1
|
Chan CMJ, Madej D, Chung CKJ, Lam H. Deep Learning-Based Prediction of Decoy Spectra for False Discovery Rate Estimation in Spectral Library Searching. J Proteome Res 2025; 24:2235-2242. [PMID: 40252226 DOI: 10.1021/acs.jproteome.4c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
With the advantage of extensive coverage, predicted spectral libraries are becoming an attractive alternative in proteomic data analysis. As a popular false discovery rate estimation method, target decoy search has been adopted in library search workflows. While existing decoy methods for curated experimental libraries have been tested, their performance in predicted library scenarios remains unknown. Current methods rely on perturbing real spectra templates, limiting the diversity and number of decoy spectra that can be generated for a given library. In this study, we explore the shuffle-and-predict decoy library generation approach, which can generate decoy spectra without the need for template spectra. Our experiments shed light on decoy method performance for predicted library scenarios and demonstrate the quality of predicted decoys in FDR estimation.
Collapse
Affiliation(s)
- Chak Ming Jerry Chan
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China 999077
| | - Dominik Madej
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China 999077
| | - Chun Kit Jason Chung
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China 999077
| | - Henry Lam
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China 999077
| |
Collapse
|
2
|
Xing J, Pan J, Yang W. Chloroplast protein translocation complexes and their regulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:912-925. [PMID: 40013537 DOI: 10.1111/jipb.13875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/24/2025] [Accepted: 02/04/2025] [Indexed: 02/28/2025]
Abstract
Chloroplasts, refined through more than a billion years of evolution in plants and algae, act as highly efficient and resilient converters of solar energy. Additionally, these organelles function as complex anabolic factories, synthesizing a wide array of primary and secondary metabolites. The functionality of chloroplasts is dependent on the involvement of more than 3,000 proteins, the majority of which are encoded by the nuclear genome. These nucleus-encoded proteins must cross the chloroplast double lipid membrane to become functional. This translocation process is facilitated by the translocons at the outer and inner envelope membranes of chloroplasts (the outer chloroplast [TOC] and the inner chloroplast [TIC] complexes, respectively) and is driven by an energy-providing motor. Despite decades of research, the composition of these complexes remains highly controversial, especially regarding the TIC and motor components. However, recent studies have provided valuable insight into the TOC/TIC complexes, while also raising new questions about their mechanisms. In this review, we explore the latest advancements in understanding the structure and function of these complexes. Additionally, we briefly examine the processes of protein quality control, retrograde signaling, and discuss promising directions for future research in this field.
Collapse
Affiliation(s)
- Jiale Xing
- State Key Laboratory of Forage Breeding-by-Design and Utilization and Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- State Key Laboratory for Quality Assurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Junting Pan
- State Key Laboratory of Forage Breeding-by-Design and Utilization and Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenqiang Yang
- State Key Laboratory of Forage Breeding-by-Design and Utilization and Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Li A, Lin J, Zeng Z, Deng Z, Tan J, Chen X, Ding G, Zhu M, Xu B, Atkinson RG, Nieuwenhuizen NJ, Ampomah-Dwamena C, Cheng Y, Deng X, Zeng Y. The kiwifruit amyloplast proteome (kfALP): a resource to better understand the mechanisms underlying amyloplast biogenesis and differentiation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:565-583. [PMID: 38159243 DOI: 10.1111/tpj.16611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 10/25/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
The biogenesis and differentiation (B&D) of amyloplasts contributes to fruit flavor and color. Here, remodeling of starch granules, thylakoids and plastoglobules was observed during development and ripening in two kiwifruit (Actinidia spp.) cultivars - yellow-fleshed 'Hort16A' and green-fleshed 'Hayward'. A protocol was developed to purify starch-containing plastids with a high degree of intactness, and amyloplast B&D was studied using label-free-based quantitative proteomic analyses in both cultivars. Over 3000 amyloplast-localized proteins were identified, of which >98% were quantified and defined as the kfALP (kiwifruit amyloplast proteome). The kfALP data were validated by Tandem-Mass-Tag (TMT) labeled proteomics in 'Hort16A'. Analysis of the proteomic data across development and ripening revealed: 1) a conserved increase in the abundance of proteins participating in starch synthesis/degradation during both amyloplast B&D; 2) up-regulation of proteins for chlorophyll degradation and of plastoglobule-localized proteins associated with chloroplast breakdown and plastoglobule formation during amyloplast differentiation; 3) constitutive expression of proteins involved in ATP supply and protein import during amyloplast B&D. Interestingly, two different pathways of amyloplast B&D were observed in the two cultivars. In 'Hayward', significant increases in abundance of photosynthetic- and tetrapyrrole metabolism-related proteins were observed, but the opposite trend was observed in 'Hort16A'. In conclusion, analysis of the kfALP provides new insights into the potential mechanisms underlying amyloplast B&D with relevance to key fruit quality traits in contrasting kiwifruit cultivars.
Collapse
Affiliation(s)
- Ang Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Jiajia Lin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Zhebin Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Zhiping Deng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jinjuan Tan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaoya Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Gang Ding
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Man Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Bin Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, Auckland, 92169, New Zealand
| | - Niels J Nieuwenhuizen
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, Auckland, 92169, New Zealand
| | - Charles Ampomah-Dwamena
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, Auckland, 92169, New Zealand
| | - Yunjiang Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Yunliu Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| |
Collapse
|
4
|
Yang R, Sun Y, Zhu X, Jiao B, Sun S, Chen Y, Li L, Wang X, Zeng Q, Liang Q, Huang B. The tuber-specific StbHLH93 gene regulates proplastid-to-amyloplast development during stolon swelling in potato. THE NEW PHYTOLOGIST 2024; 241:1676-1689. [PMID: 38044709 DOI: 10.1111/nph.19426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023]
Abstract
In potato, stolon swelling is a complex and highly regulated process, and much more work is needed to fully understand the underlying mechanisms. We identified a novel tuber-specific basic helix-loop-helix (bHLH) transcription factor, StbHLH93, based on the high-resolution transcriptome of potato tuber development. StbHLH93 is predominantly expressed in the subapical and perimedullary region of the stolon and developing tubers. Knockdown of StbHLH93 significantly decreased tuber number and size, resulting from suppression of stolon swelling. Furthermore, we found that StbHLH93 directly binds to the plastid protein import system gene TIC56 promoter, activates its expression, and is involved in proplastid-to-amyloplast development during the stolon-to-tuber transition. Knockdown of the target TIC56 gene resulted in similarly problematic amyloplast biogenesis and tuberization. Taken together, StbHLH93 functions in the differentiation of proplastids to regulate stolon swelling. This study highlights the critical role of proplastid-to-amyloplast interconversion during potato tuberization.
Collapse
Affiliation(s)
- Rui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Yuan Sun
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Xiaoling Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Baozhen Jiao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Sifan Sun
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Yun Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Lizhu Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Xue Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Qian Zeng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Qiqi Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Binquan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650500, China
| |
Collapse
|
5
|
Nellaepalli S, Lau AS, Jarvis RP. Chloroplast protein translocation pathways and ubiquitin-dependent regulation at a glance. J Cell Sci 2023; 136:jcs241125. [PMID: 37732520 PMCID: PMC10546890 DOI: 10.1242/jcs.241125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
Chloroplasts conduct photosynthesis and numerous metabolic and signalling processes that enable plant growth and development. Most of the ∼3000 proteins in chloroplasts are nucleus encoded and must be imported from the cytosol. Thus, the protein import machinery of the organelle (the TOC-TIC apparatus) is of fundamental importance for chloroplast biogenesis and operation. Cytosolic factors target chloroplast precursor proteins to the TOC-TIC apparatus, which drives protein import across the envelope membranes into the organelle, before various internal systems mediate downstream routing to different suborganellar compartments. The protein import system is proteolytically regulated by the ubiquitin-proteasome system (UPS), enabling centralized control over the organellar proteome. In addition, the UPS targets a range of chloroplast proteins directly. In this Cell Science at a Glance article and the accompanying poster, we present mechanistic details of these different chloroplast protein targeting and translocation events, and of the UPS systems that regulate chloroplast proteins.
