1
|
Jiang L, Guo T, Song X, Jiang H, Lu M, Luo J, Rossi V, He Y. MSH7 confers quantitative variation in pollen fertility and boosts grain yield in maize. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1372-1386. [PMID: 38263872 PMCID: PMC11022798 DOI: 10.1111/pbi.14272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/15/2023] [Accepted: 12/08/2023] [Indexed: 01/25/2024]
Abstract
Fertile pollen is critical for the survival, fitness, and dispersal of flowering plants, and directly contributes to crop productivity. Extensive mutational screening studies have been carried out to dissect the genetic regulatory network determining pollen fertility, but we still lack fundamental knowledge about whether and how pollen fertility is controlled in natural populations. We used a genome-wide association study (GWAS) to show that ZmGEN1A and ZmMSH7, two DNA repair-related genes, confer natural variation in maize pollen fertility. Mutants defective in these genes exhibited abnormalities in meiotic or post-meiotic DNA repair, leading to reduced pollen fertility. More importantly, ZmMSH7 showed evidence of selection during maize domestication, and its disruption resulted in a substantial increase in grain yield for both inbred and hybrid. Overall, our study describes the first systematic examination of natural genetic effects on pollen fertility in plants, providing valuable genetic resources for optimizing male fertility. In addition, we find that ZmMSH7 represents a candidate for improvement of grain yield.
Collapse
Affiliation(s)
- Luguang Jiang
- National Maize Improvement Center of China, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Ting Guo
- Institute of Genetics and Developmental Biology, Key Laboratory of Seed InnovationChinese Academy of SciencesBeijingChina
| | - Xinyuan Song
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro‐Biotechnology Research InstituteJilin Academy of Agricultural SciencesChangchunChina
| | - Huan Jiang
- National Maize Improvement Center of China, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Minhui Lu
- Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Jinhong Luo
- National Maize Improvement Center of China, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
- Institute of Genetics and Developmental Biology, Key Laboratory of Seed InnovationChinese Academy of SciencesBeijingChina
| | - Vincenzo Rossi
- Council for Agricultural Research and EconomicsResearch Centre for Cereal and Industrial CropsBergamoItaly
| | - Yan He
- National Maize Improvement Center of China, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
- Institute of Genetics and Developmental Biology, Key Laboratory of Seed InnovationChinese Academy of SciencesBeijingChina
| |
Collapse
|
2
|
Gu Y, Yang Y, Kou C, Peng Y, Yang W, Zhang J, Jin H, Han X, Wang Y, Shen X. Classical and novel properties of Holliday junction resolvase SynRuvC from Synechocystis sp. PCC6803. Front Microbiol 2024; 15:1362880. [PMID: 38699476 PMCID: PMC11063404 DOI: 10.3389/fmicb.2024.1362880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/29/2024] [Indexed: 05/05/2024] Open
Abstract
Cyanobacteria, which have a photoautotrophic lifestyle, are threatened by ultraviolet solar rays and the reactive oxygen species generated during photosynthesis. They can adapt to environmental conditions primarily because of their DNA damage response and repair mechanisms, notably an efficient homologous recombination repair system. However, research on double-strand break (DSB) repair pathways, including the Holliday junction (HJ) resolution process, in Synechocystis sp. PCC6803 is limited. Here, we report that SynRuvC from cyanobacteria Synechocystis sp. PCC6803 has classical HJ resolution activity. We investigated the structural specificity, sequence preference, and biochemical properties of SynRuvC. SynRuvC strongly preferred Mn2+ as a cofactor, and its cleavage site predominantly resides within the 5'-TG↓(G/A)-3' sequence. Interestingly, novel flap endonuclease and replication fork intermediate cleavage activities of SynRuvC were also determined, which distinguish it from other reported RuvCs. To explore the effect of SynRuvC on cell viability, we constructed a knockdown mutant and an overexpression strain of Synechocystis sp. PCC6803 (synruvCKD and synruvCOE) and assessed their survival under a variety of conditions. Knockdown of synruvC increased the sensitivity of cells to MMS, HU, and H2O2. The findings suggest that a novel RuvC family HJ resolvase SynRuvC is important in a variety of DNA repair processes and stress resistance in Synechocystis sp. PCC6803.
