during symbiosis establishment. However, how the transcription factors involved in the interaction between phytohormone synthesis and type III effectors are connected is unclear. To detect the responses of phytohormone and transcription factor genes to rhizobial type III effector NopAA and type III secretion system, the candidate genes underlying soybean symbiosis were identified using RNA sequencing (RNA-seq) and phytohormone content analysis of soybean roots infected with wild-type Rhizobium and its derived T3E mutant. Via RNA-seq analysis the WRKY and ERF transcription factor families were identified as the most differentially expressed factors in the T3E mutant compared with the wild-type. Next, qRT-PCR was used to confirm the candidate genes Glyma.09g282900, Glyma.08g018300, Glyma.18g238200, Glyma.03g116300, Glyma.07g246600, Glyma.16g172400 induced by S. fredii HH103, S. fredii HH103ΩNopAA, and S. fredii HH103ΩRhcN. Since the WRKY and ERF families may regulate abscisic acid (ABA) content and underlying nodule formation, we performed phytohormone content analysis at 0.5 and 24 h post-inoculation (hpi). A significant change in ABA content was found between wild Rhizobium and type III effector mutant. Our results support that NopAA can promote the establishment of symbiosis by affecting the ABA signaling pathways by regulating WRKY and ERF which regulate the phytohormone signaling pathway. Specifically, our work provides insights into a signaling interaction of prokaryotic effector-induced phytohormone response involved in host signaling that regulates the establishment of symbiosis and increases nitrogen utilization efficiency in soybean plants.
Collapse
Affiliation(s)
- Wencheng Lu
- Soybean Research Institute, Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe, China
| | - Zefeng Zheng
- Key Laboratory of Soybean Biology in Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Qinglin Kang
- Key Laboratory of Soybean Biology in Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Hongji Liu
- Key Laboratory of Soybean Biology in Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Hongchang Jia
- Soybean Research Institute, Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe, China
| | - Fenghao Yu
- Soybean Research Institute, Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe, China
- Key Laboratory of Soybean Biology in Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Yuxin Zhang
- Soybean Research Institute, Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe, China
- Key Laboratory of Soybean Biology in Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Dezhi Han
- Soybean Research Institute, Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe, China
| | - Xiaoyuan Zhang
- Key Laboratory of Soybean Biology in Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xiaofei Yan
- Soybean Research Institute, Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe, China
| | - Mingqi Huo
- Key Laboratory of Soybean Biology in Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Jinhui Wang
- Key Laboratory of Soybean Biology in Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Qingshan Chen
- Key Laboratory of Soybean Biology in Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Ying Zhao
- Key Laboratory of Soybean Biology in Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Dawei Xin
- Key Laboratory of Soybean Biology in Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
15
|
Singh J, Valdés‐López O. Discovering the genetic modules controlling root nodule symbiosis under abiotic stresses: salinity as a case study. THE NEW PHYTOLOGIST 2023; 237:1082-1085. [PMID: 36401792 PMCID: PMC10107258 DOI: 10.1111/nph.18627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Legumes form a symbiotic association with rhizobia and fix atmospheric nitrogen in specialized root organs known as nodules. It is well known that salt stress inhibits root nodule symbiosis by decreasing rhizobial growth, rhizobial infection, nodule number, and nitrogenase activity in diverse legumes. Despite this knowledge, the genetic and molecular mechanisms governing salt stress's inhibition of nodulation and nitrogen fixation are still elusive. In this Viewpoint, we summarize the most recent knowledge of the genetic mechanisms that shape this symbiosis according to the salt levels in the soil. We emphasize the relevance of modulating the activity of the transcription factor Nodule Inception to properly shape the symbiosis with rhizobia accordingly. We also highlight the knowledge gaps that are critical for gaining a deeper understanding of the molecular mechanisms underlying the adaptation of the root nodule symbiosis to salt-stress conditions. We consider that filling these gaps can help to improve legume nodulation and harness its ecological benefits even under salt-stress conditions.
Collapse
Affiliation(s)
- Jawahar Singh
- Facultad de Estudios Superiores Iztacala, Laboratorio de Genómica Funcional de LeguminosasUniversidad Nacional Autónoma de MéxicoTlalnepantlaEstado de México54090Mexico
| | - Oswaldo Valdés‐López
- Facultad de Estudios Superiores Iztacala, Laboratorio de Genómica Funcional de LeguminosasUniversidad Nacional Autónoma de MéxicoTlalnepantlaEstado de México54090Mexico
| |
Collapse
|
16
|
Sánchez-Correa MDS, Isidra-Arellano MC, Pozas-Rodríguez EA, Reyero-Saavedra MDR, Morales-Salazar A, del Castillo SMLC, Sanchez-Flores A, Jiménez-Jacinto V, Reyes JL, Formey D, Valdés-López O. Argonaute5 and its associated small RNAs modulate the transcriptional response during the rhizobia- Phaseolus vulgaris symbiosis. FRONTIERS IN PLANT SCIENCE 2022; 13:1034419. [PMID: 36466235 PMCID: PMC9714512 DOI: 10.3389/fpls.2022.1034419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
Both plant- and rhizobia-derived small RNAs play an essential role in regulating the root nodule symbiosis in legumes. Small RNAs, in association with Argonaute proteins, tune the expression of genes participating in nodule development and rhizobial infection. However, the role of Argonaute proteins in this symbiosis has been overlooked. In this study, we provide transcriptional evidence showing that Argonaute5 (AGO5) is a determinant genetic component in the root nodule symbiosis in Phaseolus vulgaris. A spatio-temporal transcriptional analysis revealed that the promoter of PvAGO5 is active in lateral root primordia, root hairs from rhizobia-inoculated roots, nodule primordia, and mature nodules. Transcriptional analysis by RNA sequencing revealed that gene silencing of PvAGO5 affected the expression of genes involved in the biosynthesis of the cell wall and phytohormones participating in the rhizobial infection process and nodule development. PvAGO5 immunoprecipitation coupled to small RNA sequencing revealed the small RNAs bound to PvAGO5 during the root nodule symbiosis. Identification of small RNAs associated to PvAGO5 revealed miRNAs previously known to participate in this symbiotic process, further supporting a role for AGO5 in this process. Overall, the data presented shed light on the roles that PvAGO5 plays during the root nodule symbiosis in P. vulgaris.
Collapse
Affiliation(s)
- María del Socorro Sánchez-Correa
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Mariel C. Isidra-Arellano
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Eithan A. Pozas-Rodríguez
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - María del Rocío Reyero-Saavedra
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Alfredo Morales-Salazar
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | | | - Alejandro Sanchez-Flores
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Verónica Jiménez-Jacinto
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Jose L. Reyes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Damien Formey
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Oswaldo Valdés-López
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| |
Collapse
|
17
|
Zhang Y, Cheng Q, Liao C, Li L, Gou C, Chen Z, Wang Y, Liu B, Kong F, Chen L. GmTOC1b inhibits nodulation by repressing GmNIN2a and GmENOD40-1 in soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:1052017. [PMID: 36438085 PMCID: PMC9691777 DOI: 10.3389/fpls.2022.1052017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Symbiotic nitrogen fixation is an important factor affecting the yield and quality of leguminous crops. Nodulation is regulated by a complex network comprising several transcription factors. Here, we functionally characterized the role of a TOC1 family member, GmTOC1b, in soybean (Glycine max) nodulation. RT-qPCR assays showed that GmTOC1b is constitutively expressed in soybean. However, GmTOC1b was also highly expressed in nodules, and GmTOC1 localized to the cell nucleus, based on transient transformation in Nicotiana benthamiana leaves. Homozygous Gmtoc1b mutant plants exhibited increased root hair curling and produced more infection threads, resulting in more nodules and greater nodule fresh weight. By contrast, GmTOC1b overexpression inhibited nodulation. Furthermore, we also showed that GmTOC1b represses the expression of nodulation-related genes including GmNIN2a and GmENOD40-1 by binding to their promoters. We conclude that GmTOC1b functions as a transcriptional repressor to inhibit nodulation by repressing the expression of key nodulation-related genes including GmNIN2a, GmNIN2b, and GmENOD40-1 in soybean.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Liyu Chen
- *Correspondence: Liyu Chen, ; Fanjiang Kong,
| |
Collapse
|
18
|
Chakraborty S, Valdés-López O, Stonoha-Arther C, Ané JM. Transcription Factors Controlling the Rhizobium-Legume Symbiosis: Integrating Infection, Organogenesis and the Abiotic Environment. PLANT & CELL PHYSIOLOGY 2022; 63:1326-1343. [PMID: 35552446 DOI: 10.1093/pcp/pcac063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Legume roots engage in a symbiotic relationship with rhizobia, leading to the development of nitrogen-fixing nodules. Nodule development is a sophisticated process and is under the tight regulation of the plant. The symbiosis initiates with a signal exchange between the two partners, followed by the development of a new organ colonized by rhizobia. Over two decades of study have shed light on the transcriptional regulation of rhizobium-legume symbiosis. A large number of transcription factors (TFs) have been implicated in one or more stages of this symbiosis. Legumes must monitor nodule development amidst a dynamic physical environment. Some environmental factors are conducive to nodulation, whereas others are stressful. The modulation of rhizobium-legume symbiosis by the abiotic environment adds another layer of complexity and is also transcriptionally regulated. Several symbiotic TFs act as integrators between symbiosis and the response to the abiotic environment. In this review, we trace the role of various TFs involved in rhizobium-legume symbiosis along its developmental route and highlight the ones that also act as communicators between this symbiosis and the response to the abiotic environment. Finally, we discuss contemporary approaches to study TF-target interactions in plants and probe their potential utility in the field of rhizobium-legume symbiosis.