Collapse
Affiliation(s)
- Sreedhar Nellaepalli
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Anne Sophie Lau
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
- Department of Plant Physiology, Faculty of Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - R. Paul Jarvis
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| |
Collapse
|
6
|
Christian R, Labbancz J, Usadel B, Dhingra A. Understanding protein import in diverse non-green plastids. Front Genet 2023; 14:969931. [PMID: 37007964 PMCID: PMC10063809 DOI: 10.3389/fgene.2023.969931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 02/24/2023] [Indexed: 03/19/2023] Open
Abstract
The spectacular diversity of plastids in non-green organs such as flowers, fruits, roots, tubers, and senescing leaves represents a Universe of metabolic processes in higher plants that remain to be completely characterized. The endosymbiosis of the plastid and the subsequent export of the ancestral cyanobacterial genome to the nuclear genome, and adaptation of the plants to all types of environments has resulted in the emergence of diverse and a highly orchestrated metabolism across the plant kingdom that is entirely reliant on a complex protein import and translocation system. The TOC and TIC translocons, critical for importing nuclear-encoded proteins into the plastid stroma, remain poorly resolved, especially in the case of TIC. From the stroma, three core pathways (cpTat, cpSec, and cpSRP) may localize imported proteins to the thylakoid. Non-canonical routes only utilizing TOC also exist for the insertion of many inner and outer membrane proteins, or in the case of some modified proteins, a vesicular import route. Understanding this complex protein import system is further compounded by the highly heterogeneous nature of transit peptides, and the varying transit peptide specificity of plastids depending on species and the developmental and trophic stage of the plant organs. Computational tools provide an increasingly sophisticated means of predicting protein import into highly diverse non-green plastids across higher plants, which need to be validated using proteomics and metabolic approaches. The myriad plastid functions enable higher plants to interact and respond to all kinds of environments. Unraveling the diversity of non-green plastid functions across the higher plants has the potential to provide knowledge that will help in developing climate resilient crops.
Collapse
Affiliation(s)
- Ryan Christian
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - June Labbancz
- Department of Horticulture, Washington State University, Pullman, WA, United States
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | | | - Amit Dhingra
- Department of Horticulture, Washington State University, Pullman, WA, United States
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
- *Correspondence: Amit Dhingra,
| |
Collapse
|
7
|
Architecture of chloroplast TOC-TIC translocon supercomplex. Nature 2023; 615:349-357. [PMID: 36702157 DOI: 10.1038/s41586-023-05744-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/19/2023] [Indexed: 01/27/2023]
Abstract
Chloroplasts rely on the translocon complexes in the outer and inner envelope membranes (the TOC and TIC complexes, respectively) to import thousands of different nuclear-encoded proteins from the cytosol1-4. Although previous studies indicated that the TOC and TIC complexes may assemble into larger supercomplexes5-7, the overall architectures of the TOC-TIC supercomplexes and the mechanism of preprotein translocation are unclear. Here we report the cryo-electron microscopy structure of the TOC-TIC supercomplex from Chlamydomonas reinhardtii. The major subunits of the TOC complex (Toc75, Toc90 and Toc34) and TIC complex (Tic214, Tic20, Tic100 and Tic56), three chloroplast translocon-associated proteins (Ctap3, Ctap4 and Ctap5) and three newly identified small inner-membrane proteins (Simp1-3) have been located in the supercomplex. As the largest protein, Tic214 traverses the inner membrane, the intermembrane space and the outer membrane, connecting the TOC complex with the TIC proteins. An inositol hexaphosphate molecule is located at the Tic214-Toc90 interface and stabilizes their assembly. Four lipid molecules are located within or above an inner-membrane funnel formed by Tic214, Tic20, Simp1 and Ctap5. Multiple potential pathways found in the TOC-TIC supercomplex may support translocation of different substrate preproteins into chloroplasts.
Collapse
|
8
|
Rochaix J. Chloroplast protein import machinery and quality control. FEBS J 2022; 289:6908-6918. [PMID: 35472255 PMCID: PMC9790281 DOI: 10.1111/febs.16464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/20/2022] [Accepted: 04/25/2022] [Indexed: 01/13/2023]
Abstract
Most chloroplast proteins are nucleus-encoded, translated on cytoplasmic ribosomes as precursor proteins, and imported into chloroplasts through TOC and TIC, the translocons of the outer and inner chloroplast envelope membranes. While the composition of the TOC complex is well established, there is still some controversy about the importance of a recently identified TIC complex consisting of Tic20, Tic214, Tic100, and Tic56. TOC and TIC form a supercomplex with a protein channel at the junction of the outer and inner envelope membranes through which preproteins are pulled into the stroma by the ATP-powered Ycf2 complex consisting of several FtsH-like ATPases and/or by chloroplast Hsp proteins. Several components of the TOC/TIC system are moonlighting proteins with additional roles in chloroplast gene expression and metabolism. Chaperones and co-chaperones, associated with TOC and TIC on the cytoplasmic and stromal side of the chloroplast envelope, participate in the unfolding and folding of the precursor proteins and act together with the ubiquitin-proteasome system in protein quality control. Chloroplast protein import is also intimately linked with retrograde signaling, revealing altogether an unsuspected complexity in the regulation of this process.
Collapse
Affiliation(s)
- Jean‐David Rochaix
- Departments of Molecular Biology and Plant BiologyUniversity of GenevaSwitzerland
| |
Collapse
|
9
|
Loudya N, Maffei DPF, Bédard J, Ali SM, Devlin PF, Jarvis RP, López-Juez E. Mutations in the chloroplast inner envelope protein TIC100 impair and repair chloroplast protein import and impact retrograde signaling. THE PLANT CELL 2022; 34:3028-3046. [PMID: 35640571 PMCID: PMC9338805 DOI: 10.1093/plcell/koac153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/19/2022] [Indexed: 05/16/2023]
Abstract
Chloroplast biogenesis requires synthesis of proteins in the nucleocytoplasm and the chloroplast itself. Nucleus-encoded chloroplast proteins are imported via multiprotein translocons in the organelle's envelope membranes. Controversy exists around whether a 1-MDa complex comprising TIC20, TIC100, and other proteins constitutes the inner membrane TIC translocon. The Arabidopsis thaliana cue8 virescent mutant is broadly defective in plastid development. We identify CUE8 as TIC100. The tic100cue8 mutant accumulates reduced levels of 1-MDa complex components and exhibits reduced import of two nucleus-encoded chloroplast proteins of different import profiles. A search for suppressors of tic100cue8 identified a second mutation within the same gene, tic100soh1, which rescues the visible, 1 MDa complex-subunit abundance, and chloroplast protein import phenotypes. tic100soh1 retains but rapidly exits virescence and rescues the synthetic lethality of tic100cue8 when retrograde signaling is impaired by a mutation in the GENOMES UNCOUPLED 1 gene. Alongside the strong virescence, changes in RNA editing and the presence of unimported precursor proteins show that a strong signaling response is triggered when TIC100 function is altered. Our results are consistent with a role for TIC100, and by extension the 1-MDa complex, in the chloroplast import of photosynthetic and nonphotosynthetic proteins, a process which initiates retrograde signaling.
Collapse
Affiliation(s)
- Naresh Loudya
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Douglas P F Maffei
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Jocelyn Bédard
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Sabri Mohd Ali
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Paul F Devlin
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - R Paul Jarvis
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Enrique López-Juez
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| |
Collapse
|
10
|
Yu H, Wang Q, Zhang Z, Wu T, Yang X, Zhu X, Ye Y, Leng J, Yang S, Feng X. Genetic Mapping of the Gmpgl3 Mutant Reveals the Function of GmTic110a in Soybean Chloroplast Development. FRONTIERS IN PLANT SCIENCE 2022; 13:892077. [PMID: 35693168 PMCID: PMC9178232 DOI: 10.3389/fpls.2022.892077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The generation of oxygen and organic matter in plants mainly depends on photosynthesis, which directly affects plant growth and development. The chloroplast is the main organelle in which photosynthesis occurs. In this study, a Glycine max pale green leaf 3-1 (Gmpgl3-1) mutant was isolated from the soybean mutagenized population. The Gmpgl3-1 mutant presented with decreased chlorophyll contents, reduced chloroplast stroma thylakoids, reduced yields, and decreased numbers of pods per plant. Bulked segregant analysis (BSA) together with map-based cloning revealed a single-nucleotide non-synonymous mutation at the 341st nucleotide of the first exon of the chloroplast development-related GmTic110a gene. The phenotype of the knockout plants was the same as that of the mutant. The GmTic110a gene was highly expressed in the leaves at various developmental stages, and its protein was localized to the inner chloroplast membrane. Split luciferase complementation assays and coimmunoprecipitation (co-IP) experiments revealed that GmTic110a interacted with GmTic20, GmTic40a, and GmTic40b in tobacco leaves. These results indicated that the GmTic110a gene plays an important role in chloroplast development.
