1
|
van Veen H, Müller JT, Bartylla MM, Akman M, Sasidharan R, Mustroph A. Phylotranscriptomics provides a treasure trove of flood-tolerance mechanisms in the Cardamineae tribe. PLANT, CELL & ENVIRONMENT 2024; 47:4464-4480. [PMID: 39012097 DOI: 10.1111/pce.15033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/10/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024]
Abstract
Flooding events are highly detrimental to most terrestrial plant species. However, there is an impressive diversity of plant species that thrive in flood-prone regions and represent a treasure trove of unexplored flood-resilience mechanisms. Here we surveyed a panel of four species from the Cardamineae tribe representing a broad tolerance range. This included the flood-tolerant Cardamine pratensis, Rorippa sylvestris and Rorippa palustris and the flood-sensitive species Cardamine hirsuta. All four species displayed a quiescent strategy, evidenced by the repression of shoot growth underwater. Comparative transcriptomics analyses between the four species and the sensitive model species Arabidopsis thaliana were facilitated via de novo transcriptome assembly and identification of 16 902 universal orthogroups at a high resolution. Our results suggest that tolerance likely evolved separately in the Cardamine and Rorippa species. While the Rorippa response was marked by a strong downregulation of cell-cycle genes, Cardamine minimized overall transcriptional regulation. However, a weak starvation response was a universal trait of tolerant species, potentially achieved in multiple ways. It could result from a strong decline in cell-cycle activity, but is also intertwined with autophagy, senescence, day-time photosynthesis and night-time fermentation capacity. Our data set provides a rich source to study adaptational mechanisms of flooding tolerance.
Collapse
Affiliation(s)
- Hans van Veen
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
- Evolutionary Plant Ecophysiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Jana T Müller
- Department of Plant Physiology, University of Bayreuth, Bayreuth, Germany
| | - Malte M Bartylla
- Department of Plant Physiology, University of Bayreuth, Bayreuth, Germany
| | - Melis Akman
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Rashmi Sasidharan
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Angelika Mustroph
- Department of Plant Physiology, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
2
|
Zhang H, Rundle C, Winter N, Miricescu A, Mooney BC, Bachmair A, Graciet E, Theodoulou FL. BIG enhances Arg/N-degron pathway-mediated protein degradation to regulate Arabidopsis hypoxia responses and suberin deposition. THE PLANT CELL 2024; 36:3177-3200. [PMID: 38608155 PMCID: PMC11371152 DOI: 10.1093/plcell/koae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
BIG/DARK OVEREXPRESSION OF CAB1/TRANSPORT INHIBITOR RESPONSE3 is a 0.5 MDa protein associated with multiple functions in Arabidopsis (Arabidopsis thaliana) signaling and development. However, the biochemical functions of BIG are unknown. We investigated a role for BIG in the Arg/N-degron pathways, in which substrate protein fate is influenced by the N-terminal residue. We crossed a big loss-of-function allele to 2 N-degron pathway E3 ligase mutants, proteolysis6 (prt6) and prt1, and examined the stability of protein substrates. Stability of model substrates was enhanced in prt6-1 big-2 and prt1-1 big-2 relative to the respective single mutants, and the abundance of the PRT6 physiological substrates, HYPOXIA-RESPONSIVE ERF2 (HRE2) and VERNALIZATION2 (VRN2), was similarly increased in prt6 big double mutants. Hypoxia marker expression was enhanced in prt6 big double mutants; this constitutive response required arginyl transferase activity and RAP-type Group VII ethylene response factor (ERFVII) transcription factors. Transcriptomic analysis of roots not only demonstrated increased expression of multiple hypoxia-responsive genes in the double mutant relative to prt6, but also revealed other roles for PRT6 and BIG, including regulation of suberin deposition through both ERFVII-dependent and independent mechanisms, respectively. Our results show that BIG acts together with PRT6 to regulate the hypoxia-response and broader processes in Arabidopsis.
Collapse
Affiliation(s)
- Hongtao Zhang
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Chelsea Rundle
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Nikola Winter
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | | | - Brian C Mooney
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Andreas Bachmair
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
3
|
Dalle Carbonare L, Jiménez JDLC, Lichtenauer S, van Veen H. Plant responses to limited aeration: Advances and future challenges. PLANT DIRECT 2023; 7:e488. [PMID: 36993903 PMCID: PMC10040318 DOI: 10.1002/pld3.488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
Limited aeration that is caused by tissue geometry, diffusion barriers, high elevation, or a flooding event poses major challenges to plants and is often, but not exclusively, associated with low oxygen. These processes span a broad interest in the research community ranging from whole plant and crop responses, post-harvest physiology, plant morphology and anatomy, fermentative metabolism, plant developmental processes, oxygen sensing by ERF-VIIs, gene expression profiles, the gaseous hormone ethylene, and O2 dynamics at cellular resolution. The International Society for Plant Anaerobiosis (ISPA) gathers researchers from all over the world contributing to understand the causes, responses, and consequences of limited aeration in plants. During the 14th ISPA meeting, major research progress was related to the evolution of O2 sensing mechanisms and the intricate network that balances low O2 signaling. Here, the work moved beyond flooding stress and emphasized novel underexplored roles of low O2 and limited aeration in altitude adaptation, fruit development and storage, and the vegetative development of growth apices. Regarding tolerance towards flooding, the meeting stressed the relevance and regulation of developmental plasticity, aerenchyma, and barrier formation to improve internal aeration. Additional newly explored flood tolerance traits concerned resource balance, senescence, and the exploration of natural genetic variation for novel tolerance loci. In this report, we summarize and synthesize the major progress and future challenges for low O2 and aeration research presented at the conference.
Collapse
Affiliation(s)
| | | | - Sophie Lichtenauer
- Institute of Plant Biology and BiotechnologyUniversity of MünsterMünsterGermany
| | - Hans van Veen
- Plant Stress Resilience, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
4
|
Weits DA, Zhou L, Giuntoli B, Carbonare LD, Iacopino S, Piccinini L, Lombardi L, Shukla V, Bui LT, Novi G, van Dongen JT, Licausi F. Acquisition of hypoxia inducibility by oxygen sensing N-terminal cysteine oxidase in spermatophytes. PLANT, CELL & ENVIRONMENT 2023; 46:322-338. [PMID: 36120894 PMCID: PMC10092093 DOI: 10.1111/pce.14440] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
N-terminal cysteine oxidases (NCOs) use molecular oxygen to oxidise the amino-terminal cysteine of specific proteins, thereby initiating the proteolytic N-degron pathway. To expand the characterisation of the plant family of NCOs (plant cysteine oxidases [PCOs]), we performed a phylogenetic analysis across different taxa in terms of sequence similarity and transcriptional regulation. Based on this survey, we propose a distinction of PCOs into two main groups. A-type PCOs are conserved across all plant species and are generally unaffected at the messenger RNA level by oxygen availability. Instead, B-type PCOs appeared in spermatophytes to acquire transcriptional regulation in response to hypoxia. The inactivation of two A-type PCOs in Arabidopsis thaliana, PCO4 and PCO5, is sufficient to activate the anaerobic response in young seedlings, whereas the additional removal of B-type PCOs leads to a stronger induction of anaerobic genes and impairs plant growth and development. Our results show that both PCO types are required to regulate the anaerobic response in angiosperms. Therefore, while it is possible to distinguish two clades within the PCO family, we conclude that they all contribute to restrain the anaerobic transcriptional programme in normoxic conditions and together generate a molecular switch to toggle the hypoxic response.
Collapse
Affiliation(s)
- Daan A. Weits
- Institute of Biology 1, Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
- Plant‐Environment Signaling, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Lina Zhou
- Institute of Biology 1, Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
- School of Life SciencesLanzhou UniversityLanzhouChina
- School of Ecology and EnvironmentNorthwestern Polytechnical UniversityXi'anChina
| | - Beatrice Giuntoli
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
- Department of BiologyUniversity of PisaPisaItaly
| | | | - Sergio Iacopino
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
- Department of BiologyUniversity of PisaPisaItaly
- Department of Plant SciencesUniversity of OxfordOxfordUK
| | - Luca Piccinini
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
| | | | - Vinay Shukla
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
| | - Liem T. Bui
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
- Biotechnology Research and Development InstituteCan Tho UniversityCan ThoVietnam
| | - Giacomo Novi
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
| | - Joost T. van Dongen
- Institute of Biology 1, Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Francesco Licausi
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
- Department of BiologyUniversity of PisaPisaItaly
- Department of Plant SciencesUniversity of OxfordOxfordUK
| |
Collapse
|
5
|
Liu Z, Hartman S, van Veen H, Zhang H, Leeggangers HACF, Martopawiro S, Bosman F, de Deugd F, Su P, Hummel M, Rankenberg T, Hassall KL, Bailey-Serres J, Theodoulou FL, Voesenek LACJ, Sasidharan R. Ethylene augments root hypoxia tolerance via growth cessation and reactive oxygen species amelioration. PLANT PHYSIOLOGY 2022; 190:1365-1383. [PMID: 35640551 PMCID: PMC9516759 DOI: 10.1093/plphys/kiac245] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/29/2022] [Indexed: 05/20/2023]
Abstract
Flooded plants experience impaired gas diffusion underwater, leading to oxygen deprivation (hypoxia). The volatile plant hormone ethylene is rapidly trapped in submerged plant cells and is instrumental for enhanced hypoxia acclimation. However, the precise mechanisms underpinning ethylene-enhanced hypoxia survival remain unclear. We studied the effect of ethylene pretreatment on hypoxia survival of Arabidopsis (Arabidopsis thaliana) primary root tips. Both hypoxia itself and re-oxygenation following hypoxia are highly damaging to root tip cells, and ethylene pretreatments reduced this damage. Ethylene pretreatment alone altered the abundance of transcripts and proteins involved in hypoxia responses, root growth, translation, and reactive oxygen species (ROS) homeostasis. Through imaging and manipulating ROS abundance in planta, we demonstrated that ethylene limited excessive ROS formation during hypoxia and subsequent re-oxygenation and improved oxidative stress survival in a PHYTOGLOBIN1-dependent manner. In addition, we showed that root growth cessation via ethylene and auxin occurred rapidly and that this quiescence behavior contributed to enhanced hypoxia tolerance. Collectively, our results show that the early flooding signal ethylene modulates a variety of processes that all contribute to hypoxia survival.
