1
|
Cao J, Yang Q, Zhao Y, Tan S, Li S, Cheng D, Zhang R, Zhang M, Li Z. MYB47 delays leaf senescence by modulating jasmonate pathway via direct regulation of CYP94B3/CYP94C1 expression in Arabidopsis. THE NEW PHYTOLOGIST 2025. [PMID: 40186431 DOI: 10.1111/nph.70133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/23/2025] [Indexed: 04/07/2025]
Abstract
Leaf senescence is a complex genetic process intricately regulated by multiple layers of control. Transcription factors, as master regulators of gene expression, play crucial roles in initiating and progressing leaf senescence. Through screening an activation-tagged mutant library, we identified MYB47 as a negative regulator of leaf senescence. Constitutive or inducible overexpression of MYB47 significantly delays leaf senescence, while loss-of-function mutants exhibit accelerated senescence. Transcriptome analysis revealed a marked suppression of jasmonic acid (JA) signaling in MYB47 overexpression lines. Conversely, the myb47 mutants display elevated JA levels and reduced expression of JA catabolic genes, CYP94B3 and CYP94C1. Biochemical evidence demonstrated that MYB47 directly binds to the promoters of CYP94B3 and CYP94C1, upregulating their expression. Consequently, JA contents are significantly reduced in MYB47 overexpression lines. Overexpressing CYP94B3 or CYP94C1 in myb47 mutants alleviates their early senescence phenotype. Furthermore, JA induces MYB47 expression, forming a negative feedback loop (JA-MYB47-CYP94B3/C1-JA) that fine-tunes leaf senescence. Our findings reveal a novel regulatory module involving MYB47 and JA signaling that governs leaf senescence. By stimulating JA catabolism and attenuating JA signaling, MYB47 plays a crucial role in delaying leaf senescence.
Collapse
Affiliation(s)
- Jie Cao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Qi Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yaning Zhao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Shuya Tan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Shichun Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Dawei Cheng
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Ruxue Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Murao Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Zhonghai Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
2
|
Liu Y, Wang J, Liu X, Liao T, Ren H, Liu L, Huang X. The UV-B photoreceptor UVR8 interacts with the LOX1 enzyme to promote stomatal closure through the LOX-derived oxylipin pathway. THE PLANT CELL 2025; 37:koaf060. [PMID: 40123505 PMCID: PMC11979336 DOI: 10.1093/plcell/koaf060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 02/18/2025] [Indexed: 03/25/2025]
Abstract
Ultraviolet-B (UV-B) light-induced stomatal closure requires the photoreceptor UV RESISTANCE LOCUS 8 (UVR8) and nitric oxide (NO). However, the signaling pathways by which UV-B light regulates stomatal closure remain elusive. Here, we reveal that UVR8 signaling in the epidermis mediates stomatal closure in a tissue-specific manner in Arabidopsis (Arabidopsis thaliana). UV-B light promotes PHOSPHOLIPASE 1 (PLIP1)/PLIP3-mediated linoleic acid and α-linolenic acid accumulation and induces LIPOXYGENASE 1 (LOX1) expression. LOX1, which catabolizes linoleic acid and α-linolenic acid to produce oxylipin derivatives, acts downstream of UVR8 and upstream of the salicylic acid (SA) pathway associated with stomatal defense. Photoactivated UVR8 interacts with LOX1 and enhances its activity. Protein crystallography demonstrates that A. thaliana LOX1 and its ortholog in soybean (Glycine max) share overall structural similarity and conserved residues in the oxygen cavity, substrate cavity, and metal-binding site that are required for 9-LOX activity. The disruption of UVR8-LOX1 contact sites near the LOX1 oxygen and substrate cavities prevents UVR8-enhanced LOX1 activity and compromises stomatal closure upon UV-B exposure. Overall, our study uncovers a noncanonical UV-B signaling module, consisting of the UVR8 photoreceptor and the cytoplasmic lipoxygenase, that mediates stomatal responses to UV-B light.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China
| | - Jue Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China
| | - Xiaotian Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China
| | - Ting Liao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China
| | - Hui Ren
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China
| | - Liang Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China
| |
Collapse
|
3
|