Collapse
Affiliation(s)
- Hui Yu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Qiushi Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Zhirui Zhang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tao Wu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xinjing Yang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaobin Zhu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yongheng Ye
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiantian Leng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Suxin Yang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Zhejiang Lab, Hangzhou, China
| |
Collapse
|
11
|
Heidorn-Czarna M, Maziak A, Janska H. Protein Processing in Plant Mitochondria Compared to Yeast and Mammals. FRONTIERS IN PLANT SCIENCE 2022; 13:824080. [PMID: 35185991 PMCID: PMC8847149 DOI: 10.3389/fpls.2022.824080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/12/2022] [Indexed: 05/02/2023]
Abstract
Limited proteolysis, called protein processing, is an essential post-translational mechanism that controls protein localization, activity, and in consequence, function. This process is prevalent for mitochondrial proteins, mainly synthesized as precursor proteins with N-terminal sequences (presequences) that act as targeting signals and are removed upon import into the organelle. Mitochondria have a distinct and highly conserved proteolytic system that includes proteases with sole function in presequence processing and proteases, which show diverse mitochondrial functions with limited proteolysis as an additional one. In virtually all mitochondria, the primary processing of N-terminal signals is catalyzed by the well-characterized mitochondrial processing peptidase (MPP). Subsequently, a second proteolytic cleavage occurs, leading to more stabilized residues at the newly formed N-terminus. Lately, mitochondrial proteases, intermediate cleavage peptidase 55 (ICP55) and octapeptidyl protease 1 (OCT1), involved in proteolytic cleavage after MPP and their substrates have been described in the plant, yeast, and mammalian mitochondria. Mitochondrial proteins can also be processed by removing a peptide from their N- or C-terminus as a maturation step during insertion into the membrane or as a regulatory mechanism in maintaining their function. This type of limited proteolysis is characteristic for processing proteases, such as IMP and rhomboid proteases, or the general mitochondrial quality control proteases ATP23, m-AAA, i-AAA, and OMA1. Identification of processing protease substrates and defining their consensus cleavage motifs is now possible with the help of large-scale quantitative mass spectrometry-based N-terminomics, such as combined fractional diagonal chromatography (COFRADIC), charge-based fractional diagonal chromatography (ChaFRADIC), or terminal amine isotopic labeling of substrates (TAILS). This review summarizes the current knowledge on the characterization of mitochondrial processing peptidases and selected N-terminomics techniques used to uncover protease substrates in the plant, yeast, and mammalian mitochondria.
Collapse
|
12
|
van Wijk KJ, Leppert T, Sun Q, Boguraev SS, Sun Z, Mendoza L, Deutsch EW. The Arabidopsis PeptideAtlas: Harnessing worldwide proteomics data to create a comprehensive community proteomics resource. THE PLANT CELL 2021; 33:3421-3453. [PMID: 34411258 PMCID: PMC8566204 DOI: 10.1093/plcell/koab211] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/13/2021] [Indexed: 05/02/2023]
Abstract
We developed a resource, the Arabidopsis PeptideAtlas (www.peptideatlas.org/builds/arabidopsis/), to solve central questions about the Arabidopsis thaliana proteome, such as the significance of protein splice forms and post-translational modifications (PTMs), or simply to obtain reliable information about specific proteins. PeptideAtlas is based on published mass spectrometry (MS) data collected through ProteomeXchange and reanalyzed through a uniform processing and metadata annotation pipeline. All matched MS-derived peptide data are linked to spectral, technical, and biological metadata. Nearly 40 million out of ∼143 million MS/MS (tandem MS) spectra were matched to the reference genome Araport11, identifying ∼0.5 million unique peptides and 17,858 uniquely identified proteins (only isoform per gene) at the highest confidence level (false discovery rate 0.0004; 2 non-nested peptides ≥9 amino acid each), assigned canonical proteins, and 3,543 lower-confidence proteins. Physicochemical protein properties were evaluated for targeted identification of unobserved proteins. Additional proteins and isoforms currently not in Araport11 were identified that were generated from pseudogenes, alternative start, stops, and/or splice variants, and small Open Reading Frames; these features should be considered when updating the Arabidopsis genome. Phosphorylation can be inspected through a sophisticated PTM viewer. PeptideAtlas is integrated with community resources including TAIR, tracks in JBrowse, PPDB, and UniProtKB. Subsequent PeptideAtlas builds will incorporate millions more MS/MS data.
Collapse
Affiliation(s)
- Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, USA
- Authors for correspondence: (K.J.V.W.), (E.W.D.)
| | - Tami Leppert
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
| | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853, USA
| | - Sascha S Boguraev
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, USA
| | - Zhi Sun
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
| | - Luis Mendoza
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
| | - Eric W Deutsch
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
- Authors for correspondence: (K.J.V.W.), (E.W.D.)
| |
Collapse
|
13
|
Giglione C, Meinnel T. Evolution-Driven Versatility of N Terminal Acetylation in Photoautotrophs. TRENDS IN PLANT SCIENCE 2021; 26:375-391. [PMID: 33384262 DOI: 10.1016/j.tplants.2020.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/27/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
N terminal protein α-acetylation (NTA) is a pervasive protein modification that has recently attracted renewed interest. Early studies on NTA were mostly conducted in yeast and metazoans, providing a detailed portrait of the modification, which was indirectly applied to all eukaryotes. However, new findings originating from photosynthetic organisms have expanded our knowledge of this modification, revealing strong similarities as well as idiosyncratic features. Here, we review the most recent advances on NTA and its dedicated machinery in photosynthetic organisms. We discuss the cytosolic and unique plastid NTA machineries and their critical biological roles in development, stress responses, protein translocation, and stability. These new findings suggest that the multitasking plastid and cytosolic machineries evolved to support the specific needs of photoautotrophs.
Collapse
Affiliation(s)
- Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
14
|
Yuan H, Pawlowski EG, Yang Y, Sun T, Thannhauser TW, Mazourek M, Schnell D, Li L. Arabidopsis ORANGE protein regulates plastid pre-protein import through interacting with Tic proteins. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1059-1072. [PMID: 33165598 DOI: 10.1093/jxb/eraa528] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/30/2020] [Indexed: 05/19/2023]
Abstract
Chloroplast-targeted proteins are actively imported into chloroplasts via the machinery spanning the double-layered membranes of chloroplasts. While the key translocons at the outer (TOC) and inner (TIC) membranes of chloroplasts are defined, proteins that interact with the core components to facilitate pre-protein import are continuously being discovered. A DnaJ-like chaperone ORANGE (OR) protein is known to regulate carotenoid biosynthesis as well as plastid biogenesis and development. In this study, we found that OR physically interacts with several Tic proteins including Tic20, Tic40, and Tic110 in the classic TIC core complex of the chloroplast import machinery. Knocking out or and its homolog or-like greatly affects the import efficiency of some photosynthetic and non-photosynthetic pre-proteins. Consistent with the direct interactions of OR with Tic proteins, the binding efficiency assay revealed that the effect of OR occurs at translocation at the inner envelope membrane (i.e. at the TIC complex). OR is able to reduce the Tic40 protein turnover rate through its chaperone activity. Moreover, OR was found to interfere with the interaction between Tic40 and Tic110, and reduces the binding of pre-proteins to Tic110 in aiding their release for translocation and processing. Our findings suggest that OR plays a new and regulatory role in stabilizing key translocons and in facilitating the late stage of plastid pre-protein translocation to regulate plastid pre-protein import.
Collapse
Affiliation(s)
- Hui Yuan
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Emily G Pawlowski
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Yong Yang
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA
| | - Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Theodore W Thannhauser
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA
| | - Michael Mazourek
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Danny Schnell
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
15
|
Ramundo S, Asakura Y, Salomé PA, Strenkert D, Boone M, Mackinder LCM, Takafuji K, Dinc E, Rahire M, Crèvecoeur M, Magneschi L, Schaad O, Hippler M, Jonikas MC, Merchant S, Nakai M, Rochaix JD, Walter P. Coexpressed subunits of dual genetic origin define a conserved supercomplex mediating essential protein import into chloroplasts. Proc Natl Acad Sci U S A 2020; 117:32739-32749. [PMID: 33273113 PMCID: PMC7768757 DOI: 10.1073/pnas.2014294117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In photosynthetic eukaryotes, thousands of proteins are translated in the cytosol and imported into the chloroplast through the concerted action of two translocons-termed TOC and TIC-located in the outer and inner membranes of the chloroplast envelope, respectively. The degree to which the molecular composition of the TOC and TIC complexes is conserved over phylogenetic distances has remained controversial. Here, we combine transcriptomic, biochemical, and genetic tools in the green alga Chlamydomonas (Chlamydomonas reinhardtii) to demonstrate that, despite a lack of evident sequence conservation for some of its components, the algal TIC complex mirrors the molecular composition of a TIC complex from Arabidopsis thaliana. The Chlamydomonas TIC complex contains three nuclear-encoded subunits, Tic20, Tic56, and Tic100, and one chloroplast-encoded subunit, Tic214, and interacts with the TOC complex, as well as with several uncharacterized proteins to form a stable supercomplex (TIC-TOC), indicating that protein import across both envelope membranes is mechanistically coupled. Expression of the nuclear and chloroplast genes encoding both known and uncharacterized TIC-TOC components is highly coordinated, suggesting that a mechanism for regulating its biogenesis across compartmental boundaries must exist. Conditional repression of Tic214, the only chloroplast-encoded subunit in the TIC-TOC complex, impairs the import of chloroplast proteins with essential roles in chloroplast ribosome biogenesis and protein folding and induces a pleiotropic stress response, including several proteins involved in the chloroplast unfolded protein response. These findings underscore the functional importance of the TIC-TOC supercomplex in maintaining chloroplast proteostasis.