Collapse
Affiliation(s)
| | | | | | - Hongtao Zhang
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Hendrika A C F Leeggangers
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Shanice Martopawiro
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Femke Bosman
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Florian de Deugd
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Peng Su
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Maureen Hummel
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| | - Tom Rankenberg
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Kirsty L Hassall
- Intelligent Data Ecosystems, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Julia Bailey-Serres
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, 3584 CH, The Netherlands
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| | | | - Laurentius A C J Voesenek
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | | |
Collapse
|
6
|
Gao Y, Jiang Z, Shi M, Zhou Y, Huo L, Li X, Xu K. Comparative transcriptome provides insight into responding mechanism of waterlogging stress in Actinidia valvata Dunn. Gene 2022; 845:146843. [PMID: 36041594 DOI: 10.1016/j.gene.2022.146843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/20/2022] [Accepted: 08/23/2022] [Indexed: 11/04/2022]
Abstract
Kiwifruit is one of the most popular fruits, and the area of its cultivation in China has grown rapidly over the last decade. However, kiwifruit vines are vulnerable to waterlogging, especially in the extensive areas of south China where it is grown. This has become an important factor limiting yields. Therefore, it is necessary to clarify the responses of kiwifruit to waterlogging. Here, we have selected Actinidia valvata Dunn which is able to withstand waterlogging conditions and the waterlogging-susceptible Actinidia deliciosa to perform the RNA-seq of roots under waterlogging stress. Seedling roots of Actinidia valvata Dunn and Actinidia deliciosa presented distinct root phenotypes after waterlogging treatments. Genome mapping showed a large genome difference between Actinidia valvata Dunn and Actinidia deliciosa. Transcription factors MYB, MYB-related, AP2-EREBP, bHLH, WRKY, and NAC were identified as the key genes involved in the response to waterlogging stress of kiwifruit. Meanwhile, the MAPK signaling pathway and the glycolysis/gluconeogenesis pathway were identified as the vital pathways involved in the response to waterlogging, and key genes were identified from these two pathways. These results will broaden our understanding of transcriptional response of waterlogging stress and will provide new insights into the molecular mechanisms associated with waterlogging stress. Furthermore, identification of the genes responsible will assist in the breeding of kiwifruit tolerant of waterlogging.
Collapse
Affiliation(s)
- Yongbin Gao
- College of Horticulture Science, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A & F University, Hangzhou, 311300, China
| | - Zeyu Jiang
- College of Horticulture Science, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A & F University, Hangzhou, 311300, China
| | - Mengqi Shi
- College of Horticulture Science, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A & F University, Hangzhou, 311300, China
| | - Yifei Zhou
- College of Horticulture Science, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A & F University, Hangzhou, 311300, China
| | - Liuqing Huo
- College of Horticulture Science, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A & F University, Hangzhou, 311300, China
| | - Xiaolong Li
- College of Horticulture Science, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A & F University, Hangzhou, 311300, China.
| | - Kai Xu
- College of Horticulture Science, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A & F University, Hangzhou, 311300, China.
| |
Collapse
|
7
|
Label-Free Quantitative Proteomics Reveal the Involvement of PRT6 in Arabidopsis thaliana Seed Responsiveness to Ethylene. Int J Mol Sci 2022; 23:ijms23169352. [PMID: 36012613 PMCID: PMC9409418 DOI: 10.3390/ijms23169352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
In Arabidopsis thaliana, the breaking of seed dormancy in wild type (Col-0) by ethylene at 100 μL L-1 required at least 30 h application. A mutant of the proteolytic N-degron pathway, lacking the E3 ligase PROTEOLYSIS 6 (PRT6), was investigated for its role in ethylene-triggered changes in proteomes during seed germination. Label-free quantitative proteomics was carried out on dormant wild type Col-0 and prt6 seeds treated with (+) or without (-) ethylene. After 16 h, 1737 proteins were identified, but none was significantly different in protein levels in response to ethylene. After longer ethylene treatment (30 h), 2552 proteins were identified, and 619 Differentially Expressed Proteins (DEPs) had significant differences in protein abundances between ethylene treatments and genotypes. In Col, 587 DEPs were enriched for those involved in signal perception and transduction, reserve mobilization and new material generation, which potentially contributed to seed germination. DEPs up-regulated by ethylene in Col included S-adenosylmethionine synthase 1, methionine adenosyltransferase 3 and ACC oxidase involved in ethylene synthesis and of Pyrabactin Resistance1 acting as an ABA receptor, while DEPs down-regulated by ethylene in Col included aldehyde oxidase 4 involved in ABA synthesis. In contrast, in prt6 seeds, ethylene did not result in strong proteomic changes with only 30 DEPs. Taken together, the present work demonstrates that the proteolytic N-degron pathway is essential for ethylene-mediated reprogramming of seed proteomes during germination.
Collapse
|
8
|
Pande A, Mun BG, Khan M, Rahim W, Lee DS, Lee GM, Al Azawi TNI, Hussain A, Yun BW. Nitric Oxide Signaling and Its Association with Ubiquitin-Mediated Proteasomal Degradation in Plants. Int J Mol Sci 2022; 23:ijms23031657. [PMID: 35163578 PMCID: PMC8835921 DOI: 10.3390/ijms23031657] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 02/05/2023] Open
Abstract
Nitric oxide (NO) is a versatile signaling molecule with diverse roles in plant biology. The NO-mediated signaling mechanism includes post-translational modifications (PTMs) of target proteins. There exists a close link between NO-mediated PTMs and the proteasomal degradation of proteins via ubiquitylation. In some cases, ubiquitin-mediated proteasomal degradation of target proteins is followed by an NO-mediated post-translational modification on them, while in other cases NO-mediated PTMs can regulate the ubiquitylation of the components of ubiquitin-mediated proteasomal machinery for promoting their activity. Another pathway that links NO signaling with the ubiquitin-mediated degradation of proteins is the N-degron pathway. Overall, these mechanisms reflect an important mechanism of NO signal perception and transduction that reflect a close association of NO signaling with proteasomal degradation via ubiquitylation. Therefore, this review provides insight into those pathways that link NO-PTMs with ubiquitylation.
Collapse
Affiliation(s)
- Anjali Pande
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41944, Korea; (B.-G.M.); (M.K.); (W.R.); (D.-S.L.); (G.-M.L.); (T.N.I.A.A.)
- Correspondence: (A.P.); (B.-W.Y.)
| | - Bong-Gyu Mun
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41944, Korea; (B.-G.M.); (M.K.); (W.R.); (D.-S.L.); (G.-M.L.); (T.N.I.A.A.)
| | - Murtaza Khan
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41944, Korea; (B.-G.M.); (M.K.); (W.R.); (D.-S.L.); (G.-M.L.); (T.N.I.A.A.)
| | - Waqas Rahim
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41944, Korea; (B.-G.M.); (M.K.); (W.R.); (D.-S.L.); (G.-M.L.); (T.N.I.A.A.)
| | - Da-Sol Lee
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41944, Korea; (B.-G.M.); (M.K.); (W.R.); (D.-S.L.); (G.-M.L.); (T.N.I.A.A.)
| | - Geun-Mo Lee
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41944, Korea; (B.-G.M.); (M.K.); (W.R.); (D.-S.L.); (G.-M.L.); (T.N.I.A.A.)
| | - Tiba Nazar Ibrahim Al Azawi
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41944, Korea; (B.-G.M.); (M.K.); (W.R.); (D.-S.L.); (G.-M.L.); (T.N.I.A.A.)
| | - Adil Hussain
- Laboratory of Cell Biology, Department of Entomology, Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan;
| | - Byung-Wook Yun
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41944, Korea; (B.-G.M.); (M.K.); (W.R.); (D.-S.L.); (G.-M.L.); (T.N.I.A.A.)
- Correspondence: (A.P.); (B.-W.Y.)
| |
Collapse
|
9
|
Li W, Challa GS, Gupta A, Gu L, Wu Y, Li W. Physiological and Transcriptomic Characterization of Sea-Wheatgrass-Derived Waterlogging Tolerance in Wheat. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010108. [PMID: 35009111 PMCID: PMC8747256 DOI: 10.3390/plants11010108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/24/2021] [Accepted: 12/26/2021] [Indexed: 05/31/2023]
Abstract
Waterlogging, causing hypoxia stress and nitrogen depletion in the rhizosphere, has been an increasing threat to wheat production. We developed a wheat-sea wheatgrass (SWG) amphiploid showing superior tolerance to waterlogging and low nitrogen. Validated in deoxygenated agar medium for three weeks, hypoxia stress reduced the dry matter of the wheat parent by 40% but had little effect on the growth of the amphiploid. To understand the underlying mechanisms, we comparatively analyzed the wheat-SWG amphiploid and its wheat parent grown in aerated and hypoxic solutions for physiological traits and root transcriptomes. Compared with its wheat parent, the amphiploid showed less magnitude in forming root porosity and barrier to radial oxygen loss, two important mechanisms for internal O2 movement to the apex, and downregulation of genes for ethylene, lignin, and reactive oxygen species. In another aspect, however, hypoxia stress upregulated the nitrate assimilation/reduction pathway in amphiploid and induced accumulation of nitric oxide, a byproduct of nitrate reduction, in its root tips, and the amphiploid maintained much higher metabolic activity in its root system compared with its wheat parent. Taken together, our research suggested that enhanced nitrate assimilation and reduction and accumulation of nitric oxide play important roles in the SWG-derived waterlogging tolerance.
