1
|
Ma J, Jiang F, Yu Y, Zhou H, Zhan J, Li J, Chen Y, Wang Y, Duan H, Ge X, Xu Z, Zhao H, Liu L. Verticillium dahliae effector Vd06254 disrupts cotton defence response by interfering with GhMYC3-GhCCD8-mediated hormonal crosstalk between jasmonic acid and strigolactones. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40263919 DOI: 10.1111/pbi.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/24/2025]
Abstract
Verticillium dahliae is among the most destructive plant pathogens, posing a significant threat to global cotton production. Cotton plants have developed sophisticated immune networks to inhibit V. dahliae colonization. Ingeniously, V. dahliae employs numerous virulent effectors to surmount plant immune responses. However, the pathogenic mechanisms of V. dahliae-derived effectors remain elusive. In this study, we demonstrate that the Vd06254 effector from V. dahliae disrupts the synergistic interaction between jasmonic acid (JA) and strigolactones (SL), thereby suppressing cotton immunity. Ectopic expression of Vd06254 enhanced susceptibility to both viral and V. dahliae infections in Nicotiana benthamiana and cotton, respectively. Vd06254 directly interacts with the JA pathway regulator GhMYC3. The nuclear localization signal (NLS) was found to be essential for the virulence of Vd06254 and its interaction with GhMYC3. Additionally, overexpression and knockout of GhMYC3 in cotton modified the plant's resistance to V. dahliae. Our findings further reveal that GhMYC3 inhibits the expression of GhCCD8 by binding to its promoter, potentially regulating SL homeostasis in cotton through a negative feedback loop. This repression was enhanced by Vd06254, highlighting its crucial role in modulating cotton immunity and illustrating how V. dahliae effectors reprogram cotton transcription to disrupt this regulatory mechanism.
Collapse
Affiliation(s)
- Jianhui Ma
- Henan Normal University Research Base of State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Fan Jiang
- Henan Normal University Research Base of State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yan Yu
- Henan Normal University Research Base of State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Haodan Zhou
- Henan Normal University Research Base of State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, College of Life Sciences, Henan Normal University, Xinxiang, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jingjing Zhan
- Henan Normal University Research Base of State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, College of Life Sciences, Henan Normal University, Xinxiang, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jianing Li
- Henan Normal University Research Base of State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, College of Life Sciences, Henan Normal University, Xinxiang, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yanli Chen
- Henan Normal University Research Base of State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, College of Life Sciences, Henan Normal University, Xinxiang, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ye Wang
- Henan Normal University Research Base of State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, College of Life Sciences, Henan Normal University, Xinxiang, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hongying Duan
- Henan Normal University Research Base of State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Xiaoyang Ge
- Henan Normal University Research Base of State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, College of Life Sciences, Henan Normal University, Xinxiang, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhenzhen Xu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu, China
| | - Hang Zhao
- Henan Normal University Research Base of State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, College of Life Sciences, Henan Normal University, Xinxiang, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Lisen Liu
- Henan Normal University Research Base of State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, College of Life Sciences, Henan Normal University, Xinxiang, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
2
|
Dutta S, Chattopadhyay S, Maurya JP. The concerted function of a novel class of transcription factors, ZBFs, in light, jasmonate, and abscisic acid signaling pathways. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:746-768. [PMID: 39115948 DOI: 10.1093/jxb/erae323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024]
Abstract
Several classes of transcription factors have been investigated in light signaling pathways that bind to the light-responsive elements (LREs) present in the promoters of light regulatory genes for transcriptional regulation. Some of these transcription factors have been shown to bind to numerous promoters through genome-wide ChIP-on-chip (ChIP-chip) studies. Furthermore, through the integration of ChIP-seq and RNA-seq techniques, it has been demonstrated that a transcription factor modifies the expression of numerous genes with which it interacts. However, the mode of action of these transcription factors and their dependency on other regulators in the pathway has just started to be unraveled. In this review, we focus on a particular class of transcription factors, ZBFs (Z-box-binding factors), and their associated partners within the same or other classes of transcription factors and regulatory proteins during photomorphogenesis. Moreover, we have further made an attempt to summarize the crosstalk of these transcription factors with jasmonic acid-, abscisic acid-, and salicylic acid-mediated defense signaling pathways. This review offers an in-depth insight into the manner in which ZBFs and their interactors reshape cellular functions and plant behavior. The underlying principles not only contribute to a comprehensive understanding but also establish a framework for analyzing the interplay between early developmental events and hormone signaling, a regulation orchestrated by the ZBF family.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Biotechnology, School of Health Science and Translational Research, Sister Nivedita University, Kolkata 700156, West Bengal, India
| | - Sudip Chattopadhyay
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal 713209, India
| | - Jay Prakash Maurya
- Plant Development and Molecular Biology Lab, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
3
|
Song J, Pang S, Xue B, Rong D, Qi T, Huang H, Song S. The AMS/DYT1-MYB module interacts with the MED25-MYC-MYB complexes to inhibit jasmonate-regulated floral defense in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:408-422. [PMID: 39739362 DOI: 10.1111/jipb.13818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/15/2024] [Indexed: 01/02/2025]
Abstract
The phytohormone jasmonates (JAs) regulate plant growth and defense responses. The reproductive organs of flowers are devastated by insect herbivores. However, the molecular mechanisms of floral defense remain largely unknown. Here, we found that the Arabidopsis JA receptor CORONATINE INSENSITIVE1 (COI1) and its substrates JA ZIM-domain (JAZ) repressors, and the mediator subunit MEDIATOR25-based MED25-MYC-MYB (MMM) complexes, including MYC2/3/4/5 and MYB28/29/76, mediated floral defense against the insects Helicoverpa armigera, Spodoptera exigua, and Spodoptera frugiperda. The flower-specific IIIa bHLH factors ABORTED MICROSPORES (AMS) and DYSFUNCTIONAL TAPETUM 1 (DYT1) were JAZ-interaction proteins. They interacted with members of the MMM complexes, inhibited the transcriptional activity of MYC2 and MYB28, and repressed floral defense against insects. AMS and DYT1 recruited the flower-specific MYB21/24, and these MYBs interacted with members of MMM complexes, inhibited the MYC2-MYB28 function, and suppressed floral defense against insects. Our study revealed that the JA-COI1-JAZ-MMM pathway mediated flower defense, and the AMS/DYT1-MYB21/24 module antagonized the MMM complexes to repress floral defense against insects.
Collapse
Affiliation(s)
- Junqiao Song
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Shihai Pang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Bingjie Xue
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Deqing Rong
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Tiancong Qi
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Huang Huang
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Susheng Song
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| |
Collapse
|
4
|
Alam A, Abbas S, Waheed N, Abbas A, Weibo Q, Huang J, Khan KA, Ghramh HA, Ali J, Zhao CR. Genetic Warfare: The Plant Genome's Role in Fending Off Insect Invaders. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 117:e70021. [PMID: 39726337 DOI: 10.1002/arch.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
The plant defense against insects is multiple layers of interactions. They defend through direct defense and indirect defense. Direct defenses include both physical and chemical barriers that hinder insect growth, development, and reproduction. In contrast, indirect defenses do not affect insects directly but instead suppress them by releasing volatile compounds that attract the natural enemies of herbivores. Insects overcome plant defenses by deactivating biochemical defenses, suppressing defense signaling through effectors, and altering their behavior through chemical regulation. There is always a genetic war between plants and insects. In this genetic war, plant-insect co-evolution act as both weapons and messengers. Because plants always look for new strategies to avoid insects by developing adaptation. There are molecular processes that regulate the interaction between plants and insect. Here, we examine the genes and proteins involved in plant-insect interactions and explore how their discovery has shaped the current model of the plant genome's role. Plants detect damage-associated and herbivore-associated molecular patterns through receptors, which trigger early signaling pathways involving Ca2+, reactive oxygen species, and MAP kinases. The specific defense mechanisms are activated through gene signaling pathways, including phytohormones, secondary metabolites, and transcription factors. Expanding plant genome approaches to unexplored dimensions in fending off insects should be a future priority in order to develop management strategies.
Collapse
Affiliation(s)
- Aleena Alam
- Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Sohail Abbas
- Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Noman Waheed
- College of Animal Sciences and Technology, Jilin Agricultural University, Changchun, PR China
| | - Arzlan Abbas
- Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Qin Weibo
- Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Jingxuan Huang
- Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Khalid Ali Khan
- Center of Bee Research and its products (CBRP), King Khalid University, Abha, Saudi Arabia
- Applied College, King Khalid University, Abha, Saudi Arabia
| | - Hamed A Ghramh
- Center of Bee Research and its products (CBRP), King Khalid University, Abha, Saudi Arabia
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Jamin Ali
- Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Chen Ri Zhao
- Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| |
Collapse
|
5
|
Asgari D, Tate AT. How the Structure of Signaling Regulation Evolves: Insights from an Evolutionary Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619883. [PMID: 39484560 PMCID: PMC11526956 DOI: 10.1101/2024.10.23.619883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
To remain responsive to environmental changes, signaling pathways attenuate their activity with negative feedback loops (NFLs), where proteins produced upon stimulation downregulate the response. NFLs function both upstream of signaling to reduce input and downstream to reduce output. Unlike upstream NFLs, downstream NFLs directly regulate gene expression without the involvement of intermediate proteins. Thus, we hypothesized that downstream NFLs evolve under more stringent selection than upstream NFLs. Indeed, genes encoding downstream NFLs exhibit a slower evolutionary rate than upstream genes. Such differences in selective pressures could result in the robust evolution of downstream NFLs while making the evolution of upstream NFLs more sensitive to changes in signaling proteins and stimuli. Here, we test these assumptions within the context of immune signaling. Our minimal model of immune signaling predicts robust evolution of downstream NFLs to changes in model parameters. This is consistent with their critical role in regulating signaling and the conservative rate of evolution. Furthermore, we show that the number of signaling steps needed to activate a downstream NFL is influenced by the cost of signaling. Our model predicts that upstream NFLs are more likely to evolve under a shorter half-life of signaling proteins, absence of host-pathogen co-evolution, and a high infection rate. Although it has been proposed that NFLs evolve to reduce the cost of signaling, we show that a high cost does not necessarily predict the evolution of upstream NFLs. The insights from our model have broad implications for understanding the evolution of regulatory mechanisms across signaling pathways.
Collapse
Affiliation(s)
- Danial Asgari
- Department of Biological Sciences, Vanderbilt University, Nashville TN 37232
- Evolutionary Studies Initiative, Vanderbilt University, Nashville TN 37232
| | - Ann T. Tate
- Department of Biological Sciences, Vanderbilt University, Nashville TN 37232
- Evolutionary Studies Initiative, Vanderbilt University, Nashville TN 37232
| |
Collapse
|
6
|
Zeng MY, Zhu PK, Tang Y, Lin YH, He TY, Rong JD, Zheng YS, Chen LY. Genome-Wide Identification and Role of the bHLH Gene Family in Dendrocalamus latiflorus Flowering Regulation. Int J Mol Sci 2024; 25:10837. [PMID: 39409164 PMCID: PMC11477406 DOI: 10.3390/ijms251910837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
The basic helix-loop-helix (bHLH) gene family is a crucial regulator in plants, orchestrating various developmental processes, particularly flower formation, and mediating responses to hormonal signals. The molecular mechanism of bamboo flowering regulation remains unresolved, limiting bamboo breeding efforts. In this study, we identified 309 bHLH genes and divided them into 23 subfamilies. Structural analysis revealed that proteins in specific DlbHLH subfamilies are highly conserved. Collinearity analysis indicates that the amplification of the DlbHLH gene family primarily occurs through segmental duplications. The structural diversity of these duplicated genes may account for their functional variability. Many DlbHLHs are expressed during flower development, indicating the bHLH gene's significant role in this process. In the promoter region of DlbHLHs, different homeopathic elements involved in light response and hormone response co-exist, indicating that DlbHLHs are related to the regulation of the flower development of D. latiflorus.
Collapse
Affiliation(s)
- Mei-Yin Zeng
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peng-Kai Zhu
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu Tang
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu-Han Lin
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tian-You He
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jun-Dong Rong
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu-Shan Zheng
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ling-Yan Chen
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
7
|
Kang JE, Kim H, Song K, Choi C, Kim YJ, Hwang DJ, Chung EH. Arabidopsis WRKY55 Transcription Factor Enhances Soft Rot Disease Resistance with ORA59. THE PLANT PATHOLOGY JOURNAL 2024; 40:537-550. [PMID: 39397307 PMCID: PMC11471935 DOI: 10.5423/ppj.oa.08.2024.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024]
Abstract
Pectobacterium is a major bacterial causal agent leading to soft rot disease in host plants. With the Arabidopsis-Pectobacterium pathosystem, we investigated the function of an Arabidopsis thaliana WRKY55 during defense responses to Pectobacterium carotovorum ssp. carotovorum (Pcc). Pcc-infection specifically induced WRKY55 gene expression. The overexpression of WRKY55 was resistant to the Pcc infection, while wrky55 knockout plants compromised the defense responses against Pcc. WRKY55 expression was mediated via Arabidopsis COI1-dependent signaling pathway showing that WRKY55 can contribute to the gene expression of jasmonic acid-mediated defense marker genes such as PDF1.2 and LOX2. WRKY55 physically interacts with Arabidopsis ORA59 facilitating the expression of PDF1.2</i. Our results suggest that WRKY55 can function as a positive regulator for resistance against Pcc in Arabidopsis.