Collapse
Affiliation(s)
- Silvia Ramundo
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Yukari Asakura
- Laboratory of Organelle Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Patrice A Salomé
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Daniela Strenkert
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Morgane Boone
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Luke C M Mackinder
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Kazuaki Takafuji
- Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Emine Dinc
- Department of Molecular Biology, University of Geneva, Geneva CH-1211, Switzerland
- Department of Plant Biology, University of Geneva, Geneva CH-1211, Switzerland
| | - Michèle Rahire
- Department of Molecular Biology, University of Geneva, Geneva CH-1211, Switzerland
- Department of Plant Biology, University of Geneva, Geneva CH-1211, Switzerland
| | - Michèle Crèvecoeur
- Department of Molecular Biology, University of Geneva, Geneva CH-1211, Switzerland
- Department of Plant Biology, University of Geneva, Geneva CH-1211, Switzerland
| | - Leonardo Magneschi
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany
| | - Olivier Schaad
- Department of Biochemistry, University of Geneva, Geneva CH-1211, Switzerland
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Sabeeha Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Masato Nakai
- Laboratory of Organelle Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan;
| | - Jean-David Rochaix
- Department of Molecular Biology, University of Geneva, Geneva CH-1211, Switzerland;
- Department of Plant Biology, University of Geneva, Geneva CH-1211, Switzerland
| | - Peter Walter
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143;
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
16
|
Protein import into chloroplasts and its regulation by the ubiquitin-proteasome system. Biochem Soc Trans 2020; 48:71-82. [PMID: 31922184 PMCID: PMC7054747 DOI: 10.1042/bst20190274] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 02/08/2023]
Abstract
Chloroplasts are photosynthetic plant organelles descended from a bacterial ancestor. The vast majority of chloroplast proteins are synthesized in the cytosol and then imported into the chloroplast post-translationally. Translocation complexes exist in the organelle's outer and inner envelope membranes (termed TOC and TIC, respectively) to facilitate protein import. These systems recognize chloroplast precursor proteins and mediate their import in an energy-dependent manner. However, many unanswered questions remain regarding mechanistic details of the import process and the participation and functions of individual components; for example, the cytosolic events that mediate protein delivery to chloroplasts, the composition of the TIC apparatus, and the nature of the protein import motor all require resolution. The flux of proteins through TOC and TIC varies greatly throughout development and in response to specific environmental cues. The import process is, therefore, tightly regulated, and it has emerged that the ubiquitin-proteasome system (UPS) plays a key role in this regard, acting at several different steps in the process. The UPS is involved in: the selective degradation of transcription factors that co-ordinate the expression of chloroplast precursor proteins; the removal of unimported chloroplast precursor proteins in the cytosol; the inhibition of chloroplast biogenesis pre-germination; and the reconfiguration of the TOC apparatus in response to developmental and environmental signals in a process termed chloroplast-associated protein degradation. In this review, we highlight recent advances in our understanding of protein import into chloroplasts and how this process is regulated by the UPS.
Collapse
|
17
|
Chu CC, Swamy K, Li HM. Tissue-Specific Regulation of Plastid Protein Import via Transit-Peptide Motifs. THE PLANT CELL 2020; 32:1204-1217. [PMID: 32075863 PMCID: PMC7145487 DOI: 10.1105/tpc.19.00702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/09/2020] [Accepted: 02/17/2020] [Indexed: 05/28/2023]
Abstract
Plastids differentiate into various functional types (chloroplasts, leucoplasts, chromoplasts, etc.) that have distinct proteomes depending on the specific tissue. Most plastid proteins are encoded by the nuclear genome, synthesized as higher molecular mass preproteins with an N-terminal transit peptide, and then posttranslationally imported from the cytosol. Evidence for tissue-specific regulation of import into plastids, and subsequent modulation of plastid proteomes, has been lacking. We quantified protein import into isolated pea (Pisum sativum) leaf chloroplasts and root leucoplasts and identified two transit-peptide motifs that specifically enhance preprotein import into root leucoplasts. Using a plastid preprotein expressed in both leaves and roots of stable transgenic plants, we showed that losing one of the leucoplast motifs interfered with its function in root leucoplasts but had no effect on its function in leaf chloroplasts. We assembled a list of all Arabidopsis (Arabid opsis thaliana) plastid preproteins encoded by recently duplicated genes and show that, within a duplicated preprotein pair, the isoform bearing the leucoplast motif usually has greater root protein abundance. Our findings represent a clear demonstration of tissue-specific regulation of organelle protein import and suggest that it operates by selective evolutionary retention of transit-peptide motifs, which enhances import into specific plastid types.
Collapse
Affiliation(s)
- Chiung-Chih Chu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Krishna Swamy
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Hsou-Min Li
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
18
|
Li HM, Schnell D, Theg SM. Protein Import Motors in Chloroplasts: On the Role of Chaperones. THE PLANT CELL 2020; 32:536-542. [PMID: 31932485 PMCID: PMC7054032 DOI: 10.1105/tpc.19.00300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/01/2019] [Accepted: 01/08/2020] [Indexed: 05/09/2023]
Affiliation(s)
- Hsou-Min Li
- Institute of Molecular Biology Academia Sinica Taipei 11529, Taiwan
| | - Danny Schnell
- Department of Plant Biology Michigan State University East Lansing, Michigan 48824
| | - Steven M Theg
- Department of Plant Biology University of California Davis, California 95616
| |
Collapse
|
19
|
Hander T, Fernández-Fernández ÁD, Kumpf RP, Willems P, Schatowitz H, Rombaut D, Staes A, Nolf J, Pottie R, Yao P, Gonçalves A, Pavie B, Boller T, Gevaert K, Van Breusegem F, Bartels S, Stael S. Damage on plants activates Ca 2+-dependent metacaspases for release of immunomodulatory peptides. Science 2019; 363:363/6433/eaar7486. [PMID: 30898901 DOI: 10.1126/science.aar7486] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 12/06/2018] [Accepted: 02/13/2019] [Indexed: 12/14/2022]
Abstract
Physical damage to cells leads to the release of immunomodulatory peptides to elicit a wound defense response in the surrounding tissue. In Arabidopsis thaliana, the plant elicitor peptide 1 (Pep1) is processed from its protein precursor, PRECURSOR OF PEP1 (PROPEP1). We demonstrate that upon damage, both at the tissue and single-cell levels, the cysteine protease METACASPASE4 (MC4) is instantly and spatiotemporally activated by binding high levels of Ca2+ and is necessary and sufficient for Pep1 maturation. Cytosol-localized PROPEP1 and MC4 react only after loss of plasma membrane integrity and prolonged extracellular Ca2+ entry. Our results reveal that a robust mechanism consisting of conserved molecular components links the intracellular and Ca2+-dependent activation of a specific cysteine protease with the maturation of damage-induced wound defense signals.
Collapse
Affiliation(s)
- Tim Hander
- Zürich-Basel Plant Science Center, Department of Environmental Sciences, Botany, University of Basel, 4056 Basel, Switzerland
| | - Álvaro D Fernández-Fernández
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Robert P Kumpf
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Patrick Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium.,VIB-UGent Center for Medical Biotechnology, 9000 Ghent, Belgium
| | - Hendrik Schatowitz
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Debbie Rombaut
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - An Staes
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium.,VIB-UGent Center for Medical Biotechnology, 9000 Ghent, Belgium
| | - Jonah Nolf
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Robin Pottie
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Panfeng Yao
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Amanda Gonçalves
- VIB BioImaging Core Gent, VIB-UGent Center for Inflammation Research (IRC), 9052 Ghent, Belgium
| | - Benjamin Pavie
- VIB BioImaging Core Gent, VIB-UGent Center for Inflammation Research (IRC), 9052 Ghent, Belgium
| | - Thomas Boller
- Zürich-Basel Plant Science Center, Department of Environmental Sciences, Botany, University of Basel, 4056 Basel, Switzerland
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium.,VIB-UGent Center for Medical Biotechnology, 9000 Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Sebastian Bartels
- Zürich-Basel Plant Science Center, Department of Environmental Sciences, Botany, University of Basel, 4056 Basel, Switzerland.,Department of Medicine II, University Hospital Freiburg-Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Simon Stael
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium. .,VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium.,VIB-UGent Center for Medical Biotechnology, 9000 Ghent, Belgium
| |
Collapse
|
20
|
Willems P, Horne A, Van Parys T, Goormachtig S, De Smet I, Botzki A, Van Breusegem F, Gevaert K. The Plant PTM Viewer, a central resource for exploring plant protein modifications. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:752-762. [PMID: 31004550 DOI: 10.1111/tpj.14345] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 05/15/2023]
Abstract
Post-translational modifications (PTMs) of proteins are central in any kind of cellular signaling. Modern mass spectrometry technologies enable comprehensive identification and quantification of various PTMs. Given the increased numbers and types of mapped protein modifications, a database is necessary that simultaneously integrates and compares site-specific information for different PTMs, especially in plants for which the available PTM data are poorly catalogued. Here, we present the Plant PTM Viewer (http://www.psb.ugent.be/PlantPTMViewer), an integrative PTM resource that comprises approximately 370 000 PTM sites for 19 types of protein modifications in plant proteins from five different species. The Plant PTM Viewer provides the user with a protein sequence overview in which the experimentally evidenced PTMs are highlighted together with an estimate of the confidence by which the modified peptides and, if possible, the actual modification sites were identified and with functional protein domains or active site residues. The PTM sequence search tool can query PTM combinations in specific protein sequences, whereas the PTM BLAST tool searches for modified protein sequences to detect conserved PTMs in homologous sequences. Taken together, these tools help to assume the role and potential interplay of PTMs in specific proteins or within a broader systems biology context. The Plant PTM Viewer is an open repository that allows the submission of mass spectrometry-based PTM data to remain at pace with future PTM plant studies.