Collapse
|
10
|
Castillo MC, Costa-Broseta Á, Gayubas B, León J. NIN-like protein7 and PROTEOLYSIS6 functional interaction enhances tolerance to sucrose, ABA, and submergence. PLANT PHYSIOLOGY 2021; 187:2731-2748. [PMID: 34618055 PMCID: PMC8644111 DOI: 10.1093/plphys/kiab382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/16/2021] [Indexed: 05/05/2023]
Abstract
Nitrate (NO3) assimilation and signaling regulate plant growth through the relevant function of the transcription factor NIN-like Protein7 (NLP7). NO3 is also the main source for plants to produce nitric oxide (NO), which regulates growth and stress responses. NO-mediated regulation requires efficient sensing via the PROTEOLYSIS6 (PRT6)-mediated proteasome-triggered degradation of group VII of ethylene response transcription factors through the Cys/Arg N-degron pathway. The convergence of NO3 signaling and N-degron proteolysis on NO-mediated regulation remains largely unknown. Here, we investigated the functional interaction between NLP7 and PRT6 using Arabidopsis (Arabidopsis thaliana) double prt6 nlp7 mutant plants as well as complementation lines overexpressing NLP7 in different mutant genetic backgrounds. prt6 nlp7 mutant plants displayed several potentiated prt6 characteristic phenotypes, including slower vegetative growth, increased NO content, and diminished tolerance to abiotic stresses such as high-sucrose concentration, abscisic acid, and hypoxia-reoxygenation. Although NLP7 has an N-terminus that could be targeted by the N-degron proteolytic pathway, it was not a PRT6 substrate. The potential PRT6- and NO-regulated nucleocytoplasmic translocation of NLP7, which is likely modulated by posttranslational modifications, is proposed to act as a regulatory loop to control NO homeostasis and action.
Collapse
Affiliation(s)
- Mari-Cruz Castillo
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia), Valencia 46022, Spain
| | - Álvaro Costa-Broseta
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia), Valencia 46022, Spain
| | - Beatriz Gayubas
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia), Valencia 46022, Spain
| | - José León
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia), Valencia 46022, Spain
- Author for communication:
| |
Collapse
|
11
|
Hartman S. NIN-like Protein7 is controlled by oxygen and nitric oxide and contributes to stress tolerance through PROTEOLYSIS6. PLANT PHYSIOLOGY 2021; 187:2346-2347. [PMID: 34890464 PMCID: PMC8644194 DOI: 10.1093/plphys/kiab415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Sjon Hartman
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| |
Collapse
|
12
|
Anwar K, Joshi R, Dhankher OP, Singla-Pareek SL, Pareek A. Elucidating the Response of Crop Plants towards Individual, Combined and Sequentially Occurring Abiotic Stresses. Int J Mol Sci 2021. [PMID: 34204152 DOI: 10.3390/ijms221161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
In nature, plants are exposed to an ever-changing environment with increasing frequencies of multiple abiotic stresses. These abiotic stresses act either in combination or sequentially, thereby driving vegetation dynamics and limiting plant growth and productivity worldwide. Plants' responses against these combined and sequential stresses clearly differ from that triggered by an individual stress. Until now, experimental studies were mainly focused on plant responses to individual stress, but have overlooked the complex stress response generated in plants against combined or sequential abiotic stresses, as well as their interaction with each other. However, recent studies have demonstrated that the combined and sequential abiotic stresses overlap with respect to the central nodes of their interacting signaling pathways, and their impact cannot be modelled by swimming in an individual extreme event. Taken together, deciphering the regulatory networks operative between various abiotic stresses in agronomically important crops will contribute towards designing strategies for the development of plants with tolerance to multiple stress combinations. This review provides a brief overview of the recent developments in the interactive effects of combined and sequentially occurring stresses on crop plants. We believe that this study may improve our understanding of the molecular and physiological mechanisms in untangling the combined stress tolerance in plants, and may also provide a promising venue for agronomists, physiologists, as well as molecular biologists.
Collapse
Affiliation(s)
- Khalid Anwar
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rohit Joshi
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India
| |
Collapse
|
13
|
Anwar K, Joshi R, Dhankher OP, Singla-Pareek SL, Pareek A. Elucidating the Response of Crop Plants towards Individual, Combined and Sequentially Occurring Abiotic Stresses. Int J Mol Sci 2021; 22:6119. [PMID: 34204152 PMCID: PMC8201344 DOI: 10.3390/ijms22116119] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
In nature, plants are exposed to an ever-changing environment with increasing frequencies of multiple abiotic stresses. These abiotic stresses act either in combination or sequentially, thereby driving vegetation dynamics and limiting plant growth and productivity worldwide. Plants' responses against these combined and sequential stresses clearly differ from that triggered by an individual stress. Until now, experimental studies were mainly focused on plant responses to individual stress, but have overlooked the complex stress response generated in plants against combined or sequential abiotic stresses, as well as their interaction with each other. However, recent studies have demonstrated that the combined and sequential abiotic stresses overlap with respect to the central nodes of their interacting signaling pathways, and their impact cannot be modelled by swimming in an individual extreme event. Taken together, deciphering the regulatory networks operative between various abiotic stresses in agronomically important crops will contribute towards designing strategies for the development of plants with tolerance to multiple stress combinations. This review provides a brief overview of the recent developments in the interactive effects of combined and sequentially occurring stresses on crop plants. We believe that this study may improve our understanding of the molecular and physiological mechanisms in untangling the combined stress tolerance in plants, and may also provide a promising venue for agronomists, physiologists, as well as molecular biologists.
Collapse
Affiliation(s)
- Khalid Anwar
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (K.A.); (R.J.)
| | - Rohit Joshi
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (K.A.); (R.J.)
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| | - Sneh L. Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (K.A.); (R.J.)
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India
| |
Collapse
|
14
|
Wittig PR, Ambros S, Müller JT, Bammer B, Álvarez-Cansino L, Konnerup D, Pedersen O, Mustroph A. Two Brassica napus cultivars differ in gene expression, but not in their response to submergence. PHYSIOLOGIA PLANTARUM 2021; 171:400-415. [PMID: 33099772 DOI: 10.1111/ppl.13251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Heavy rainfall causes flooding of natural ecosystems as well as farmland, negatively affecting plant performance. While the responses of the wild model organism Arabidopsis thaliana to such stress conditions is well understood, little is known about the responses of its relative, the important oil crop plant Brassica napus. For the first time, we analyzed the molecular response of Brassica napus seedlings to full submergence in a natural light-dark cycle. We used two cultivars in this study, a European hybrid cultivar and an Asian flood-tolerant cultivar. Despite their genomic differences, those genotypes showed no major differences in their responses to submergence. The molecular responses to submergence included the induction of defense- and hormone-related pathways and the repression of biosynthetic processes. Furthermore, RNAseq revealed a strong carbohydrate-starvation response under submergence in daylight, which corresponded with a fast depletion of sugars. Consequently, both B. napus cultivars exhibited a strong growth repression under water, but there was no indication of a low-oxygen response. The ability of the European hybrid cultivar to form a short-lived leaf gas film neither increased underwater net photosynthesis, underwater dark respiration nor growth during submergence. Due to the high sensitivity of both cultivars, the analysis of other cultivars or related species with higher submergence tolerance is required in order to improve flood tolerance of this crop species. One major target could be the improvement of underwater photosynthesis efficiency in order to enhance submergence survival.
Collapse
Affiliation(s)
- Philipp R Wittig
- Department of Plant Physiology, University Bayreuth, Bayreuth, Germany
| | - Stefanie Ambros
- Department of Plant Physiology, University Bayreuth, Bayreuth, Germany
| | - Jana T Müller
- Department of Plant Physiology, University Bayreuth, Bayreuth, Germany
| | - Bettina Bammer
- Department of Plant Physiology, University Bayreuth, Bayreuth, Germany
| | | | - Dennis Konnerup
- Department of Food Science, Aarhus University, Aarhus N, Denmark
| | - Ole Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Angelika Mustroph
- Department of Plant Physiology, University Bayreuth, Bayreuth, Germany
| |
Collapse
|
15
|
Müller JT, van Veen H, Bartylla MM, Akman M, Pedersen O, Sun P, Schuurink RC, Takeuchi J, Todoroki Y, Weig AR, Sasidharan R, Mustroph A. Keeping the shoot above water - submergence triggers antithetical growth responses in stems and petioles of watercress (Nasturtium officinale). THE NEW PHYTOLOGIST 2021; 229:140-155. [PMID: 31792981 DOI: 10.1111/nph.16350] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/26/2019] [Indexed: 05/25/2023]
Abstract
The molecular mechanisms controlling underwater elongation are based extensively on studies on internode elongation in the monocot rice (Oryza sativa) and petiole elongation in Rumex rosette species. Here, we characterize underwater growth in the dicot Nasturtium officinale (watercress), a wild species of the Brassicaceae family, in which submergence enhances stem elongation and suppresses petiole growth. We used a genome-wide transcriptome analysis to identify the molecular mechanisms underlying the observed antithetical growth responses. Though submergence caused a substantial reconfiguration of the petiole and stem transcriptome, only little qualitative differences were observed between both tissues. A core submergence response included hormonal regulation and metabolic readjustment for energy conservation, whereas tissue-specific responses were associated with defense, photosynthesis, and cell wall polysaccharides. Transcriptomic and physiological characterization suggested that the established ethylene, abscisic acid (ABA), and GA growth regulatory module for underwater elongation could not fully explain underwater growth in watercress. Petiole growth suppression is likely attributed to a cell cycle arrest. Underwater stem elongation is driven by an early decline in ABA and is not primarily mediated by ethylene or GA. An enhanced stem elongation observed in the night period was not linked to hypoxia and suggests an involvement of circadian regulation.