Collapse
Affiliation(s)
- Sanhita Chakraborty
- Department of Bacteriology, University of Wisconsin, Microbial Sciences Building, 1550 Linden Dr, Madison, WI 53706, USA
| | - Oswaldo Valdés-López
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México 54090, México
| | - Christina Stonoha-Arther
- Department of Bacteriology, University of Wisconsin, Microbial Sciences Building, 1550 Linden Dr, Madison, WI 53706, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin, Microbial Sciences Building, 1550 Linden Dr, Madison, WI 53706, USA
- Department of Agronomy, University of Wisconsin, 1575 Linden Dr, Madison, WI 53706, USA
| |
Collapse
|
19
|
Intracellular infection by symbiotic bacteria requires the mitotic kinase AURORA1. Proc Natl Acad Sci U S A 2022; 119:e2202606119. [PMID: 36252014 PMCID: PMC9618073 DOI: 10.1073/pnas.2202606119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The subcellular events occurring in cells of legume plants as they form transcellular symbiotic-infection structures have been compared with those occurring in premitotic cells. Here, we demonstrate that Aurora kinase 1 (AUR1), a highly conserved mitotic regulator, is required for intracellular infection by rhizobia in Medicago truncatula. AUR1 interacts with microtubule-associated proteins of the TPXL and MAP65 families, which, respectively, activate and are phosphorylated by AUR1, and localizes with them within preinfection structures. MYB3R1, a rhizobia-induced mitotic transcription factor, directly regulates AUR1 through two closely spaced, mitosis-specific activator cis elements. Our data are consistent with a model in which the MYB3R1-AUR1 regulatory module serves to properly orient preinfection structures to direct the transcellular deposition of cell wall material for the growing infection thread, analogous to its role in cell plate formation. Our findings indicate that the eukaryotically conserved MYB3R1-TPXL-AUR1-MAP65 mitotic module was conscripted to support endosymbiotic infection in legumes.
Collapse
|
20
|
Quilbé J, Nouwen N, Pervent M, Guyonnet R, Cullimore J, Gressent F, Araújo NH, Gully D, Klopp C, Giraud E, Arrighi JF. A mutant-based analysis of the establishment of Nod-independent symbiosis in the legume Aeschynomene evenia. PLANT PHYSIOLOGY 2022; 190:1400-1417. [PMID: 35876558 PMCID: PMC9516736 DOI: 10.1093/plphys/kiac325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Intensive research on nitrogen-fixing symbiosis in two model legumes has uncovered the molecular mechanisms, whereby rhizobial Nod factors activate a plant symbiotic signaling pathway that controls infection and nodule organogenesis. In contrast, the so-called Nod-independent symbiosis found between Aeschynomene evenia and photosynthetic bradyrhizobia, which does not involve Nod factor recognition nor infection thread formation, is less well known. To gain knowledge on how Nod-independent symbiosis is established, we conducted a phenotypic and molecular characterization of A. evenia lines carrying mutations in different nodulation genes. Besides investigating the effect of the mutations on rhizobial symbiosis, we examined their consequences on mycorrhizal symbiosis and in nonsymbiotic conditions. Analyzing allelic mutant series for AePOLLUX, Ca2+/calmodulin dependent kinase, AeCYCLOPS, nodulation signaling pathway 2 (AeNSP2), and nodule inception demonstrated that these genes intervene at several stages of intercellular infection and during bacterial accommodation. We provide evidence that AeNSP2 has an additional nitrogen-dependent regulatory function in the formation of axillary root hairs at lateral root bases, which are rhizobia-colonized infection sites. Our investigation of the recently discovered symbiotic actor cysteine-rich receptor-like kinase specified that it is not involved in mycorrhization; however, it is essential for both symbiotic signaling and early infection during nodulation. These findings provide important insights on the modus operandi of Nod-independent symbiosis and contribute to the general understanding of how rhizobial-legume symbioses are established by complementing the information acquired in model legumes.
Collapse
Affiliation(s)
| | | | | | - Rémi Guyonnet
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/UM/CIRAD, TA-A82/J-Campus de Baillarguet, Montpellier 34398, France
| | - Julie Cullimore
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, Castanet-Tolosan, France
| | - Frédéric Gressent
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/UM/CIRAD, TA-A82/J-Campus de Baillarguet, Montpellier 34398, France
- IRD, Plant Health Institute of Montpellier (PHIM), UMR IRD/SupAgro/INRAE/UM/CIRAD, TA-A82/J – Campus de Baillarguet, Montpellier 34398, France
| | - Natasha Horta Araújo
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/UM/CIRAD, TA-A82/J-Campus de Baillarguet, Montpellier 34398, France
- IRD, Plant Health Institute of Montpellier (PHIM), UMR IRD/SupAgro/INRAE/UM/CIRAD, TA-A82/J – Campus de Baillarguet, Montpellier 34398, France
| | - Djamel Gully
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/UM/CIRAD, TA-A82/J-Campus de Baillarguet, Montpellier 34398, France
- IRD, Plant Health Institute of Montpellier (PHIM), UMR IRD/SupAgro/INRAE/UM/CIRAD, TA-A82/J – Campus de Baillarguet, Montpellier 34398, France
| | - Christophe Klopp
- Plateforme Bioinformatique Genotoul, BioinfoMics, UR875 Biométrie et Intelligence Artificielle, INRAE, Castanet-Tolosan, France
| | - Eric Giraud
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/UM/CIRAD, TA-A82/J-Campus de Baillarguet, Montpellier 34398, France
- IRD, Plant Health Institute of Montpellier (PHIM), UMR IRD/SupAgro/INRAE/UM/CIRAD, TA-A82/J – Campus de Baillarguet, Montpellier 34398, France
| | | |
Collapse
|
21
|
Clúa J, Rípodas C, Roda C, Battaglia ME, Zanetti ME, Blanco FA. NIPK, a protein pseudokinase that interacts with the C subunit of the transcription factor NF-Y, is involved in rhizobial infection and nodule organogenesis. FRONTIERS IN PLANT SCIENCE 2022; 13:992543. [PMID: 36212340 PMCID: PMC9532615 DOI: 10.3389/fpls.2022.992543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Heterotrimeric Nuclear Factor Y (NF-Y) transcription factors are key regulators of the symbiotic program that controls rhizobial infection and nodule organogenesis. Using a yeast two-hybrid screening, we identified a putative protein kinase of Phaseolus vulgaris that interacts with the C subunit of the NF-Y complex. Physical interaction between NF-YC1 Interacting Protein Kinase (NIPK) and NF-YC1 occurs in the cytoplasm and the plasma membrane. Only one of the three canonical amino acids predicted to be required for catalytic activity is conserved in NIPK and its putative homologs from lycophytes to angiosperms, indicating that NIPK is an evolutionary conserved pseudokinase. Post-transcriptional silencing on NIPK affected infection and nodule organogenesis, suggesting NIPK is a positive regulator of the NF-Y transcriptional complex. In addition, NIPK is required for activation of cell cycle genes and early symbiotic genes in response to rhizobia, including NF-YA1 and NF-YC1. However, strain preference in co-inoculation experiments was not affected by NIPK silencing, suggesting that some functions of the NF-Y complex are independent of NIPK. Our work adds a new component associated with the NF-Y transcriptional regulators in the context of nitrogen-fixing symbiosis.
Collapse
|
22
|
Darwish DBE, Ali M, Abdelkawy AM, Zayed M, Alatawy M, Nagah A. Constitutive overexpression of GsIMaT2 gene from wild soybean enhances rhizobia interaction and increase nodulation in soybean (Glycine max). BMC PLANT BIOLOGY 2022; 22:431. [PMID: 36076165 PMCID: PMC9461152 DOI: 10.1186/s12870-022-03811-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Since the root nodules formation is regulated by specific and complex interactions of legume and rhizobial genes, there are still too many questions to be answered about the role of the genes involved in the regulation of the nodulation signaling pathway. RESULTS The genetic and biological roles of the isoflavone-7-O-beta-glucoside 6″-O-malonyltransferase gene GsIMaT2 from wild soybean (Glycine soja) in the regulation of nodule and root growth in soybean (Glycine max) were examined in this work. The effect of overexpressing GsIMaT2 from G. soja on the soybean nodulation signaling system and strigolactone production was investigated. We discovered that the GsIMaT2 increased nodule numbers, fresh nodule weight, root weight, and root length by boosting strigolactone formation. Furthermore, we examined the isoflavone concentration of transgenic G. max hairy roots 10 and 20 days after rhizobial inoculation. Malonyldaidzin, malonylgenistin, daidzein, and glycitein levels were considerably higher in GsMaT2-OE hairy roots after 10- and 20-days of Bradyrhizobium japonicum infection compared to the control. These findings suggest that isoflavones and their biosynthetic genes play unique functions in the nodulation signaling system in G. max. CONCLUSIONS Finally, our results indicate the potential effects of the GsIMaT2 gene on soybean root growth and nodulation. This study provides novel insights for understanding the epistatic relationship between isoflavones, root development, and nodulation in soybean. HIGHLIGHTS * Cloning and Characterization of 7-O-beta-glucoside 6″-O-malonyltransferase (GsIMaT2) gene from wild soybean (G. soja). * The role of GsIMaT2 gene in the regulation of root nodule development. *Overexpression of GsMaT2 gene increases the accumulation of isoflavonoid in transgenic soybean hairy roots. * This gene could be used for metabolic engineering of useful isoflavonoid production.