Collapse
Affiliation(s)
- Yanchao Gu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yantao Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Chunhua Kou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Ying Peng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenguang Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiayu Zhang
- Suzhou XinBio Co., Ltd., Suzhou, Jiangsu, China
| | - Han Jin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoru Han
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Rafiei N, Ronceret A. Crossover interference mechanism: New lessons from plants. Front Cell Dev Biol 2023; 11:1156766. [PMID: 37274744 PMCID: PMC10236007 DOI: 10.3389/fcell.2023.1156766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/17/2023] [Indexed: 06/06/2023] Open
Abstract
Plants are the source of our understanding of several fundamental biological principles. It is well known that Gregor Mendel discovered the laws of Genetics in peas and that maize was used for the discovery of transposons by Barbara McClintock. Plant models are still useful for the understanding of general key biological concepts. In this article, we will focus on discussing the recent plant studies that have shed new light on the mysterious mechanisms of meiotic crossover (CO) interference, heterochiasmy, obligatory CO, and CO homeostasis. Obligatory CO is necessary for the equilibrated segregation of homologous chromosomes during meiosis. The tight control of the different male and female CO rates (heterochiasmy) enables both the maximization and minimization of genome shuffling. An integrative model can now predict these observed aspects of CO patterning in plants. The mechanism proposed considers the Synaptonemal Complex as a canalizing structure that allows the diffusion of a class I CO limiting factor linearly on synapsed bivalents. The coarsening of this limiting factor along the SC explains the interfering spacing between COs. The model explains the observed coordinated processes between synapsis, CO interference, CO insurance, and CO homeostasis. It also easily explains heterochiasmy just considering the different male and female SC lengths. This mechanism is expected to be conserved in other species.
Collapse
|
4
|
Verma P, Kumari P, Negi S, Yadav G, Gaur V. Holliday junction resolution by At-HIGLE: an SLX1 lineage endonuclease from Arabidopsis thaliana with a novel in-built regulatory mechanism. Nucleic Acids Res 2022; 50:4630-4646. [PMID: 35412622 PMCID: PMC9071465 DOI: 10.1093/nar/gkac239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022] Open
Abstract
Holliday junction is the key homologous recombination intermediate, resolved by structure-selective endonucleases (SSEs). SLX1 is the most promiscuous SSE of the GIY-YIG nuclease superfamily. In fungi and animals, SLX1 nuclease activity relies on a non-enzymatic partner, SLX4, but no SLX1-SLX4 like complex has ever been characterized in plants. Plants exhibit specialized DNA repair and recombination machinery. Based on sequence similarity with the GIY-YIG nuclease domain of SLX1 proteins from fungi and animals, At-HIGLE was identified to be a possible SLX1 like nuclease from plants. Here, we elucidated the crystal structure of the At-HIGLE nuclease domain from Arabidopsis thaliana, establishing it as a member of the SLX1-lineage of the GIY-YIG superfamily with structural changes in DNA interacting regions. We show that At-HIGLE can process branched-DNA molecules without an SLX4 like protein. Unlike fungal SLX1, At-HIGLE exists as a catalytically active homodimer capable of generating two coordinated nicks during HJ resolution. Truncating the extended C-terminal region of At-HIGLE increases its catalytic activity, changes the nicking pattern, and monomerizes At-HIGLE. Overall, we elucidated the first structure of a plant SLX1-lineage protein, showed its HJ resolving activity independent of any regulatory protein, and identified an in-built novel regulatory mechanism engaging its C-terminal region.
Collapse
Affiliation(s)
- Prabha Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Poonam Kumari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shreya Negi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Gitanjali Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vineet Gaur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
5
|
McEvoy SL, Sezen UU, Trouern‐Trend A, McMahon SM, Schaberg PG, Yang J, Wegrzyn JL, Swenson NG. Strategies of tolerance reflected in two North American maple genomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1591-1613. [PMID: 34967059 PMCID: PMC9304320 DOI: 10.1111/tpj.15657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/22/2021] [Indexed: 05/24/2023]
Abstract
The first chromosome‐scale assemblies for North American members of the Acer genus, sugar maple (Acer saccharum) and boxelder (Acer negundo), as well as transcriptomic evaluation of the abiotic stress response in A. saccharum are reported. This integrated study describes in‐depth aspects contributing to each species' approach to tolerance and applies current knowledge in many areas of plant genome biology with Acer physiology to help convey the genomic complexities underlying tolerance in broadleaf tree species.