Collapse
Affiliation(s)
- Jana T Müller
- Plant Physiology, University Bayreuth, Universitaetsstraße 30, 95440, Bayreuth, Germany
| | - Hans van Veen
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Malte M Bartylla
- Plant Physiology, University Bayreuth, Universitaetsstraße 30, 95440, Bayreuth, Germany
| | - Melis Akman
- Plant and Microbial Biology, University of California, Berkeley, 361 Koshland Hall, Berkeley, CA, 94720, USA
- Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Ole Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 4, 2100, Copenhagen, Denmark
| | - Pulu Sun
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Robert C Schuurink
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Jun Takeuchi
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Yasushi Todoroki
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Alfons R Weig
- Genomics & Bioinformatics, University Bayreuth, Universitaetsstraße 30, 95440, Bayreuth, Germany
| | - Rashmi Sasidharan
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Angelika Mustroph
- Plant Physiology, University Bayreuth, Universitaetsstraße 30, 95440, Bayreuth, Germany
| |
Collapse
|
16
|
Lamichhane S, Alpuerto JB, Han A, Fukao T. The Central Negative Regulator of Flooding Tolerance, the PROTEOLYSIS 6 Branch of the N-degron Pathway, Adversely Modulates Salinity Tolerance in Arabidopsis. PLANTS 2020; 9:plants9111415. [PMID: 33113884 PMCID: PMC7690746 DOI: 10.3390/plants9111415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 11/25/2022]
Abstract
Seawater intrusion in coastal regions and waterlogging in salinized lands are serious constraints that reduce crop productivity under changing climate scenarios. Under these conditions, plants encounter flooding and salinity concurrently or sequentially. Identification and characterization of genes and pathways associated with both flooding and salinity adaptation are critical steps for the simultaneous improvement of plant tolerance to these stresses. The PROTEOLYSIS 6 (PRT6) branch of the N-degron pathway is a well-characterized process that negatively regulates flooding tolerance in plants. Here, we determined the role of the PRT6/N-degron pathway in salinity tolerance in Arabidopsis. This study demonstrates that the prt6 mutation enhances salinity tolerance at the germination, seedling, and adult plant stages. Maintenance of chlorophyll content and root growth under high salt in the prt6 mutant was linked with the restricted accumulation of sodium ions (Na+) in shoots and roots of the mutant genotype. The prt6 mutation also stimulated mRNA accumulation of key transcription factors in ABA-dependent and independent pathways of osmotic/salinity tolerance, accompanied by the prominent expression of their downstream genes. Furthermore, the prt6 mutant displayed increased sensitivity to ethylene and brassinosteroids, which can suppress Na+ uptake and promote the expression of stress-responsive genes. This study provides genetic evidence that both salinity and flooding tolerance is coordinated through a common regulatory pathway in Arabidopsis.
Collapse
Affiliation(s)
- Suman Lamichhane
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (S.L.); (J.B.A.); (A.H.)
- Texas A & M Agrilife Research, Beaumont, TX 77713, USA
| | - Jasper B. Alpuerto
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (S.L.); (J.B.A.); (A.H.)
- Texas A & M Agrilife Research, Beaumont, TX 77713, USA
| | - Abigail Han
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (S.L.); (J.B.A.); (A.H.)
| | - Takeshi Fukao
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (S.L.); (J.B.A.); (A.H.)
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, Fukui 910-1195, Japan
- Correspondence:
| |
Collapse
|
17
|
Xu D, Wu D, Li XH, Jiang Y, Tian T, Chen Q, Ma L, Wang H, Deng XW, Li G. Light and Abscisic Acid Coordinately Regulate Greening of Seedlings. PLANT PHYSIOLOGY 2020; 183:1281-1294. [PMID: 32414897 PMCID: PMC7333693 DOI: 10.1104/pp.20.00503] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/07/2020] [Indexed: 05/18/2023]
Abstract
The greening of etiolated seedlings is crucial for the growth and survival of plants. After reaching the soil surface and sunlight, etiolated seedlings integrate numerous environmental signals and internal cues to control the initiation and rate of greening thus to improve their survival and adaption. However, the underlying regulatory mechanisms by which light and phytohormones, such as abscisic acid (ABA), coordinately regulate greening of the etiolated seedlings is still unknown. In this study, we showed that Arabidopsis (Arabidopsis thaliana) DE-ETIOLATED1 (DET1), a key negative regulator of photomorphogenesis, positively regulated light-induced greening by repressing ABA responses. Upon irradiating etiolated seedlings with light, DET1 physically interacts with FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and subsequently associates to the promoter region of the FHY3 direct downstream target ABA INSENSITIVE5 (ABI5). Further, DET1 recruits HISTONE DEACETYLASE6 to the locus of the ABI5 promoter and reduces the enrichments of H3K27ac and H3K4me3 modification, thus subsequently repressing ABI5 expression and promoting the greening of etiolated seedlings. This study reveals the physiological and molecular function of DET1 and FHY3 in the greening of seedlings and provides insights into the regulatory mechanism by which plants integrate light and ABA signals to fine-tune early seedling establishment.
Collapse
Affiliation(s)
- Di Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Di Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xiao-Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yu'e Jiang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Tian Tian
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Qingshuai Chen
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Lin Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Haiyang Wang
- College of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, the Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Gang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
18
|
Meng X, Li L, Narsai R, De Clercq I, Whelan J, Berkowitz O. Mitochondrial signalling is critical for acclimation and adaptation to flooding in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:227-247. [PMID: 32064696 DOI: 10.1111/tpj.14724] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/23/2020] [Accepted: 02/04/2020] [Indexed: 05/23/2023]
Abstract
Mitochondria have critical functions in the acclimation to abiotic and biotic stresses. Adverse environmental conditions lead to increased demands in energy supply and metabolic intermediates, which are provided by mitochondrial ATP production and the tricarboxylic acid (TCA) cycle. Mitochondria also play a role as stress sensors to adjust nuclear gene expression via retrograde signalling with the transcription factor (TF) ANAC017 and the kinase CDKE1 key components to integrate various signals into this pathway. To determine the importance of mitochondria as sensors of stress and their contribution in the tolerance to adverse growth conditions, a comparative phenotypical, physiological and transcriptomic characterisation of Arabidopsis mitochondrial signalling mutants (cdke1/rao1 and anac017/rao2) and a set of contrasting accessions was performed after applying the complex compound stress of submergence. Our results showed that impaired mitochondrial retrograde signalling leads to increased sensitivity to the stress treatments. The multi-factorial approach identified a network of 702 co-expressed genes, including several WRKY TFs, overlapping in the transcriptional responses in the mitochondrial signalling mutants and stress-sensitive accessions. Functional characterisation of two WRKY TFs (WRKY40 and WRKY45), using both knockout and overexpressing lines, confirmed their role in conferring tolerance to submergence. Together, the results revealed that acclimation to submergence is dependent on mitochondrial retrograde signalling, and underlying transcriptional re-programming is used as an adaptation mechanism.
Collapse
Affiliation(s)
- Xiangxiang Meng
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Lu Li
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Reena Narsai
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Inge De Clercq
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052, Ghent, Belgium
| | - James Whelan
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| |
Collapse
|
19
|
Holdsworth MJ, Vicente J, Sharma G, Abbas M, Zubrycka A. The plant N-degron pathways of ubiquitin-mediated proteolysis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:70-89. [PMID: 31638740 DOI: 10.1111/jipb.12882] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/20/2019] [Indexed: 05/29/2023]
Abstract
The amino-terminal residue of a protein (or amino-terminus of a peptide following protease cleavage) can be an important determinant of its stability, through the Ubiquitin Proteasome System associated N-degron pathways. Plants contain a unique combination of N-degron pathways (previously called the N-end rule pathways) E3 ligases, PROTEOLYSIS (PRT)6 and PRT1, recognizing non-overlapping sets of amino-terminal residues, and others remain to be identified. Although only very few substrates of PRT1 or PRT6 have been identified, substrates of the oxygen and nitric oxide sensing branch of the PRT6 N-degron pathway include key nuclear-located transcription factors (ETHYLENE RESPONSE FACTOR VIIs and LITTLE ZIPPER 2) and the histone-modifying Polycomb Repressive Complex 2 component VERNALIZATION 2. In response to reduced oxygen or nitric oxide levels (and other mechanisms that reduce pathway activity) these stabilized substrates regulate diverse aspects of growth and development, including response to flooding, salinity, vernalization (cold-induced flowering) and shoot apical meristem function. The N-degron pathways show great promise for use in the improvement of crop performance and for biotechnological applications. Upstream proteases, components of the different pathways and associated substrates still remain to be identified and characterized to fully appreciate how regulation of protein stability through the amino-terminal residue impacts plant biology.
Collapse
Affiliation(s)
| | - Jorge Vicente
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Gunjan Sharma
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Mohamad Abbas
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Agata Zubrycka
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| |
Collapse
|
20
|
Bäumler J, Riber W, Klecker M, Müller L, Dissmeyer N, Weig AR, Mustroph A. AtERF#111/ABR1 is a transcriptional activator involved in the wounding response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:969-990. [PMID: 31385625 DOI: 10.1111/tpj.14490] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
AtERF#111/ABR1 belongs to the group X of the ERF/AP2 transcription factor family (GXERFs) and is shoot specifically induced under submergence and hypoxia. It was described to be an ABA-response repressor, but our data reveal a completely different function. Surprisingly, AtERF#111 expression is strongly responsive to wounding stress. Expression profiling of ERF#111-overexpressing (OE) plants, which show morphological phenotypes like increased root hair length and number, strengthens the hypothesis of AtERF#111 being involved in the wounding response, thereby acting as a transcriptional activator of gene expression. Consistent with a potential function outside of oxygen signalling, we could not assign AtERF#111 as a target of the PRT6 N-degron pathway, even though it starts with a highly conserved N-terminal Met-Cys (MC) motif. However, the protein is unstable as it is degraded in an ubiquitin-dependent manner. Finally, direct target genes of AtERF#111 were identified by microarray analyses and subsequently confirmed by protoplast transactivation assays. The special roles of diverse members of the plant-specific GXERFs in coordinating stress signalling and wound repair mechanisms have been recently hypothesized, and our data suggest that AtERF#111 is indeed involved in these processes.