Collapse
Affiliation(s)
- Doaa Bahaa Eldin Darwish
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35511 Egypt
- Department of Biology, College of Science, Tabuk University, Tabuk, 74191 Saudi Arabia
| | - Mohammed Ali
- Department of Genetic Resources, Desert Research Center, Egyptian Deserts Gene Bank, North Sinai Research Station, 1 Mathaf El-Matarya St., El-Matareya, Cairo, 11753 Egypt
| | - Aisha M. Abdelkawy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt
| | - Muhammad Zayed
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Menoufia, Shebin El-Kom, 32511 Egypt
| | - Marfat Alatawy
- Department of Biology, College of Science, Tabuk University, Tabuk, 74191 Saudi Arabia
| | - Aziza Nagah
- Botany and Microbiology Department, Faculty of Science, Banha University, Qalyubia Governorate, Benha, 13518 Egypt
| |
Collapse
|
23
|
Ali M, Miao L, Soudy FA, Darwish DBE, Alrdahe SS, Alshehri D, Benedito VA, Tadege M, Wang X, Zhao J. Overexpression of Terpenoid Biosynthesis Genes Modifies Root Growth and Nodulation in Soybean (Glycine max). Cells 2022; 11:cells11172622. [PMID: 36078031 PMCID: PMC9454526 DOI: 10.3390/cells11172622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 12/03/2022] Open
Abstract
Root nodule formation in many leguminous plants is known to be affected by endogen ous and exogenous factors that affect formation, development, and longevity of nodules in roots. Therefore, it is important to understand the role of the genes which are involved in the regulation of the nodulation signaling pathway. This study aimed to investigate the effect of terpenoids and terpene biosynthesis genes on root nodule formation in Glycine max. The study aimed to clarify not only the impact of over-expressing five terpene synthesis genes isolated from G. max and Salvia guaranitica on soybean nodulation signaling pathway, but also on the strigolactones pathway. The obtained results revealed that the over expression of GmFDPS, GmGGPPS, SgGPS, SgFPPS, and SgLINS genes enhanced the root nodule numbers, fresh weight of nodules, root, and root length. Moreover, the terpene content in the transgenic G. max hairy roots was estimated. The results explored that the monoterpenes, sesquiterpenes and diterpenes were significantly increased in transgenic soybean hairy roots in comparison with the control. Our results indicate the potential effects of terpenoids and terpene synthesis genes on soybean root growth and nodulation. The study provides novel insights for understanding the epistatic relationship between terpenoids, root development, and nodulation in soybean.
Collapse
Affiliation(s)
- Mohammed Ali
- Egyptian Deserts Gene Bank, North Sinai Research Station, Desert Research Center, Department of Genetic Resources, Cairo 11753, Egypt
| | - Long Miao
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Fathia A. Soudy
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Doaa Bahaa Eldin Darwish
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35511, Egypt
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Salma Saleh Alrdahe
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Dikhnah Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Vagner A. Benedito
- Plant and Soil Sciences Division, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV 26506, USA
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA
| | - Xiaobo Wang
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (X.W.); (J.Z.); Tel.: +86-186-7404-7685 (J.Z.)
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (X.W.); (J.Z.); Tel.: +86-186-7404-7685 (J.Z.)
| |
Collapse
|
24
|
Gong X, Jensen E, Bucerius S, Parniske M. A CCaMK/Cyclops response element in the promoter of Lotus japonicus calcium-binding protein 1 (CBP1) mediates transcriptional activation in root symbioses. THE NEW PHYTOLOGIST 2022; 235:1196-1211. [PMID: 35318667 DOI: 10.1111/nph.18112] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Early gene expression in arbuscular mycorrhiza (AM) and the nitrogen-fixing root nodule symbiosis (RNS) is governed by a shared regulatory complex. Yet many symbiosis-induced genes are specifically activated in only one of the two symbioses. The Lotus japonicus T-DNA insertion line T90, carrying a promoterless uidA (GUS) gene in the promoter of Calcium Binding Protein 1 (CBP1) is exceptional as it exhibits GUS activity in both root endosymbioses. To identify the responsible cis- and trans-acting factors, we subjected deletion/modification series of CBP1 promoter : reporter fusions to transactivation and spatio-temporal expression analysis and screened ethyl methanesulphonate (EMS)-mutagenized T90 populations for aberrant GUS expression. We identified one cis-regulatory element required for GUS expression in the epidermis and a second element, necessary and sufficient for transactivation by the calcium and calmodulin-dependent protein kinase (CCaMK) in combination with the transcription factor Cyclops and conferring gene expression during both AM and RNS. Lack of GUS expression in T90 white mutants could be traced to DNA hypermethylation detected in and around this element. We concluded that the CCaMK/Cyclops complex can contribute to at least three distinct gene expression patterns on its direct target promoters NIN (RNS), RAM1 (AM), and CBP1 (AM and RNS), calling for yet-to-be identified specificity-conferring factors.
Collapse
Affiliation(s)
- Xiaoyun Gong
- Genetics, Faculty of Biology, LMU Munich, Grosshaderner Str. 2-4, D-82152, Martinsried, Germany
| | - Elaine Jensen
- The Sainsbury Laboratory, Colney Lane, Norwich, NR4 7UH, UK
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Wales, Ceredigion, SY23 3EB, UK
| | - Simone Bucerius
- Genetics, Faculty of Biology, LMU Munich, Grosshaderner Str. 2-4, D-82152, Martinsried, Germany
| | - Martin Parniske
- Genetics, Faculty of Biology, LMU Munich, Grosshaderner Str. 2-4, D-82152, Martinsried, Germany
- The Sainsbury Laboratory, Colney Lane, Norwich, NR4 7UH, UK
| |
Collapse
|
25
|
Chakraborty S, Harris JM. At the Crossroads of Salinity and Rhizobium-Legume Symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:540-553. [PMID: 35297650 DOI: 10.1094/mpmi-09-21-0231-fi] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Legume roots interact with soil bacteria rhizobia to develop nodules, de novo symbiotic root organs that host these rhizobia and are mini factories of atmospheric nitrogen fixation. Nodulation is a sophisticated developmental process and is sensitive to several abiotic factors, salinity being one of them. While salinity influences both the free-living partners, symbiosis is more vulnerable than other aspects of plant and microbe physiology, and the symbiotic interaction is strongly impaired even under moderate salinity. In this review, we tease apart the various known components of rhizobium-legume symbiosis and how they interact with salt stress. We focus primarily on the initial stages of symbiosis since we have a greater mechanistic understanding of the interaction at these stages.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Sanhita Chakraborty
- Department of Plant Biology, University of Vermont, Burlington, VT 05405, U.S.A
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, U.S.A
| | - Jeanne M Harris
- Department of Plant Biology, University of Vermont, Burlington, VT 05405, U.S.A
| |
Collapse
|
26
|
Li Y, Pei Y, Shen Y, Zhang R, Kang M, Ma Y, Li D, Chen Y. Progress in the Self-Regulation System in Legume Nodule Development-AON (Autoregulation of Nodulation). Int J Mol Sci 2022; 23:ijms23126676. [PMID: 35743118 PMCID: PMC9224500 DOI: 10.3390/ijms23126676] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/24/2022] Open
Abstract
The formation and development of legumes nodules requires a lot of energy. Legumes must strictly control the number and activity of nodules to ensure efficient energy distribution. The AON system can limit the number of rhizobia infections and nodule numbers through the systemic signal pathway network that the aboveground and belowground parts participate in together. It can also promote the formation of nodules when plants are deficient in nitrogen. The currently known AON pathway includes four parts: soil NO3− signal and Rhizobium signal recognition and transmission, CLE-SUNN is the negative regulation pathway, CEP-CRA2 is the positive regulation pathway and the miR2111/TML module regulates nodule formation and development. In order to ensure the biological function of this important approach, plants use a variety of plant hormones, polypeptides, receptor kinases, transcription factors and miRNAs for signal transmission and transcriptional regulation. This review summarizes and discusses the research progress of the AON pathway in Legume nodule development.
Collapse
|
27
|
Wang D, Dong W, Murray J, Wang E. Innovation and appropriation in mycorrhizal and rhizobial Symbioses. THE PLANT CELL 2022; 34:1573-1599. [PMID: 35157080 PMCID: PMC9048890 DOI: 10.1093/plcell/koac039] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/21/2022] [Indexed: 05/20/2023]
Abstract
Most land plants benefit from endosymbiotic interactions with mycorrhizal fungi, including legumes and some nonlegumes that also interact with endosymbiotic nitrogen (N)-fixing bacteria to form nodules. In addition to these helpful interactions, plants are continuously exposed to would-be pathogenic microbes: discriminating between friends and foes is a major determinant of plant survival. Recent breakthroughs have revealed how some key signals from pathogens and symbionts are distinguished. Once this checkpoint has been passed and a compatible symbiont is recognized, the plant coordinates the sequential development of two types of specialized structures in the host. The first serves to mediate infection, and the second, which appears later, serves as sophisticated intracellular nutrient exchange interfaces. The overlap in both the signaling pathways and downstream infection components of these symbioses reflects their evolutionary relatedness and the common requirements of these two interactions. However, the different outputs of the symbioses, phosphate uptake versus N fixation, require fundamentally different components and physical environments and necessitated the recruitment of different master regulators, NODULE INCEPTION-LIKE PROTEINS, and PHOSPHATE STARVATION RESPONSES, for nodulation and mycorrhization, respectively.
Collapse
Affiliation(s)
- Dapeng Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wentao Dong
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | | | - Ertao Wang
- Authors for correspondence: (E.W) and (J.M.)
| |
Collapse
|
28
|
Pereira WJ, Knaack S, Chakraborty S, Conde D, Folk RA, Triozzi PM, Balmant KM, Dervinis C, Schmidt HW, Ané J, Roy S, Kirst M. Functional and comparative genomics reveals conserved noncoding sequences in the nitrogen-fixing clade. THE NEW PHYTOLOGIST 2022; 234:634-649. [PMID: 35092309 PMCID: PMC9302667 DOI: 10.1111/nph.18006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen is one of the most inaccessible plant nutrients, but certain species have overcome this limitation by establishing symbiotic interactions with nitrogen-fixing bacteria in the root nodule. This root-nodule symbiosis (RNS) is restricted to species within a single clade of angiosperms, suggesting a critical, but undetermined, evolutionary event at the base of this clade. To identify putative regulatory sequences implicated in the evolution of RNS, we evaluated the genomes of 25 species capable of nodulation and identified 3091 conserved noncoding sequences (CNS) in the nitrogen-fixing clade (NFC). We show that the chromatin accessibility of 452 CNS correlates significantly with the regulation of genes responding to lipochitooligosaccharides in Medicago truncatula. These included 38 CNS in proximity to 19 known genes involved in RNS. Five such regions are upstream of MtCRE1, Cytokinin Response Element 1, required to activate a suite of downstream transcription factors necessary for nodulation in M. truncatula. Genetic complementation of an Mtcre1 mutant showed a significant decrease of nodulation in the absence of the five CNS, when they are driving the expression of a functional copy of MtCRE1. CNS identified in the NFC may harbor elements required for the regulation of genes controlling RNS in M. truncatula.