Collapse
Affiliation(s)
- Patrick Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000, Ghent, Belgium
- VIB Center for Medical Biotechnology, VIB, 9000, Ghent, Belgium
| | - Alison Horne
- VIB Bioinformatics Core, VIB, 9052, Ghent, Belgium
| | | | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | | | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, 9000, Ghent, Belgium
- VIB Center for Medical Biotechnology, VIB, 9000, Ghent, Belgium
| |
Collapse
|
21
|
Sadali NM, Sowden RG, Ling Q, Jarvis RP. Differentiation of chromoplasts and other plastids in plants. PLANT CELL REPORTS 2019; 38:803-818. [PMID: 31079194 PMCID: PMC6584231 DOI: 10.1007/s00299-019-02420-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/29/2019] [Indexed: 05/17/2023]
Abstract
Plant cells are characterized by a unique group of interconvertible organelles called plastids, which are descended from prokaryotic endosymbionts. The most studied plastid type is the chloroplast, which carries out the ancestral plastid function of photosynthesis. During the course of evolution, plastid activities were increasingly integrated with cellular metabolism and functions, and plant developmental processes, and this led to the creation of new types of non-photosynthetic plastids. These include the chromoplast, a carotenoid-rich organelle typically found in flowers and fruits. Here, we provide an introduction to non-photosynthetic plastids, and then review the structures and functions of chromoplasts in detail. The role of chromoplast differentiation in fruit ripening in particular is explored, and the factors that govern plastid development are examined, including hormonal regulation, gene expression, and plastid protein import. In the latter process, nucleus-encoded preproteins must pass through two successive protein translocons in the outer and inner envelope membranes of the plastid; these are known as TOC and TIC (translocon at the outer/inner chloroplast envelope), respectively. The discovery of SP1 (suppressor of ppi1 locus1), which encodes a RING-type ubiquitin E3 ligase localized in the plastid outer envelope membrane, revealed that plastid protein import is regulated through the selective targeting of TOC complexes for degradation by the ubiquitin-proteasome system. This suggests the possibility of engineering plastid protein import in novel crop improvement strategies.
Collapse
Affiliation(s)
- Najiah M Sadali
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Robert G Sowden
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Qihua Ling
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - R Paul Jarvis
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK.
| |
Collapse
|
22
|
Perrar A, Dissmeyer N, Huesgen PF. New beginnings and new ends: methods for large-scale characterization of protein termini and their use in plant biology. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2021-2038. [PMID: 30838411 PMCID: PMC6460961 DOI: 10.1093/jxb/erz104] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/27/2019] [Indexed: 05/17/2023]
Abstract
Dynamic regulation of protein function and abundance plays an important role in virtually every aspect of plant life. Diversifying mechanisms at the RNA and protein level result in many protein molecules with distinct sequence and modification, termed proteoforms, arising from a single gene. Distinct protein termini define proteoforms arising from translation of alternative transcripts, use of alternative translation initiation sites, and different co- and post-translational modifications of the protein termini. Also site-specific proteolytic processing by endo- and exoproteases generates truncated proteoforms, defined by distinct protease-generated neo-N- and neo-C-termini, that may exhibit altered activity, function, and localization compared with their precursor proteins. In eukaryotes, the N-degron pathway targets cytosolic proteins, exposing destabilizing N-terminal amino acids and/or destabilizing N-terminal modifications for proteasomal degradation. This enables rapid and selective removal not only of unfolded proteins, but also of substrate proteoforms generated by proteolytic processing or changes in N-terminal modifications. Here we summarize current protocols enabling proteome-wide analysis of protein termini, which have provided important new insights into N-terminal modifications and protein stability determinants, protein maturation pathways, and protease-substrate relationships in plants.
Collapse
Affiliation(s)
- Andreas Perrar
- Forschungszentrum Jülich, Central Institute for Engineering, Electronics and Analytics, ZEA-3 Analytics, Jülich, Germany
| | - Nico Dissmeyer
- Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry (IPB), Weinberg, Halle (Saale), Germany
- ScienceCampus Halle – Plant-based Bioeconomy, Halle (Saale), Germany
| | - Pitter F Huesgen
- Forschungszentrum Jülich, Central Institute for Engineering, Electronics and Analytics, ZEA-3 Analytics, Jülich, Germany
- Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| |
Collapse
|
23
|
Bölter B. En route into chloroplasts: preproteins' way home. PHOTOSYNTHESIS RESEARCH 2018; 138:263-275. [PMID: 29943212 DOI: 10.1007/s11120-018-0542-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Chloroplasts are the characteristic endosymbiotic organelles of plant cells which during the course of evolution lost most of their genetic information to the nucleus. Thus, they critically depend on the host cell for allocation of nearly their complete protein supply. This includes gene expression, translation, protein targeting, and transport-all of which need to be tightly regulated and perfectly coordinated to accommodate the cells' needs. To this end, multiple signaling pathways have been implemented that interchange information between the different cellular compartments. One of the most complex and energy consuming processes is the translocation of chloroplast-destined proteins into their target organelle. It is a concerted effort from chaperones, receptor proteins, channels, and regulatory elements to ensure correct targeting, efficient transport, and subsequent folding. Although we have discovered and learned a lot about protein import into chloroplasts in the last decades, there are still many open questions and debates about the roles of individual proteins as well as the mechanistic details. In this review, I will summarize and discuss the published data with a focus on the translocation complex in the chloroplast inner envelope membrane.
Collapse
Affiliation(s)
- Bettina Bölter
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany.
| |
Collapse
|
24
|
Richardson LGL, Small EL, Inoue H, Schnell DJ. Molecular Topology of the Transit Peptide during Chloroplast Protein Import. THE PLANT CELL 2018; 30:1789-1806. [PMID: 29991536 PMCID: PMC6139696 DOI: 10.1105/tpc.18.00172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/26/2018] [Accepted: 07/06/2018] [Indexed: 05/04/2023]
Abstract
Chloroplast protein import is directed by the interaction of the targeting signal (transit peptide) of nucleus-encoded preproteins with translocons at the outer (TOC) and inner (TIC) chloroplast envelope membranes. Studies of the energetics and determinants of transit peptide binding have led to the hypothesis that import occurs through sequential recognition of transit peptides by components of TOC and TIC during protein import. To test this hypothesis, we employed a site-specific cross-linking approach to map transit peptide topology in relation to TOC-TIC components at specific stages of import in Arabidopsis thaliana and pea (Pisum sativum). We demonstrate that the transit peptide is in contact with Tic20 at the inner envelope in addition to TOC complex components at the earliest stages of chloroplast binding. Low levels of ATP hydrolysis catalyze the commitment of the preprotein to import by promoting further penetration across the envelope membranes and stabilizing the association of the preprotein with TOC-TIC. GTP hydrolysis at the TOC receptors serves as a checkpoint to regulate the ATP-dependent commitment of the preprotein to import and is not essential to drive preprotein import. Our results demonstrate the close cooperativity of the TOC and TIC machinery at each stage of transit peptide recognition and membrane translocation during protein import.