Collapse
Affiliation(s)
- Judith Bäumler
- Plant Physiology, University Bayreuth, Universitaetsstr. 30, 95440, Bayreuth, Germany
| | - Willi Riber
- Plant Physiology, University Bayreuth, Universitaetsstr. 30, 95440, Bayreuth, Germany
| | - Maria Klecker
- Plant Physiology, University Bayreuth, Universitaetsstr. 30, 95440, Bayreuth, Germany
- Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
- Science Campus Halle - Plant-Based Bioeconomy, Betty-Heimann-Str. 3, 06120, Halle (Saale), Germany
| | - Leon Müller
- Plant Physiology, University Bayreuth, Universitaetsstr. 30, 95440, Bayreuth, Germany
| | - Nico Dissmeyer
- Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
- Science Campus Halle - Plant-Based Bioeconomy, Betty-Heimann-Str. 3, 06120, Halle (Saale), Germany
| | - Alfons R Weig
- Genomics & Bioinformatics, University Bayreuth, Universitaetsstr. 30, 95440, Bayreuth, Germany
| | - Angelika Mustroph
- Plant Physiology, University Bayreuth, Universitaetsstr. 30, 95440, Bayreuth, Germany
| |
Collapse
|
21
|
Gil-Monreal M, Giuntoli B, Zabalza A, Licausi F, Royuela M. ERF-VII transcription factors induce ethanol fermentation in response to amino acid biosynthesis-inhibiting herbicides. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5839-5851. [PMID: 31384925 PMCID: PMC6812701 DOI: 10.1093/jxb/erz355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/22/2019] [Indexed: 05/17/2023]
Abstract
Herbicides inhibiting either aromatic or branched-chain amino acid biosynthesis trigger similar physiological responses in plants, despite their different mechanism of action. Both types of herbicides are known to activate ethanol fermentation by inducing the expression of fermentative genes; however, the mechanism of such transcriptional regulation has not been investigated so far. In plants exposed to low-oxygen conditions, ethanol fermentation is transcriptionally controlled by the ethylene response factors-VII (ERF-VIIs), whose stability is controlled in an oxygen-dependent manner by the Cys-Arg branch of the N-degron pathway. In this study, we investigated the role of ERF-VIIs in the regulation of the ethanol fermentation pathway in herbicide-treated Arabidopsis plants grown under aerobic conditions. Our results demonstrate that these transcriptional regulators are stabilized in response to herbicide treatment and are required for ethanol fermentation in these conditions. We also observed that mutants with reduced fermentative potential exhibit higher sensitivity to herbicide treatments, thus revealing the existence of a mechanism that mimics oxygen deprivation to activate metabolic pathways that enhance herbicide tolerance. We speculate that this signaling pathway may represent a potential target in agriculture to affect tolerance to herbicides that inhibit amino acid biosynthesis.
Collapse
Affiliation(s)
- Miriam Gil-Monreal
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Pamplona, Spain
| | - Beatrice Giuntoli
- Department of Biology, University of Pisa, Via Ghini, Pisa, Italy
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Via Guidiccioni, Pisa, Italy
| | - Ana Zabalza
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Pamplona, Spain
| | - Francesco Licausi
- Department of Biology, University of Pisa, Via Ghini, Pisa, Italy
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Via Guidiccioni, Pisa, Italy
| | - Mercedes Royuela
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Pamplona, Spain
- Correspondence:
| |
Collapse
|
22
|
Weits DA, Kunkowska AB, Kamps NCW, Portz KMS, Packbier NK, Nemec Venza Z, Gaillochet C, Lohmann JU, Pedersen O, van Dongen JT, Licausi F. An apical hypoxic niche sets the pace of shoot meristem activity. Nature 2019; 569:714-717. [PMID: 31092919 DOI: 10.1038/s41586-019-1203-6] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 04/12/2019] [Indexed: 11/09/2022]
Abstract
Complex multicellular organisms evolved on Earth in an oxygen-rich atmosphere1; their tissues, including stem-cell niches, require continuous oxygen provision for efficient energy metabolism2. Notably, the maintenance of the pluripotent state of animal stem cells requires hypoxic conditions, whereas higher oxygen tension promotes cell differentiation3. Here we demonstrate, using a combination of genetic reporters and in vivo oxygen measurements, that plant shoot meristems develop embedded in a low-oxygen niche, and that hypoxic conditions are required to regulate the production of new leaves. We show that hypoxia localized to the shoot meristem inhibits the proteolysis of an N-degron-pathway4,5 substrate known as LITTLE ZIPPER 2 (ZPR2)-which evolved to control the activity of the class-III homeodomain-leucine zipper transcription factors6-8-and thereby regulates the activity of shoot meristems. Our results reveal oxygen as a diffusible signal that is involved in the control of stem-cell activity in plants grown under aerobic conditions, which suggests that the spatially distinct distribution of oxygen affects plant development. In molecular terms, this signal is translated into transcriptional regulation by the N-degron pathway, thereby linking the control of metabolic activity to the regulation of development in plants.
Collapse
Affiliation(s)
- Daan A Weits
- Institute of Biology I, RWTH Aachen University, Aachen, Germany.,Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | | | | | - Niko K Packbier
- Institute of Biology I, RWTH Aachen University, Aachen, Germany
| | - Zoe Nemec Venza
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Christophe Gaillochet
- Department of Stem Cell Biology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany.,Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jan U Lohmann
- Department of Stem Cell Biology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Ole Pedersen
- The Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Francesco Licausi
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy. .,Biology Department, University of Pisa, Pisa, Italy.
| |
Collapse
|
23
|
Dissmeyer N. Conditional Protein Function via N-Degron Pathway-Mediated Proteostasis in Stress Physiology. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:83-117. [PMID: 30892918 DOI: 10.1146/annurev-arplant-050718-095937] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The N-degron pathway, formerly the N-end rule pathway, regulates functions of regulatory proteins. It impacts protein half-life and therefore directs the actual presence of target proteins in the cell. The current concept holds that the N-degron pathway depends on the identity of the amino (N)-terminal amino acid and many other factors, such as the follow-up sequence at the N terminus, conformation, flexibility, and protein localization. It is evolutionarily conserved throughout the kingdoms. One possible entry point for substrates of the N-degron pathway is oxidation of N-terminal Cys residues. Oxidation of N-terminal Cys is decisive for further enzymatic modification of various neo-N termini by arginylation that generates potentially neofunctionalized or instable proteoforms. Here, I focus on the posttranslational modifications that are encompassed by protein degradation via the Cys/Arg branch of the N-degron pathway-part of the PROTEOLYSIS 6 (PRT6)/N-degron pathway-as well as the underlying physiological principles of this branch and its biological significance in stress response.
Collapse
Affiliation(s)
- Nico Dissmeyer
- Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry (IPB) and ScienceCampus Halle-Plant-Based Bioeconomy, D-06120 Halle (Saale), Germany; ; Twitter: @NDissmeyer
| |
Collapse
|
24
|
Fukao T, Barrera-Figueroa BE, Juntawong P, Peña-Castro JM. Submergence and Waterlogging Stress in Plants: A Review Highlighting Research Opportunities and Understudied Aspects. FRONTIERS IN PLANT SCIENCE 2019; 10:340. [PMID: 30967888 PMCID: PMC6439527 DOI: 10.3389/fpls.2019.00340] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/05/2019] [Indexed: 05/20/2023]
Abstract
Soil flooding creates composite and complex stress in plants known as either submergence or waterlogging stress depending on the depth of the water table. In nature, these stresses are important factors dictating the species composition of the ecosystem. On agricultural land, they cause economic damage associated with long-term social consequences. The understanding of the plant molecular responses to these two stresses has benefited from research studying individual components of the stress, in particular low-oxygen stress. To a lesser extent, other associated stresses and plant responses have been incorporated into the molecular framework, such as ion and ROS signaling, pathogen susceptibility, and organ-specific expression and development. In this review, we aim to highlight known or suspected components of submergence/waterlogging stress that have not yet been thoroughly studied at the molecular level in this context, such as miRNA and retrotransposon expression, the influence of light/dark cycles, protein isoforms, root architecture, sugar sensing and signaling, post-stress molecular events, heavy-metal and salinity stress, and mRNA dynamics (splicing, sequestering, and ribosome loading). Finally, we explore biotechnological strategies that have applied this molecular knowledge to develop cultivars resistant to flooding or to offer alternative uses of flooding-prone soils, like bioethanol and biomass production.
Collapse
Affiliation(s)
- Takeshi Fukao
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | | | - Piyada Juntawong
- Center for Advanced Studies in Tropical Natural Resources, National Research University – Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Julián Mario Peña-Castro
- Laboratorio de Biotecnología Vegetal, Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec, Mexico
| |
Collapse
|
25
|
Kerpen L, Niccolini L, Licausi F, van Dongen JT, Weits DA. Hypoxic Conditions in Crown Galls Induce Plant Anaerobic Responses That Support Tumor Proliferation. FRONTIERS IN PLANT SCIENCE 2019; 10:56. [PMID: 30804956 PMCID: PMC6371838 DOI: 10.3389/fpls.2019.00056] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/16/2019] [Indexed: 05/21/2023]
Abstract
Agrobacterium tumefaciens infection of wounded plant tissues causes the formation of crown gall tumors. Upon infection, genes encoded on the A. tumefaciens tumor inducing plasmid are integrated in the plant genome to induce the biosynthesis of auxin and cytokinin, leading to uncontrolled cell division. Additional sequences present on the bacterial T-DNA encode for opine biosynthesis genes, which induce the production of opines that act as a unique carbon and nitrogen source for Agrobacterium. Crown galls therefore become a very strong sink for photosynthate. Here we found that the increased metabolic demand in crown galls causes an increase in oxygen consumption rate, which leads to a steep drop in the internal oxygen concentration. Consistent with this, plant hypoxia-responsive genes were found to be significantly upregulated in crown galls compared to uninfected stem tissue. Following this observation, we aimed at understanding whether the low-oxygen response pathway, mediated by group VII ethylene response factor (ERF-VII) transcription factors, plays a role in the development of crown galls. We found that quintuple knock-out mutants of all ERF-VII members, which are incapable of inducing the hypoxic response, show reduced crown gall symptoms. Conversely, mutant genotypes characterized by constitutively high levels of hypoxia-associated transcripts, displayed more severe crown gall symptoms. Based on these results, we concluded that uncontrolled cell proliferation of crown galls established hypoxic conditions, thereby requiring adequate anaerobic responses of the plant tissue to support tumor growth.