Collapse
Affiliation(s)
- Susan L. McEvoy
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269USA
| | - U. Uzay Sezen
- Smithsonian Environmental Research CenterEdgewaterMaryland21037USA
| | - Alexander Trouern‐Trend
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269USA
| | - Sean M. McMahon
- Smithsonian Environmental Research CenterEdgewaterMaryland21037USA
| | - Paul G. Schaberg
- Forest ServiceU.S. Department of Agriculture, Northern Research StationBurlingtonVermont05405USA
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMengla666303YunnanChina
| | - Jill L. Wegrzyn
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269USA
| | - Nathan G. Swenson
- Department of Biological SciencesUniversity of Notre DameNotre DameIndiana46556USA
| |
Collapse
|
6
|
Carreira R, Aguado FJ, Hurtado-Nieves V, Blanco MG. Canonical and novel non-canonical activities of the Holliday junction resolvase Yen1. Nucleic Acids Res 2021; 50:259-280. [PMID: 34928393 PMCID: PMC8754655 DOI: 10.1093/nar/gkab1225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/12/2021] [Accepted: 12/01/2021] [Indexed: 11/14/2022] Open
Abstract
Yen1 and GEN1 are members of the Rad2/XPG family of nucleases that were identified as the first canonical nuclear Holliday junction (HJ) resolvases in budding yeast and humans due to their ability to introduce two symmetric, coordinated incisions on opposite strands of the HJ, yielding nicked DNA products that could be readily ligated. While GEN1 has been extensively characterized in vitro, much less is known about the biochemistry of Yen1. Here, we have performed the first in-depth characterization of purified Yen1. We confirmed that Yen1 resembles GEN1 in many aspects, including range of substrates targeted, position of most incisions they produce or the increase in the first incision rate by assembly of a dimer on a HJ, despite minor differences. However, we demonstrate that Yen1 is endowed with additional nuclease activities, like a nick-specific 5′-3′ exonuclease or HJ arm-chopping that could apparently blur its classification as a canonical HJ resolvase. Despite this, we show that Yen1 fulfils the requirements of a canonical HJ resolvase and hypothesize that its wider array of nuclease activities might contribute to its function in the removal of persistent recombination or replication intermediates.
Collapse
Affiliation(s)
- Raquel Carreira
- Department of Biochemistry and Molecular Biology, CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, A Coruña 15782, Spain
| | - F Javier Aguado
- Department of Biochemistry and Molecular Biology, CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, A Coruña 15782, Spain
| | - Vanesa Hurtado-Nieves
- Department of Biochemistry and Molecular Biology, CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, A Coruña 15782, Spain
| | - Miguel G Blanco
- Department of Biochemistry and Molecular Biology, CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, A Coruña 15782, Spain
| |
Collapse
|
7
|
Thakur M, Mohan D, Singh AK, Agarwal A, Gopal B, Muniyappa K. Novel insights into ATP-Stimulated Cleavage of branched DNA and RNA Substrates through Structure-Guided Studies of the Holliday Junction Resolvase RuvX. J Mol Biol 2021; 433:167014. [PMID: 33933468 DOI: 10.1016/j.jmb.2021.167014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/05/2021] [Accepted: 04/23/2021] [Indexed: 11/18/2022]
Abstract
Much of our understanding of the homologous recombination (HR) machinery hinges on studies using Escherichia coli as a model organism. Interestingly enough, studies on the HR machinery in different bacterial species casts doubt on the universality of the E. coli paradigm. The human pathogen Mycobacterium tuberculosis encodes two Holliday junction (HJ)-resolvase paralogues, namely RuvC and RuvX; however, insights into their structural features and functional relevance is still limited. Here, we report on structure-guided functional studies of the M. tuberculosis RuvX HJ resolvase (MtRuvX). The crystalline MtRuvX is a dimer in the asymmetric unit, and each monomer has a RNAse H fold vis-à-vis RuvC-like nucleases. Interestingly, MtRuvX also contains some unique features, including the residues essential for ATP binding/coordination of Mg2+ ions. Indeed, MtRuvX exhibited an intrinsic, robust ATPase activity, which was further accentuated by DNA cofactors. Structure-guided substitutions of single residues at the ATP binding/Mg2+coordination sites while markedly attenuating the ATPase activity completely abrogated HJ cleavage, indicating an unanticipated relationship between ATP hydrolysis and DNA cleavage. However, the affinity of ATPase-deficient mutants for the HJ was not impaired. Contrary to RuvC, MtRuvX exhibits relaxed substrate specificity, cleaving a variety of branched DNA/RNA substrates. Notably, ATP hydrolysis plays a regulatory role, rendering MtRuvX from a canonical HJ resolvase to a DNA/RNA non-sequence specific endonuclease, indicating a link between HJ resolvase and nucleic acid metabolism. These findings provide novel insights into the structure and dual-functional activities of MtRuvX, and suggest that it may play an important role in DNA/RNA metabolism.