Collapse
Affiliation(s)
- Ji Eun Kang
- Department of Plant Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea
- Institute of Life Science and Natural Resources, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea
| | - Hyunsun Kim
- National Institute of Agricultural Science, Rural Development Administration, Jeonju 54974, Korea
| | - Kyungyoung Song
- National Institute of Agricultural Science, Rural Development Administration, Jeonju 54974, Korea
| | - Changhyun Choi
- National Institute of Agricultural Science, Rural Development Administration, Jeonju 54974, Korea
| | - Yun Ju Kim
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Duk-Ju Hwang
- D.-J. Hwang, Phone) +82-33-339-5500, FAX) +82-33-339-5635, E-mail)
| | - Eui-Hwan Chung
- Department of Plant Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea
| |
Collapse
|
8
|
Cao X, Ye X, Sattar A. Transcriptomic and coexpression network analyses revealed the regulatory mechanism of Cydia pomonella infestation on the synthesis of phytohormones in walnut husks. PeerJ 2024; 12:e18130. [PMID: 39329139 PMCID: PMC11426320 DOI: 10.7717/peerj.18130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
The codling moth (Cydia pomonella) has a major effect on the quality and yield of walnut fruit. Plant defences respond to insect infestation by activating hormonal signalling and the flavonoid biosynthetic pathway. However, little is known about the role of walnut husk hormones and flavonoid biosynthesis in response to C. pomonella infestation. The phytohormone content assay revealed that the contents of salicylic acid (SA), abscisic acid (ABA), jasmonic acid (JA), jasmonic acid-isoleucine conjugate (JA-ILE), jasmonic acid-valine (JA-Val) and methyl jasmonate (MeJA) increased after feeding at different time points (0, 12, 24, 36, 48, and 72 h) of walnut husk. RNA-seq analysis of walnut husks following C. pomonella feeding revealed a temporal pattern in differentially expressed genes (DEGs), with the number increasing from 3,988 at 12 h to 5,929 at 72 h postfeeding compared with the control at 0 h postfeeding. Walnut husks exhibited significant upregulation of genes involved in various defence pathways, including flavonoid biosynthesis (PAL, CYP73A, 4CL, CHS, CHI, F3H, ANS, and LAR), SA (PAL), ABA (ZEP and ABA2), and JA (AOS, AOC, OPR, JAZ, and MYC2) pathways. Three gene coexpression networks that had a significant positive association with these hormonal changes were constructed based on the basis of weighted gene coexpression network analysis (WGCNA). We identified several hub transcription factors, including the turquoise module (AIL6, MYB4, PRE6, WRKY71, WRKY31, ERF003, and WRKY75), the green module (bHLH79, PCL1, APRR5, ABI5, and ILR3), and the magenta module (ERF27, bHLH35, bHLH18, TIFY5A, WRKY31, and MYB44). Taken together, these findings provide useful genetic resources for exploring the defence response mediated by phytohormones in walnut husks.
Collapse
Affiliation(s)
- Xiaoyan Cao
- College of Horticulture, Xinjiang Agriculture University, Urumqi, China
| | - Xiaoqin Ye
- College of Forestry and Landscape Architecture, Xinjiang Agriculture University, Urumqi, China
| | - Adil Sattar
- College of Forestry and Landscape Architecture, Xinjiang Agriculture University, Urumqi, China
| |
Collapse
|
9
|
Chen Y, Jin G, Liu M, Wang L, Lou Y, Baldwin I, Li R. Multiomic analyses reveal key sectors of jasmonate-mediated defense responses in rice. THE PLANT CELL 2024; 36:3362-3377. [PMID: 38801741 PMCID: PMC11371138 DOI: 10.1093/plcell/koae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/23/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
The phytohormone jasmonate (JA) plays a central role in plant defenses against biotic stressors. However, our knowledge of the JA signaling pathway in rice (Oryza sativa) remains incomplete. Here, we integrated multiomic data from three tissues to characterize the functional modules involved in organizing JA-responsive genes. In the core regulatory sector, MYC2 transcription factor transcriptional cascades are conserved in different species but with distinct regulators (e.g. bHLH6 in rice), in which genes are early expressed across all tissues. In the feedback sector, MYC2 also regulates the expression of JA repressor and catabolic genes, providing negative feedback that truncates the duration of JA responses. For example, the MYC2-regulated NAC (NAM, ATAF1/2, and CUC2) transcription factor genes NAC1, NAC3, and NAC4 encode proteins that repress JA signaling and herbivore resistance. In the tissue-specific sector, many late-expressed genes are associated with the biosynthesis of specialized metabolites that mediate particular defensive functions. For example, the terpene synthase gene TPS35 is specifically induced in the leaf sheath and TPS35 functions in defense against oviposition by brown planthoppers and the attraction of this herbivore's natural enemies. Thus, by characterizing core, tissue-specific, and feedback sectors of JA-elicited defense responses, this work provides a valuable resource for future discoveries of key JA components in this important crop.
Collapse
Affiliation(s)
- Yumeng Chen
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gaochen Jin
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mengyu Liu
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lanlan Wang
- Zhejiang Academy of Agricultural Sciences, Institute of Virology and Biotechnology, 310021 Hangzhou, China
| | - Yonggen Lou
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ian Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Ran Li
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Li Z, Huang Y, Shen Z, Wu M, Huang M, Hong SB, Xu L, Zang Y. Advances in functional studies of plant MYC transcription factors. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:195. [PMID: 39103657 DOI: 10.1007/s00122-024-04697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
Myelocytomatosis (MYC) transcription factors (TFs) belong to the basic helix-loop-helix (bHLH) family in plants and play a central role in governing a wide range of physiological processes. These processes encompass plant growth, development, adaptation to biotic and abiotic stresses, as well as secondary metabolism. In recent decades, significant strides have been made in comprehending the multifaceted regulatory functions of MYCs. This advancement has been achieved through the cloning of MYCs and the characterization of plants with MYC deficiencies or overexpression, employing comprehensive genome-wide 'omics' and protein-protein interaction technologies. MYCs act as pivotal components in integrating signals from various phytohormones' transcriptional regulators to orchestrate genome-wide transcriptional reprogramming. In this review, we have compiled current research on the role of MYCs as molecular switches that modulate signal transduction pathways mediated by phytohormones and phytochromes. This comprehensive overview allows us to address lingering questions regarding the interplay of signals in response to environmental cues and developmental shift. It also sheds light on the potential implications for enhancing plant resistance to diverse biotic and abiotic stresses through genetic improvements achieved by plant breeding and synthetic biology efforts.
Collapse
Affiliation(s)
- Zewei Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yunshuai Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Zhiwei Shen
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Meifang Wu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Mujun Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Seung-Beom Hong
- Department of Biotechnology, University of Houston Clear Lake, Houston, TX, 77058-1098, USA
| | - Liai Xu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Yunxiang Zang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
11
|
Lai D, Zhang K, He Y, Fan Y, Li W, Shi Y, Gao Y, Huang X, He J, Zhao H, Lu X, Xiao Y, Cheng J, Ruan J, Georgiev MI, Fernie AR, Zhou M. Multi-omics identification of a key glycosyl hydrolase gene FtGH1 involved in rutin hydrolysis in Tartary buckwheat (Fagopyrum tataricum). PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1206-1223. [PMID: 38062934 PMCID: PMC11022807 DOI: 10.1111/pbi.14259] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/16/2023] [Accepted: 11/20/2023] [Indexed: 04/18/2024]
Abstract
Rutin, a flavonoid rich in buckwheat, is important for human health and plant resistance to external stresses. The hydrolysis of rutin to quercetin underlies the bitter taste of Tartary buckwheat. In order to identify rutin hydrolysis genes, a 200 genotypes mini-core Tartary buckwheat germplasm resource was re-sequenced with 30-fold coverage depth. By combining the content of the intermediate metabolites of rutin metabolism with genome resequencing data, metabolite genome-wide association analyses (GWAS) eventually identified a glycosyl hydrolase gene FtGH1, which could hydrolyse rutin to quercetin. This function was validated both in Tartary buckwheat overexpression hairy roots and in vitro enzyme activity assays. Mutation of the two key active sites, which were determined by molecular docking and experimentally verified via overexpression in hairy roots and transient expression in tobacco leaves, exhibited abnormal subcellular localization, suggesting functional changes. Sequence analysis revealed that mutation of the FtGH1 promoter in accessions of two haplotypes might be necessary for enzymatic activity. Co-expression analysis and GWAS revealed that FtbHLH165 not only repressed FtGH1 expression, but also increased seed length. This work reveals a potential mechanism behind rutin metabolism, which should provide both theoretical support in the study of flavonoid metabolism and in the molecular breeding of Tartary buckwheat.
Collapse
Affiliation(s)
- Dili Lai
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- College of AgricultureGuizhou UniversityGuiyangChina
| | - Kaixuan Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yuqi He
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yu Fan
- School of Food and Biological EngineeringChengdu UniversityChengduChina
| | - Wei Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yaliang Shi
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yuanfen Gao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xu Huang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Jiayue He
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Hui Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xiang Lu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yawen Xiao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | | | - Jingjun Ruan
- College of AgricultureGuizhou UniversityGuiyangChina
| | - Milen I. Georgiev
- Laboratory of Metabolomics, Institute of MicrobiologyBulgarian Academy of SciencesPlovdivBulgaria
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
| | - Alisdair R. Fernie
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
- Department of Molecular PhysiologyMax‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Meiliang Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
12
|
Bohn L, Huang J, Weidig S, Yang Z, Heidersberger C, Genty B, Falter-Braun P, Christmann A, Grill E. The temperature sensor TWA1 is required for thermotolerance in Arabidopsis. Nature 2024; 629:1126-1132. [PMID: 38750356 PMCID: PMC11136664 DOI: 10.1038/s41586-024-07424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 04/15/2024] [Indexed: 05/31/2024]
Abstract
Plants exposed to incidences of excessive temperatures activate heat-stress responses to cope with the physiological challenge and stimulate long-term acclimation1,2. The mechanism that senses cellular temperature for inducing thermotolerance is still unclear3. Here we show that TWA1 is a temperature-sensing transcriptional co-regulator that is needed for basal and acquired thermotolerance in Arabidopsis thaliana. At elevated temperatures, TWA1 changes its conformation and allows physical interaction with JASMONATE-ASSOCIATED MYC-LIKE (JAM) transcription factors and TOPLESS (TPL) and TOPLESS-RELATED (TPR) proteins for repressor complex assembly. TWA1 is a predicted intrinsically disordered protein that has a key thermosensory role functioning through an amino-terminal highly variable region. At elevated temperatures, TWA1 accumulates in nuclear subdomains, and physical interactions with JAM2 and TPL appear to be restricted to these nuclear subdomains. The transcriptional upregulation of the heat shock transcription factor A2 (HSFA2) and heat shock proteins depended on TWA1, and TWA1 orthologues provided different temperature thresholds, consistent with the sensor function in early signalling of heat stress. The identification of the plant thermosensors offers a molecular tool for adjusting thermal acclimation responses of crops by breeding and biotechnology, and a sensitive temperature switch for thermogenetics.
Collapse
Affiliation(s)
- Lisa Bohn
- Chair of Botany, TUM School of Life Sciences Weihenstephan, Technische Universität München (TUM), Freising, Germany
| | - Jin Huang
- Chair of Botany, TUM School of Life Sciences Weihenstephan, Technische Universität München (TUM), Freising, Germany
- Chengdu Newsun Crop Science, Chengdu, China
| | - Susan Weidig
- Chair of Botany, TUM School of Life Sciences Weihenstephan, Technische Universität München (TUM), Freising, Germany
| | - Zhenyu Yang
- Chair of Botany, TUM School of Life Sciences Weihenstephan, Technische Universität München (TUM), Freising, Germany
| | - Christoph Heidersberger
- Chair of Botany, TUM School of Life Sciences Weihenstephan, Technische Universität München (TUM), Freising, Germany
| | - Bernard Genty
- Aix-Marseille University, Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biosciences et Biotechnologies Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Pascal Falter-Braun
- Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
- Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Alexander Christmann
- Chair of Botany, TUM School of Life Sciences Weihenstephan, Technische Universität München (TUM), Freising, Germany.
| | - Erwin Grill
- Chair of Botany, TUM School of Life Sciences Weihenstephan, Technische Universität München (TUM), Freising, Germany.
| |
Collapse
|
13
|
Marqués-Gálvez JE, Pandharikar G, Basso V, Kohler A, Lackus ND, Barry K, Keymanesh K, Johnson J, Singan V, Grigoriev IV, Vilgalys R, Martin F, Veneault-Fourrey C. Populus MYC2 orchestrates root transcriptional reprogramming of defence pathway to impair Laccaria bicolor ectomycorrhizal development. THE NEW PHYTOLOGIST 2024; 242:658-674. [PMID: 38375883 DOI: 10.1111/nph.19609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/30/2024] [Indexed: 02/21/2024]
Abstract
The jasmonic acid (JA) signalling pathway plays an important role in the establishment of the ectomycorrhizal symbiosis. The Laccaria bicolor effector MiSSP7 stabilizes JA corepressor JAZ6, thereby inhibiting the activity of Populus MYC2 transcription factors. Although the role of MYC2 in orchestrating plant defences against pathogens is well established, its exact contribution to ECM symbiosis remains unclear. This information is crucial for understanding the balance between plant immunity and symbiotic relationships. Transgenic poplars overexpressing or silencing for the two paralogues of MYC2 transcription factor (MYC2s) were produced, and their ability to establish ectomycorrhiza was assessed. Transcriptomics and DNA affinity purification sequencing were performed. MYC2s overexpression led to a decrease in fungal colonization, whereas its silencing increased it. The enrichment of terpene synthase genes in the MYC2-regulated gene set suggests a complex interplay between the host monoterpenes and fungal growth. Several root monoterpenes have been identified as inhibitors of fungal growth and ECM symbiosis. Our results highlight the significance of poplar MYC2s and terpenes in mutualistic symbiosis by controlling root fungal colonization. We identified poplar genes which direct or indirect control by MYC2 is required for ECM establishment. These findings deepen our understanding of the molecular mechanisms underlying ECM symbiosis.