Collapse
Affiliation(s)
- Lucy Kerpen
- Institute of Biology I, RWTH Aachen University, Aachen, Germany
| | | | - Francesco Licausi
- Department of Biology, University of Pisa, Pisa, Italy
- Scuola Superiore Sant’Anna, Institute of Life Sciences, Pisa, Italy
| | | | - Daan A. Weits
- Institute of Biology I, RWTH Aachen University, Aachen, Germany
- Scuola Superiore Sant’Anna, Institute of Life Sciences, Pisa, Italy
| |
Collapse
|
26
|
Low-oxygen response is triggered by an ATP-dependent shift in oleoyl-CoA in Arabidopsis. Proc Natl Acad Sci U S A 2018; 115:E12101-E12110. [PMID: 30509981 PMCID: PMC6304976 DOI: 10.1073/pnas.1809429115] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
To control adaptive responses to the ever-changing environment that plants are continuously exposed to, plant cells must integrate a multitude of information to make optimal decisions. Here, we reveal how plants can link information about the cellular energy status with the actual oxygen concentration of the cell to trigger a response reaction to low-oxygen stress. We reveal that oleoyl-CoA has a moonlighting function in an energy (ATP)-dependent signal transduction pathway in plants, and we provide a model that explains how diminishing oxygen availability can initiate adaptive responses when it coincides with a decreased energy status of the cell. Plant response to environmental stimuli involves integration of multiple signals. Upon low-oxygen stress, plants initiate a set of adaptive responses to circumvent an energy crisis. Here, we reveal how these stress responses are induced by combining (i) energy-dependent changes in the composition of the acyl-CoA pool and (ii) the cellular oxygen concentration. A hypoxia-induced decline of cellular ATP levels reduces LONG-CHAIN ACYL-COA SYNTHETASE activity, which leads to a shift in the composition of the acyl-CoA pool. Subsequently, we show that different acyl-CoAs induce unique molecular responses. Altogether, our data disclose a role for acyl-CoAs acting in a cellular signaling pathway in plants. Upon hypoxia, high oleoyl-CoA levels provide the initial trigger to release the transcription factor RAP2.12 from its interaction partner ACYL-COA BINDING PROTEIN at the plasma membrane. Subsequently, according to the N-end rule for proteasomal degradation, oxygen concentration-dependent stabilization of the subgroup VII ETHYLENE-RESPONSE FACTOR transcription factor RAP2.12 determines the level of hypoxia-specific gene expression. This research unveils a specific mechanism activating low-oxygen stress responses only when a decrease in the oxygen concentration coincides with a drop in energy.
Collapse
|
27
|
Zhang H, Gannon L, Jones PD, Rundle CA, Hassall KL, Gibbs DJ, Holdsworth MJ, Theodoulou FL. Genetic interactions between ABA signalling and the Arg/N-end rule pathway during Arabidopsis seedling establishment. Sci Rep 2018; 8:15192. [PMID: 30315202 PMCID: PMC6185960 DOI: 10.1038/s41598-018-33630-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/01/2018] [Indexed: 11/25/2022] Open
Abstract
The Arg/N-end rule pathway of ubiquitin-mediated proteolysis has multiple functions throughout plant development, notably in the transition from dormant seed to photoautotrophic seedling. PROTEOLYSIS6 (PRT6), an N-recognin E3 ligase of the Arg/N-end rule regulates the degradation of transcription factor substrates belonging to Group VII of the Ethylene Response Factor superfamily (ERFVIIs). It is not known whether ERFVIIs are associated with all known functions of the Arg/N-end rule, and the downstream pathways influenced by ERFVIIs are not fully defined. Here, we examined the relationship between PRT6 function, ERFVIIs and ABA signalling in Arabidopsis seedling establishment. Physiological analysis of seedlings revealed that N-end rule-regulated stabilisation of three of the five ERFVIIs, RAP2.12, RAP2.2 and RAP2.3, controls sugar sensitivity of seedling establishment and oil body breakdown following germination. ABA signalling components ABA INSENSITIVE (ABI)4 as well as ABI3 and ABI5 were found to enhance ABA sensitivity of germination and sugar sensitivity of establishment in a background containing stabilised ERFVIIs. However, N-end rule regulation of oil bodies was not dependent on canonical ABA signalling. We propose that the N-end rule serves to control multiple aspects of the seed to seedling transition by regulation of ERFVII activity, involving both ABA-dependent and independent signalling pathways.
Collapse
Affiliation(s)
- Hongtao Zhang
- Plant Sciences Department, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Lucy Gannon
- Plant Sciences Department, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Peter D Jones
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK.,Department of Cardiovascular Sciences, University of Leicester, Leicester, LE3 7QP, UK
| | - Chelsea A Rundle
- Plant Sciences Department, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Kirsty L Hassall
- Computational and Analytical Sciences Department, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | | | | |
Collapse
|
28
|
Dissmeyer N, Rivas S, Graciet E. Life and death of proteins after protease cleavage: protein degradation by the N-end rule pathway. THE NEW PHYTOLOGIST 2018; 218:929-935. [PMID: 28581033 DOI: 10.1111/nph.14619] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/04/2017] [Indexed: 06/07/2023]
Abstract
UNLABELLED Contents Summary 929 I. INTRODUCTION conservation and diversity of N-end rule pathways 929 II. Defensive functions of the N-end rule pathway in plants 930 III. Proteases and degradation by the N-end rule pathway 930 IV. New proteomics approaches for the identification of N-end rule substrates 932 V. Concluding remarks 932 Acknowledgements 934 References 934 SUMMARY: The N-end rule relates the stability of a protein to the identity of its N-terminal residue and some of its modifications. Since its discovery in the 1980s, the repertoire of N-terminal degradation signals has expanded, leading to a diversity of N-end rule pathways. Although some of these newly discovered N-end rule pathways remain largely unexplored in plants, recent discoveries have highlighted roles of N-end rule-mediated protein degradation in plant defense against pathogens and in cell proliferation during organ growth. Despite this progress, a bottleneck remains the proteome-wide identification of N-end rule substrates due to the prerequisite for endoproteolytic cleavage and technical limitations. Here, we discuss the recent diversification of N-end rule pathways and their newly discovered functions in plant defenses, stressing the role of proteases. We expect that novel proteomics techniques (N-terminomics) will be essential for substrate identification. We review these methods, their limitations and future developments.
Collapse
Affiliation(s)
- Nico Dissmeyer
- Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, Halle (Saale), D-06120, Germany
- ScienceCampus Halle - Plant-based Bioeconomy, Betty-Heimann-Strasse 3, Halle (Saale), D-06120, Germany
| | - Susana Rivas
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, 31 326, France
| | - Emmanuelle Graciet
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
29
|
Zhang H, Gannon L, Hassall KL, Deery MJ, Gibbs DJ, Holdsworth MJ, van der Hoorn RAL, Lilley KS, Theodoulou FL. N-terminomics reveals control of Arabidopsis seed storage proteins and proteases by the Arg/N-end rule pathway. THE NEW PHYTOLOGIST 2018; 218:1106-1126. [PMID: 29168982 PMCID: PMC5947142 DOI: 10.1111/nph.14909] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/23/2017] [Indexed: 05/04/2023]
Abstract
The N-end rule pathway of targeted protein degradation is an important regulator of diverse processes in plants but detailed knowledge regarding its influence on the proteome is lacking. To investigate the impact of the Arg/N-end rule pathway on the proteome of etiolated seedlings, we used terminal amine isotopic labelling of substrates with tandem mass tags (TMT-TAILS) for relative quantification of N-terminal peptides in prt6, an Arabidopsis thaliana N-end rule mutant lacking the E3 ligase PROTEOLYSIS6 (PRT6). TMT-TAILS identified over 4000 unique N-terminal peptides representing c. 2000 protein groups. Forty-five protein groups exhibited significantly increased N-terminal peptide abundance in prt6 seedlings, including cruciferins, major seed storage proteins, which were regulated by Group VII Ethylene Response Factor (ERFVII) transcription factors, known substrates of PRT6. Mobilisation of endosperm α-cruciferin was delayed in prt6 seedlings. N-termini of several proteases were downregulated in prt6, including RD21A. RD21A transcript, protein and activity levels were downregulated in a largely ERFVII-dependent manner. By contrast, cathepsin B3 protein and activity were upregulated by ERFVIIs independent of transcript. We propose that the PRT6 branch of the pathway regulates protease activities in a complex manner and optimises storage reserve mobilisation in the transition from seed to seedling via control of ERFVII action.
Collapse
Affiliation(s)
- Hongtao Zhang
- Plant Sciences DepartmentRothamsted ResearchHarpendenAL5 2JQUK
- Cambridge Centre for ProteomicsDepartment of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridge, CB2 1QRUK
| | - Lucy Gannon
- Plant Sciences DepartmentRothamsted ResearchHarpendenAL5 2JQUK
| | - Kirsty L. Hassall
- Computational and Analytical Sciences DepartmentRothamsted ResearchHarpendenAL5 2JQUK
| | - Michael J. Deery
- Cambridge Centre for ProteomicsDepartment of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridge, CB2 1QRUK
| | - Daniel J. Gibbs
- School of BiosciencesUniversity of BirminghamEdgbastonB15 2TTUK
| | | | | | - Kathryn S. Lilley
- Cambridge Centre for ProteomicsDepartment of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridge, CB2 1QRUK
| | | |
Collapse
|
30
|
Giuntoli B, Shukla V, Maggiorelli F, Giorgi FM, Lombardi L, Perata P, Licausi F. Age-dependent regulation of ERF-VII transcription factor activity in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2017; 40:2333-2346. [PMID: 28741696 DOI: 10.1111/pce.13037] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 06/27/2017] [Accepted: 06/30/2017] [Indexed: 05/22/2023]
Abstract
The Group VII Ethylene Responsive Factors (ERFs-VII) RAP2.2 and RAP2.12 have been mainly characterized with regard to their contribution as activators of fermentation in plants. However, transcriptional changes measured in conditions that stabilize these transcription factors exceed the mere activation of this biochemical pathway, implying additional roles performed by the ERF-VIIs in other processes. We evaluated gene expression in transgenic Arabidopsis lines expressing a stabilized form of RAP2.12, or hampered in ERF-VII activity, and identified genes affected by this transcriptional regulator and its homologs, including some involved in oxidative stress response, which are not universally induced under anaerobic conditions. The contribution of the ERF-VIIs in regulating this set of genes in response to chemically induced or submergence-stimulated mitochondria malfunctioning was found to depend on the plant developmental stage. A similar age-dependent mechanism also restrained ERF-VII activity upon the core-hypoxic genes, independently of the N-end rule pathway, which is accounted for the control of the anaerobic response. To conclude, this study shed new light on a dual role of ERF-VII proteins under submergence: as positive regulators of the hypoxic response and as repressors of oxidative-stress related genes, depending on the developmental stage at which plants are challenged by stress conditions.