Collapse
Affiliation(s)
- Wendell J. Pereira
- School of Forest, Fisheries and Geomatics SciencesUniversity of FloridaGainesvilleFL32611USA
| | - Sara Knaack
- Wisconsin Institute for DiscoveryUniversity of Wisconsin‐MadisonMadisonWI53715USA
| | | | - Daniel Conde
- School of Forest, Fisheries and Geomatics SciencesUniversity of FloridaGainesvilleFL32611USA
| | - Ryan A. Folk
- Department of Biological SciencesMississippi State UniversityStarkvilleMS39762USA
| | - Paolo M. Triozzi
- School of Forest, Fisheries and Geomatics SciencesUniversity of FloridaGainesvilleFL32611USA
| | - Kelly M. Balmant
- School of Forest, Fisheries and Geomatics SciencesUniversity of FloridaGainesvilleFL32611USA
| | - Christopher Dervinis
- School of Forest, Fisheries and Geomatics SciencesUniversity of FloridaGainesvilleFL32611USA
| | - Henry W. Schmidt
- School of Forest, Fisheries and Geomatics SciencesUniversity of FloridaGainesvilleFL32611USA
| | - Jean‐Michel Ané
- Department of BacteriologyUniversity of Wisconsin‐MadisonMadisonWI53706USA
- Department of AgronomyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Sushmita Roy
- Wisconsin Institute for DiscoveryUniversity of Wisconsin‐MadisonMadisonWI53715USA
- Department of Biostatistics and Medical InformaticsUniversity of Wisconsin‐MadisonMadisonWI53715USA
| | - Matias Kirst
- School of Forest, Fisheries and Geomatics SciencesUniversity of FloridaGainesvilleFL32611USA
- Genetics InstituteUniversity of FloridaGainesvilleFL32611USA
| |
Collapse
|
29
|
Rudaya ES, Kozyulina PY, Pavlova OA, Dolgikh AV, Ivanova AN, Dolgikh EA. Regulation of the Later Stages of Nodulation Stimulated by IPD3/CYCLOPS Transcription Factor and Cytokinin in Pea Pisum sativum L. PLANTS (BASEL, SWITZERLAND) 2021; 11:56. [PMID: 35009060 PMCID: PMC8747635 DOI: 10.3390/plants11010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022]
Abstract
The IPD3/CYCLOPS transcription factor was shown to be involved in the regulation of nodule primordia development and subsequent stages of nodule differentiation. In contrast to early stages, the stages related to nodule differentiation remain less studied. Recently, we have shown that the accumulation of cytokinin at later stages may significantly impact nodule development. This conclusion was based on a comparative analysis of cytokinin localization between pea wild type and ipd3/cyclops mutants. However, the role of cytokinin at these later stages of nodulation is still far from understood. To determine a set of genes involved in the regulation of later stages of nodule development connected with infection progress, intracellular accommodation, as well as plant tissue and bacteroid differentiation, the RNA-seq analysis of pea mutant SGEFix--2 (sym33) nodules impaired in these processes compared to wild type SGE nodules was performed. To verify cytokinin's influence on late nodule development stages, the comparative RNA-seq analysis of SGEFix--2 (sym33) mutant plants treated with cytokinin was also conducted. Findings suggest a significant role of cytokinin in the regulation of later stages of nodule development.
Collapse
Affiliation(s)
- Elizaveta S. Rudaya
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chausse 3, Pushkin, 196608 St. Petersburg, Russia; (E.S.R.); (P.Y.K.); (O.A.P.); (A.V.D.)
| | - Polina Yu. Kozyulina
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chausse 3, Pushkin, 196608 St. Petersburg, Russia; (E.S.R.); (P.Y.K.); (O.A.P.); (A.V.D.)
| | - Olga A. Pavlova
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chausse 3, Pushkin, 196608 St. Petersburg, Russia; (E.S.R.); (P.Y.K.); (O.A.P.); (A.V.D.)
| | - Alexandra V. Dolgikh
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chausse 3, Pushkin, 196608 St. Petersburg, Russia; (E.S.R.); (P.Y.K.); (O.A.P.); (A.V.D.)
| | - Alexandra N. Ivanova
- Komarov Botanical Institute RAS, Prof. Popov St., 2, 197376 St. Petersburg, Russia;
- Faculty of Biology, St. Petersburg State University, Universitetskaya Emb. 7-9, 199034 St. Petersburg, Russia
| | - Elena A. Dolgikh
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chausse 3, Pushkin, 196608 St. Petersburg, Russia; (E.S.R.); (P.Y.K.); (O.A.P.); (A.V.D.)
| |
Collapse
|
30
|
Patra N, Hariharan S, Gain H, Maiti MK, Das A, Banerjee J. TypiCal but DeliCate Ca ++re: Dissecting the Essence of Calcium Signaling Network as a Robust Response Coordinator of Versatile Abiotic and Biotic Stimuli in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:752246. [PMID: 34899779 PMCID: PMC8655846 DOI: 10.3389/fpls.2021.752246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/27/2021] [Indexed: 06/14/2023]
Abstract
Plant growth, development, and ultimately crop productivity are largely impacted by the interaction of plants with different abiotic and biotic factors throughout their life cycle. Perception of different abiotic stresses, such as salt, cold, drought, heat, and heavy metals, and interaction with beneficial and harmful biotic agents by plants lead to transient, sustained, or oscillatory changes of [calcium ion, Ca2+]cyt within the cell. Significant progress has been made in the decoding of Ca2+ signatures into downstream responses to modulate differential developmental and physiological responses in the whole plant. Ca2+ sensor proteins, mainly calmodulins (CaMs), calmodulin-like proteins (CMLs), and others, such as Ca2+-dependent protein kinases (CDPKs), calcineurin B-like proteins (CBLs), and calmodulin-binding transcription activators (CAMTAs) have played critical roles in coupling the specific stress stimulus with an appropriate response. This review summarizes the current understanding of the Ca2+ influx and efflux system in plant cells and various Ca2+ binding protein-mediated signal transduction pathways that are delicately orchestrated to mitigate abiotic and biotic stresses. The probable interactions of different components of Ca2+ sensor relays and Ca2+ sensor responders in response to various external stimuli have been described diagrammatically focusing on established pathways and latest developments. Present comprehensive insight into key components of the Ca2+ signaling toolkit in plants can provide an innovative framework for biotechnological manipulations toward crop improvability in near future.
Collapse
Affiliation(s)
- Neelesh Patra
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Shruthi Hariharan
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Hena Gain
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mrinal K. Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Arpita Das
- Department of Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, India
| | - Joydeep Banerjee
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
31
|
Chakraborty S, Driscoll HE, Abrahante JE, Zhang F, Fisher RF, Harris JM. Salt Stress Enhances Early Symbiotic Gene Expression in Medicago truncatula and Induces a Stress-Specific Set of Rhizobium-Responsive Genes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:904-921. [PMID: 33819071 PMCID: PMC8578154 DOI: 10.1094/mpmi-01-21-0019-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Salt stress is a major agricultural concern inhibiting not only plant growth but also the symbiotic association between legume roots and the soil bacteria rhizobia. This symbiotic association is initiated by a molecular dialogue between the two partners, leading to the activation of a signaling cascade in the legume host and, ultimately, the formation of nitrogen-fixing root nodules. Here, we show that a moderate salt stress increases the responsiveness of early symbiotic genes in Medicago truncatula to its symbiotic partner, Sinorhizobium meliloti while, conversely, inoculation with S. meliloti counteracts salt-regulated gene expression, restoring one-third to control levels. Our analysis of early nodulin 11 (ENOD11) shows that salt-induced expression is dynamic, Nod-factor dependent, and requires the ionic but not the osmotic component of salt. We demonstrate that salt stimulation of rhizobium-induced gene expression requires NSP2, which functions as a node to integrate the abiotic and biotic signals. In addition, our work reveals that inoculation with S. meliloti succinoglycan mutants also hyperinduces ENOD11 expression in the presence or absence of salt, suggesting a possible link between rhizobial exopolysaccharide and the plant response to salt stress. Finally, we identify an accessory set of genes that are induced by rhizobium only under conditions of salt stress and have not been previously identified as being nodulation-related genes. Our data suggest that interplay of core nodulation genes with different accessory sets, specific for different abiotic conditions, functions to establish the symbiosis. Together, our findings reveal a complex and dynamic interaction between plant, microbe, and environment.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Sanhita Chakraborty
- Department of Plant Biology, University of Vermont, Burlington, VT 05405, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Heather E. Driscoll
- Vermont Biomedical Research Network (VBRN), Department of Biology, Norwich University, Northfield, Vermont 05663, USA
| | - Juan E. Abrahante
- University of Minnesota Informatics Institute (UMII) (CCRB 1-210C), 2231 6th Street SE, Minneapolis, MN 55455, USA
| | - Fan Zhang
- Vermont Biomedical Research Network (VBRN), Department of Biology, University of Vermont, Burlington, Vermont 05405, USA
- Institute for Translational Research and Department of family medicine, University of North Texas Health Science Center, Fort Worth, TX, 76107
| | - Robert F. Fisher
- Stanford University, Department of Biology, 371 Serra Mall, Stanford, California 94305-5020, USA
| | - Jeanne M. Harris
- Department of Plant Biology, University of Vermont, Burlington, VT 05405, USA
- Corresponding author: Jeanne M. Harris ()
| |
Collapse
|
32
|
Montiel J, Reid D, Grønbæk TH, Benfeldt CM, James EK, Ott T, Ditengou FA, Nadzieja M, Kelly S, Stougaard J. Distinct signaling routes mediate intercellular and intracellular rhizobial infection in Lotus japonicus. PLANT PHYSIOLOGY 2021; 185:1131-1147. [PMID: 33793909 PMCID: PMC8133683 DOI: 10.1093/plphys/kiaa049] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 05/07/2023]
Abstract
Rhizobial infection of legume roots during the development of nitrogen-fixing root nodules can occur intracellularly, through plant-derived infection threads traversing cells, or intercellularly, via bacterial entry between epidermal plant cells. Although it is estimated that around 25% of all legume genera are intercellularly infected, the pathways and mechanisms supporting this process have remained virtually unexplored due to a lack of genetically amenable legumes that exhibit this form of infection. In this study, we report that the model legume Lotus japonicus is infected intercellularly by the IRBG74 strain, recently proposed to belong to the Agrobacterium clade of the Rhizobiaceae. We demonstrate that the resources available for L. japonicus enable insight into the genetic requirements and fine-tuning of the pathway governing intercellular infection in this species. Inoculation of L. japonicus mutants shows that Ethylene-responsive factor required for nodulation 1 (Ern1) and Leu-rich Repeat Receptor-Like Kinase (RinRK1) are dispensable for intercellular infection in contrast to intracellular infection. Other symbiotic genes, including nod factor receptor 5 (NFR5), symbiosis receptor-like kinase (SymRK), Ca2+/calmodulin dependent kinase (CCaMK), exopolysaccharide receptor 3 (Epr3), Cyclops, nodule inception (Nin), nodulation signaling pathway 1 (Nsp1), nodulation signaling pathway 2 (Nsp2), cystathionine-β-synthase (Cbs), and Vapyrin are equally important for both entry modes. Comparative RNAseq analysis of roots inoculated with IRBG74 revealed a distinctive transcriptome response compared with intracellular colonization. In particular, several cytokinin-related genes were differentially regulated. Corroborating this observation, cyp735A and ipt4 cytokinin biosynthesis mutants were significantly affected in their nodulation with IRBG74, whereas lhk1 cytokinin receptor mutants formed no nodules. These results indicate a differential requirement for cytokinin signaling during intercellular rhizobial entry and highlight distinct modalities of inter- and intracellular infection mechanisms in L. japonicus.