Collapse
Affiliation(s)
- José Eduardo Marqués-Gálvez
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Gaurav Pandharikar
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Veronica Basso
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Nathalie D Lackus
- Lehrstuhl für Pharmazeutische Biologie, Julius-von-Sachs-Institut für Biowissenschaften, Julius-Maximilians-Universität Würzburg, Julius-von-Sachs-Platz 2, Würzburg, 97082, Deutschland
| | - Kerrie Barry
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Keykhosrow Keymanesh
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jenifer Johnson
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Vasanth Singan
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Rytas Vilgalys
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Francis Martin
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Claire Veneault-Fourrey
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| |
Collapse
|
14
|
Liu Y, Xu E, Fan Y, Xu L, Ma J, Li X, Wang H, He S, Li T, Qin Y, Xiao J, Luo A. Transcriptomics combined with physiological analysis provided new insights into the Zn enrichment capacity and tolerance mechanism of Dendrobium denneanum Kerr. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111988. [PMID: 38232820 DOI: 10.1016/j.plantsci.2024.111988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/13/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024]
Abstract
In this study, we investigated the tolerance and accumulation capacity of Dendrobium denneanum Kerr (D.denneanum) by analyzing the growth and physiological changes of D.denneanum under different levels of Zn treatments, and further transcriptome sequencing of D.denneanum leaves to screen and analyze the differentially expressed genes. The results showed that Zn400 treatment (400 mg·kg-1) promoted the growth of D.denneanum while both Zn800 (800 mg·kg-1) and Zn1600 treatment (1600 mg·kg-1) caused stress to D.denneanum. Under Zn800 treatment (800 mg·kg-1), the resistance contribution of physiological indexes was the most obvious: antioxidant system, photosynthetic pigment, osmoregulation, phytochelatins, and ASA-GSH cycle (Ascorbic acid-Glutathione cycle). D.denneanum leaves stored the most Zn, followed by stems and roots. The BCF(Bioconcentration Factor) of the D.denneanum for Zn were all more than 1.0 under different Zn treatments, with the largest BCF (1.73) for Zn400. The transcriptome revealed that there were 1500 differentially expressed genes between Zn800 treatment and group CK, of which 842 genes were up-regulated and 658 genes were down-regulated. The genes such as C4H, PAL, JAZ, MYC2, PP2A, GS, and GST were significantly induced under the Zn treatments. The differentially expressed genes were associated with phenylpropane biosynthesis, phytohormone signaling, and glutathione metabolism. There were three main pathways of response to Zn stress in Dendrobium: antioxidant action, compartmentalization, and cellular chelation. This study provides new insights into the response mechanisms of D.denneanum to Zn stress and helps to evaluate the phytoremediation potential of D.denneanum in Zn-contaminated soils.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Landscape Plants, Sichuan Agricultural University, Chengdu 611130, China
| | - Erya Xu
- Department of Landscape Plants, Sichuan Agricultural University, Chengdu 611130, China
| | - Yijun Fan
- Department of Landscape Plants, Sichuan Agricultural University, Chengdu 611130, China.
| | - Linlong Xu
- Department of Landscape Plants, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie Ma
- Department of Landscape Plants, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuebing Li
- Department of Landscape Plants, Sichuan Agricultural University, Chengdu 611130, China
| | - Hui Wang
- Department of Landscape Plants, Sichuan Agricultural University, Chengdu 611130, China
| | - Siyu He
- Department of Landscape Plants, Sichuan Agricultural University, Chengdu 611130, China
| | - Ting Li
- Department of Landscape Plants, Sichuan Agricultural University, Chengdu 611130, China
| | - Yujiao Qin
- Department of Landscape Plants, Sichuan Agricultural University, Chengdu 611130, China
| | - Jingtao Xiao
- Department of Landscape Plants, Sichuan Agricultural University, Chengdu 611130, China
| | - Aoxue Luo
- Department of Landscape Plants, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
15
|
Xia R, Xu L, Hao J, Zhang L, Wang S, Zhu Z, Yu Y. Transcriptome Dynamics of Brassica juncea Leaves in Response to Omnivorous Beet Armyworm ( Spodoptera exigua, Hübner). Int J Mol Sci 2023; 24:16690. [PMID: 38069011 PMCID: PMC10706706 DOI: 10.3390/ijms242316690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/05/2023] [Accepted: 11/11/2023] [Indexed: 12/18/2023] Open
Abstract
Cruciferous plants manufacture glucosinolates (GSLs) as special and important defense compounds against insects. However, how insect feeding induces glucosinolates in Brassica to mediate insect resistance, and how plants regulate the strength of anti-insect defense response during insect feeding, remains unclear. Here, mustard (Brassica juncea), a widely cultivated Brassica plant, and beet armyworm (Spodoptera exigua), an economically important polyphagous pest of many crops, were used to analyze the changes in GSLs and transcriptome of Brassica during insect feeding, thereby revealing the plant-insect interaction in Brassica plants. The results showed that the content of GSLs began to significantly increase after 48 h of herbivory by S. exigua, with sinigrin as the main component. Transcriptome analysis showed that a total of 8940 DEGs were identified in mustard challenged with beet armyworm larvae. The functional enrichment results revealed that the pathways related to the biosynthesis of glucosinolate and jasmonic acid were significantly enriched by upregulated DEGs, suggesting that mustard might provide a defense against herbivory by inducing JA biosynthesis and then promoting GSL accumulation. Surprisingly, genes regulating JA catabolism and inactivation were also activated, and both JA signaling repressors (JAZs and JAMs) and activators (MYCs and NACs) were upregulated during herbivory. Taken together, our results indicate that the accumulation of GSLs regulated by JA signaling, and the regulation of active and inactive JA compound conversion, as well as the activation of JA signaling repressors and activators, collectively control the anti-insect defense response and avoid over-stunted growth in mustard during insect feeding.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhujun Zhu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (R.X.); (L.X.); (J.H.); (L.Z.); (S.W.)
| | - Youjian Yu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (R.X.); (L.X.); (J.H.); (L.Z.); (S.W.)
| |
Collapse
|
16
|
Tan Z, Lu D, Yu Y, Li L, Dong W, Xu L, Yang Q, Wan X, Liang H. Genome-Wide Identification and Characterization of the bHLH Gene Family and Its Response to Abiotic Stresses in Carthamus tinctorius. PLANTS (BASEL, SWITZERLAND) 2023; 12:3764. [PMID: 37960120 PMCID: PMC10648185 DOI: 10.3390/plants12213764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/16/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
The basic helix-loop-helix (bHLH) transcription factors possess DNA-binding and dimerization domains and are involved in various biological and physiological processes, such as growth and development, the regulation of secondary metabolites, and stress response. However, the bHLH gene family in C. tinctorius has not been investigated. In this study, we performed a genome-wide identification and analysis of bHLH transcription factors in C. tinctorius. A total of 120 CtbHLH genes were identified, distributed across all 12 chromosomes, and classified into 24 subfamilies based on their phylogenetic relationships. Moreover, the 120 CtbHLH genes were subjected to comprehensive analyses, including protein sequence alignment, evolutionary assessment, motif prediction, and the analysis of promoter cis-acting elements. The promoter region analysis revealed that CtbHLH genes encompass cis-acting elements and were associated with various aspects of plant growth and development, responses to phytohormones, as well as responses to both abiotic and biotic stresses. Expression profiles, sourced from transcriptome databases, indicated distinct expression patterns among these CtbHLH genes, which appeared to be either tissue-specific or specific to certain cultivars. To further explore their functionality, we determined the expression levels of fifteen CtbHLH genes known to harbor motifs related to abiotic and hormone responses. This investigation encompassed treatments with ABA, salt, drought, and MeJA. The results demonstrated substantial variations in the expression patterns of CtbHLH genes in response to these abiotic and hormonal treatments. In summary, our study establishes a solid foundation for future inquiries into the roles and regulatory mechanisms of the CtbHLH gene family.
Collapse
Affiliation(s)
- Zhengwei Tan
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Dandan Lu
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yongliang Yu
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Lei Li
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Wei Dong
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Lanjie Xu
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qing Yang
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xiufu Wan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng 100700, China;
| | - Huizhen Liang
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| |
Collapse
|
17
|
Carty M, Wang C, Wang D, Fu ZQ. Autophagy and jasmonate fight nematode blight. Trends Parasitol 2023; 39:893-895. [PMID: 37770351 DOI: 10.1016/j.pt.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/30/2023]
Abstract
Plant-parasitic nematodes (PPNs) pose a serious threat to world crop production and global food security. However, our understanding of the molecular mechanisms underlying plant defense against PPNs remains very limited. Recently, Zou et al. reported that the interplay between autophagy and jasmonate pathways mediates plant immunity against root-knot nematodes.
Collapse
Affiliation(s)
- Mikayla Carty
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Chen Wang
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
18
|
Zou J, Chen X, Liu C, Guo M, Kanwar MK, Qi Z, Yang P, Wang G, Bao Y, Bassham DC, Yu J, Zhou J. Autophagy promotes jasmonate-mediated defense against nematodes. Nat Commun 2023; 14:4769. [PMID: 37553319 PMCID: PMC10409745 DOI: 10.1038/s41467-023-40472-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/28/2023] [Indexed: 08/10/2023] Open
Abstract
Autophagy, as an intracellular degradation system, plays a critical role in plant immunity. However, the involvement of autophagy in the plant immune system and its function in plant nematode resistance are largely unknown. Here, we show that root-knot nematode (RKN; Meloidogyne incognita) infection induces autophagy in tomato (Solanum lycopersicum) and different atg mutants exhibit high sensitivity to RKNs. The jasmonate (JA) signaling negative regulators JASMONATE-ASSOCIATED MYC2-LIKE 1 (JAM1), JAM2 and JAM3 interact with ATG8s via an ATG8-interacting motif (AIM), and JAM1 is degraded by autophagy during RKN infection. JAM1 impairs the formation of a transcriptional activation complex between ETHYLENE RESPONSE FACTOR 1 (ERF1) and MEDIATOR 25 (MED25) and interferes with transcriptional regulation of JA-mediated defense-related genes by ERF1. Furthermore, ERF1 acts in a positive feedback loop and regulates autophagy activity by transcriptionally activating ATG expression in response to RKN infection. Therefore, autophagy promotes JA-mediated defense against RKNs via forming a positive feedback circuit in the degradation of JAMs and transcriptional activation by ERF1.
Collapse
Affiliation(s)
- Jinping Zou
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Xinlin Chen
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Chenxu Liu
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Mingyue Guo
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Mukesh Kumar Kanwar
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Zhenyu Qi
- Hainan Institute, Zhejiang University, 572000, Sanya, China
- Agricultural Experiment Station, Zhejiang University, 310058, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Ping Yang
- Agricultural Experiment Station, Zhejiang University, 310058, Hangzhou, China
| | - Guanghui Wang
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, 276000, Linyi, China
| | - Yan Bao
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jingquan Yu
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China
- Hainan Institute, Zhejiang University, 572000, Sanya, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China.
- Hainan Institute, Zhejiang University, 572000, Sanya, China.
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Yuhangtang Road 866, 310058, Hangzhou, China.
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, 276000, Linyi, China.
| |
Collapse
|
19
|
Zhao X, Jiang X, Li Z, Song Q, Xu C, Luo K. Jasmonic acid regulates lignin deposition in poplar through JAZ5-MYB/NAC interaction. FRONTIERS IN PLANT SCIENCE 2023; 14:1232880. [PMID: 37546258 PMCID: PMC10401599 DOI: 10.3389/fpls.2023.1232880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023]
Abstract
Jasmonic acid (JA) is a phytohormone involved in plant defense, growth, and development, etc. However, the regulatory mechanisms underlying JA-mediated lignin deposition and secondary cell wall (SCW) formation remain poorly understood. In this study, we found that JA can inhibit lignin deposition and SCW thickening in poplar trees through exogenous MeJA treatment and observation of the phenotypes of a JA synthesis mutant, opdat1. Hence, we identified a JA signal inhibitor PtoJAZ5, belonging to the TIFY gene family, which is involved in the regulation of secondary vascular development of Populus tomentosa. RT-qPCR and GUS staining revealed that PtoJAZ5 was highly expressed in poplar stems, particularly in developing xylem. Overexpression of PtoJAZ5 inhibited SCW thickening and down-regulated the expression of SCW biosynthesis-related genes. Further biochemical analysis showed that PtoJAZ5 interacted with multiple SCW switches NAC/MYB transcription factors, including MYB3 and WND6A, through yeast two-hybrid and bimolecular fluorescent complementation experiments. Transcriptional activation assays demonstrated that MYB3-PtoJAZ5 and WND6A-PtoJAZ5 complexes regulated the expression of lignin synthetic genes. Our results suggest that PtoJAZ5 plays a negative role in JA-induced lignin deposition and SCW thickening in poplar and provide new insights into the molecular mechanisms underlying JA-mediated regulation of SCW formation.