Collapse
Affiliation(s)
- Beatrice Giuntoli
- Scuola Superiore Sant'Anna, Institute of Life Sciences, Plantlab, Via Guidiccioni 8/10, 56017, Pisa, Italy
| | - Vinay Shukla
- Scuola Superiore Sant'Anna, Institute of Life Sciences, Plantlab, Via Guidiccioni 8/10, 56017, Pisa, Italy
| | - Federica Maggiorelli
- Biology Department, Università degli Studi di Pisa, Via Luca Ghini 13, 56126, Pisa, Italy
| | - Federico M Giorgi
- Scuola Superiore Sant'Anna, Institute of Life Sciences, Plantlab, Via Guidiccioni 8/10, 56017, Pisa, Italy
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 1TN, UK
- Department of Systems Biology, Columbia University, New York, NY, 10027, USA
| | - Lara Lombardi
- Biology Department, Università degli Studi di Pisa, Via Luca Ghini 13, 56126, Pisa, Italy
| | - Pierdomenico Perata
- Scuola Superiore Sant'Anna, Institute of Life Sciences, Plantlab, Via Guidiccioni 8/10, 56017, Pisa, Italy
| | - Francesco Licausi
- Scuola Superiore Sant'Anna, Institute of Life Sciences, Plantlab, Via Guidiccioni 8/10, 56017, Pisa, Italy
- Biology Department, Università degli Studi di Pisa, Via Luca Ghini 13, 56126, Pisa, Italy
| |
Collapse
|
31
|
Domitrovic T, Fausto AK, Silva TDF, Romanel E, Vaslin MFS. Plant arginyltransferases (ATEs). Genet Mol Biol 2017; 40:253-260. [PMID: 28199445 PMCID: PMC5452128 DOI: 10.1590/1678-4685-gmb-2016-0084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/16/2016] [Indexed: 12/03/2022] Open
Abstract
Regulation of protein stability and/or degradation of misfolded and damaged proteins are essential cellular processes. A part of this regulation is mediated by the so-called N-end rule proteolytic pathway, which, in concert with the ubiquitin proteasome system (UPS), drives protein degradation depending on the N-terminal amino acid sequence. One important enzyme involved in this process is arginyl-t-RNA transferase, known as ATE. This enzyme acts post-translationally by introducing an arginine residue at the N-terminus of specific protein targets to signal degradation via the UPS. However, the function of ATEs has only recently begun to be revealed. Nonetheless, the few studies to date investigating ATE activity in plants points to the great importance of the ATE/N-end rule pathway in regulating plant signaling. Plant development, seed germination, leaf morphology and responses to gas signaling in plants are among the processes affected by the ATE/N-end rule pathway. In this review, we present some of the known biological functions of plant ATE proteins, highlighting the need for more in-depth studies on this intriguing pathway.
Collapse
Affiliation(s)
- Tatiana Domitrovic
- Laboratório de Virologia Molecular Vegetal, Departamento de Virologia IMPPG, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Anna K Fausto
- Laboratório de Virologia Molecular Vegetal, Departamento de Virologia IMPPG, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tatiane da F Silva
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, SP, Brazil
| | - Elisson Romanel
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, SP, Brazil
| | - Maite F S Vaslin
- Laboratório de Virologia Molecular Vegetal, Departamento de Virologia IMPPG, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
32
|
Loreti E, van Veen H, Perata P. Plant responses to flooding stress. CURRENT OPINION IN PLANT BIOLOGY 2016; 33:64-71. [PMID: 27322538 DOI: 10.1016/j.pbi.2016.06.005] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/04/2016] [Accepted: 06/06/2016] [Indexed: 05/18/2023]
Abstract
Most plant species cannot survive prolonged submergence or soil waterlogging. Crops are particularly intolerant to the lack of oxygen arising from submergence. Rice can instead germinate and grow even if submerged. The molecular basis for rice tolerance was recently unveiled and will contribute to the development of better rice varieties, well adapted to flooding. The oxygen sensing mechanism was also recently discovered. This system likely operates in all plant species and relies on the oxygen-dependent destabilization of the group VII ethylene response factors (ERFVIIs), a cluster of ethylene responsive transcription factors. An homeostatic mechanism that controls gene expression in plants subjected to hypoxia prevents excessive activation of the anaerobic metabolism that could be detrimental to surviving the stress.
Collapse
Affiliation(s)
- Elena Loreti
- Institute of Agricultural Biology and Biotechnology, CNR, Pisa, Italy
| | - Hans van Veen
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56124 Pisa, Italy
| | - Pierdomenico Perata
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56124 Pisa, Italy.
| |
Collapse
|
33
|
Paul MV, Iyer S, Amerhauser C, Lehmann M, van Dongen JT, Geigenberger P. Oxygen Sensing via the Ethylene Response Transcription Factor RAP2.12 Affects Plant Metabolism and Performance under Both Normoxia and Hypoxia. PLANT PHYSIOLOGY 2016; 172:141-53. [PMID: 27372243 PMCID: PMC5074624 DOI: 10.1104/pp.16.00460] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/27/2016] [Indexed: 05/18/2023]
Abstract
Subgroup-VII-ethylene-response-factor (ERF-VII) transcription factors are involved in the regulation of hypoxic gene expression and regulated by proteasome-mediated proteolysis via the oxygen-dependent branch of the N-end-rule pathway. While research into ERF-VII mainly focused on their role to regulate anoxic gene expression, little is known on the impact of this oxygen-sensing system in regulating plant metabolism and growth. By comparing Arabidopsis (Arabidopsis thaliana) plants overexpressing N-end-rule-sensitive and insensitive forms of the ERF-VII-factor RAP2.12, we provide evidence that oxygen-dependent RAP2.12 stability regulates central metabolic processes to sustain growth, development, and anoxic resistance of plants. (1) Under normoxia, overexpression of N-end-rule-insensitive Δ13RAP2.12 led to increased activities of fermentative enzymes and increased accumulation of fermentation products, which were accompanied by decreased adenylate energy states and starch levels, and impaired plant growth and development, indicating a role of oxygen-regulated RAP2.12 degradation to prevent aerobic fermentation. (2) In Δ13RAP2.12-overexpressing plants, decreased carbohydrate reserves also led to a decrease in anoxic resistance, which was prevented by external Suc supply. (3) Overexpression of Δ13RAP2.12 led to decreased respiration rates, changes in the levels of tricarboxylic acid cycle intermediates, and accumulation of a large number of amino acids, including Ala and γ-amino butyric acid, indicating a role of oxygen-regulated RAP2.12 abundance in controlling the flux-modus of the tricarboxylic acid cycle. (4) The increase in amino acids was accompanied by increased levels of immune-regulatory metabolites. These results show that oxygen-sensing, mediating RAP2.12 degradation is indispensable to optimize metabolic performance, plant growth, and development under both normoxic and hypoxic conditions.
Collapse
Affiliation(s)
- Melanie Verena Paul
- Ludwig-Maximilians-Universität München, Department Biologie I, 82152 Martinsried, Germany (M.V.P., S.I., C.A., M.L., P.G.); andInstitute of Biology I, RWTH Aachen University, 52074 Aachen, Germany (J.T.v.D.)
| | - Srignanakshi Iyer
- Ludwig-Maximilians-Universität München, Department Biologie I, 82152 Martinsried, Germany (M.V.P., S.I., C.A., M.L., P.G.); andInstitute of Biology I, RWTH Aachen University, 52074 Aachen, Germany (J.T.v.D.)
| | - Carmen Amerhauser
- Ludwig-Maximilians-Universität München, Department Biologie I, 82152 Martinsried, Germany (M.V.P., S.I., C.A., M.L., P.G.); andInstitute of Biology I, RWTH Aachen University, 52074 Aachen, Germany (J.T.v.D.)
| | - Martin Lehmann
- Ludwig-Maximilians-Universität München, Department Biologie I, 82152 Martinsried, Germany (M.V.P., S.I., C.A., M.L., P.G.); andInstitute of Biology I, RWTH Aachen University, 52074 Aachen, Germany (J.T.v.D.)
| | - Joost T van Dongen
- Ludwig-Maximilians-Universität München, Department Biologie I, 82152 Martinsried, Germany (M.V.P., S.I., C.A., M.L., P.G.); andInstitute of Biology I, RWTH Aachen University, 52074 Aachen, Germany (J.T.v.D.)
| | - Peter Geigenberger
- Ludwig-Maximilians-Universität München, Department Biologie I, 82152 Martinsried, Germany (M.V.P., S.I., C.A., M.L., P.G.); andInstitute of Biology I, RWTH Aachen University, 52074 Aachen, Germany (J.T.v.D.)
| |
Collapse
|
34
|
Schuessele C, Hoernstein SNW, Mueller SJ, Rodriguez-Franco M, Lorenz T, Lang D, Igloi GL, Reski R. Spatio-temporal patterning of arginyl-tRNA protein transferase (ATE) contributes to gametophytic development in a moss. THE NEW PHYTOLOGIST 2016; 209:1014-1027. [PMID: 26428055 DOI: 10.1111/nph.13656] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/14/2015] [Indexed: 06/05/2023]
Abstract
The importance of the arginyl-tRNA protein transferase (ATE), the enzyme mediating post-translation arginylation of proteins in the N-end rule degradation (NERD) pathway of protein stability, was analysed in Physcomitrella patens and compared to its known functions in other eukaryotes. We characterize ATE:GUS reporter lines as well as ATE mutants in P. patens to study the impact and function of arginylation on moss development and physiology. ATE protein abundance is spatially and temporally regulated in P. patens by hormones and light and is highly abundant in meristematic cells. Further, the amount of ATE transcript is regulated during abscisic acid signalling and downstream of auxin signalling. Loss-of-function mutants exhibit defects at various levels, most severely in developing gametophores, in chloroplast starch accumulation and senescence. Thus, arginylation is necessary for moss gametophyte development, in contrast to the situation in flowering plants. Our analysis further substantiates the conservation of the N-end rule pathway components in land plants and highlights lineage-specific features. We introduce moss as a model system to characterize the role of the NERD pathway as an additional layer of complexity in eukaryotic development.