Collapse
Affiliation(s)
- Lynn G L Richardson
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Eliana L Small
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Hitoshi Inoue
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Danny J Schnell
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
25
|
Nakai M. New Perspectives on Chloroplast Protein Import. PLANT & CELL PHYSIOLOGY 2018; 59:1111-1119. [PMID: 29684214 DOI: 10.1093/pcp/pcy083] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/13/2018] [Indexed: 05/21/2023]
Abstract
Virtually all chloroplasts in extant photosynthetic eukaryotes derive from a single endosymbiotic event that probably occurred more than a billion years ago between a host eukaryotic cell and a cyanobacterium-like ancestor. Many endosymbiont genes were subsequently transferred to the host nuclear genome, concomitant with the establishment of a system for protein transport through the chloroplast double-membrane envelope. Presently, 2,000-3,000 different nucleus-encoded chloroplast proteins must be imported into the chloroplast following their synthesis in the cytosol. The TOC (translocon at the outer envelope membrane of chloroplasts) and TIC (translocon at the inner envelope membrane of chloroplasts) complexes are protein translocation machineries at the outer and inner envelope membranes, respectively, that facilitate this chloroplast protein import with the aid of a TIC-associated ATP-driven import motor. All the essential components of this protein import system seemed to have been identified through biochemical analyses and subsequent genetic studies that initiated in the late 1990s. However, in 2013, the Nakai group reported a novel inner envelope membrane TIC complex, for which a novel ATP-driven import motor associated with this TIC complex is likely to exist. In this mini review, I will summarize these recent discoveries together with new, or reanalyzed, data presented by other groups in recent years. Whereas the precise concurrent view of chloroplast protein import is still a matter of some debate, it is anticipated that the entire TOC/TIC/ATP motor system, including any novel components, will be conclusively established in the next decade. Such findings may lead to an extensively revised view of the evolution and molecular mechanisms of chloroplast protein import.
Collapse
Affiliation(s)
- Masato Nakai
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871 Japan
| |
Collapse
|
26
|
Demir F, Niedermaier S, Villamor JG, Huesgen PF. Quantitative proteomics in plant protease substrate identification. THE NEW PHYTOLOGIST 2018; 218:936-943. [PMID: 28493421 DOI: 10.1111/nph.14587] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/07/2017] [Indexed: 05/17/2023]
Abstract
Contents Summary 936 I. Introduction 936 II. The quest for plant protease substrates - proteomics to the rescue? 937 III. Quantitative proteome comparison reveals candidate substrates 938 IV. Dynamic metabolic stable isotope labeling to measure protein turnover in vivo 938 V. Terminomics - large-scale identification of protease cleavage sites 939 VI. Substrate or not substrate, that is the question 940 VII. Concluding remarks 941 Acknowledgements 941 References 941 SUMMARY: Proteolysis is a central regulatory mechanism of protein homeostasis and protein function that affects all aspects of plant life. Higher plants encode for hundreds of proteases, but their physiological substrates and hence their molecular functions remain mostly unknown. Current quantitative mass spectrometry-based proteomics enables unbiased large-scale interrogation of the proteome and its modifications. Here we provide an overview of proteomics techniques that allow profiling of changes in protein abundance, measurement of proteome turnover rates, identification of protease cleavage sites in vivo and in vitro and determination of protease sequence specificity. We discuss how these techniques can help to reveal protease substrates and determine plant protease function, illustrated by recent studies on selected plant proteases.
Collapse
Affiliation(s)
- Fatih Demir
- ZEA-3 Analytics, Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Wilhelm-Johnen-Str., Jülich, 52425, Germany
| | - Stefan Niedermaier
- ZEA-3 Analytics, Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Wilhelm-Johnen-Str., Jülich, 52425, Germany
| | - Joji Grace Villamor
- ZEA-3 Analytics, Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Wilhelm-Johnen-Str., Jülich, 52425, Germany
| | - Pitter Florian Huesgen
- ZEA-3 Analytics, Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Wilhelm-Johnen-Str., Jülich, 52425, Germany
| |
Collapse
|
27
|
Chen LJ, Li HM. Stable megadalton TOC-TIC supercomplexes as major mediators of protein import into chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:178-188. [PMID: 28745032 DOI: 10.1111/tpj.13643] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 07/21/2017] [Indexed: 05/12/2023]
Abstract
Preproteins are believed to be imported into chloroplasts through membrane contact sites where the translocon complexes of the outer (TOC) and inner (TIC) envelope membranes are assembled together. However, a single TOC-TIC supercomplex containing preproteins undergoing active import has not yet been directly observed. We optimized the blue native polyacrylamide gel electrophoresis (PAGE) (BN-PAGE) system to detect and resolve megadalton (MD)-sized complexes. Using this optimized system, the outer-membrane channel Toc75 from pea chloroplasts was found in at least two complexes: the 880-kD TOC complex and a previously undetected 1-MD complex. Two-dimensional BN-PAGE immunoblots further showed that Toc75, Toc159, Toc34, Tic20, Tic56 and Tic110 were all located in the 880-kD to 1.3-MD region. During active preprotein import, preproteins were transported mostly through the 1-MD complex and a smaller amount of preproteins was also detected in a complex of 1.25 MD. Antibody-shift assays showed that the 1-MD complex is a TOC-TIC supercomplex containing at least Toc75, Toc159, Toc34 and Tic110. Results from crosslinking and import with Arabidopsis chloroplasts suggest that the 1.25-MD complex is also a supercomplex. Our data provide direct evidence supporting that chloroplast preproteins are imported through TOC-TIC supercomplexes, and also provide the first size estimation of these supercomplexes. Furthermore, unlike in mitochondria where translocon supercomplexes are only transiently assembled during preprotein import, in chloroplasts at least some of the supercomplexes are preassembled stable structures.
Collapse
Affiliation(s)
- Lih-Jen Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsou-Min Li
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
28
|
Li Y, Martin JR, Aldama GA, Fernandez DE, Cline K. Identification of Putative Substrates of SEC2, a Chloroplast Inner Envelope Translocase. PLANT PHYSIOLOGY 2017; 173:2121-2137. [PMID: 28213560 PMCID: PMC5373066 DOI: 10.1104/pp.17.00012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/15/2017] [Indexed: 05/11/2023]
Abstract
Most chloroplast proteins are synthesized in the cytosol and imported into chloroplasts. Many imported proteins are further targeted to the thylakoid membrane and lumen by the SEC1, TAT, or SRP/ALB3 translocases. Others are targeted to the inner chloroplast envelope membrane by undescribed translocases. Recently, a second SEC system (SEC2) consisting of SCY2, SECE2, and SECA2 was found in the chloroplast envelope. Null mutants of SCY2 in Arabidopsis (Arabidopsis thaliana) exhibit a severe embryo-lethal phenotype. To investigate the function of the SEC2 system in plants, we used inducible RNA interference to knock down SCY2 in Arabidopsis. Seedlings cultured with inducer were chlorotic with aberrant chloroplasts and undeveloped thylakoids, indicating an essential role for SCY2 in chloroplast biogenesis beyond embryo development. In SCY2 down-regulated seedlings, several thylakoid membrane proteins, including SCY1, ALB3, and TATC, and inner envelope membrane proteins, including TIC40, TIC110, and FTSH12, were reduced substantially, suggesting that they may be SEC2 substrates. Additional insight was achieved by the in vitro reconstitution of protein integration into chloroplast membranes. The results show that SCY1 and ALB3 target directly to the thylakoid membrane and are likely independent of SEC2. FTSH12 was integrated into the envelope membrane in a coupled import-integration reaction that was impaired by the SECA inhibitor sodium azide. The stromal intermediate of TIC40 integrated into the envelope in a reaction that was largely inhibited when antibodies against epitope-tagged SCY2 or SECE2 were applied. These data demonstrate that the SEC2 translocase likely integrates a subset of inner envelope membrane proteins, such as FTSH12 and TIC40.