Collapse
Affiliation(s)
- Jesús Montiel
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Dugald Reid
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Thomas H Grønbæk
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Caroline M Benfeldt
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Euan K James
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Thomas Ott
- Cell Biology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Franck A Ditengou
- Cell Biology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Marcin Nadzieja
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Simon Kelly
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus C, Denmark
- Author for ommunication:
| |
Collapse
|
33
|
Jarzyniak K, Banasiak J, Jamruszka T, Pawela A, Di Donato M, Novák O, Geisler M, Jasiński M. Early stages of legume-rhizobia symbiosis are controlled by ABCG-mediated transport of active cytokinins. NATURE PLANTS 2021; 7:428-436. [PMID: 33753904 DOI: 10.1038/s41477-021-00873-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/05/2021] [Indexed: 05/04/2023]
Abstract
Growing evidence has highlighted the essential role of plant hormones, notably, cytokinins (CKs), in nitrogen-fixing symbiosis, both at early and late nodulation stages1,2. Despite numerous studies showing the central role of CK in nodulation, the importance of CK transport in the symbiosis is unknown. Here, we show the role of ABCG56, a full-size ATP-binding cassette (ABC) transporter in the early stages of the nodulation. MtABCG56 is expressed in roots and nodules and its messenger RNA levels increase upon treatment with symbiotic bacteria, isolated Nod factor and CKs, accumulating within the epidermis and root cortex. MtABCG56 exports bioactive CKs in an ATP-dependent manner over the plasma membrane and its disruption results in an impairment of nodulation. Our data indicate that ABCG-mediated cytokinin transport is important for proper establishment of N-fixing nodules.
Collapse
Affiliation(s)
- Karolina Jarzyniak
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| | - Joanna Banasiak
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Tomasz Jamruszka
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Aleksandra Pawela
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Martin Di Donato
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czech Republic
| | - Markus Geisler
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Michał Jasiński
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland.
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland.
| |
Collapse
|
34
|
Shrestha A, Zhong S, Therrien J, Huebert T, Sato S, Mun T, Andersen SU, Stougaard J, Lepage A, Niebel A, Ross L, Szczyglowski K. Lotus japonicus Nuclear Factor YA1, a nodule emergence stage-specific regulator of auxin signalling. THE NEW PHYTOLOGIST 2021; 229:1535-1552. [PMID: 32978812 PMCID: PMC7984406 DOI: 10.1111/nph.16950] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/05/2020] [Indexed: 05/07/2023]
Abstract
Organogenesis of legume root nodules begins with the nodulation factor-dependent stimulation of compatible root cells to initiate divisions, signifying an early nodule primordium formation event. This is followed by cellular differentiation, including cell expansion and vascular bundle formation, and we previously showed that Lotus japonicus NF-YA1 is essential for this process, presumably by regulating three members of the SHORT INTERNODES/STYLISH (STY) transcription factor gene family. In this study, we used combined genetics, genomics and cell biology approaches to characterize the role of STY genes during root nodule formation and to test a hypothesis that they mediate nodule development by stimulating auxin signalling. We show here that L. japonicus STYs are required for nodule emergence. This is attributed to the NF-YA1-dependent regulatory cascade, comprising STY genes and their downstream targets, YUCCA1 and YUCCA11, involved in a local auxin biosynthesis at the post-initial cell division stage. An analogous NF-YA1/STY regulatory module seems to operate in Medicago truncatula in association with the indeterminate nodule patterning. Our data define L. japonicus and M. truncatula NF-YA1 genes as important nodule emergence stage-specific regulators of auxin signalling while indicating that the inductive stage and subsequent formation of early nodule primordia are mediated through an independent mechanism(s).
Collapse
Affiliation(s)
- Arina Shrestha
- Agriculture and Agri‐Food CanadaLondon Research and Development CentreLondonONN5V 4T3Canada
- Department of BiologyUniversity of Western OntarioLondonONN6A 5BFCanada
| | - Sihui Zhong
- Agriculture and Agri‐Food CanadaLondon Research and Development CentreLondonONN5V 4T3Canada
| | - Jasmine Therrien
- Agriculture and Agri‐Food CanadaLondon Research and Development CentreLondonONN5V 4T3Canada
- Department of BiologyUniversity of Western OntarioLondonONN6A 5BFCanada
| | - Terry Huebert
- Agriculture and Agri‐Food CanadaLondon Research and Development CentreLondonONN5V 4T3Canada
| | - Shusei Sato
- Graduate School of Life SciencesTohoku University2‐1‐1 KatahiraSendai980‐8577Japan
| | - Terry Mun
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDK‐8000Denmark
| | - Stig U. Andersen
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDK‐8000Denmark
| | - Jens Stougaard
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDK‐8000Denmark
| | - Agnes Lepage
- Laboratoire des Interactions Plantes‐Microorganismes (LIPM)Université de Toulouse, Institut National de la Recherche pour l’Agriculturel’Alimentation et l’Environnement (INRAE)Centre National de la Recherche Scientifique (CNRS)Castanet‐Tolosan31326France
| | - Andreas Niebel
- Laboratoire des Interactions Plantes‐Microorganismes (LIPM)Université de Toulouse, Institut National de la Recherche pour l’Agriculturel’Alimentation et l’Environnement (INRAE)Centre National de la Recherche Scientifique (CNRS)Castanet‐Tolosan31326France
| | - Loretta Ross
- Agriculture and Agri‐Food CanadaLondon Research and Development CentreLondonONN5V 4T3Canada
| | - Krzysztof Szczyglowski
- Agriculture and Agri‐Food CanadaLondon Research and Development CentreLondonONN5V 4T3Canada
- Department of BiologyUniversity of Western OntarioLondonONN6A 5BFCanada
| |
Collapse
|
35
|
Xu S, Song S, Dong X, Wang X, Wu J, Ren Z, Wu X, Lu J, Yuan H, Wu X, Li X, Wang Z. GmbZIP1 negatively regulates ABA-induced inhibition of nodulation by targeting GmENOD40-1 in soybean. BMC PLANT BIOLOGY 2021; 21:35. [PMID: 33421994 PMCID: PMC7796624 DOI: 10.1186/s12870-020-02810-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/22/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Abscisic acid (ABA) plays an important role in plant growth and adaptation through the ABA signaling pathway. The ABA-responsive element binding (AREB/ABF) family transcriptional factors are central regulators that integrate ABA signaling with various signaling pathways. It has long been known that ABA inhibits rhizobial infection and nodule formation in legumes, but the underlying molecular mechanisms remain elusive. RESULTS Here, we show that nodulation is very sensitive to ABA and exogenous ABA dramatically inhibits rhizobial infection and nodule formation in soybean. In addition, we proved that GmbZIP1, an AREB/ABF transcription factor, is a major regulator in both nodulation and plant response to ABA in soybean. GmbZIP1 was specifically expressed during nodule formation and development. Overexpression of GmbZIP1 resulted in reduced rhizobial infection and decreased nodule number. Furthermore, GmbZIP1 is responsive to ABA, and ectopic overexpression of GmbZIP1 increased sensitivity of Arabidopsis plants to ABA during seed germination and postgerminative growth, and conferred enhanced drought tolerance of plants. Remarkably, we found that GmbZIP1 directly binds to the promoter of GmENOD40-1, a marker gene for nodule formation, to repress its expression. CONCLUSION Our results identified GmbZIP1 as a node regulator that integrates ABA signaling with nodulation signaling to negatively regulate nodule formation.