Collapse
Affiliation(s)
- Xin Zhao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Xuemei Jiang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Zeyu Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Qin Song
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Changzhen Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
20
|
Yi F, Song A, Cheng K, Liu J, Wang C, Shao L, Wu S, Wang P, Zhu J, Liang Z, Chang Y, Chu Z, Cai C, Zhang X, Wang P, Chen A, Xu J, Burritt DJ, Herrera-Estrella L, Tran LSP, Li W, Cai Y. Strigolactones positively regulate Verticillium wilt resistance in cotton via crosstalk with other hormones. PLANT PHYSIOLOGY 2023; 192:945-966. [PMID: 36718522 PMCID: PMC10231467 DOI: 10.1093/plphys/kiad053] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 06/01/2023]
Abstract
Verticillium wilt caused by Verticillium dahliae is a serious vascular disease in cotton (Gossypium spp.). V. dahliae induces the expression of the CAROTENOID CLEAVAGE DIOXYGENASE 7 (GauCCD7) gene involved in strigolactone (SL) biosynthesis in Gossypium australe, suggesting a role for SLs in Verticillium wilt resistance. We found that the SL analog rac-GR24 enhanced while the SL biosynthesis inhibitor TIS108 decreased cotton resistance to Verticillium wilt. Knock-down of GbCCD7 and GbCCD8b genes in island cotton (Gossypium barbadense) decreased resistance, whereas overexpression of GbCCD8b in upland cotton (Gossypium hirsutum) increased resistance to Verticillium wilt. Additionally, Arabidopsis (Arabidopsis thaliana) SL mutants defective in CCD7 and CCD8 putative orthologs were susceptible, whereas both Arabidopsis GbCCD7- and GbCCD8b-overexpressing plants were more resistant to Verticillium wilt than wild-type (WT) plants. Transcriptome analyses showed that several genes related to the jasmonic acid (JA)- and abscisic acid (ABA)-signaling pathways, such as MYELOCYTOMATOSIS 2 (GbMYC2) and ABA-INSENSITIVE 5, respectively, were upregulated in the roots of WT cotton plants in responses to rac-GR24 and V. dahliae infection but downregulated in the roots of both GbCCD7- and GbCCD8b-silenced cotton plants. Furthermore, GbMYC2 suppressed the expression of GbCCD7 and GbCCD8b by binding to their promoters, which might regulate the homeostasis of SLs in cotton through a negative feedback loop. We also found that GbCCD7- and GbCCD8b-silenced cotton plants were impaired in V. dahliae-induced reactive oxygen species (ROS) accumulation. Taken together, our results suggest that SLs positively regulate cotton resistance to Verticillium wilt through crosstalk with the JA- and ABA-signaling pathways and by inducing ROS accumulation.
Collapse
Affiliation(s)
- Feifei Yi
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Aosong Song
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Kai Cheng
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Jinlei Liu
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Chenxiao Wang
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Lili Shao
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Shuang Wu
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Ping Wang
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Jiaxuan Zhu
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Zhilin Liang
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Ying Chang
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Zongyan Chu
- Cotton Institution, Kaifeng Academy of Agriculture and Forestry, Kaifeng 475000, China
| | - Chaowei Cai
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Xuebin Zhang
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Pei Wang
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Aimin Chen
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Jin Xu
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - David J Burritt
- Department of Botany, University of Otago, Dunedin 9054, New Zealand
| | - Luis Herrera-Estrella
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
- Unidad de Genomica Avanzada, Centro de Investigaciony de Estudios Avanzados del Intituto Politecnico Nacional, Irapuato 36821, Mexico
| | - Lam-Son Phan Tran
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
| | - Weiqiang Li
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Jilin Da’an Agro-ecosystem National Observation Research Station, Changchun 130102, China
| | - Yingfan Cai
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
21
|
He K, Du J, Han X, Li H, Kui M, Zhang J, Huang Z, Fu Q, Jiang Y, Hu Y. PHOSPHATE STARVATION RESPONSE1 (PHR1) interacts with JASMONATE ZIM-DOMAIN (JAZ) and MYC2 to modulate phosphate deficiency-induced jasmonate signaling in Arabidopsis. THE PLANT CELL 2023; 35:2132-2156. [PMID: 36856677 PMCID: PMC10226604 DOI: 10.1093/plcell/koad057] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/21/2022] [Accepted: 02/03/2023] [Indexed: 05/30/2023]
Abstract
Phosphorus (P) is a macronutrient necessary for plant growth and development. Inorganic phosphate (Pi) deficiency modulates the signaling pathway of the phytohormone jasmonate in Arabidopsis thaliana, but the underlying molecular mechanism currently remains elusive. Here, we confirmed that jasmonate signaling was enhanced under low Pi conditions, and the CORONATINE INSENSITIVE1 (COI1)-mediated pathway is critical for this process. A mechanistic investigation revealed that several JASMONATE ZIM-DOMAIN (JAZ) repressors physically interacted with the Pi signaling-related core transcription factors PHOSPHATE STARVATION RESPONSE1 (PHR1), PHR1-LIKE2 (PHL2), and PHL3. Phenotypic analyses showed that PHR1 and its homologs positively regulated jasmonate-induced anthocyanin accumulation and root growth inhibition. PHR1 stimulated the expression of several jasmonate-responsive genes, whereas JAZ proteins interfered with its transcriptional function. Furthermore, PHR1 physically associated with the basic helix-loop-helix (bHLH) transcription factors MYC2, MYC3, and MYC4. Genetic analyses and biochemical assays indicated that PHR1 and MYC2 synergistically increased the transcription of downstream jasmonate-responsive genes and enhanced the responses to jasmonate. Collectively, our study reveals the crucial regulatory roles of PHR1 in modulating jasmonate responses and provides a mechanistic understanding of how PHR1 functions together with JAZ and MYC2 to maintain the appropriate level of jasmonate signaling under conditions of Pi deficiency.
Collapse
Affiliation(s)
- Kunrong He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiancan Du
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Huiqiong Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Mengyi Kui
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juping Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhichong Huang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Qiantang Fu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
22
|
He X, Zhang W, Sabir IA, Jiao C, Li G, Wang Y, Zhu F, Dai J, Liu L, Chen C, Zhang Y, Song C. The spatiotemporal profile of Dendrobium huoshanense and functional identification of bHLH genes under exogenous MeJA using comparative transcriptomics and genomics. FRONTIERS IN PLANT SCIENCE 2023; 14:1169386. [PMID: 37235024 PMCID: PMC10206334 DOI: 10.3389/fpls.2023.1169386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/17/2023] [Indexed: 05/28/2023]
Abstract
Introduction Alkaloids are one of the main medicinal components of Dendrobium species. Dendrobium alkaloids are mainly composed of terpene alkaloids. Jasmonic acid (JA) induce the biosynthesis of such alkaloids, mainly by enhancing the expression of JA-responsive genes to increase plant resistance and increase the content of alkaloids. Many JA-responsive genes are the target genes of bHLH transcription factors (TFs), especially the MYC2 transcription factor. Methods In this study, the differentially expressed genes involved in the JA signaling pathway were screened out from Dendrobium huoshanense using comparative transcriptomics approaches, revealing the critical roles of basic helix-loop-helix (bHLH) family, particularly the MYC2 subfamily. Results and discussion Microsynteny-based comparative genomics demonstrated that whole genome duplication (WGD) and segmental duplication events drove bHLH genes expansion and functional divergence. Tandem duplication accelerated the generation of bHLH paralogs. Multiple sequence alignments showed that all bHLH proteins included bHLH-zip and ACT-like conserved domains. The MYC2 subfamily had a typical bHLH-MYC_N domain. The phylogenetic tree revealed the classification and putative roles of bHLHs. The analysis of cis-acting elements revealed that promoter of the majority of bHLH genes contain multiple regulatory elements relevant to light response, hormone responses, and abiotic stresses, and the bHLH genes could be activated by binding these elements. The expression profiling and qRT-PCR results indicated that bHLH subgroups IIIe and IIId may have an antagonistic role in JA-mediated expression of stress-related genes. DhbHLH20 and DhbHLH21 were considered to be the positive regulators in the early response of JA signaling, while DhbHLH24 and DhbHLH25 might be the negative regulators. Our findings may provide a practical reference for the functional study of DhbHLH genes and the regulation of secondary metabolites.
Collapse
Affiliation(s)
- Xiaomei He
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Wenwu Zhang
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Irfan Ali Sabir
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chunyan Jiao
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Guohui Li
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Yan Wang
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Fucheng Zhu
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Jun Dai
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Longyun Liu
- School of Bioengineering, Hefei Technology College, Hefei, China
| | - Cunwu Chen
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Yingyu Zhang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Cheng Song
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| |
Collapse
|
23
|
Sobol G, Majhi BB, Pasmanik-Chor M, Zhang N, Roberts HM, Martin GB, Sessa G. Tomato receptor-like cytoplasmic kinase Fir1 is involved in flagellin signaling and preinvasion immunity. PLANT PHYSIOLOGY 2023; 192:565-581. [PMID: 36511947 PMCID: PMC10152693 DOI: 10.1093/plphys/kiac577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 05/03/2023]
Abstract
Detection of bacterial flagellin by the tomato (Solanum lycopersicum) receptors Flagellin sensing 2 (Fls2) and Fls3 triggers activation of pattern-triggered immunity (PTI). We identified the tomato Fls2/Fls3-interacting receptor-like cytoplasmic kinase 1 (Fir1) protein that is involved in PTI triggered by flagellin perception. Fir1 localized to the plasma membrane and interacted with Fls2 and Fls3 in yeast (Saccharomyces cerevisiae) and in planta. CRISPR/Cas9-generated tomato fir1 mutants were impaired in several immune responses induced by the flagellin-derived peptides flg22 and flgII-28, including resistance to Pseudomonas syringae pv. tomato (Pst) DC3000, production of reactive oxygen species, and enhanced PATHOGENESIS-RELATED 1b (PR1b) gene expression, but not MAP kinase phosphorylation. Remarkably, fir1 mutants developed larger Pst DC3000 populations than wild-type plants, whereas no differences were observed in wild-type and fir1 mutant plants infected with the flagellin deficient Pst DC3000ΔfliC. fir1 mutants failed to close stomata when infected with Pst DC3000 and Pseudomonas fluorescens and were more susceptible to Pst DC3000 than wild-type plants when inoculated by dipping, but not by vacuum-infiltration, indicating involvement of Fir1 in preinvasion immunity. RNA-seq analysis detected fewer differentially expressed genes in fir1 mutants and altered expression of jasmonic acid (JA)-related genes. In support of JA response deregulation in fir1 mutants, these plants were similarly susceptible to Pst DC3000 and to the coronatine-deficient Pst DC3118 strain, and more resistant to the necrotrophic fungus Botrytis cinerea following PTI activation. These results indicate that tomato Fir1 is required for a subset of flagellin-triggered PTI responses and support a model in which Fir1 negatively regulates JA signaling during PTI activation.
Collapse
Affiliation(s)
- Guy Sobol
- School of Plant Sciences and Food Security, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Bharat Bhusan Majhi
- School of Plant Sciences and Food Security, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, G.S. Wise Faculty of Life Science, Tel-Aviv University, 69978 Tel- Aviv, Israel
| | - Ning Zhang
- Boyce Thompson Institute for Plant Research and Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Holly M Roberts
- Boyce Thompson Institute for Plant Research and Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research and Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Guido Sessa
- School of Plant Sciences and Food Security, Tel-Aviv University, 69978 Tel-Aviv, Israel
| |
Collapse
|
24
|
Macioszek VK, Jęcz T, Ciereszko I, Kononowicz AK. Jasmonic Acid as a Mediator in Plant Response to Necrotrophic Fungi. Cells 2023; 12:1027. [PMID: 37048100 PMCID: PMC10093439 DOI: 10.3390/cells12071027] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Jasmonic acid (JA) and its derivatives, all named jasmonates, are the simplest phytohormones which regulate multifarious plant physiological processes including development, growth and defense responses to various abiotic and biotic stress factors. Moreover, jasmonate plays an important mediator's role during plant interactions with necrotrophic oomycetes and fungi. Over the last 20 years of research on physiology and genetics of plant JA-dependent responses to pathogens and herbivorous insects, beginning from the discovery of the JA co-receptor CORONATINE INSENSITIVE1 (COI1), research has speeded up in gathering new knowledge on the complexity of plant innate immunity signaling. It has been observed that biosynthesis and accumulation of jasmonates are induced specifically in plants resistant to necrotrophic fungi (and also hemibiotrophs) such as mostly investigated model ones, i.e., Botrytis cinerea, Alternaria brassicicola or Sclerotinia sclerotiorum. However, it has to be emphasized that the activation of JA-dependent responses takes place also during susceptible interactions of plants with necrotrophic fungi. Nevertheless, many steps of JA function and signaling in plant resistance and susceptibility to necrotrophs still remain obscure. The purpose of this review is to highlight and summarize the main findings on selected steps of JA biosynthesis, perception and regulation in the context of plant defense responses to necrotrophic fungal pathogens.
Collapse
Affiliation(s)
- Violetta Katarzyna Macioszek
- Laboratory of Plant Physiology, Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
| | - Tomasz Jęcz
- Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| | - Iwona Ciereszko
- Laboratory of Plant Physiology, Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
| | - Andrzej Kiejstut Kononowicz
- Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| |
Collapse
|
25
|
Han X, Kui M, Xu T, Ye J, Du J, Yang M, Jiang Y, Hu Y. CO interacts with JAZ repressors and bHLH subgroup IIId factors to negatively regulate jasmonate signaling in Arabidopsis seedlings. THE PLANT CELL 2023; 35:852-873. [PMID: 36427252 PMCID: PMC9940882 DOI: 10.1093/plcell/koac331] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/17/2022] [Indexed: 06/01/2023]
Abstract
CONSTANS (CO) is a master flowering-time regulator that integrates photoperiodic and circadian signals in Arabidopsis thaliana. CO is expressed in multiple tissues, including young leaves and seedling roots, but little is known about the roles and underlying mechanisms of CO in mediating physiological responses other than flowering. Here, we show that CO expression is responsive to jasmonate. CO negatively modulated jasmonate-imposed root-growth inhibition and anthocyanin accumulation. Seedlings from co mutants were more sensitive to jasmonate, whereas overexpression of CO resulted in plants with reduced sensitivity to jasmonate. Moreover, CO mediated the diurnal gating of several jasmonate-responsive genes under long-day conditions. We demonstrate that CO interacts with JASMONATE ZIM-DOMAIN (JAZ) repressors of jasmonate signaling. Genetic analyses indicated that CO functions in a CORONATINE INSENSITIVE1 (COI1)-dependent manner to modulate jasmonate responses. Furthermore, CO physically associated with the basic helix-loop-helix (bHLH) subgroup IIId transcription factors bHLH3 and bHLH17. CO acted cooperatively with bHLH17 in suppressing jasmonate signaling, but JAZ proteins interfered with their transcriptional functions and physical interaction. Collectively, our results reveal the crucial regulatory effects of CO on mediating jasmonate responses and explain the mechanism by which CO works together with JAZ and bHLH subgroup IIId factors to fine-tune jasmonate signaling.