Collapse
Affiliation(s)
- Manoj Thakur
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Disha Mohan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Ankur Kumar Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Ankit Agarwal
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India.
| |
Collapse
|
8
|
Higgins EE, Howell EC, Armstrong SJ, Parkin IAP. A major quantitative trait locus on chromosome A9, BnaPh1, controls homoeologous recombination in Brassica napus. THE NEW PHYTOLOGIST 2021; 229:3281-3293. [PMID: 33020949 PMCID: PMC7984352 DOI: 10.1111/nph.16986] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/23/2020] [Indexed: 05/09/2023]
Abstract
Ensuring faithful homologous recombination in allopolyploids is essential to maintain optimal fertility of the species. Variation in the ability to control aberrant pairing between homoeologous chromosomes in Brassica napus has been identified. The current study exploited the extremes of such variation to identify genetic factors that differentiate newly resynthesised B. napus, which is inherently unstable, and established B. napus, which has adapted to largely control homoeologous recombination. A segregating B. napus mapping population was analysed utilising both cytogenetic observations and high-throughput genotyping to quantify the levels of homoeologous recombination. Three quantitative trait loci (QTL) were identified that contributed to the control of homoeologous recombination in the important oilseed crop B. napus. One major QTL on BnaA9 contributed between 32 and 58% of the observed variation. This study is the first to assess homoeologous recombination and map associated QTLs resulting from deviations in normal pairing in allotetraploid B. napus. The identified QTL regions suggest candidate meiotic genes that could be manipulated in order to control this important trait and further allow the development of molecular markers to utilise this trait to exploit homoeologous recombination in a crop.
Collapse
Affiliation(s)
- Erin E. Higgins
- Agriculture and Agri‐Food Canada107 Science PlaceSaskatoonSKS7N 0X2Canada
| | - Elaine C. Howell
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Susan J. Armstrong
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | | |
Collapse
|
9
|
Verma P, Tandon R, Yadav G, Gaur V. Structural Aspects of DNA Repair and Recombination in Crop Improvement. Front Genet 2020; 11:574549. [PMID: 33024442 PMCID: PMC7516265 DOI: 10.3389/fgene.2020.574549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
The adverse effects of global climate change combined with an exponentially increasing human population have put substantial constraints on agriculture, accelerating efforts towards ensuring food security for a sustainable future. Conventional plant breeding and modern technologies have led to the creation of plants with better traits and higher productivity. Most crop improvement approaches (conventional breeding, genome modification, and gene editing) primarily rely on DNA repair and recombination (DRR). Studying plant DRR can provide insights into designing new strategies or improvising the present techniques for crop improvement. Even though plants have evolved specialized DRR mechanisms compared to other eukaryotes, most of our insights about plant-DRRs remain rooted in studies conducted in animals. DRR mechanisms in plants include direct repair, nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR), non-homologous end joining (NHEJ) and homologous recombination (HR). Although each DRR pathway acts on specific DNA damage, there is crosstalk between these. Considering the importance of DRR pathways as a tool in crop improvement, this review focuses on a general description of each DRR pathway, emphasizing on the structural aspects of key DRR proteins. The review highlights the gaps in our understanding and the importance of studying plant DRR in the context of crop improvement.