Collapse
Affiliation(s)
- Christian Schuessele
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- Institute of Biology 3, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Sebastian N W Hoernstein
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- Institute of Biology 3, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Stefanie J Mueller
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Marta Rodriguez-Franco
- Cell Biology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Timo Lorenz
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Daniel Lang
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Gabor L Igloi
- Institute of Biology 3, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- FRIAS - Freiburg Institute for Advanced Studies, University of Freiburg, 79104, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- TIP - Trinational Institute for Plant Research, Upper Rhine Valley, 79104, Freiburg, Germany
| |
Collapse
|
35
|
Gasch P, Fundinger M, Müller JT, Lee T, Bailey-Serres J, Mustroph A. Redundant ERF-VII Transcription Factors Bind to an Evolutionarily Conserved cis-Motif to Regulate Hypoxia-Responsive Gene Expression in Arabidopsis. THE PLANT CELL 2016; 28:160-80. [PMID: 26668304 PMCID: PMC4746684 DOI: 10.1105/tpc.15.00866] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/01/2015] [Indexed: 05/08/2023]
Abstract
The response of Arabidopsis thaliana to low-oxygen stress (hypoxia), such as during shoot submergence or root waterlogging, includes increasing the levels of ∼50 hypoxia-responsive gene transcripts, many of which encode enzymes associated with anaerobic metabolism. Upregulation of over half of these mRNAs involves stabilization of five group VII ethylene response factor (ERF-VII) transcription factors, which are routinely degraded via the N-end rule pathway of proteolysis in an oxygen- and nitric oxide-dependent manner. Despite their importance, neither the quantitative contribution of individual ERF-VIIs nor the cis-regulatory elements they govern are well understood. Here, using single- and double-null mutants, the constitutively synthesized ERF-VIIs RELATED TO APETALA2.2 (RAP2.2) and RAP2.12 are shown to act redundantly as principle activators of hypoxia-responsive genes; constitutively expressed RAP2.3 contributes to this redundancy, whereas the hypoxia-induced HYPOXIA RESPONSIVE ERF1 (HRE1) and HRE2 play minor roles. An evolutionarily conserved 12-bp cis-regulatory motif that binds to and is sufficient for activation by RAP2.2 and RAP2.12 is identified through a comparative phylogenetic motif search, promoter dissection, yeast one-hybrid assays, and chromatin immunopurification. This motif, designated the hypoxia-responsive promoter element, is enriched in promoters of hypoxia-responsive genes in multiple species.
Collapse
Affiliation(s)
- Philipp Gasch
- Plant Physiology, University Bayreuth, 95440 Bayreuth, Germany
| | | | - Jana T Müller
- Plant Physiology, University Bayreuth, 95440 Bayreuth, Germany
| | - Travis Lee
- Center for Plant Cell Biology and Botany and Plant Sciences Department, University of California, Riverside, California 92521
| | - Julia Bailey-Serres
- Center for Plant Cell Biology and Botany and Plant Sciences Department, University of California, Riverside, California 92521
| | | |
Collapse
|
36
|
Tamang BG, Fukao T. Plant Adaptation to Multiple Stresses during Submergence and Following Desubmergence. Int J Mol Sci 2015; 16:30164-80. [PMID: 26694376 PMCID: PMC4691168 DOI: 10.3390/ijms161226226] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/03/2015] [Accepted: 12/10/2015] [Indexed: 11/25/2022] Open
Abstract
Plants require water for growth and development, but excessive water negatively affects their productivity and viability. Flash floods occasionally result in complete submergence of plants in agricultural and natural ecosystems. When immersed in water, plants encounter multiple stresses including low oxygen, low light, nutrient deficiency, and high risk of infection. As floodwaters subside, submerged plants are abruptly exposed to higher oxygen concentration and greater light intensity, which can induce post-submergence injury caused by oxidative stress, high light, and dehydration. Recent studies have emphasized the significance of multiple stress tolerance in the survival of submergence and prompt recovery following desubmergence. A mechanistic understanding of acclimation responses to submergence at molecular and physiological levels can contribute to the deciphering of the regulatory networks governing tolerance to other environmental stresses that occur simultaneously or sequentially in the natural progress of a flood event.
Collapse
Affiliation(s)
- Bishal Gole Tamang
- Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Takeshi Fukao
- Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
- Translational Plant Sciences Program, Virginia Tech, Blacksburg, VA 24061, USA.
- Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
37
|
Gibbs DJ, Conde JV, Berckhan S, Prasad G, Mendiondo GM, Holdsworth MJ. Group VII Ethylene Response Factors Coordinate Oxygen and Nitric Oxide Signal Transduction and Stress Responses in Plants. PLANT PHYSIOLOGY 2015; 169:23-31. [PMID: 25944828 PMCID: PMC4577381 DOI: 10.1104/pp.15.00338] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/30/2015] [Indexed: 05/18/2023]
Abstract
The group VII ethylene response factors (ERFVIIs) are plant-specific transcription factors that have emerged as important regulators of abiotic and biotic stress responses, in particular, low-oxygen stress. A defining feature of ERFVIIs is their conserved N-terminal domain, which renders them oxygen- and nitric oxide (NO)-dependent substrates of the N-end rule pathway of targeted proteolysis. In the presence of these gases, ERFVIIs are destabilized, whereas an absence of either permits their accumulation; ERFVIIs therefore coordinate plant homeostatic responses to oxygen availability and control a wide range of NO-mediated processes. ERFVIIs have a variety of context-specific protein and gene interaction partners, and also modulate gibberellin and abscisic acid signaling to regulate diverse developmental processes and stress responses. This update discusses recent advances in our understanding of ERFVII regulation and function, highlighting their role as central regulators of gaseous signal transduction at the interface of ethylene, oxygen, and NO signaling.
Collapse
Affiliation(s)
- Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom (D.J.G.); andDepartment of Plant and Crop Sciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom (J.V.C., S.B., G.P., G.M.M., M.J.H.)
| | - Jorge Vicente Conde
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom (D.J.G.); andDepartment of Plant and Crop Sciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom (J.V.C., S.B., G.P., G.M.M., M.J.H.)
| | - Sophie Berckhan
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom (D.J.G.); andDepartment of Plant and Crop Sciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom (J.V.C., S.B., G.P., G.M.M., M.J.H.)
| | - Geeta Prasad
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom (D.J.G.); andDepartment of Plant and Crop Sciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom (J.V.C., S.B., G.P., G.M.M., M.J.H.)
| | - Guillermina M Mendiondo
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom (D.J.G.); andDepartment of Plant and Crop Sciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom (J.V.C., S.B., G.P., G.M.M., M.J.H.)
| | - Michael J Holdsworth
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom (D.J.G.); andDepartment of Plant and Crop Sciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom (J.V.C., S.B., G.P., G.M.M., M.J.H.)
| |
Collapse
|
38
|
Brychkova G, Yarmolinsky D, Batushansky A, Grishkevich V, Khozin-Goldberg I, Fait A, Amir R, Fluhr R, Sagi M. Sulfite Oxidase Activity Is Essential for Normal Sulfur, Nitrogen and Carbon Metabolism in Tomato Leaves. PLANTS 2015; 4:573-605. [PMID: 27135342 PMCID: PMC4844397 DOI: 10.3390/plants4030573] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 07/30/2015] [Accepted: 08/07/2015] [Indexed: 11/24/2022]
Abstract
Plant sulfite oxidase [SO; E.C.1.8.3.1] has been shown to be a key player in protecting plants against exogenous toxic sulfite. Recently we showed that SO activity is essential to cope with rising dark-induced endogenous sulfite levels in tomato plants (Lycopersicon esculentum/Solanum lycopersicum Mill. cv. Rheinlands Ruhm). Here we uncover the ramifications of SO impairment on carbon, nitrogen and sulfur (S) metabolites. Current analysis of the wild-type and SO-impaired plants revealed that under controlled conditions, the imbalanced sulfite level resulting from SO impairment conferred a metabolic shift towards elevated reduced S-compounds, namely sulfide, S-amino acids (S-AA), Co-A and acetyl-CoA, followed by non-S-AA, nitrogen and carbon metabolite enhancement, including polar lipids. Exposing plants to dark-induced carbon starvation resulted in a higher degradation of S-compounds, total AA, carbohydrates, polar lipids and total RNA in the mutant plants. Significantly, a failure to balance the carbon backbones was evident in the mutants, indicated by an increase in tricarboxylic acid cycle (TCA) cycle intermediates, whereas a decrease was shown in stressed wild-type plants. These results indicate that the role of SO is not limited to a rescue reaction under elevated sulfite, but SO is a key player in maintaining optimal carbon, nitrogen and sulfur metabolism in tomato plants.
Collapse
Affiliation(s)
- Galina Brychkova
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel.
| | - Dmitry Yarmolinsky
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel.
| | - Albert Batushansky
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel.
| | - Vladislav Grishkevich
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel.
| | - Inna Khozin-Goldberg
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel.
| | - Aaron Fait
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel.
| | - Rachel Amir
- Migal-Galilee Technology Center, Southern Industrial Zone, POB831 Kiryat-Shmona 11016, Israel.
| | - Robert Fluhr
- Department of Plant Sciences, Weizmann Institute of Science, P.O.B. 26 Rehovot 76100, Israel.
| | - Moshe Sagi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel.
| |
Collapse
|
39
|
Abstract
The journey from seedling to plant requires guidance in the dark to establish which directions the roots and shoots should grow. A new study shows that, after germinating in darkness, plant seedlings sense the oxygen content of the surrounding airspace to guide further development.
Collapse
Affiliation(s)
- Thomas Potuschak
- Institut de Biologie Moléculaire des Plantes, 12, rue du général Zimmer, 67084 Strasbourg cédex, France
| | - Andreas Bachmair
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, Dr. Bohr Gasse 9, A-1030 Vienna, Austria.
| |
Collapse
|