Collapse
Affiliation(s)
- Yubing Li
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611 (Y.L., J.R.M., G.A.A., K.C.); and
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706 (D.E.F.)
| | - Jonathan R Martin
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611 (Y.L., J.R.M., G.A.A., K.C.); and
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706 (D.E.F.)
| | - Giovanni A Aldama
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611 (Y.L., J.R.M., G.A.A., K.C.); and
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706 (D.E.F.)
| | - Donna E Fernandez
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611 (Y.L., J.R.M., G.A.A., K.C.); and
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706 (D.E.F.)
| | - Kenneth Cline
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611 (Y.L., J.R.M., G.A.A., K.C.); and
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706 (D.E.F.)
| |
Collapse
|
29
|
Zufferey M, Montandon C, Douet V, Demarsy E, Agne B, Baginsky S, Kessler F. The novel chloroplast outer membrane kinase KOC1 is a required component of the plastid protein import machinery. J Biol Chem 2017; 292:6952-6964. [PMID: 28283569 DOI: 10.1074/jbc.m117.776468] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/28/2017] [Indexed: 11/06/2022] Open
Abstract
The biogenesis and maintenance of cell organelles such as mitochondria and chloroplasts require the import of many proteins from the cytosol, a process that is controlled by phosphorylation. In the case of chloroplasts, the import of hundreds of different proteins depends on translocons at the outer and inner chloroplast membrane (TOC and TIC, respectively) complexes. The essential protein TOC159 functions thereby as an import receptor. It has an N-terminal acidic (A-) domain that extends into the cytosol, controls receptor specificity, and is highly phosphorylated in vivo However, kinases that phosphorylate the TOC159 A-domain to enable protein import have remained elusive. Here, using co-purification with TOC159 from Arabidopsis, we discovered a novel component of the chloroplast import machinery, the regulatory kinase at the outer chloroplast membrane 1 (KOC1). We found that KOC1 is an integral membrane protein facing the cytosol and stably associates with TOC. Moreover, KOC1 phosphorylated the A-domain of TOC159 in vitro, and in mutant koc1 chloroplasts, preprotein import efficiency was diminished. koc1 Arabidopsis seedlings had reduced survival rates after transfer from the dark to the light in which protein import into plastids is required to rapidly complete chloroplast biogenesis. In summary, our data indicate that KOC1 is a functional component of the TOC machinery that phosphorylates import receptors, supports preprotein import, and contributes to efficient chloroplast biogenesis.
Collapse
Affiliation(s)
- Mónica Zufferey
- From the Laboratory of Plant Physiology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Cyrille Montandon
- the College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853
| | - Véronique Douet
- From the Laboratory of Plant Physiology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Emilie Demarsy
- the Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland, and
| | - Birgit Agne
- Institut für Biochemie und Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Sacha Baginsky
- Institut für Biochemie und Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Felix Kessler
- From the Laboratory of Plant Physiology, University of Neuchâtel, 2000 Neuchâtel, Switzerland,
| |
Collapse
|
30
|
Agne B, Köhler D, Baginsky S. Protein import-independent functions of Tic56, a component of the 1-MDa translocase at the inner chloroplast envelope membrane. PLANT SIGNALING & BEHAVIOR 2017; 12:e1284726. [PMID: 28125316 PMCID: PMC5399903 DOI: 10.1080/15592324.2017.1284726] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Tic56 is an essential subunit of a 1-MDa protein complex at the inner chloroplast envelope membrane that comprises Tic100, Tic214 and the protein conducting channel protein Tic20-I. The complex was characterized as the "general protein import translocase" because mutants in either of its subunits have a severe growth phenotype and fail to assemble a photosynthetic machinery. In a recent publication we show that the albino phenotype of tic56-1 mutants results at least in part from a defect in ribosome assembly and a deficiency in plastid translation. We furthermore could not detect any impairment of protein import activity with plastids from tic56-3 mutants, despite a lack of full-length Tic56 and a decreased abundance of other 1-MDa complex subunits. These findings suggest that the 1-MDa complex consists of subunits that have functions other than protein import.
Collapse
Affiliation(s)
- Birgit Agne
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Biozentrum, Weinbergweg, Halle (Saale), Germany
| | - Daniel Köhler
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Biozentrum, Weinbergweg, Halle (Saale), Germany
| | - Sacha Baginsky
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Biozentrum, Weinbergweg, Halle (Saale), Germany
- CONTACT Sacha Baginsky Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany
| |
Collapse
|
31
|
Demir F, Niedermaier S, Kizhakkedathu JN, Huesgen PF. Profiling of Protein N-Termini and Their Modifications in Complex Samples. Methods Mol Biol 2017; 1574:35-50. [PMID: 28315242 DOI: 10.1007/978-1-4939-6850-3_4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Protein N termini are a unique window to the functional state of the proteome, revealing translation initiation sites, co-translation truncation and modification, posttranslational maturation, and further proteolytic processing into different proteoforms with distinct functions. As a direct readout of proteolytic activity, protein N termini further reveal proteolytic regulation of diverse biological processes and provide a route to determine specific substrates and hence the physiological functions for any protease of interest. Here, we describe our current protocol of the successful Terminal Amine Isotope Labeling of Substrates (TAILS) technique, which enriches protein N-terminal peptides from complex proteome samples by negative selection. Genome-encoded N termini, protease-generated neo-N termini, and endogenously modified N termini are all enriched simultaneously. Subsequent mass spectrometric analysis therefore profiles all protein N termini and their modifications present in a complex sample in a single experiment. We further provide a detailed protocol for the TAILS-compatible proteome preparation from plant material and discuss specific considerations for N terminome data analysis and annotation.
Collapse
Affiliation(s)
- Fatih Demir
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Wilhelm-Johnen-Str, 52425, Jülich, Germany
| | - Stefan Niedermaier
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Wilhelm-Johnen-Str, 52425, Jülich, Germany
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, Department of Pathology & Laboratory Medicine, University of British Columbia, 2350 Health Sciences Mall, Vancouver, Canada, V6T 1Z3
- Department of Chemistry, University of British Columbia, 2350 Health Sciences Mall, Vancouver, Canada, V6T 1Z3
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Wilhelm-Johnen-Str, 52425, Jülich, Germany.
| |
Collapse
|
32
|
Sjuts I, Soll J, Bölter B. Import of Soluble Proteins into Chloroplasts and Potential Regulatory Mechanisms. FRONTIERS IN PLANT SCIENCE 2017; 8:168. [PMID: 28228773 PMCID: PMC5296341 DOI: 10.3389/fpls.2017.00168] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/26/2017] [Indexed: 05/20/2023]
Abstract
Chloroplasts originated from an endosymbiotic event in which a free-living cyanobacterium was engulfed by an ancestral eukaryotic host. During evolution the majority of the chloroplast genetic information was transferred to the host cell nucleus. As a consequence, proteins formerly encoded by the chloroplast genome are now translated in the cytosol and must be subsequently imported into the chloroplast. This process involves three steps: (i) cytosolic sorting procedures, (ii) binding to the designated receptor-equipped target organelle and (iii) the consecutive translocation process. During import, proteins have to overcome the two barriers of the chloroplast envelope, namely the outer envelope membrane (OEM) and the inner envelope membrane (IEM). In the majority of cases, this is facilitated by two distinct multiprotein complexes, located in the OEM and IEM, respectively, designated TOC and TIC. Plants are constantly exposed to fluctuating environmental conditions such as temperature and light and must therefore regulate protein composition within the chloroplast to ensure optimal functioning of elementary processes such as photosynthesis. In this review we will discuss the recent models of each individual import stage with regard to short-term strategies that plants might use to potentially acclimate to changes in their environmental conditions and preserve the chloroplast protein homeostasis.
Collapse
Affiliation(s)
- Inga Sjuts
- Department Biologie I-Botanik, Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
| | - Jürgen Soll
- Department Biologie I-Botanik, Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
- Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-UniversitätMunich, Germany
| | - Bettina Bölter
- Department Biologie I-Botanik, Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
- Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-UniversitätMunich, Germany
- *Correspondence: Bettina Bölter,
| |
Collapse
|
33
|
Köhler D, Helm S, Agne B, Baginsky S. Importance of Translocon Subunit Tic56 for rRNA Processing and Chloroplast Ribosome Assembly. PLANT PHYSIOLOGY 2016; 172:2429-2444. [PMID: 27733515 PMCID: PMC5129725 DOI: 10.1104/pp.16.01393] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/11/2016] [Indexed: 05/20/2023]
Abstract
Toc159-containing complexes at the outer chloroplast envelope membrane form stable supercomplexes with a 1-MD translocon at the inner chloroplast envelope membrane of which Tic56 is one essential subunit. While the single mutants tic56-1 and ppi2 (toc159) have an albino phenotype and are able to grow heterotrophically, we find the double mutant to be embryo lethal. Comprehensive quantitative proteome profiling with both single mutants in combination with GeneChip analyses identified a posttranscriptional defect in the accumulation of plastid ribosomal proteins and diminished expression of plastid encoded proteins. In the tic56-1 mutant, the assembly of functional ribosomes is furthermore hampered by a processing defect of the plastid 23S rRNA. Spectinomycin-treatment of wild-type plants phenocopies the molecular phenotype of plastid proteome accumulation in tic56-1 and to a smaller degree also ppi2 plastids, suggesting that a defect in plastid translation is largely responsible for the phenotype of both import mutants. Import experiments with the tic56-3 mutant revealed no significant defect in the import of small ribosomal protein 16 in the absence of full-length Tic56, suggesting that the defect in ribosome assembly in tic56-1 may be independent of a function of Tic56 in protein import. Our data establish a previously unknown link between plastid protein import, the processing of plastid rRNAs, and the assembly of plastid ribosomes and provide further knowledge on the function of the translocon components and the molecular basis for their albino phenotype.