Collapse
Affiliation(s)
- Prabha Verma
- National Institute of Plant Genome Research, New Delhi, India
| | - Reetika Tandon
- National Institute of Plant Genome Research, New Delhi, India
| | - Gitanjali Yadav
- National Institute of Plant Genome Research, New Delhi, India
| | - Vineet Gaur
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
10
|
Yan J, Hong S, Guan Z, He W, Zhang D, Yin P. Structural insights into sequence-dependent Holliday junction resolution by the chloroplast resolvase MOC1. Nat Commun 2020; 11:1417. [PMID: 32184398 PMCID: PMC7078210 DOI: 10.1038/s41467-020-15242-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 02/17/2020] [Indexed: 11/24/2022] Open
Abstract
Holliday junctions (HJs) are key DNA intermediates in genetic recombination and are eliminated by nuclease, termed resolvase, to ensure genome stability. HJ resolvases have been identified across all kingdoms of life, members of which exhibit sequence-dependent HJ resolution. However, the molecular basis of sequence selectivity remains largely unknown. Here, we present the chloroplast resolvase MOC1, which cleaves HJ in a cytosine-dependent manner. We determine the crystal structure of MOC1 with and without HJs. MOC1 exhibits an RNase H fold, belonging to the retroviral integrase family. MOC1 functions as a dimer, and the HJ is embedded into the basic cleft of the dimeric enzyme. We characterize a base recognition loop (BR loop) that protrudes into and opens the junction. Residues from the BR loop intercalate into the bases, disrupt the C-G base pairing at the crossover and recognize the cytosine, providing the molecular basis for sequence-dependent HJ resolution by a resolvase.
Collapse
Affiliation(s)
- Junjie Yan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, 430070, Wuhan, China
| | - Sixing Hong
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, 430070, Wuhan, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, 430070, Wuhan, China
| | - Wenjing He
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, 430070, Wuhan, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, 430070, Wuhan, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, 430070, Wuhan, China.
| |
Collapse
|
11
|
Falquet B, Rass U. Structure-Specific Endonucleases and the Resolution of Chromosome Underreplication. Genes (Basel) 2019; 10:E232. [PMID: 30893921 PMCID: PMC6470701 DOI: 10.3390/genes10030232] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022] Open
Abstract
Complete genome duplication in every cell cycle is fundamental for genome stability and cell survival. However, chromosome replication is frequently challenged by obstacles that impede DNA replication fork (RF) progression, which subsequently causes replication stress (RS). Cells have evolved pathways of RF protection and restart that mitigate the consequences of RS and promote the completion of DNA synthesis prior to mitotic chromosome segregation. If there is entry into mitosis with underreplicated chromosomes, this results in sister-chromatid entanglements, chromosome breakage and rearrangements and aneuploidy in daughter cells. Here, we focus on the resolution of persistent replication intermediates by the structure-specific endonucleases (SSEs) MUS81, SLX1-SLX4 and GEN1. Their actions and a recently discovered pathway of mitotic DNA repair synthesis have emerged as important facilitators of replication completion and sister chromatid detachment in mitosis. As RS is induced by oncogene activation and is a common feature of cancer cells, any advances in our understanding of the molecular mechanisms related to chromosome underreplication have important biomedical implications.
Collapse
Affiliation(s)
- Benoît Falquet
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
- Faculty of Natural Sciences, University of Basel, Petersplatz 10, CH-4003 Basel, Switzerland.
| | - Ulrich Rass
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| |
Collapse
|
12
|
Abstract
Meiosis halves diploid chromosome numbers to haploid levels that are essential for sexual reproduction in most eukaryotes. Meiotic recombination ensures the formation of bivalents between homologous chromosomes (homologs) and their subsequent proper segregation. It also results in genetic diversity among progeny that influences evolutionary responses to selection. Moreover, crop breeding depends upon the action of meiotic recombination to rearrange elite traits between parental chromosomes. An understanding of the molecular mechanisms that drive meiotic recombination is important for both fundamental research and practical applications. This review emphasizes advances made during the past 5 years, primarily in Arabidopsis and rice, by summarizing newly characterized genes and proteins and examining the regulatory mechanisms that modulate their action.
Collapse
Affiliation(s)
- Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China;
| | - Gregory P Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA;
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-3280, USA
| |
Collapse
|
13
|
Abstract
Successful chromosome segregation depends on the timely removal of DNA recombination and replication intermediates that interlink sister chromatids. These intermediates are acted upon by structure-selective endonucleases that promote incisions close to the junction point. GEN1, a member of the Rad2/XPG endonuclease family, was identified on the basis of its ability to cleave Holliday junction recombination intermediates. Resolution occurs by a nick and counter-nick mechanism in strands that are symmetrically related across the junction point, leading to the formation of ligatable nicked duplex products. The actions of GEN1 are, however, not restricted to HJs, as 5'-flaps and replication fork structures also serve as excellent in vitro substrates for the nuclease. In the cellular context, GEN1 activity is observed late in the cell cycle, as most of the protein is excluded from the nucleus, such that it gains access to DNA intermediates after the breakdown of nuclear envelope. Nuclear exclusion ensures the protection of replication forks and other DNA secondary structures important for normal metabolic processes. In this chapter, we describe the purification of recombinant GEN1 and detail biochemical assays involving the use of synthetic DNA substrates and cruciform-containing plasmids.