Collapse
Affiliation(s)
- Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Mengyi Kui
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwen Ye
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jiancan Du
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Milian Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
26
|
Han X, Kui M, He K, Yang M, Du J, Jiang Y, Hu Y. Jasmonate-regulated root growth inhibition and root hair elongation. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:1176-1185. [PMID: 36346644 PMCID: PMC9923215 DOI: 10.1093/jxb/erac441] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/05/2022] [Indexed: 06/01/2023]
Abstract
The phytohormone jasmonate is an essential endogenous signal in the regulation of multiple plant processes for environmental adaptation, such as primary root growth inhibition and root hair elongation. Perception of environmental stresses promotes the accumulation of jasmonate, which is sensed by the CORONATINE INSENSITIVE1 (COI1)-JASMONATE ZIM-DOMAIN (JAZ) co-receptor, triggering the degradation of JAZ repressors and induction of transcriptional reprogramming. The basic helix-loop-helix (bHLH) subgroup IIIe transcription factors MYC2, MYC3, and MYC4 are the most extensively characterized JAZ-binding factors and together stimulate jasmonate-signaled primary root growth inhibition. Conversely, the bHLH subgroup IIId transcription factors (i.e. bHLH3 and bHLH17) physically associate with JAZ proteins and suppress jasmonate-induced root growth inhibition. For root hair development, JAZ proteins interact with and inhibit ROOT HAIR DEFECTIVE 6 (RHD6) and RHD6 LIKE1 (RSL1) transcription factors to modulate jasmonate-enhanced root hair elongation. Moreover, jasmonate also interacts with other signaling pathways (such as ethylene and auxin) to regulate primary root growth and/or root hair elongation. Here, we review recent progress into jasmonate-mediated primary root growth and root hair development.
Collapse
Affiliation(s)
- Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Mengyi Kui
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kunrong He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Milian Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiancan Du
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | | |
Collapse
|
27
|
Gryffroy L, De Ryck J, Jonckheere V, Goormachtig S, Goossens A, Van Damme P. Cataloguing Protein Complexes In Planta Using TurboID-Catalyzed Proximity Labeling. Methods Mol Biol 2023; 2690:311-334. [PMID: 37450157 DOI: 10.1007/978-1-0716-3327-4_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Mapping protein-protein interactions is crucial to understand protein function. Recent advances in proximity-dependent biotinylation (BioID) coupled to mass spectrometry (MS) allow the characterization of protein complexes in diverse plant models. Here, we describe the use of BioID in hairy root cultures of tomato and provide detailed information on how to analyze the data obtained by MS.
Collapse
Affiliation(s)
- Lore Gryffroy
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Ghent, Belgium
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Joren De Ryck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Ghent, Belgium
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Veronique Jonckheere
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Ghent, Belgium
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
| |
Collapse
|
28
|
Huang H, Zhao W, Li C, Qiao H, Song S, Yang R, Sun L, Ma J, Ma X, Wang S. SlVQ15 interacts with jasmonate-ZIM domain proteins and SlWRKY31 to regulate defense response in tomato. PLANT PHYSIOLOGY 2022; 190:828-842. [PMID: 35689622 PMCID: PMC9434178 DOI: 10.1093/plphys/kiac275] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/06/2022] [Indexed: 06/01/2023]
Abstract
Botrytis cinerea is one of the most widely distributed and harmful pathogens worldwide. Both the phytohormone jasmonate (JA) and the VQ motif-containing proteins play crucial roles in plant resistance to B. cinerea. However, their crosstalk in resistance to B. cinerea is unclear, especially in tomato (Solanum lycopersicum). In this study, we found that the tomato VQ15 was highly induced upon B. cinerea infection and localized in the nucleus. Silencing SlVQ15 using virus-induced gene silencing reduced resistance to B. cinerea. Overexpression of SlVQ15 enhanced resistance to B. cinerea, while disruption of SlVQ15 using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein9 (Cas9) technology increased susceptibility to B. cinerea. Furthermore, SlVQ15 formed homodimers. Additionally, SlVQ15 interacted with JA-ZIM domain proteins, repressors of the JA signaling pathway, and SlWRKY31. SlJAZ11 interfered with the interaction between SlVQ15 and SlWRKY31 and repressed the SlVQ15-increased transcriptional activation activity of SlWRKY31. SlVQ15 and SlWRKY31 synergistically regulated tomato resistance to B. cinerea, as silencing SlVQ15 enhanced the sensitivity of slwrky31 to B. cinerea. Taken together, our findings showed that the SlJAZ-interacting protein SlVQ15 physically interacts with SlWRKY31 to cooperatively control JA-mediated plant defense against B. cinerea.
Collapse
Affiliation(s)
| | | | | | - Hui Qiao
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Susheng Song
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Rui Yang
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing 102206, China
| | - Lulu Sun
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing 102206, China
| | - Jilin Ma
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xuechun Ma
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | | |
Collapse
|
29
|
Shen Q, Huang H, Xie L, Hao X, Kayani SI, Liu H, Qin W, Chen T, Pan Q, Liu P, Tang K. Basic Helix-Loop-Helix Transcription Factors AabHLH2 and AabHLH3 Function Antagonistically With AaMYC2 and Are Negative Regulators in Artemisinin Biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:885622. [PMID: 35734250 PMCID: PMC9207477 DOI: 10.3389/fpls.2022.885622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Plants have evolved sophisticated systems for regulating the biosynthesis of specialized phytochemicals. Artemisinin, which is a sesquiterpene lactone widely used in anti-malaria treatment, is produced by the Artemisia annua L. plant. However, the artemisinin content in A. annua is low and difficult to meet market demands. Studies have shown that artemisinin biosynthesis in A. annua has complex temporal and spatial specificity and is under tightly transcriptional regulation. However, the mechanism of transcriptional regulation of artemisinin biosynthesis remains unclear. In this study, we identified two MYC-type bHLH transcription factors (AabHLH2 and AabHLH3) as novel regulators of artemisinin biosynthesis. These bHLH TFs act as transcription repressors and function redundantly to negatively regulate artemisinin biosynthesis. Furthermore, AabHLH2 and AabHLH3 are nuclear proteins that bind to DNA elements with similar specificity to that of AaMYC2, but lack the conserved activation domain, suggesting that repression is achieved by competition for the same cis-regulatory elements. Together, our findings reveal a novel artemisinin biosynthesis regulatory network, provide new insight into how specialized metabolites are modulated in plants, and propose a model in which different bHLH TFs coordinated in regulating artemisinin production in the plant. Finally, this study provides some useful target genes for metabolic engineering of artemisinin production via CRISPR/Cas9 gene editing.
Collapse
Affiliation(s)
- Qian Shen
- Plant Biotechnology Research Center, SJTU–Fudan–Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Huayi Huang
- Plant Biotechnology Research Center, SJTU–Fudan–Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lihui Xie
- Plant Biotechnology Research Center, SJTU–Fudan–Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaolong Hao
- Plant Biotechnology Research Center, SJTU–Fudan–Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Sadaf-Ilyas Kayani
- Plant Biotechnology Research Center, SJTU–Fudan–Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hang Liu
- Plant Biotechnology Research Center, SJTU–Fudan–Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Qin
- Plant Biotechnology Research Center, SJTU–Fudan–Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Tiantian Chen
- Plant Biotechnology Research Center, SJTU–Fudan–Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qifang Pan
- Plant Biotechnology Research Center, SJTU–Fudan–Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pin Liu
- Plant Biotechnology Research Center, SJTU–Fudan–Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kexuan Tang
- Plant Biotechnology Research Center, SJTU–Fudan–Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
30
|
Sun PW, Gao ZH, Lv FF, Yu CC, Jin Y, Xu YH, Wei JH. Genome-wide analysis of basic helix-loop-helix (bHLH) transcription factors in Aquilaria sinensis. Sci Rep 2022; 12:7194. [PMID: 35505005 PMCID: PMC9065063 DOI: 10.1038/s41598-022-10785-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Abstract
The basic helix-loop-helix (bHLH) transcription factors are involved in several biological processes both in plant development and stress responses. Agarwood, a major active and economical product, is only induced and accumulated when the roots, stems, or branches are wounded in Aquilaria sinensis. Although genome-wide comprehensive analyses of the bHLH family have been identified in many plants, no systematic study of the genes in this family has been conducted in A. sinensis. In this study, 105 bHLH genes were identified in A. sinensis through genome-wide analysis and named according to their chromosomal locations. Based on a phylogenetic tree, AsbHLH family proteins were classified into 18 subfamilies. Most of them were distributed on eight chromosomes, with the exception of two genes. Based on the tissue-specific expression characteristics and expression patterns in response to methyl jasmonate (MeJA) treatment, seven AsbHLH genes were likely involved in wound-induced agarwood formation. The results provide comprehensive information on AsbHLHs that can be used to elucidate the molecular functions and physiological roles of these proteins in A. sinensis.
Collapse
Affiliation(s)
- Pei-Wen Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Zhi-Hui Gao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Fei-Fei Lv
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine and Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, 570311, China
| | - Cui-Cui Yu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yue Jin
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yan-Hong Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Jian-He Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China. .,Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine and Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, 570311, China.
| |
Collapse
|
31
|
Wan S, Xin XF. Regulation and integration of plant jasmonate signaling: a comparative view of monocot and dicot. J Genet Genomics 2022; 49:704-714. [PMID: 35452856 DOI: 10.1016/j.jgg.2022.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 10/18/2022]
Abstract
The phytohormone jasmonate plays a pivotal role in various aspects of plant life, including developmental programs and defense against pests and pathogens. A large body of knowledge on jasmonate biosynthesis, signal transduction as well as its functions in diverse plant processes has been gained in the past two decades. In addition, there exists extensive crosstalk between jasmonate pathway and other phytohormone pathways, such as salicylic acid (SA) and gibberellin (GA), in co-regulation of plant immune status, fine-tuning the balance of plant growth and defense, and so on, which were mostly learned from studies in the dicotyledonous model plants Arabidopsis thaliana and tomato but much less in monocot. Interestingly, existing evidence suggests both conservation and functional divergence in terms of core components of jasmonate pathway, its biological functions and signal integration with other phytohormones, between monocot and dicot. In this review, we summarize the current understanding on JA signal initiation, perception and regulation, and highlight the distinctive characteristics in different lineages of plants.
Collapse
Affiliation(s)
- Shiwei Wan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiu-Fang Xin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS), Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
32
|
Abstract
Winter wheat growing areas in the Northern hemisphere are regularly exposed to heavy frost. Due to the negative impact on yield, the identification of genetic factors controlling frost tolerance (FroT) and development of tools for breeding is of prime importance. Here, we detected QTL associated with FroT by genome wide association studies (GWAS) using a diverse panel of 276 winter wheat genotypes that was phenotyped at five locations in Germany and Russia in three years. The panel was genotyped using the 90 K iSelect array and SNPs in FroT candidate genes. In total, 17,566 SNPs were used for GWAS resulting in the identification of 53 markers significantly associated (LOD ≥ 4) to FroT, corresponding to 23 QTL regions located on 11 chromosomes (1A, 1B, 2A, 2B, 2D, 3A, 3D, 4A, 5A, 5B and 7D). The strongest QTL effect confirmed the importance of chromosome 5A for FroT. In addition, to our best knowledge, eight FroT QTLs were discovered for the first time in this study comprising one QTL on chromosomes 3A, 3D, 4A, 7D and two on chromosomes 1B and 2D. Identification of novel FroT candidate genes will help to better understand the FroT mechanism in wheat and to develop more effective combating strategies.
Collapse
|
33
|
Ye L, Cao L, Zhao X, Guo X, Ye K, Jiao S, Wang Y, He X, Dong C, Hu B, Deng F, Zhao H, Zheng P, Aslam M, Qin Y, Cheng Y. Investigation of the JASMONATE ZIM-DOMAIN Gene Family Reveals the Canonical JA-Signaling Pathway in Pineapple. BIOLOGY 2022; 11:biology11030445. [PMID: 35336818 PMCID: PMC8945601 DOI: 10.3390/biology11030445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/21/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022]
Abstract
JASMONATE ZIM-DOMAIN (JAZ) proteins are negative regulators of the jasmonate (JA)-signaling pathway and play pivotal roles in plant resistance to biotic and abiotic stresses. Genome-wide identification of JAZ genes has been performed in many plant species. However, systematic information about pineapple (Ananas comosus L. Merr.) JAZ genes (AcJAZs) is still not available. In this study, we identified 14 AcJAZ genes and classified them into five groups along with the Arabidopsis and rice orthologs. The AcJAZ genes have 3–10 exons, and the putative AcJAZ proteins have between two and eight conserved regions, including the TIFY motif and Jas domain. The cis-acting element analysis revealed that the putative promoter regions of AcJAZs contain between three and eight abiotic stress-responsive cis-acting elements. The gene-expression analysis suggested that AcJAZs were expressed differentially during plant development and subjected to regulation by the cold, heat, salt, and osmotic stresses as well as by phytohormones. Moreover, the BiFC analysis of protein interactions among the central JA-signaling regulators showed that AcJAZ4, AcMYC2, AcNINJA, and AcJAM1 could interact with AcJAZ5 and AcJAZ13 in vivo, indicating a canonical JA-signaling pathway in pineapple. These results increase our understanding of the functions of AcJAZs and the responses of the core players in the JA-signaling pathway to abiotic stresses.