Collapse
Affiliation(s)
- Daniel Köhler
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Biozentrum, 06120 Halle (Saale), Germany
| | - Stefan Helm
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Biozentrum, 06120 Halle (Saale), Germany
| | - Birgit Agne
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Biozentrum, 06120 Halle (Saale), Germany
| | - Sacha Baginsky
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Biozentrum, 06120 Halle (Saale), Germany
| |
Collapse
|
34
|
Bölter B, Soll J. Once upon a Time - Chloroplast Protein Import Research from Infancy to Future Challenges. MOLECULAR PLANT 2016; 9:798-812. [PMID: 27142186 DOI: 10.1016/j.molp.2016.04.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 05/08/2023]
Abstract
Protein import into chloroplasts has been a focus of research for several decades. The first publications dealing with this fascinating topic appeared in the 1970s. From the initial realization that many plastid proteins are being encoded for in the nucleus and require transport into their target organelle to the identification of import components in the cytosol, chloroplast envelopes, and stroma, as well as elucidation of some mechanistic details, more fascinating aspects are still being unraveled. With this overview, we present a survey of the beginnings of chloroplast protein import research, the first steps on this winding road, and end with a glimpse into the future.
Collapse
Affiliation(s)
- Bettina Bölter
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Großhaderner Straße 2-4, 82152 Planegg-Martinsried, Germany; Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.
| | - Jürgen Soll
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Großhaderner Straße 2-4, 82152 Planegg-Martinsried, Germany; Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| |
Collapse
|
35
|
Rowland E, Kim J, Bhuiyan NH, van Wijk KJ. The Arabidopsis Chloroplast Stromal N-Terminome: Complexities of Amino-Terminal Protein Maturation and Stability. PLANT PHYSIOLOGY 2015; 169:1881-96. [PMID: 26371235 PMCID: PMC4634096 DOI: 10.1104/pp.15.01214] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/14/2015] [Indexed: 05/10/2023]
Abstract
Protein amino (N) termini are prone to modifications and are major determinants of protein stability in bacteria, eukaryotes, and perhaps also in chloroplasts. Most chloroplast proteins undergo N-terminal maturation, but this is poorly understood due to insufficient experimental information. Consequently, N termini of mature chloroplast proteins cannot be accurately predicted. This motivated an extensive characterization of chloroplast protein N termini in Arabidopsis (Arabidopsis thaliana) using terminal amine isotopic labeling of substrates and mass spectrometry, generating nearly 14,000 tandem mass spectrometry spectra matching to protein N termini. Many nucleus-encoded plastid proteins accumulated with two or three different N termini; we evaluated the significance of these different proteoforms. Alanine, valine, threonine (often in N-α-acetylated form), and serine were by far the most observed N-terminal residues, even after normalization for their frequency in the plastid proteome, while other residues were absent or highly underrepresented. Plastid-encoded proteins showed a comparable distribution of N-terminal residues, but with a higher frequency of methionine. Infrequent residues (e.g. isoleucine, arginine, cysteine, proline, aspartate, and glutamate) were observed for several abundant proteins (e.g. heat shock proteins 70 and 90, Rubisco large subunit, and ferredoxin-glutamate synthase), likely reflecting functional regulation through their N termini. In contrast, the thylakoid lumenal proteome showed a wide diversity of N-terminal residues, including those typically associated with instability (aspartate, glutamate, leucine, and phenylalanine). We propose that, after cleavage of the chloroplast transit peptide by stromal processing peptidase, additional processing by unidentified peptidases occurs to avoid unstable or otherwise unfavorable N-terminal residues. The possibility of a chloroplast N-end rule is discussed.
Collapse
Affiliation(s)
- Elden Rowland
- Department of Plant Biology, Cornell University, Ithaca, New York 14850
| | - Jitae Kim
- Department of Plant Biology, Cornell University, Ithaca, New York 14850
| | - Nazmul H Bhuiyan
- Department of Plant Biology, Cornell University, Ithaca, New York 14850
| | - Klaas J van Wijk
- Department of Plant Biology, Cornell University, Ithaca, New York 14850
| |
Collapse
|
36
|
Nakai M. YCF1: A Green TIC: Response to the de Vries et al. Commentary. THE PLANT CELL 2015; 27:1834-8. [PMID: 26071422 PMCID: PMC4531358 DOI: 10.1105/tpc.15.00363] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 05/07/2023]
Abstract
This response to a recent Commentary article by de Vries et al. highlights critical errors in the annotation and identification of Ycf1 homologs in the sequenced chloroplast genomes. Contrary to what is reported by de Vries et al., the majority of chloroplast genomes sequenced to date appear to have retained a typical Ycf1 sequence (i.e., including the N-terminal 6TM domain and a variable hydrophilic C-terminal domain) as my group previously reported. Our evidence continues to support the model that Ycf1 forms an essential component of a "green TIC" that is largely conserved among the Chlorophyta and land plants. Since the establishment of this green TIC with Tic20 as the core component, some cases of loss of Ycf1 during the evolution of the green lineages might be regarded as modifications or alterations of the complex. Here, I discuss our working model that the presence of an alternative "nonphotosynthetic-type" or "ancestral-type" TIC might explain other (or specific) cases of the lack of Ycf1, not only in early lineages, including Glaucophyta and Rhodophyta, but also in the grasses.
Collapse
Affiliation(s)
- Masato Nakai
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
37
|
Köhler D, Dobritzsch D, Hoehenwarter W, Helm S, Steiner JM, Baginsky S. Identification of protein N-termini in Cyanophora paradoxa cyanelles: transit peptide composition and sequence determinants for precursor maturation. FRONTIERS IN PLANT SCIENCE 2015; 6:559. [PMID: 26257763 PMCID: PMC4510345 DOI: 10.3389/fpls.2015.00559] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 07/07/2015] [Indexed: 05/06/2023]
Abstract
Glaucophyta, rhodophyta, and chloroplastida represent the three main evolutionary lineages that diverged from a common ancestor after primary endosymbiosis. Comparative analyses between members of these three lineages are a rich source of information on ancestral plastid features. We analyzed the composition and the cleavage site of cyanelle transit peptides from the glaucophyte Cyanophora paradoxa by terminal amine labeling of substrates (TAILS), and compared their characteristics to those of representatives of the chloroplastida. Our data show that transit peptide architecture is similar between members of these two lineages. This entails a comparable modular structure, an overrepresentation of serine or alanine and similarities in the amino acid composition around the processing peptidase cleavage site. The most distinctive difference is the overrepresentation of phenylalanine in the N-terminal 1-10 amino acids of cyanelle transit peptides. A quantitative proteome analysis with periplasm-free cyanelles identified 42 out of 262 proteins without the N-terminal phenylalanine, suggesting that the requirement for phenylalanine in the N-terminal region is not absolute. Proteins in this set are on average of low abundance, suggesting that either alternative import pathways are operating specifically for low abundance proteins or that the gene model annotation is incorrect for proteins with fewer EST sequences. We discuss these two possibilities and provide examples for both interpretations.
Collapse
Affiliation(s)
- Daniel Köhler
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, BiozentrumHalle (Saale), Germany
| | - Dirk Dobritzsch
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, BiozentrumHalle (Saale), Germany
| | | | - Stefan Helm
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, BiozentrumHalle (Saale), Germany
| | - Jürgen M. Steiner
- Plant Physiology, Institute of Biology, Martin-Luther-University Halle-WittenbergHalle (Saale), Germany
| | - Sacha Baginsky
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, BiozentrumHalle (Saale), Germany
- *Correspondence: Sacha Baginsky, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany
| |
Collapse
|
38
|
Chu CC, Li HM. Protein import into isolated pea root leucoplasts. FRONTIERS IN PLANT SCIENCE 2015; 6:690. [PMID: 26388889 PMCID: PMC4560022 DOI: 10.3389/fpls.2015.00690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/20/2015] [Indexed: 05/06/2023]
Abstract
Leucoplasts are important organelles for the synthesis and storage of starch, lipids and proteins. However, molecular mechanism of protein import into leucoplasts and how it differs from that of import into chloroplasts remain unknown. We used pea seedlings for both chloroplast and leucoplast isolations to compare within the same species. We further optimized the isolation and import conditions to improve import efficiency and to permit a quantitative comparison between the two plastid types. The authenticity of the import was verified using a mitochondrial precursor protein. Our results show that, when normalized to Toc75, most translocon proteins are less abundant in leucoplasts than in chloroplasts. A precursor shown to prefer the receptor Toc132 indeed had relatively more similar import efficiencies between chloroplasts and leucoplasts compared to precursors that prefer Toc159. Furthermore we found two precursors that exhibited very high import efficiency into leucoplasts. Their transit peptides may be candidates for delivering transgenic proteins into leucoplasts and for analyzing motifs important for leucoplast import.
Collapse
Affiliation(s)
| | - Hsou-min Li
- *Correspondence: Hsou-min Li, Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan,
| |
Collapse
|