Collapse
|
14
|
Spampinato CP. Protecting DNA from errors and damage: an overview of DNA repair mechanisms in plants compared to mammals. Cell Mol Life Sci 2017; 74:1693-1709. [PMID: 27999897 PMCID: PMC11107726 DOI: 10.1007/s00018-016-2436-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 01/10/2023]
Abstract
The genome integrity of all organisms is constantly threatened by replication errors and DNA damage arising from endogenous and exogenous sources. Such base pair anomalies must be accurately repaired to prevent mutagenesis and/or lethality. Thus, it is not surprising that cells have evolved multiple and partially overlapping DNA repair pathways to correct specific types of DNA errors and lesions. Great progress in unraveling these repair mechanisms at the molecular level has been made by several talented researchers, among them Tomas Lindahl, Aziz Sancar, and Paul Modrich, all three Nobel laureates in Chemistry for 2015. Much of this knowledge comes from studies performed in bacteria, yeast, and mammals and has impacted research in plant systems. Two plant features should be mentioned. Plants differ from higher eukaryotes in that they lack a reserve germline and cannot avoid environmental stresses. Therefore, plants have evolved different strategies to sustain genome fidelity through generations and continuous exposure to genotoxic stresses. These strategies include the presence of unique or multiple paralogous genes with partially overlapping DNA repair activities. Yet, in spite (or because) of these differences, plants, especially Arabidopsis thaliana, can be used as a model organism for functional studies. Some advantages of this model system are worth mentioning: short life cycle, availability of both homozygous and heterozygous lines for many genes, plant transformation techniques, tissue culture methods and reporter systems for gene expression and function studies. Here, I provide a current understanding of DNA repair genes in plants, with a special focus on A. thaliana. It is expected that this review will be a valuable resource for future functional studies in the DNA repair field, both in plants and animals.
Collapse
Affiliation(s)
- Claudia P Spampinato
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| |
Collapse
|
15
|
Wang C, Higgins JD, He Y, Lu P, Zhang D, Liang W. Resolvase OsGEN1 Mediates DNA Repair by Homologous Recombination. PLANT PHYSIOLOGY 2017; 173:1316-1329. [PMID: 28049740 PMCID: PMC5291025 DOI: 10.1104/pp.16.01726] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/29/2016] [Indexed: 05/18/2023]
Abstract
Yen1/GEN1 are canonical Holliday junction resolvases that belong to the RAD2/XPG family. In eukaryotes, such as budding yeast, mice, worms, and humans, Yen1/GEN1 work together with Mus81-Mms4/MUS81-EME1 and Slx1-Slx4/SLX1-SLX4 in DNA repair by homologous recombination to maintain genome stability. In plants, the biological function of Yen1/GEN1 remains largely unclear. In this study, we characterized the loss of function mutants of OsGEN1 and OsSEND1, a pair of paralogs of Yen1/GEN1 in rice (Oryza sativa). We first investigated the role of OsGEN1 during meiosis and found a reduction in chiasma frequency by ∼6% in osgen1 mutants, compared to the wild type, suggesting a possible involvement of OsGEN1 in the formation of crossovers. Postmeiosis, OsGEN1 foci were detected in wild-type microspore nuclei, but not in the osgen1 mutant concomitant with an increase in double-strand breaks. Persistent double-strand breaks led to programmed cell death of the male gametes and complete male sterility. In contrast, depletion of OsSEND1 had no effects on plant development and did not enhance osgen1 defects. Our results indicate that OsGEN1 is essential for homologous recombinational DNA repair at two stages of microsporogenesis in rice.
Collapse
Affiliation(s)
- Chong Wang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China (C.W., Y.H., D.Z., W.L.)
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom (J.D.H.)
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (P.L.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - James D Higgins
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China (C.W., Y.H., D.Z., W.L.)