Collapse
Affiliation(s)
- Shimin Xu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Shanshan Song
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Xiaoxu Dong
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Xinyue Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Jun Wu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Ziyin Ren
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Xuesong Wu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Jingjing Lu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Huifang Yuan
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Xinying Wu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Xia Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Zhijuan Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China.
| |
Collapse
|
36
|
Moharana KC, Venancio TM. Polyploidization events shaped the transcription factor repertoires in legumes (Fabaceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:726-741. [PMID: 32270526 DOI: 10.1111/tpj.14765] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/13/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Transcription factors (TFs) are essential for plant growth and development. Several legumes (e.g. soybean) are rich sources of protein and oil and have great economic importance. Here we report a phylogenomic analysis of TF families in legumes and their potential association with important traits (e.g. nitrogen fixation). We used TF DNA-binding domains to systematically screen the genomes of 15 leguminous and five non-leguminous species. Transcription factor orthologous groups (OGs) were used to estimate OG sizes in ancestral nodes using a gene birth-death model, which allowed the identification of lineage-specific expansions. The OG analysis and rate of synonymous substitutions show that major TF expansions are strongly associated with whole-genome duplication (WGD) events in the legume (approximately 58 million years ago) and Glycine (approximately 13 million years ago) lineages, which account for a large fraction of the Phaseolus vulgaris and Glycine max TF repertoires. Of the 3407 G. max TFs, 1808 and 676 have homeologs within single syntenic regions in Phaseolus vulgaris and Vitis vinifera, respectively. We found a trend for TFs expanded in legumes to be preferentially transcribed in roots and nodules, supporting their recruitment early in the evolution of nodulation in the legume clade. Some families also showed count differences between G. max and the wild soybean Glycine soja, including genes located within important quantitative trait loci. Our findings strongly support the roles of two WGDs in shaping the TF repertoires in the legume and Glycine lineages, and these are probably related to important aspects of legume and soybean biology.
Collapse
Affiliation(s)
- Kanhu C Moharana
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| |
Collapse
|
37
|
Xiao A, Yu H, Fan Y, Kang H, Ren Y, Huang X, Gao X, Wang C, Zhang Z, Zhu H, Cao Y. Transcriptional regulation of NIN expression by IPN2 is required for root nodule symbiosis in Lotus japonicus. THE NEW PHYTOLOGIST 2020; 227:513-528. [PMID: 32187696 DOI: 10.1111/nph.16553] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/09/2020] [Indexed: 05/14/2023]
Abstract
Expression of Nodule Inception (NIN) is essential for initiation of legume-rhizobial symbiosis. An existing model regarding the regulation of NIN expression involves two GRAS transcription factors - NSP1 (Nodulation Signaling Pathway 1) and NSP2. NSP2 forms a complex with NSP1 to directly bind to NIN promoter. However, rhizobial treatment-induced NIN expression could still be detected in the nsp1 mutant plants, suggesting that other proteins must be involved in the regulation of NIN expression. A combination of molecular, biochemical and genetic analyses was used to investigate the molecular basis of IPN2 in regulating root development and NIN expression in Lotus japonicus. In this study, we identified that IPN2 is a close homolog of Arabidopsis APL (ALTERED PHLOEM DEVELOPMENT) with essential function in root development. However, Lotus IPN2 has a different expression pattern compared with the Arabidopsis APL gene. IPN2 binds to the IPN2-responsive cis element (IPN2-RE) of NIN promoter and activates NIN expression. IPN2, NSP1 and NSP2 form a protein complex to directly target NIN promoter and activate NIN expression in the legume-rhizobial symbiosis. Our data refine the regulatory model of NIN expression that NSP2 works together with NSP1 and IPN2 to activate the NIN gene allowing nodulation in L. japonicus.
Collapse
Affiliation(s)
- Aifang Xiao
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haixiang Yu
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuqian Fan
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Heng Kang
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaping Ren
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoqin Huang
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiumei Gao
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chao Wang
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhongming Zhang
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hui Zhu
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yangrong Cao
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
38
|
Mergaert P, Kereszt A, Kondorosi E. Gene Expression in Nitrogen-Fixing Symbiotic Nodule Cells in Medicago truncatula and Other Nodulating Plants. THE PLANT CELL 2020; 32:42-68. [PMID: 31712407 PMCID: PMC6961632 DOI: 10.1105/tpc.19.00494] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/08/2019] [Indexed: 05/06/2023]
Abstract
Root nodules formed by plants of the nitrogen-fixing clade (NFC) are symbiotic organs that function in the maintenance and metabolic integration of large populations of nitrogen-fixing bacteria. These organs feature unique characteristics and processes, including their tissue organization, the presence of specific infection structures called infection threads, endocytotic uptake of bacteria, symbiotic cells carrying thousands of intracellular bacteria without signs of immune responses, and the integration of symbiont and host metabolism. The early stages of nodulation are governed by a few well-defined functions, which together constitute the common symbiosis-signaling pathway (CSSP). The CSSP activates a set of transcription factors (TFs) that orchestrate nodule organogenesis and infection. The later stages of nodule development require the activation of hundreds to thousands of genes, mostly expressed in symbiotic cells. Many of these genes are only active in symbiotic cells, reflecting the unique nature of nodules as plant structures. Although how the nodule-specific transcriptome is activated and connected to early CSSP-signaling is poorly understood, candidate TFs have been identified using transcriptomic approaches, and the importance of epigenetic and chromatin-based regulation has been demonstrated. We discuss how gene regulation analyses have advanced our understanding of nodule organogenesis, the functioning of symbiotic cells, and the evolution of symbiosis in the NFC.
Collapse
Affiliation(s)
- Peter Mergaert
- Institute for Integrative Biology of the Cell, UMR 9198, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Attila Kereszt
- Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary
| | - Eva Kondorosi
- Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary
| |
Collapse
|
39
|
Shen D, Bisseling T. The Evolutionary Aspects of Legume Nitrogen-Fixing Nodule Symbiosis. Results Probl Cell Differ 2020; 69:387-408. [PMID: 33263880 DOI: 10.1007/978-3-030-51849-3_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nitrogen-fixing root nodule symbiosis can sustain the development of the host plants under nitrogen-limiting conditions. Such symbiosis occurs only in a clade of angiosperms known as the nitrogen-fixing clade (NFC). It has long been proposed that root nodule symbiosis evolved several times (in parallel) in the NFC. Two recent phylogenomic studies compared the genomes of nodulating and related non-nodulating species across the four orders of the NFC and found that genes essential for nodule formation are lost or pseudogenized in the non-nodulating species. As these symbiosis genes are specifically involved in the symbiotic interaction, it means that the presence of pseudogenes and the loss of symbiosis genes strongly suggest that their ancestor, which still had functional genes, most likely had a symbiosis with nitrogen-fixing bacteria. These findings agree with the hypothesis that nodulation evolved once at the common ancestor of the NFC, and challenge the hypothesis of parallel evolution. In this chapter, we will cover the current understandings on actinorhizal-type and legume nodule development, and discuss the evolution of the legume nodule type.
Collapse
Affiliation(s)
- Defeng Shen
- Laboratory of Molecular Biology, Graduate School Experimental Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Ton Bisseling
- Laboratory of Molecular Biology, Graduate School Experimental Plant Sciences, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
40
|
Shine MB, Gao QM, Chowda-Reddy RV, Singh AK, Kachroo P, Kachroo A. Glycerol-3-phosphate mediates rhizobia-induced systemic signaling in soybean. Nat Commun 2019; 10:5303. [PMID: 31757957 PMCID: PMC6876567 DOI: 10.1038/s41467-019-13318-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 10/24/2019] [Indexed: 11/09/2022] Open
Abstract
Glycerol-3-phosphate (G3P) is a well-known mobile regulator of systemic acquired resistance (SAR), which provides broad spectrum systemic immunity in response to localized foliar pathogenic infections. We show that G3P-derived foliar immunity is also activated in response to genetically-regulated incompatible interactions with nitrogen-fixing bacteria. Using gene knock-down we show that G3P is essential for strain-specific exclusion of non-desirable root-nodulating bacteria and the associated foliar pathogen immunity in soybean. Grafting studies show that while recognition of rhizobium incompatibility is root driven, bacterial exclusion requires G3P biosynthesis in the shoot. Biochemical analyses support shoot-to-root transport of G3P during incompatible rhizobia interaction. We describe a root-shoot-root signaling mechanism which simultaneously enables the plant to exclude non-desirable nitrogen-fixing rhizobia in the root and pathogenic microbes in the shoot.
Collapse
Affiliation(s)
- M B Shine
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - Qing-Ming Gao
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - R V Chowda-Reddy
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Asheesh K Singh
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
41
|
Sorroche F, Walch M, Zou L, Rengel D, Maillet F, Gibelin-Viala C, Poinsot V, Chervin C, Masson-Boivin C, Gough C, Batut J, Garnerone AM. Endosymbiotic Sinorhizobium meliloti modulate Medicago root susceptibility to secondary infection via ethylene. THE NEW PHYTOLOGIST 2019; 223:1505-1515. [PMID: 31059123 DOI: 10.1111/nph.15883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
A complex network of pathways coordinates nodulation and epidermal root hair infection in the symbiotic interaction between rhizobia and legume plants. Whereas nodule formation was known to be autoregulated, it was so far unclear whether a similar control is exerted on the infection process. We assessed the capacity of Medicago plants nodulated by Sinorhizobium meliloti to modulate root susceptibility to secondary bacterial infection or to purified Nod factors in split-root and volatile assays using bacterial and plant mutant combinations. Ethylene implication in this process emerged from gas production measurements, use of a chemical inhibitor of ethylene biosynthesis and of a Medicago mutant affected in ethylene signal transduction. We identified a feedback mechanism that we named AOI (for Autoregulation Of Infection) by which endosymbiotic bacteria control secondary infection thread formation by their rhizospheric peers. AOI involves activation of a cyclic adenosine 3',5'-monophosphate (cAMP) cascade in endosymbiotic bacteria, which decreases both root infectiveness and root susceptibility to bacterial Nod factors. These latter two effects are mediated by ethylene. AOI is a novel component of the complex regulatory network controlling the interaction between Sinorhizobium meliloti and its host plants that emphasizes the implication of endosymbiotic bacteria in fine-tuning the interaction.