Collapse
Affiliation(s)
- Li Ye
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.Y.); (L.C.); (X.Z.); (X.G.); (K.Y.); (F.D.)
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.J.); (Y.W.); (X.H.); (C.D.); (B.H.); (H.Z.); (P.Z.); (M.A.)
| | - Ling Cao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.Y.); (L.C.); (X.Z.); (X.G.); (K.Y.); (F.D.)
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.J.); (Y.W.); (X.H.); (C.D.); (B.H.); (H.Z.); (P.Z.); (M.A.)
| | - Xuemei Zhao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.Y.); (L.C.); (X.Z.); (X.G.); (K.Y.); (F.D.)
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.J.); (Y.W.); (X.H.); (C.D.); (B.H.); (H.Z.); (P.Z.); (M.A.)
| | - Xinya Guo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.Y.); (L.C.); (X.Z.); (X.G.); (K.Y.); (F.D.)
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.J.); (Y.W.); (X.H.); (C.D.); (B.H.); (H.Z.); (P.Z.); (M.A.)
| | - Kangzhuo Ye
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.Y.); (L.C.); (X.Z.); (X.G.); (K.Y.); (F.D.)
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.J.); (Y.W.); (X.H.); (C.D.); (B.H.); (H.Z.); (P.Z.); (M.A.)
| | - Sibo Jiao
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.J.); (Y.W.); (X.H.); (C.D.); (B.H.); (H.Z.); (P.Z.); (M.A.)
| | - Yu Wang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.J.); (Y.W.); (X.H.); (C.D.); (B.H.); (H.Z.); (P.Z.); (M.A.)
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoxue He
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.J.); (Y.W.); (X.H.); (C.D.); (B.H.); (H.Z.); (P.Z.); (M.A.)
| | - Chunxing Dong
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.J.); (Y.W.); (X.H.); (C.D.); (B.H.); (H.Z.); (P.Z.); (M.A.)
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bin Hu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.J.); (Y.W.); (X.H.); (C.D.); (B.H.); (H.Z.); (P.Z.); (M.A.)
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fang Deng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.Y.); (L.C.); (X.Z.); (X.G.); (K.Y.); (F.D.)
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.J.); (Y.W.); (X.H.); (C.D.); (B.H.); (H.Z.); (P.Z.); (M.A.)
| | - Heming Zhao
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.J.); (Y.W.); (X.H.); (C.D.); (B.H.); (H.Z.); (P.Z.); (M.A.)
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ping Zheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.J.); (Y.W.); (X.H.); (C.D.); (B.H.); (H.Z.); (P.Z.); (M.A.)
| | - Mohammad Aslam
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.J.); (Y.W.); (X.H.); (C.D.); (B.H.); (H.Z.); (P.Z.); (M.A.)
- Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yuan Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.Y.); (L.C.); (X.Z.); (X.G.); (K.Y.); (F.D.)
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.J.); (Y.W.); (X.H.); (C.D.); (B.H.); (H.Z.); (P.Z.); (M.A.)
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
- Correspondence: (Y.Q.); (Y.C.)
| | - Yan Cheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.Y.); (L.C.); (X.Z.); (X.G.); (K.Y.); (F.D.)
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.J.); (Y.W.); (X.H.); (C.D.); (B.H.); (H.Z.); (P.Z.); (M.A.)
- Correspondence: (Y.Q.); (Y.C.)
| |
Collapse
|
34
|
Zhao L, Li X, Chen W, Xu Z, Chen M, Wang H, Yu D. The emerging role of jasmonate in the control of flowering time. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:11-21. [PMID: 34599804 DOI: 10.1093/jxb/erab418] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Plants dynamically synchronize their flowering time with changes in the internal and external environments through a variety of signaling pathways to maximize fitness. In the last two decades, the major pathways associated with flowering, including the photoperiod, vernalization, age, autonomous, gibberellin, and ambient temperature pathways, have been extensively analyzed. In recent years, an increasing number of signals, such as sugar, thermosensory, stress, and certain hormones, have been shown to be involved in fine-tuning flowering time. Among these signals, the jasmonate signaling pathway has a function in the determination of flowering time that has not been systematically summarized. In this review, we present an overview of current knowledge of jasmonate control of flowering and discuss jasmonate crosstalk with other signals (such as gibberellin, defense, and touch) during floral transition.
Collapse
Affiliation(s)
- Lirong Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Wanqin Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Zhiyu Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Mifen Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Houping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| |
Collapse
|
35
|
Yang J, Chen Y, Xiao Z, Shen H, Li Y, Wang Y. Multilevel regulation of anthocyanin-promoting R2R3-MYB transcription factors in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1008829. [PMID: 36147236 PMCID: PMC9485867 DOI: 10.3389/fpls.2022.1008829] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 05/14/2023]
Abstract
Anthocyanins are common secondary metabolites in plants that confer red, blue, and purple colorations in plants and are highly desired by consumers for their visual appearance and nutritional quality. In the last two decades, the anthocyanin biosynthetic pathway and transcriptional regulation of anthocyanin biosynthetic genes (ABGs) have been well characterized in many plants. From numerous studies on model plants and horticultural crops, many signaling regulators have been found to control anthocyanin accumulation via regulation of anthocyanin-promoting R2R3-MYB transcription factors (so-called R2R3-MYB activators). The regulatory mechanism of R2R3-MYB activators is mediated by multiple environmental factors (e.g., light, temperature) and internal signals (e.g., sugar, ethylene, and JA) in complicated interactions at multiple levels. Here, we summarize the transcriptional control of R2R3-MYB activators as a result of natural variations in the promoter of their encoding genes, upstream transcription factors and epigenetics, and posttranslational modifications of R2R3-MYB that determine color variations of horticultural plants. In addition, we focus on progress in elucidating the integrated regulatory network of anthocyanin biosynthesis mediated by R2R3-MYB activators in response to multiple signals. We also highlight a few gene cascade modules involved in the regulation of anthocyanin-related R2R3-MYB to provide insights into anthocyanin production in horticultural plants.
Collapse
Affiliation(s)
- Jianfei Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Yunzhu Chen
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Zhihong Xiao
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Hailong Shen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Yuhua Li
- College of Life Sciences, Northeast Forestry University, Harbin, China
- Yuhua Li,
| | - Yu Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Sciences, Northeast Forestry University, Harbin, China
- *Correspondence: Yu Wang,
| |
Collapse
|
36
|
Song C, Cao Y, Dai J, Li G, Manzoor MA, Chen C, Deng H. The Multifaceted Roles of MYC2 in Plants: Toward Transcriptional Reprogramming and Stress Tolerance by Jasmonate Signaling. FRONTIERS IN PLANT SCIENCE 2022; 13:868874. [PMID: 35548315 PMCID: PMC9082941 DOI: 10.3389/fpls.2022.868874] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/17/2022] [Indexed: 05/12/2023]
Abstract
Environmental stress is one of the major restrictions on plant development and foodstuff production. The adaptive response in plants largely occurs through an intricate signaling system, which is crucial for regulating the stress-responsive genes. Myelocytomatosis (MYC) transcription factors are the fundamental regulators of the jasmonate (JA) signaling branch that participates in plant development and multiple stresses. By binding to the cis-acting elements of a large number of stress-responsive genes, JA-responsive transcription factors activate the stress-resistant defense genes. The mechanism of stress responses concerns myriad regulatory processes at the physiological and molecular levels. Discovering stress-related regulatory factors is of great value in disclosing the response mechanisms of plants to biotic or abiotic stress, which could guide the genetic improvement of plant resistance. This review summarizes recent researches in various aspects of MYC2-mediated JA signaling and emphasizes MYC2 involvement in plant growth and stress response.
Collapse
Affiliation(s)
- Cheng Song
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Yunpeng Cao
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Jun Dai
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Guohui Li
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | | | - Cunwu Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Hui Deng
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- *Correspondence: Hui Deng,
| |
Collapse
|
37
|
Makhazen DS, Veremeichik GN, Shkryl YN, Tchernoded GK, Grigorchuk VP, Bulgakov VP. Inhibition of the JAZ1 gene causes activation of camalexin biosynthesis in Arabidopsis callus cultures. J Biotechnol 2021; 342:102-113. [PMID: 34736953 DOI: 10.1016/j.jbiotec.2021.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 11/15/2022]
Abstract
Indole alkaloid camalexin has potential medicinal properties such as suppressing the viability of leukemic but not normal cells. Camalexin is not produced in plants and an external factor is required to activate its biosynthesis. In this work, we stimulated camalexin biosynthesis in Arabidopsis calli by blocking one of repressors of the jasmonate pathway, the jasmonate ZIM-domain protein 1 (JAZ1) by using amiRNA targeting JAZ1 gene transcripts. Inhibition of the JAZ1 gene led to an increase in camalexin content from trace amounts in control culture to 9 µg/g DW in the jaz1 line without affecting growth. In addition, JAZ1 silencing enhanced tolerance to cold stress with simultaneous increasing camalexin content up to 30 µg/g DW. Real-time quantitative PCR determination of marker gene expression showed that effects caused by the JAZ1 silencing might be realized through crosslinking JA, ROS, and abscisic acid signaling pathways. Thus, targeting the distal components of signaling pathways can be suggested as a tool for bioengineering of secondary metabolism, along with standard techniques for targeting biosynthetic genes or genes encoding transcription factors.
Collapse
Affiliation(s)
- D S Makhazen
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - G N Veremeichik
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Y N Shkryl
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok 690022, Russia
| | - G K Tchernoded
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok 690022, Russia
| | - V P Grigorchuk
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok 690022, Russia
| | - V P Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok 690022, Russia
| |
Collapse
|
38
|
López-Vidriero I, Godoy M, Grau J, Peñuelas M, Solano R, Franco-Zorrilla JM. DNA features beyond the transcription factor binding site specify target recognition by plant MYC2-related bHLH proteins. PLANT COMMUNICATIONS 2021; 2:100232. [PMID: 34778747 PMCID: PMC8577090 DOI: 10.1016/j.xplc.2021.100232] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/09/2021] [Accepted: 08/10/2021] [Indexed: 05/22/2023]
Abstract
Transcription factors (TFs) regulate gene expression by binding to cis-regulatory sequences in the promoters of target genes. Recent research is helping to decipher in part the cis-regulatory code in eukaryotes, including plants, but it is not yet fully understood how paralogous TFs select their targets. Here we addressed this question by studying several proteins of the basic helix-loop-helix (bHLH) family of plant TFs, all of which recognize the same DNA motif. We focused on the MYC-related group of bHLHs, that redundantly regulate the jasmonate (JA) signaling pathway, and we observed a high correspondence between DNA-binding profiles in vitro and MYC function in vivo. We demonstrated that A/T-rich modules flanking the MYC-binding motif, conserved from bryophytes to higher plants, are essential for TF recognition. We observed particular DNA-shape features associated with A/T modules, indicating that the DNA shape may contribute to MYC DNA binding. We extended this analysis to 20 additional bHLHs and observed correspondence between in vitro binding and protein function, but it could not be attributed to A/T modules as in MYCs. We conclude that different bHLHs may have their own codes for DNA binding and specific selection of targets that, at least in the case of MYCs, depend on the TF-DNA interplay.
Collapse
Affiliation(s)
- Irene López-Vidriero
- Genomics Unit, Centro Nacional de Biotecnología, CSIC, C/Darwin 3, 28049 Madrid, Spain
| | - Marta Godoy
- Genomics Unit, Centro Nacional de Biotecnología, CSIC, C/Darwin 3, 28049 Madrid, Spain
| | - Joaquín Grau
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, CSIC, C/Darwin 3, 28049 Madrid, Spain
| | - María Peñuelas
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, CSIC, C/Darwin 3, 28049 Madrid, Spain
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, CSIC, C/Darwin 3, 28049 Madrid, Spain
| | - José M. Franco-Zorrilla
- Genomics Unit, Centro Nacional de Biotecnología, CSIC, C/Darwin 3, 28049 Madrid, Spain
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, CSIC, C/Darwin 3, 28049 Madrid, Spain
- Corresponding author
| |
Collapse
|
39
|
Song S, Liu B, Zhai J, Zhang Y, Wang K, Qi T. The intragenic suppressor mutation Leu59Phe compensates for the effect of detrimental mutations in the jasmonate receptor COI1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:690-704. [PMID: 34396619 DOI: 10.1111/tpj.15464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/01/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The phytohormones jasmonates (JAs) control plant development, growth, and defense against insects and pathogens. The Arabidopsis JA receptor Coronatine Insensitive 1 (COI1) interacts with ARABIDOPSIS SKP-LIKE1 (ASK1)/ASK2 to form the SCFCOI1 E3 ligase and mediate JA responses. Here, we performed a genetic suppressor screen using the leaky coi1-2 (COI1Leu245Phe ) mutant for restored sensitivity to JA, and identified the intragenic suppressor mutation Leu59Phe, which was in the region connecting the F-box and leucine-rich repeats domains of COI1. The L59F substitution not only restores the COI1L245F function, but also the COI1Gly434Glu (coi1-22rsp ) function in JA responses, through recovering their interactions with ASK1 or ASK2 and their protein levels. The L59F change itself could not enhance the interactions between COI1 and ASK1/2, nor affect JA responses. The present study reveals that the Leu59Phe substitution compensates for the effect of some deleterious mutations in the JA receptor COI1.