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom (J.D.H.)
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (P.L.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Yi He
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China (C.W., Y.H., D.Z., W.L.)
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom (J.D.H.)
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (P.L.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Pingli Lu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China (C.W., Y.H., D.Z., W.L.)
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom (J.D.H.)
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (P.L.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China (C.W., Y.H., D.Z., W.L.)
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom (J.D.H.)
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (P.L.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China (C.W., Y.H., D.Z., W.L.);
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom (J.D.H.);
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (P.L.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| |
Collapse
|
16
|
Olivier M, Da Ines O, Amiard S, Serra H, Goubely C, White CI, Gallego ME. The Structure-Specific Endonucleases MUS81 and SEND1 Are Essential for Telomere Stability in Arabidopsis. THE PLANT CELL 2016; 28:74-86. [PMID: 26704385 PMCID: PMC4746687 DOI: 10.1105/tpc.15.00898] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/23/2015] [Indexed: 05/02/2023]
Abstract
Structure-specific endonucleases act to repair potentially toxic structures produced by recombination and DNA replication, ensuring proper segregation of the genetic material to daughter cells during mitosis and meiosis. Arabidopsis thaliana has two putative homologs of the resolvase (structure-specific endonuclease): GEN1/Yen1. Knockout of resolvase genes GEN1 and SEND1, individually or together, has no detectable effect on growth, fertility, or sensitivity to DNA damage. However, combined absence of the endonucleases MUS81 and SEND1 results in severe developmental defects, spontaneous cell death, and genome instability. A similar effect is not seen in mus81 gen1 plants, which develop normally and are fertile. Absence of RAD51 does not rescue mus81 send1, pointing to roles of these proteins in DNA replication rather than DNA break repair. The enrichment of S-phase histone γ-H2AX foci and a striking loss of telomeric DNA in mus81 send1 further support this interpretation. SEND1 has at most a minor role in resolution of the Holliday junction but acts as an essential backup to MUS81 for resolution of toxic replication structures to ensure genome stability and to maintain telomere integrity.
Collapse
Affiliation(s)
- Margaux Olivier
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63000 Clermont-Ferrand, France
| | - Olivier Da Ines
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63000 Clermont-Ferrand, France
| | - Simon Amiard
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63000 Clermont-Ferrand, France
| | - Heïdi Serra
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63000 Clermont-Ferrand, France
| | - Chantal Goubely
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63000 Clermont-Ferrand, France
| | - Charles I White
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63000 Clermont-Ferrand, France
| | - Maria E Gallego
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63000 Clermont-Ferrand, France
| |
Collapse
|
17
|
Chan YW, West S. GEN1 promotes Holliday junction resolution by a coordinated nick and counter-nick mechanism. Nucleic Acids Res 2015; 43:10882-92. [PMID: 26578604 PMCID: PMC4678824 DOI: 10.1093/nar/gkv1207] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/07/2015] [Accepted: 10/27/2015] [Indexed: 11/25/2022] Open
Abstract
Holliday junctions (HJs) that physically link sister chromatids or homologous chromosomes are formed as intermediates during DNA repair by homologous recombination. Persistent recombination intermediates are acted upon by structure-selective endonucleases that are required for proper chromosome segregation at mitosis. Here, we have purified full-length human GEN1 protein and show that it promotes Holliday junction resolution by a mechanism that is analogous to that exhibited by the prototypic HJ resolvase E. coli RuvC. We find that GEN1 cleaves HJs by a nick and counter-nick mechanism involving dual co-ordinated incisions that lead to the formation of ligatable nicked duplex products. As observed with RuvC, cleavage of the first strand is rate limiting, while second strand cleavage is rapid. In contrast to RuvC, however, GEN1 is largely monomeric in solution, but dimerizes on the HJ. Using HJs containing non-cleavable phosphorothioate-containing linkages in one strand, we show that the two incisions can be uncoupled and that the first nick occurs upon GEN1 dimerization at the junction. These results indicate that the mechanism of HJ resolution is largely conserved from bacteria to man, despite a lack of sequence homology between the resolvases.