Collapse
Affiliation(s)
| | - Mathilda Walch
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Lan Zou
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - David Rengel
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Fabienne Maillet
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | | | - Véréna Poinsot
- Laboratoire IMRCP, UMR 5623 Université de Toulouse, CNRS, Toulouse, France
| | | | | | - Clare Gough
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Jacques Batut
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | | |
Collapse
|
42
|
Lagunas B, Achom M, Bonyadi-Pour R, Pardal AJ, Richmond BL, Sergaki C, Vázquez S, Schäfer P, Ott S, Hammond J, Gifford ML. Regulation of Resource Partitioning Coordinates Nitrogen and Rhizobia Responses and Autoregulation of Nodulation in Medicago truncatula. MOLECULAR PLANT 2019; 12:833-846. [PMID: 30953787 PMCID: PMC6557310 DOI: 10.1016/j.molp.2019.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 05/29/2023]
Abstract
Understanding how plants respond to nitrogen in their environment is crucial for determining how they use it and how the nitrogen use affects other processes related to plant growth and development. Under nitrogen limitation the activity and affinity of uptake systems is increased in roots, and lateral root formation is regulated in order to adapt to low nitrogen levels and scavenge from the soil. Plants in the legume family can form associations with rhizobial nitrogen-fixing bacteria, and this association is tightly regulated by nitrogen levels. The effect of nitrogen on nodulation has been extensively investigated, but the effects of nodulation on plant nitrogen responses remain largely unclear. In this study, we integrated molecular and phenotypic data in the legume Medicago truncatula and determined that genes controlling nitrogen influx are differently expressed depending on whether plants are mock or rhizobia inoculated. We found that a functional autoregulation of nodulation pathway is required for roots to perceive, take up, and mobilize nitrogen as well as for normal root development. Our results together revealed that autoregulation of nodulation, root development, and the location of nitrogen are processes balanced by the whole plant system as part of a resource-partitioning mechanism.
Collapse
Affiliation(s)
- Beatriz Lagunas
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Mingkee Achom
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | - Alonso J Pardal
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | - Chrysi Sergaki
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Saúl Vázquez
- Gateway Building, Sutton Bonington Campus, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Patrick Schäfer
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Sascha Ott
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
| | - John Hammond
- School of Agriculture, Policy and Development, University of Reading, Reading RG6 6AH, UK; Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| | - Miriam L Gifford
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
43
|
Liu CW, Breakspear A, Guan D, Cerri MR, Jackson K, Jiang S, Robson F, Radhakrishnan GV, Roy S, Bone C, Stacey N, Rogers C, Trick M, Niebel A, Oldroyd GED, de Carvalho-Niebel F, Murray JD. NIN Acts as a Network Hub Controlling a Growth Module Required for Rhizobial Infection. PLANT PHYSIOLOGY 2019; 179:1704-1722. [PMID: 30710053 PMCID: PMC6446755 DOI: 10.1104/pp.18.01572] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/20/2019] [Indexed: 05/22/2023]
Abstract
The symbiotic infection of root cells by nitrogen-fixing rhizobia during nodulation requires the transcription factor Nodule Inception (NIN). Our root hair transcriptomic study extends NIN's regulon to include Rhizobium Polar Growth and genes involved in cell wall modification, gibberellin biosynthesis, and a comprehensive group of nutrient (N, P, and S) uptake and assimilation genes, suggesting that NIN's recruitment to nodulation was based on its role as a growth module, a role shared with other NIN-Like Proteins. The expression of jasmonic acid genes in nin suggests the involvement of NIN in the resolution of growth versus defense outcomes. We find that the regulation of the growth module component Nodulation Pectate Lyase by NIN, and its function in rhizobial infection, are conserved in hologalegina legumes, highlighting its recruitment as a major event in the evolution of nodulation. We find that Nodulation Pectate Lyase is secreted to the infection chamber and the lumen of the infection thread. Gene network analysis using the transcription factor mutants for ERF Required for Nodulation1 and Nuclear Factor-Y Subunit A1 confirms hierarchical control of NIN over Nuclear Factor-Y Subunit A1 and shows that ERF Required for Nodulation1 acts independently to control infection. We conclude that while NIN shares functions with other NIN-Like Proteins, the conscription of key infection genes to NIN's control has made it a central regulatory hub for rhizobial infection.
Collapse
Affiliation(s)
- Cheng-Wu Liu
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Andrew Breakspear
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Dian Guan
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Marion R Cerri
- Laboratory of Plant Microbe Interactions, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université de Toulouse, 31326 Castanet-Tolosan, France
| | - Kirsty Jackson
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Suyu Jiang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Centre of Excellence for Plant and Microbial Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Fran Robson
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Guru V Radhakrishnan
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Sonali Roy
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Caitlin Bone
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Nicola Stacey
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Christian Rogers
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Martin Trick
- Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Andreas Niebel
- Laboratory of Plant Microbe Interactions, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université de Toulouse, 31326 Castanet-Tolosan, France
| | - Giles E D Oldroyd
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
- Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Fernanda de Carvalho-Niebel
- Laboratory of Plant Microbe Interactions, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université de Toulouse, 31326 Castanet-Tolosan, France
| | - Jeremy D Murray
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Centre of Excellence for Plant and Microbial Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
44
|
Sun Y, Wu Z, Wang Y, Yang J, Wei G, Chou M. Identification of Phytocyanin Gene Family in Legume Plants and their Involvement in Nodulation of Medicago truncatula. PLANT & CELL PHYSIOLOGY 2019; 60:900-915. [PMID: 30649463 DOI: 10.1093/pcp/pcz007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
The establishment of symbiosis between legume and rhizobium results in the formation of nodule. Phytocyanins (PCs) are a class of plant-specific blue copper proteins, playing critical roles in plant development including nodule formation. Although a few PC genes have been isolated from nodules, their functions are still unclear. Here, we performed a genome-wide identification of PC family in seven sequenced legume species (Medicago truncatula, Glycine max, Cicer arietinum, Cajanus cajan, Lotus japonicus, Vigna angularis and Phaseolus vulgaris) and found PCs experienced a remarkable expansion in M. truncatula and G. max. Further, we conducted an in-depth analysis of PC family in the model legume M. truncatula. Briefly, 82 MtPCs were divided into four subfamilies and clustered into seven clades, with a large proportion of tandem duplications and various cross-tissues expression patterns. Importantly, some PCs, such as MtPLC1, MtENODL27 and MtENODL28 were preferentially expressed in nodules. Further, RNA interference (RNAi) experiment revealed the knockdown of MtENDOL27 and MtENDOL28 impaired rhizobia infection, nodule numbers and nitrogenase activity. Moreover, in the MtENODL27-RNAi nodules, the infected cells were reduced and the symbiosomes did not reach the elongated stage, indicating MtENDOL27 is required for rhizobia infection and nodule development. In addition, co-expression analysis showed MtPLC1, MtENODL27 and MtENODL28 were grouped into two different functional modules and co-expressed with the known symbiotic nitrogen fixation-related genes, suggesting that they might participate in nodulation via different ways. In summary, this study provides a useful resource for future researches on the structure and function of PCs in nodulation.
Collapse
Affiliation(s)
- Yali Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, China
| | - Zefeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, China
| | - Yujie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, China
| | - Jieyu Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, China
| | - Minxia Chou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, China
| |
Collapse
|
45
|
Valdés-López O, Jayaraman D, Maeda J, Delaux PM, Venkateshwaran M, Isidra-Arellano MC, Reyero-Saavedra MDR, Sánchez-Correa MDS, Verastegui-Vidal MA, Delgado-Buenrostro N, Van Ness L, Mysore KS, Wen J, Sussman MR, Ané JM. A Novel Positive Regulator of the Early Stages of Root Nodule Symbiosis Identified by Phosphoproteomics. PLANT & CELL PHYSIOLOGY 2019; 60:575-586. [PMID: 30476329 DOI: 10.1093/pcp/pcy228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
Signals and signaling pathways underlying the symbiosis between legumes and rhizobia have been studied extensively over the past decades. In a previous phosphoproteomic study on the Medicago truncatula-Sinorhizobium meliloti symbiosis, we identified plant proteins that are differentially phosphorylated upon the perception of rhizobial signals, called Nod factors. In this study, we provide experimental evidence that one of these proteins, Early Phosphorylated Protein 1 (EPP1), is required for the initiation of this symbiosis. Upon inoculation with rhizobia, MtEPP1 expression was induced in curled root hairs. Down-regulation of MtEPP1 in M. truncatula roots almost abolished calcium spiking, reduced the expression of essential symbiosis-related genes (MtNIN, MtNF-YB1, MtERN1 and MtENOD40) and strongly decreased nodule development. Phylogenetic analyses revealed that orthologs of MtEPP1 are present in legumes and specifically in plant species able to host arbuscular mycorrhizal fungi, suggesting a possible role in this association too. Short chitin oligomers induced the phosphorylation of MtEPP1 like Nod factors. However, the down-regulation of MtEPP1 affected the colonization of M. truncatula roots by arbuscular mycorrhizal fungi only moderately. Altogether, these findings indicate that MtEPP1 is essential for the establishment of the legume-rhizobia symbiosis but might plays a limited role in the arbuscular mycorrhizal symbiosis.