Collapse
Affiliation(s)
- Susheng Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bei Liu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Jiaqi Zhai
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yue Zhang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Cangzhou Academy of Agricultural and Forestry Sciences, Cangzhou, 061001, China
| | - Kai Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Tiancong Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
40
|
Morcillo F, Serret J, Beckers A, Collin M, Tisné S, George S, Poveda R, Louise C, Tranbarger TJ. A Non-Shedding Fruit Elaeis oleifera Palm Reveals Perturbations to Hormone Signaling, ROS Homeostasis, and Hemicellulose Metabolism. Genes (Basel) 2021; 12:1724. [PMID: 34828330 PMCID: PMC8621672 DOI: 10.3390/genes12111724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
The developmentally programmed loss of a plant organ is called abscission. This process is characterized by the ultimate separation of adjacent cells in the abscission zone (AZ). The discovery of an American oil palm (Elaeis oleifera) variant that does not shed its has allowed for the study of the mechanisms of ripe fruit abscission in this species. A comparative transcriptome analysis was performed to compare the fruit AZs of the non-shedding E. oleifera variant to an individual of the same progeny that sheds its ripe fruit normally. The study provides evidence for widespread perturbation to gene expression in the AZ of the non-shedding variant, compared to the normal fruit-shedding control, and offers insight into abscission-related functions. Beyond the genes with known or suspected roles during organ abscission or indehiscence that were identified, a list of genes with hormone-related functions, including ethylene, jasmonic acid, abscisic acid, cytokinin and salicylic acid, in addition to reactive oxygen species (ROS) metabolism, transcriptional responses and signaling pathways, was compiled. The results also allowed a comparison between the ripe fruit abscission processes of the African and American oil palm species at the molecular level and revealed commonalities with environmental stress pathways.
Collapse
Affiliation(s)
- Fabienne Morcillo
- DIADE (Diversité, Adaptation, Développement des Plantes), University of Montpellier, CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement), IRD (Institut de Recherche pour le Développement), 34393 Montpellier, France; (F.M.); (J.S.); (A.B.); (M.C.)
- CIRAD, UMR (Unité Mixte de Recherche) DIADE, 34398 Montpellier, France
| | - Julien Serret
- DIADE (Diversité, Adaptation, Développement des Plantes), University of Montpellier, CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement), IRD (Institut de Recherche pour le Développement), 34393 Montpellier, France; (F.M.); (J.S.); (A.B.); (M.C.)
| | - Antoine Beckers
- DIADE (Diversité, Adaptation, Développement des Plantes), University of Montpellier, CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement), IRD (Institut de Recherche pour le Développement), 34393 Montpellier, France; (F.M.); (J.S.); (A.B.); (M.C.)
| | - Myriam Collin
- DIADE (Diversité, Adaptation, Développement des Plantes), University of Montpellier, CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement), IRD (Institut de Recherche pour le Développement), 34393 Montpellier, France; (F.M.); (J.S.); (A.B.); (M.C.)
| | - Sebastien Tisné
- CIRAD, UMR AGAP (Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales), 34398 Montpellier, France;
- AGAP, University of Montpellier, CIRAD, INRAE (Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement), Institut Agro, 34398 Montpellier, France
| | - Simon George
- MGX-Montpellier GenomiX, University of Montpellier, CNRS (Centre National de la Recherche Scientifique), INSERM (Institut National de la Santé et de la Recherche Médicale), 34094 Montpellier, France;
| | - Roberto Poveda
- DANEC, Sangolqui/Rumiñahui, Sangolquí, Pichincha 171102, Ecuador;
| | | | - Timothy John Tranbarger
- DIADE (Diversité, Adaptation, Développement des Plantes), University of Montpellier, CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement), IRD (Institut de Recherche pour le Développement), 34393 Montpellier, France; (F.M.); (J.S.); (A.B.); (M.C.)
| |
Collapse
|
41
|
Liu B, Seong K, Pang S, Song J, Gao H, Wang C, Zhai J, Zhang Y, Gao S, Li X, Qi T, Song S. Functional specificity, diversity, and redundancy of Arabidopsis JAZ family repressors in jasmonate and COI1-regulated growth, development, and defense. THE NEW PHYTOLOGIST 2021; 231:1525-1545. [PMID: 34009665 DOI: 10.1111/nph.17477] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/11/2021] [Indexed: 05/11/2023]
Abstract
In response to jasmonates (JAs), the JA receptor Coronatine Insensitive 1 (COI1) recruits JA-zinc-finger inflorescence meristem (ZIM)-domain (JAZ) family repressors for destruction to regulate plant growth, development, and defense. As Arabidopsis encodes 13 JAZ repressors, their functional specificity, diversity, and redundancy in JA/COI1-mediated responses remain unclear. We generated a broad range of jaz mutants based on their phylogenetic relationship to investigate their roles in JA responses. The group I JAZ6 may play an inhibitory role in resistance to Botrytis cinerea, group II (JAZ10)/III (JAZ11/12) in JA-regulated root growth inhibition and susceptibility to Pseudomonas syringae pv tomato DC3000, and group IV JAZ3/4/9 in flowering time delay and defense against insects. JAZs exhibit high redundancy in apical hook curvature. The undecuple jaz1/2/3/4/5/6/7/9/10/11/12 (jaz1-7,9-12) mutations enhance JA responses and suppress the phenotypes of coi1-1 in flowering time, rosette growth, and defense. The JA hypersensitivity of jaz1-7,9-12 in root growth, hook curvature, and leaf yellowing is blocked by coi1-1. jaz1-7,9-12 does not influence the stamen phenotypes of wild-type and coi1-1. jaz1-7,9-12 affects JA-regulated transcriptional profile and recovers a fraction of that in coi1-1. This study contributes to elucidating the specificity, diversity, and redundancy of JAZ members in JA/COI1-regulated growth, development, and defense responses.
Collapse
Affiliation(s)
- Bei Liu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, RNA Center, College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kyungyong Seong
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720-3120, USA
| | - Shihai Pang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, RNA Center, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Junqiao Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, RNA Center, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Hua Gao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Cuili Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jiaqi Zhai
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, RNA Center, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yue Zhang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, RNA Center, College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Cangzhou Academy of Agricultural and Forestry Sciences, Cangzhou, 061001, China
| | - Shang Gao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xuedong Li
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, RNA Center, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Tiancong Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Susheng Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, RNA Center, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| |
Collapse
|
42
|
He H, Denecker J, Van Der Kelen K, Willems P, Pottie R, Phua SY, Hannah MA, Vertommen D, Van Breusegem F, Mhamdi A. The Arabidopsis mediator complex subunit 8 regulates oxidative stress responses. THE PLANT CELL 2021; 33:2032-2057. [PMID: 33713138 PMCID: PMC8290281 DOI: 10.1093/plcell/koab079] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/10/2021] [Indexed: 05/13/2023]
Abstract
Signaling events triggered by hydrogen peroxide (H2O2) regulate plant growth and defense by orchestrating a genome-wide transcriptional reprogramming. However, the specific mechanisms that govern H2O2-dependent gene expression are still poorly understood. Here, we identify the Arabidopsis Mediator complex subunit MED8 as a regulator of H2O2 responses. The introduction of the med8 mutation in a constitutive oxidative stress genetic background (catalase-deficient, cat2) was associated with enhanced activation of the salicylic acid pathway and accelerated cell death. Interestingly, med8 seedlings were more tolerant to oxidative stress generated by the herbicide methyl viologen (MV) and exhibited transcriptional hyperactivation of defense signaling, in particular salicylic acid- and jasmonic acid-related pathways. The med8-triggered tolerance to MV was manipulated by the introduction of secondary mutations in salicylic acid and jasmonic acid pathways. In addition, analysis of the Mediator interactome revealed interactions with components involved in mRNA processing and microRNA biogenesis, hence expanding the role of Mediator beyond transcription. Notably, MED8 interacted with the transcriptional regulator NEGATIVE ON TATA-LESS, NOT2, to control the expression of H2O2-inducible genes and stress responses. Our work establishes MED8 as a component regulating oxidative stress responses and demonstrates that it acts as a negative regulator of H2O2-driven activation of defense gene expression.
Collapse
Affiliation(s)
- Huaming He
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Jordi Denecker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
- Present address: Illumina Cambridge Ltd, Cambridge, CB21 6DF, UK; Present address: Sciensano, 1050 Brussels, Belgium
| | - Katrien Van Der Kelen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
- Present address: Illumina Cambridge Ltd, Cambridge, CB21 6DF, UK; Present address: Sciensano, 1050 Brussels, Belgium
| | - Patrick Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Robin Pottie
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Su Yin Phua
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Matthew A Hannah
- BASF Belgium Coordination Center, Innovation Center Gent, 9052 Gent, Belgium
| | - Didier Vertommen
- de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Amna Mhamdi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
- Author for correspondence: (A.M.)
| |
Collapse
|
43
|
Chen X, Jiang W, Tong T, Chen G, Zeng F, Jang S, Gao W, Li Z, Mak M, Deng F, Chen ZH. Molecular Interaction and Evolution of Jasmonate Signaling With Transport and Detoxification of Heavy Metals and Metalloids in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:665842. [PMID: 33936156 PMCID: PMC8079949 DOI: 10.3389/fpls.2021.665842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
An increase in environmental pollution resulting from toxic heavy metals and metalloids [e.g., cadmium (Cd), arsenic (As), and lead (Pb)] causes serious health risks to humans and animals. Mitigation strategies need to be developed to reduce the accumulation of the toxic elements in plant-derived foods. Natural and genetically-engineered plants with hyper-tolerant and hyper-accumulating capacity of toxic minerals are valuable for phytoremediation. However, the molecular mechanisms of detoxification and accumulation in plants have only been demonstrated in very few plant species such as Arabidopsis and rice. Here, we review the physiological and molecular aspects of jasmonic acid and the jasmonate derivatives (JAs) in response to toxic heavy metals and metalloids. Jasmonates have been identified in, limiting the accumulation and enhancing the tolerance to the toxic elements, by coordinating the ion transport system, the activity of antioxidant enzymes, and the chelating capacity in plants. We also propose the potential involvement of Ca2+ signaling in the stress-induced production of jasmonates. Comparative transcriptomics analyses using the public datasets reveal the key gene families involved in the JA-responsive routes. Furthermore, we show that JAs may function as a fundamental phytohormone that protects plants from heavy metals and metalloids as demonstrated by the evolutionary conservation and diversity of these gene families in a large number of species of the major green plant lineages. Using ATP-Binding Cassette G (ABCG) transporter subfamily of six representative green plant species, we propose that JA transporters in Subgroup 4 of ABCGs may also have roles in heavy metal detoxification. Our paper may provide guidance toward the selection and development of suitable plant and crop species that are tolerant to toxic heavy metals and metalloids.
Collapse
Affiliation(s)
- Xuan Chen
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Wei Jiang
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Tao Tong
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Fanrong Zeng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Sunghoon Jang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Wei Gao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Zhen Li
- School of Agriculture, Jinhua Polytechnic, Jinhua, China
| | - Michelle Mak
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Fenglin Deng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
44
|
Chen S, Kong Y, Zhang X, Liao Z, He Y, Li L, Liang Z, Sheng Q, Hong G. Structural and functional organization of the MYC transcriptional factors in Camellia sinensis. PLANTA 2021; 253:93. [PMID: 33826012 DOI: 10.1007/s00425-021-03607-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Genome-wide identification, expression analysis of the MYC family in Camellia sinensis, and potential functional characterization of CsMYC2.1 have laid a solid foundation for further research on CsMYC2.1 in jasmonate (JA)-mediated response. Myelocytomatosis (MYC) of basic helix-loop-helix (bHLH) plays a major role in JA-mediated plant growth and developmental processes through specifically binding to the G-box in the promoters of their target genes. In Camellia sinensis, studies on the MYC gene family are limited. Here, we identified 14 C. sinensis MYC (CsMYC) genes, and further analyzed the evolutionary relationship, gene structure, and motif pattern among them. The expression patterns of these CsMYC genes in different tissues suggested their important roles in diverse function in tea plant. Four MYC transcription factors with the highest homology to MYC2 in Arabidopsis were localized in the nucleus. Two of them, named CsMYC2.1 and CsMYC2.2, exhibited transcriptional self-activating activity, and, therefore, could significantly activate the promoter containing G-box motif, whereas CsJAM1.1 and CsJAM1.2 lack the transcriptional self-activating activity, indirectly mediating the JA pathway through interacting with CsMYC2.1 and CsMYC2.2. Furthermore, Yeast Two-Hybrid (Y2H) and Bimolecular Fluorescent Complimentary (BiFC) assays showed that CsMYC2.1 could interact with CsJAZ3/7/8 proteins. Genetically, the complementation of CsMYC2.1 in myc2 mutants conferred the ability to restore the sensitivity to JA signals. The results provide a comprehensive characterization of the 14 CsMYCs in C. sinensis, establishing a solid foundation for further research on CsMYCs in JA-mediated response.