Collapse
Affiliation(s)
- Ying Wai Chan
- Francis Crick Institute, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, UK
| | - Stephen West
- Francis Crick Institute, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, UK
| |
Collapse
|
18
|
Wallet C, Le Ret M, Bergdoll M, Bichara M, Dietrich A, Gualberto JM. The RECG1 DNA Translocase Is a Key Factor in Recombination Surveillance, Repair, and Segregation of the Mitochondrial DNA in Arabidopsis. THE PLANT CELL 2015; 27:2907-25. [PMID: 26462909 PMCID: PMC4682331 DOI: 10.1105/tpc.15.00680] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/14/2015] [Accepted: 09/25/2015] [Indexed: 05/24/2023]
Abstract
The mitochondria of flowering plants have considerably larger and more complex genomes than the mitochondria of animals or fungi, mostly due to recombination activities that modulate their genomic structures. These activities most probably participate in the repair of mitochondrial DNA (mtDNA) lesions by recombination-dependent processes. Rare ectopic recombination across short repeats generates new genomic configurations that contribute to mtDNA heteroplasmy, which drives rapid evolution of the sequence organization of plant mtDNAs. We found that Arabidopsis thaliana RECG1, an ortholog of the bacterial RecG translocase, is an organellar protein with multiple roles in mtDNA maintenance. RECG1 targets to mitochondria and plastids and can complement a bacterial recG mutant that shows defects in repair and replication control. Characterization of Arabidopsis recG1 mutants showed that RECG1 is required for recombination-dependent repair and for suppression of ectopic recombination in mitochondria, most likely because of its role in recovery of stalled replication forks. The analysis of alternative mitotypes present in a recG1 line and of their segregation following backcross allowed us to build a model to explain how a new stable mtDNA configuration, compatible with normal plant development, can be generated by stoichiometric shift.
Collapse
Affiliation(s)
- Clémentine Wallet
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, 67084 Strasbourg, France
| | - Monique Le Ret
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, 67084 Strasbourg, France
| | - Marc Bergdoll
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, 67084 Strasbourg, France
| | - Marc Bichara
- CNRS UMR7242, IREBS, Université de Strasbourg, 67412 Illkirch, France
| | - André Dietrich
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, 67084 Strasbourg, France
| | - José M Gualberto
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
19
|
Blanco MG, Matos J. Hold your horSSEs: controlling structure-selective endonucleases MUS81 and Yen1/GEN1. Front Genet 2015; 6:253. [PMID: 26284109 PMCID: PMC4519697 DOI: 10.3389/fgene.2015.00253] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/13/2015] [Indexed: 12/21/2022] Open
Abstract
Repair of DNA lesions through homologous recombination promotes the establishment of stable chromosomal interactions. Multiple helicases, topoisomerases and structure-selective endonucleases (SSEs) act upon recombining joint molecules (JMs) to disengage chromosomal connections and safeguard chromosome segregation. Recent studies on two conserved SSEs – MUS81 and Yen1/GEN1– uncovered multiple layers of regulation that operate to carefully tailor JM-processing according to specific cellular needs. Temporal restriction of SSE function imposes a hierarchy in pathway usage that ensures efficient JM-processing while minimizing reciprocal exchanges between the recombining DNAs. Whereas a conserved strategy of fine-tuning SSE functions exists in different model systems, the precise molecular mechanisms to implement it appear to be significantly different. Here, we summarize the current knowledge on the cellular switches that are in place to control MUS81 and Yen1/GEN1 functions.
Collapse
Affiliation(s)
- Miguel G Blanco
- Department of Biochemistry and Molecular Biology, Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela , Santiago de Compostela, Spain
| | - Joao Matos
- Institute of Biochemistry, Swiss Federal Institute of Technology in Zürich , Zürich, Switzerland
| |
Collapse
|
20
|
Mercier R, Mézard C, Jenczewski E, Macaisne N, Grelon M. The molecular biology of meiosis in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:297-327. [PMID: 25494464 DOI: 10.1146/annurev-arplant-050213-035923] [Citation(s) in RCA: 350] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Meiosis is the cell division that reshuffles genetic information between generations. Recently, much progress has been made in understanding this process; in particular, the identification and functional analysis of more than 80 plant genes involved in meiosis have dramatically deepened our knowledge of this peculiar cell division. In this review, we provide an overview of advancements in the understanding of all aspects of plant meiosis, including recombination, chromosome synapsis, cell cycle control, chromosome distribution, and the challenge of polyploidy.
Collapse
Affiliation(s)
- Raphaël Mercier
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France; , , , ,
| | | | | | | | | |
Collapse
|