Collapse
Affiliation(s)
- Oswaldo Valdés-López
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, USA
| | - Dhileepkumar Jayaraman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, USA
| | - Junko Maeda
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, USA
| | - Pierre-Marc Delaux
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, USA
| | - Muthusubramanian Venkateshwaran
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, USA
| | - Mariel C Isidra-Arellano
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Coyoacan, Ciudad de México, México
| | - María del Rocío Reyero-Saavedra
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| | - María del Socorro Sánchez-Correa
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| | - Miguel A Verastegui-Vidal
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| | - Norma Delgado-Buenrostro
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| | - Lori Van Ness
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | | | - Jiangqi Wen
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, USA
| | - Michael R Sussman
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
46
|
Gaudioso-Pedraza R, Beck M, Frances L, Kirk P, Ripodas C, Niebel A, Oldroyd GED, Benitez-Alfonso Y, de Carvalho-Niebel F. Callose-Regulated Symplastic Communication Coordinates Symbiotic Root Nodule Development. Curr Biol 2018; 28:3562-3577.e6. [PMID: 30416059 DOI: 10.1016/j.cub.2018.09.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/27/2018] [Accepted: 09/13/2018] [Indexed: 01/08/2023]
Abstract
The formation of nitrogen-fixing nodules in legumes involves the initiation of synchronized programs in the root epidermis and cortex to allow rhizobial infection and nodule development. In this study, we provide evidence that symplastic communication, regulated by callose turnover at plasmodesmata (PD), is important for coordinating nodule development and infection in Medicago truncatula. Here, we show that rhizobia promote a reduction in callose levels in inner tissues where nodules initiate. This downregulation coincides with the localized expression of M. truncatula β-1,3-glucanase 2 (MtBG2), encoding a novel PD-associated callose-degrading enzyme. Spatiotemporal analyses revealed that MtBG2 expression expands from dividing nodule initials to rhizobia-colonized cortical and epidermal tissues. As shown by the transport of fluorescent molecules in vivo, symplastic-connected domains are created in rhizobia-colonized tissues and enhanced in roots constitutively expressing MtBG2. MtBG2-overexpressing roots additionally displayed reduced levels of PD-associated callose. Together, these findings suggest an active role for MtBG2 in callose degradation and in the formation of symplastic domains during sequential nodule developmental stages. Interfering with symplastic connectivity led to drastic nodulation phenotypes. Roots ectopically expressing β-1,3-glucanases (including MtBG2) exhibited increased nodule number, and those expressing MtBG2 RNAi constructs or a hyperactive callose synthase (under symbiotic promoters) showed defective nodulation phenotypes. Obstructing symplastic connectivity appears to block a signaling pathway required for the expression of NODULE INCEPTION (NIN) and its target NUCLEAR FACTOR-YA1 (NF-YA1) in the cortex. We conclude that symplastic intercellular communication is proactively enhanced by rhizobia, and this is necessary for appropriate coordination of bacterial infection and nodule development.
Collapse
Affiliation(s)
| | - Martina Beck
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Lisa Frances
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Philip Kirk
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Carolina Ripodas
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Andreas Niebel
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Giles E D Oldroyd
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge CB2 1LR, UK
| | | | | |
Collapse
|
47
|
Isidra-Arellano MC, Reyero-Saavedra MDR, Sánchez-Correa MDS, Pingault L, Sen S, Joshi T, Girard L, Castro-Guerrero NA, Mendoza-Cozatl DG, Libault M, Valdés-López O. Phosphate Deficiency Negatively Affects Early Steps of the Symbiosis between Common Bean and Rhizobia. Genes (Basel) 2018; 9:E498. [PMID: 30326664 PMCID: PMC6210973 DOI: 10.3390/genes9100498] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/05/2018] [Accepted: 10/10/2018] [Indexed: 02/04/2023] Open
Abstract
Phosphate (Pi) deficiency reduces nodule formation and development in different legume species including common bean. Despite significant progress in the understanding of the genetic responses underlying the adaptation of nodules to Pi deficiency, it is still unclear whether this nutritional deficiency interferes with the molecular dialogue between legumes and rhizobia. If so, what part of the molecular dialogue is impaired? In this study, we provide evidence demonstrating that Pi deficiency negatively affects critical early molecular and physiological responses that are required for a successful symbiosis between common bean and rhizobia. We demonstrated that the infection thread formation and the expression of PvNSP2, PvNIN, and PvFLOT2, which are genes controlling the nodulation process were significantly reduced in Pi-deficient common bean seedlings. In addition, whole-genome transcriptional analysis revealed that the expression of hormones-related genes is compromised in Pi-deficient seedlings inoculated with rhizobia. Moreover, we showed that regardless of the presence or absence of rhizobia, the expression of PvRIC1 and PvRIC2, two genes participating in the autoregulation of nodule numbers, was higher in Pi-deficient seedlings compared to control seedlings. The data presented in this study provides a mechanistic model to better understand how Pi deficiency impacts the early steps of the symbiosis between common bean and rhizobia.
Collapse
Affiliation(s)
- Mariel C Isidra-Arellano
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico.
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de Mexico, Coyoacan 04510, Ciudad de Mexico, Mexico.
| | - María Del Rocio Reyero-Saavedra
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico.
| | - Maria Del Socorro Sánchez-Correa
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico.
| | - Lise Pingault
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Beadle Center, Lincoln, NE 68503, USA.
| | - Sidharth Sen
- Informatics Institute, University of Missouri, Columbia, MO 65211, USA.
| | - Trupti Joshi
- Informatics Institute, University of Missouri, Columbia, MO 65211, USA.
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
- Department of Health Management and Informatics, School of Medicine, University of Missouri, Columbia, MO 65211, USA.
| | - Lourdes Girard
- Departamento de Biología de Sistemas y Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca 62210, Morelos, Mexico.
| | - Norma A Castro-Guerrero
- Division of Plant Sciences, C. S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| | - David G Mendoza-Cozatl
- Division of Plant Sciences, C. S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| | - Marc Libault
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Beadle Center, Lincoln, NE 68503, USA.
| | - Oswaldo Valdés-López
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico.
| |
Collapse
|
48
|
Liu H, Zhang C, Yang J, Yu N, Wang E. Hormone modulation of legume-rhizobial symbiosis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:632-648. [PMID: 29578639 DOI: 10.1111/jipb.12653] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/23/2018] [Indexed: 05/16/2023]
Abstract
Leguminous plants can establish symbiotic associations with diazotropic rhizobia to form nitrogen-fixating nodules, which are classified as determinate or indeterminate based on the persistence of nodule meristem. The formation of nitrogen-fixing nodules requires coordinating rhizobial infection and root nodule organogenesis. The formation of an infection thread and the extent of nodule formation are largely under plant control, but vary with environmental conditions and the physiological state of the host plants. Many achievements in these two areas have been made in recent decades. Phytohormone signaling pathways have gradually emerged as important regulators of root nodule symbiosis. Cytokinin, strigolactones (SLs) and local accumulation of auxin can promote nodule development. Ethylene, jasmonic acid (JA), abscisic acid (ABA) and gibberellic acid (GA) all negatively regulate infection thread formation and nodule development. However, salicylic acid (SA) and brassinosteroids (BRs) have different effects on the formation of these two nodule types. Some peptide hormones are also involved in nodulation. This review summarizes recent findings on the roles of these plant hormones in legume-rhizobial symbiosis, and we propose that DELLA proteins may function as a node to integrate plant hormones to regulate nodulation.
Collapse
Affiliation(s)
- Huan Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chi Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Nan Yu
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
49
|
Nadzieja M, Kelly S, Stougaard J, Reid D. Epidermal auxin biosynthesis facilitates rhizobial infection in Lotus japonicus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:101-111. [PMID: 29676826 DOI: 10.1111/tpj.13934] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/29/2018] [Accepted: 04/05/2018] [Indexed: 05/08/2023]
Abstract
Symbiotic nitrogen fixation in legumes requires nodule organogenesis to be coordinated with infection by rhizobia. The plant hormone auxin influences symbiotic infection, but the precise timing of auxin accumulation and the genetic network governing it remain unclear. We used a Lotus japonicus optimised variant of the DII-based auxin accumulation sensor and identified a rapid accumulation of auxin in the epidermis, specifically in the root hair cells. This auxin accumulation occurs in the infected root hairs during rhizobia invasion, while Nod factor application induces this response across a broader range of root hairs. Using the DR5 auxin responsive promoter, we demonstrate that activation of auxin signalling also occurs specifically in infected root hairs. Analysis of root hair transcriptome data identified induction of an auxin biosynthesis gene of the Tryptophan Amino-transferase Related (LjTar1) family following both bacteria inoculation and Nod factor treatment. Genetic analysis showed that both expression of the LjTar1 biosynthesis gene and the auxin response requires Nod factor perception, while common symbiotic pathway transcription factors are only partially required or act redundantly to initiate auxin accumulation. Using a chemical genetics approach, we confirmed that auxin biosynthesis has a functional role in promoting symbiotic infection events in the epidermis.
Collapse
Affiliation(s)
- Marcin Nadzieja
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, Aarhus C, 8000, Denmark
| | - Simon Kelly
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, Aarhus C, 8000, Denmark
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, Aarhus C, 8000, Denmark
| | - Dugald Reid
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, Aarhus C, 8000, Denmark
| |
Collapse
|
50
|
Yan Q, Wang L, Li X. GmBEHL1, a BES1/BZR1 family protein, negatively regulates soybean nodulation. Sci Rep 2018; 8:7614. [PMID: 29769571 PMCID: PMC5955893 DOI: 10.1038/s41598-018-25910-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/05/2018] [Indexed: 11/23/2022] Open
Abstract
Brassinosteroids (BRs) play an essential role in plant growth, and BRI1-EMS suppressor 1 (BES1)/brassinazole-resistant 1 (BZR1) family transcription factors integrate a variety of plant signaling pathways. Despite the fact that BRs inhibit nodulation in leguminous plants, how BRs modulate rhizobia-host interactions and nodule morphogenesis is unknown. Here, we show that GmBEHL1, a soybean homolog of Arabidopsis BES1/BZR1 homolog 1 (BEH1), is an interacting partner of Nodule Number Control 1, a transcriptional repressor that mediates soybean nodulation. GmBEHL1 was highly expressed at the basal parts of emerging nodules, and its expression gradually expanded during nodule maturation. The overexpression and downregulation of GmBEHL1 inhibited and enhanced the number of nodules, respectively, in soybean. Intriguingly, alterations in GmBEHL1 expression repressed the expression of genes in the BR biosynthesis pathway, including homologs of Arabidopsis Constitutive Photomorphogenesis and Dwarf and Dwarf 4. We also detected an interaction between GmBEHL1 and GmBIN2, a putative BR-insensitive 2 (BIN2) homolog, in soybean. Moreover, BR treatment reduced the number, but increased the size, of soybean nodules. Our results reveal GmBEHL1 to be a potent gene that integrates BR signaling with nodulation signaling pathways to regulate symbiotic nodulation.
Collapse
Affiliation(s)
- Qiqi Yan
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Lixiang Wang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Xia Li
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. China.
| |
Collapse
|