Collapse
Affiliation(s)
- Sangtian Chen
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yaze Kong
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xueying Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou, 310021, China
| | - Zhenfeng Liao
- Central Laboratory of Zhejiang Academy of Agricultural Sciences, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou, 310021, China
| | - Yuqing He
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou, 310021, China
| | - Linying Li
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou, 310021, China
| | - Zongsuo Liang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qing Sheng
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Gaojie Hong
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou, 310021, China.
| |
Collapse
|
45
|
MYC2 Transcription Factors TwMYC2a and TwMYC2b Negatively Regulate Triptolide Biosynthesis in Tripterygium wilfordii Hairy Roots. PLANTS 2021; 10:plants10040679. [PMID: 33916111 PMCID: PMC8067133 DOI: 10.3390/plants10040679] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022]
Abstract
Triptolide, an important bioactive diterpenoid extracted from the plant Tripterygium wilfordii, exhibits many pharmacological activities. MYC2 transcription factor (TF) plays an important role in the regulation of various secondary metabolites in plants. However, whether MYC2 TF could regulate the biosynthesis of triptolide in T. wilfordii is still unknown. In this study, two homologous MYC2 TF genes, TwMYC2a and TwMYC2b, were isolated from T. wilfordii hairy roots and functionally characterized. The analyses of the phylogenetic tree and subcellular localization showed that they were grouped into the IIIe clade of the bHLH superfamily with other functional MYC2 proteins and localized in the nucleus. Furthermore, yeast one-hybrid and GUS transactivation assays suggested that TwMYC2a and TwMYC2b inhibited the promoter activity of the miltiradiene synthase genes, TwTPS27a and TwTPS27b, by binding to the E-box (CACATG) and T/G-box (CACGTT) motifs in their promoters. Transgenic results revealed that RNA interference of TwMYC2a/b significantly enhanced the triptolide accumulation in hairy roots and liquid medium by upregulating the expression of several key biosynthetic genes, including TwMS (TwTPS27a/b), TwCPS (TwTPS7/9), TwDXR, and TwHMGR1. In summary, our findings show that TwMYC2a and TwMYC2b act as two negative regulators of triptolide biosynthesis in T. wilfordii hairy roots and also provide new insights on metabolic engineering of triptolide in the future.
Collapse
|
46
|
Liu H, Timko MP. Jasmonic Acid Signaling and Molecular Crosstalk with Other Phytohormones. Int J Mol Sci 2021; 22:ijms22062914. [PMID: 33805647 PMCID: PMC8000993 DOI: 10.3390/ijms22062914] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Plants continually monitor their innate developmental status and external environment and make adjustments to balance growth, differentiation and stress responses using a complex and highly interconnected regulatory network composed of various signaling molecules and regulatory proteins. Phytohormones are an essential group of signaling molecules that work through a variety of different pathways conferring plasticity to adapt to the everchanging developmental and environmental cues. Of these, jasmonic acid (JA), a lipid-derived molecule, plays an essential function in controlling many different plant developmental and stress responses. In the past decades, significant progress has been made in our understanding of the molecular mechanisms that underlie JA metabolism, perception, signal transduction and its crosstalk with other phytohormone signaling pathways. In this review, we discuss the JA signaling pathways starting from its biosynthesis to JA-responsive gene expression, highlighting recent advances made in defining the key transcription factors and transcriptional regulatory proteins involved. We also discuss the nature and degree of crosstalk between JA and other phytohormone signaling pathways, highlighting recent breakthroughs that broaden our knowledge of the molecular bases underlying JA-regulated processes during plant development and biotic stress responses.
Collapse
|
47
|
Osnato M, Lacchini E, Pilatone A, Dreni L, Grioni A, Chiara M, Horner D, Pelaz S, Kater MM. Transcriptome analysis reveals rice MADS13 as an important repressor of the carpel development pathway in ovules. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:398-414. [PMID: 33035313 DOI: 10.1093/jxb/eraa460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
In angiosperms, floral homeotic genes encoding MADS-domain transcription factors regulate the development of floral organs. Specifically, members of the SEPALLATA (SEP) and AGAMOUS (AG) subfamilies form higher-order protein complexes to control floral meristem determinacy and to specify the identity of female reproductive organs. In rice, the AG subfamily gene OsMADS13 is intimately involved in the determination of ovule identity, since knock-out mutant plants develop carpel-like structures in place of ovules, resulting in female sterility. Little is known about the regulatory pathways at the base of rice gynoecium development. To investigate molecular mechanisms acting downstream of OsMADS13, we obtained transcriptomes of immature inflorescences from wild-type and Osmads13 mutant plants. Among a total of 476 differentially expressed genes (DEGs), a substantial overlap with DEGs from the SEP-family Osmads1 mutant was found, suggesting that OsMADS1 and OsMADS13 may act on a common set of target genes. Expression studies and preliminary analyses of two up-regulated genes encoding Zinc-finger transcription factors indicated that our dataset represents a valuable resource for the identification of both OsMADS13 target genes and novel players in rice ovule development. Taken together, our study suggests that OsMADS13 is an important repressor of the carpel pathway during ovule development.
Collapse
Affiliation(s)
- Michela Osnato
- Department of Biosciences, University of Milan, Milano, Italy
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
| | - Elia Lacchini
- Department of Biosciences, University of Milan, Milano, Italy
- VIB Center for Plant System Biology, Ghent, BELGIUM
| | | | - Ludovico Dreni
- Department of Biosciences, University of Milan, Milano, Italy
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Andrea Grioni
- Department of Biosciences, University of Milan, Milano, Italy
| | - Matteo Chiara
- Department of Biosciences, University of Milan, Milano, Italy
| | - David Horner
- Department of Biosciences, University of Milan, Milano, Italy
| | - Soraya Pelaz
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
| | - Martin M Kater
- Department of Biosciences, University of Milan, Milano, Italy
| |
Collapse
|
48
|
Aerts N, Pereira Mendes M, Van Wees SCM. Multiple levels of crosstalk in hormone networks regulating plant defense. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:489-504. [PMID: 33617121 PMCID: PMC7898868 DOI: 10.1111/tpj.15124] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/21/2020] [Accepted: 11/30/2020] [Indexed: 05/03/2023]
Abstract
Plant hormones are essential for regulating the interactions between plants and their complex biotic and abiotic environments. Each hormone initiates a specific molecular pathway and these different hormone pathways are integrated in a complex network of synergistic, antagonistic and additive interactions. This inter-pathway communication is called hormone crosstalk. By influencing the immune network topology, hormone crosstalk is essential for tailoring plant responses to diverse microbes and insects in diverse environmental and internal contexts. Crosstalk provides robustness to the immune system but also drives specificity of induced defense responses against the plethora of biotic interactors. Recent advances in dry-lab and wet-lab techniques have greatly enhanced our understanding of the broad-scale effects of hormone crosstalk on immune network functioning and have revealed underlying principles of crosstalk mechanisms. Molecular studies have demonstrated that hormone crosstalk is modulated at multiple levels of regulation, such as by affecting protein stability, gene transcription and hormone homeostasis. These new insights into hormone crosstalk regulation of plant defense are reviewed here, with a focus on crosstalk acting on the jasmonic acid pathway in Arabidopsis thaliana, highlighting the transcription factors MYC2 and ORA59 as major targets for modulation by other hormones.
Collapse
Affiliation(s)
- Niels Aerts
- Plant‐Microbe InteractionsDepartment of BiologyScience4LifeUtrecht UniversityP.O. Box 800.56Utrecht3408 TBThe Netherlands
| | - Marciel Pereira Mendes
- Plant‐Microbe InteractionsDepartment of BiologyScience4LifeUtrecht UniversityP.O. Box 800.56Utrecht3408 TBThe Netherlands
| | - Saskia C. M. Van Wees
- Plant‐Microbe InteractionsDepartment of BiologyScience4LifeUtrecht UniversityP.O. Box 800.56Utrecht3408 TBThe Netherlands
| |
Collapse
|
49
|
Singh SK, Patra B, Paul P, Liu Y, Pattanaik S, Yuan L. BHLH IRIDOID SYNTHESIS 3 is a member of a bHLH gene cluster regulating terpenoid indole alkaloid biosynthesis in Catharanthus roseus. PLANT DIRECT 2021; 5:e00305. [PMID: 33532692 PMCID: PMC7833464 DOI: 10.1002/pld3.305] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/30/2020] [Accepted: 01/01/2021] [Indexed: 05/02/2023]
Abstract
Basic helix-loop-helix (bHLH) transcription factors (TFs) are key regulators of plant specialized metabolites, including terpenoid indole alkaloids (TIAs) in Catharanthus roseus. Two previously characterized subgroup-IVa bHLH TFs, BIS1 (bHLH Iridoid Synthesis 1) and BIS2 regulate iridoid biosynthesis in the TIA pathway. We reanalyzed the recently updated C. roseus genome sequence and discovered that BIS1 and BIS2 are clustered on the same genomic scaffold with a previously uncharacterized bHLH gene, designated as BIS3. Only a few bHLH gene clusters have been studied to date. Comparative analysis of 49 genome sequences from different plant lineages revealed the presence of analogous bHLH clusters in core angiosperms, including the medicinal plants Calotropis gigantea (giant milkweed) and Gelsemium sempervirens (yellow jessamine), but not in the analyzed basal angiosperm and lower plants. Similar to the iridoid pathway genes, BIS3 is highly expressed in roots and induced by methyl jasmonate. BIS3 activates the promoters of iridoid branch genes, geraniol synthase (GES), geraniol 10-hydroxylase (G10H), 8-hydroxygeraniol oxidoreductase (8HGO), iridoid synthase (IS), 7-deoxyloganetic acid glucosyl transferase (7-DLGT), and 7-deoxyloganic acid hydroxylase (7DLH), but not iridoid oxidase (IO). Transactivation of the promoters was abolished when BIS3 is converted to a dominant repressor by fusing with the ERF-associated amphiphilic repression (EAR) sequence. In addition, BIS3 acts synergistically with BIS1 and BIS2 to activate the G10H promoter in tobacco cells. Mutation of the known bHLH TF binding motif, G-box (CACGTG) in the G10H promoter significantly reduced but did not abolish the transactivation by BIS3. Promoter deletion analysis of G10H suggests that the sequences adjacent to the G-box are also involved in the regulation by BIS3. Overexpression of BIS3 in C. roseus flower petals significantly upregulated the expression of iridoid biosynthetic genes and increased loganic acid accumulation. BIS2 expression was significantly induced by BIS3 although BIS3 did not directly activate the BIS2 promoter. Our results advance our understanding of the regulation of plant specialized metabolites by bHLH TF clusters.
Collapse
Affiliation(s)
- Sanjay Kumar Singh
- Kentucky Tobacco Research & Development CenterUniversity of KentuckyLexingtonKYUSA
| | - Barunava Patra
- Kentucky Tobacco Research & Development CenterUniversity of KentuckyLexingtonKYUSA
| | - Priyanka Paul
- Department of Plant and Soil SciencesUniversity of KentuckyLexingtonKYUSA
| | - Yongliang Liu
- Kentucky Tobacco Research & Development CenterUniversity of KentuckyLexingtonKYUSA
- South China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | - Sitakanta Pattanaik
- Kentucky Tobacco Research & Development CenterUniversity of KentuckyLexingtonKYUSA
| | - Ling Yuan
- Kentucky Tobacco Research & Development CenterUniversity of KentuckyLexingtonKYUSA
- Department of Plant and Soil SciencesUniversity of KentuckyLexingtonKYUSA
- South China Botanical GardenChinese Academy of SciencesGuangzhouChina
| |
Collapse
|
50
|
Daguerre Y, Basso V, Hartmann-Wittulski S, Schellenberger R, Meyer L, Bailly J, Kohler A, Plett JM, Martin F, Veneault-Fourrey C. The mutualism effector MiSSP7 of Laccaria bicolor alters the interactions between the poplar JAZ6 protein and its associated proteins. Sci Rep 2020; 10:20362. [PMID: 33230111 PMCID: PMC7683724 DOI: 10.1038/s41598-020-76832-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/28/2020] [Indexed: 02/08/2023] Open
Abstract
Despite the pivotal role of jasmonic acid in the outcome of plant-microorganism interactions, JA-signaling components in roots of perennial trees like western balsam poplar (Populus trichocarpa) are poorly characterized. Here we decipher the poplar-root JA-perception complex centered on PtJAZ6, a co-repressor of JA-signaling targeted by the effector protein MiSSP7 from the ectomycorrhizal basidiomycete Laccaria bicolor during symbiotic development. Through protein-protein interaction studies in yeast we determined the poplar root proteins interacting with PtJAZ6. Moreover, we assessed via yeast triple-hybrid how the mutualistic effector MiSSP7 reshapes the association between PtJAZ6 and its partner proteins. In the absence of the symbiotic effector, PtJAZ6 interacts with the transcription factors PtMYC2s and PtJAM1.1. In addition, PtJAZ6 interacts with it-self and with other Populus JAZ proteins. Finally, MiSSP7 strengthens the binding of PtJAZ6 to PtMYC2.1 and antagonizes PtJAZ6 homo-/heterodimerization. We conclude that a symbiotic effector secreted by a mutualistic fungus may promote the symbiotic interaction through altered dynamics of a JA-signaling-associated protein-protein interaction network, maintaining the repression of PtMYC2.1-regulated genes.
Collapse
Affiliation(s)
- Yohann Daguerre
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Centre INRAE de Nancy, Université de Lorraine/INRAE, Champenoux, France
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Veronica Basso
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Centre INRAE de Nancy, Université de Lorraine/INRAE, Champenoux, France
| | - Sebastian Hartmann-Wittulski
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Centre INRAE de Nancy, Université de Lorraine/INRAE, Champenoux, France
| | - Romain Schellenberger
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Centre INRAE de Nancy, Université de Lorraine/INRAE, Champenoux, France
| | - Laura Meyer
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Centre INRAE de Nancy, Université de Lorraine/INRAE, Champenoux, France
| | - Justine Bailly
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Centre INRAE de Nancy, Université de Lorraine/INRAE, Champenoux, France
| | - Annegret Kohler
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Centre INRAE de Nancy, Université de Lorraine/INRAE, Champenoux, France
| | - Jonathan M Plett
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Centre INRAE de Nancy, Université de Lorraine/INRAE, Champenoux, France
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Francis Martin
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Centre INRAE de Nancy, Université de Lorraine/INRAE, Champenoux, France
| | - Claire Veneault-Fourrey
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Centre INRAE de Nancy, Université de Lorraine/INRAE, Champenoux, France.
| |
Collapse
|