Jang HU, Song SK. Ectopic expression of AtMYB115 and AtMYB118 induces green tissue formation in non-green organs of Arabidopsis thaliana. Genes Genomics 2025:10.1007/s13258-025-01639-6. [PMID: 40138123 DOI: 10.1007/s13258-025-01639-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/16/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND A dominant mutant, green root-dominant (grt-D), which exhibits a green-root phenotype, was identified using the GAL4-UAS activation tagging system in the Q2610 enhancer trap line of Arabidopsis thaliana (Arabidopsis). OBJECTIVE To identify the gene responsible for the grt-D phenotype and investigate whether its ectopic expression induces green petal formation. METHODS The gene responsible for the grt-D phenotype was identified via thermal asymmetric interlaced-polymerase chain reaction (PCR). The cloned gene and its homolog were expressed under the control of the Q2610 enhancer for root tip expression and the APETALA3 (AP3) or PISTILLATA (PI) promoter for petal-preferential expression. RESULTS The 5 × UAS tag in grt-D was located 111 base pairs upstream of the start codon of AtMYB115. Ectopic expression of AtMYB115 or its closest homolog, AtMYB118, under the Q2610 enhancer recapitulated the grt-D green-root phenotype, indicating functional equivalence between the two genes. To examine their effect on petal development, AtMYB115 and AtMYB118 were expressed under the AP3 and PI promoters. The resulting transgenic lines (AP3 > > AtMYB115, AP3 > > AtMYB118, PI > > AtMYB115, and PI > > AtMYB118) developed short, pale green petals and sterile stamens. The green petals exhibited reduced expression of STAY-GREEN 1, which encodes Mg-dechelatase, a key enzyme involved in chlorophyll degradation, suggesting that the green-petal phenotype results from impaired chlorophyll breakdown. CONCLUSION These findings demonstrate that the ectopic expression of AtMYB115 and AtMYB118 induces green tissue development in non-green organs of Arabidopsis.
Collapse
Affiliation(s)
- Hyeon-Ung Jang
- Department of Biology, Chosun University, Gwangju, 61452, Republic of Korea
| | - Sang-Kee Song
- Department of Biology, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
4
|
Xu P, Huang J, Chen X, Wang Q, Yin B, Xian Q, Zhuang C, Hu Y. Efficient targeted T-DNA integration for gene activation and male germline-specific gene tagging in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70104. [PMID: 40121659 DOI: 10.1111/tpj.70104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/25/2025]
Abstract
Site-specific DNA integration is an important tool in plant genetic engineering. Traditionally, this process relies on homologous recombination (HR), which is known for its low efficiency in plant cells. In contrast, Agrobacterium-mediated T-DNA integration is highly efficient for plant transformation. However, T-DNA is typically inserted randomly into double-strand breaks within the plant genome via the non-homologous end-joining (NHEJ) DNA repair pathway. In this study, we developed an approach of CRISPR/Cas9-mediated targeted T-DNA integration in Arabidopsis, which was more rapid and efficient than the HR-mediated method. This targeted T-DNA integration aided in gene activation and male germline-specific gene tagging. Gene activation was accomplished by positioning the CaMV35S promoter at the left border of T-DNA, thereby activating specific downstream genes. The activation of FT and MYB26 significantly increased their transcriptional expression, which resulted in early flowering and an altered pattern of cell wall thickening in the anther endothelium, respectively. Male germline-specific gene tagging incorporates two reporters, namely, NeoR and MGH3::mCherry, within the T-DNA. This design facilitates the creation of insertional mutants, simplifies the genetic analysis of mutated alleles, and allows for cellular tracking of male germline cells during fertilization. We successfully applied this system to target the male germline-specific gene GEX2. In conclusion, our results demonstrated that site-specific integration of DNA fragments in the plant genome can be rapidly and efficiently achieved through the NHEJ pathway, making this approach broadly applicable in various contexts.
Collapse
Affiliation(s)
- Peng Xu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jilei Huang
- Instrumental Analysis and Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaojing Chen
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qi Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Bo Yin
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qing Xian
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Chuxiong Zhuang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yufei Hu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
5
|
Yang Y, Liu J, Singer SD, Yan G, Bennet DR, Liu Y, Hily J, Xu W, Yang Y, Wang X, Zhong G, Liu Z, Charles An Y, Liu H, Liu Z. Ectopic enhancer-enhancer interactions as causal forces driving RNA-directed DNA methylation in gene regulatory regions. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3121-3134. [PMID: 39021281 PMCID: PMC11500991 DOI: 10.1111/pbi.14435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/21/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024]
Abstract
Cis-regulatory elements (CREs) are integral to the spatiotemporal and quantitative expression dynamics of target genes, thus directly influencing phenotypic variation and evolution. However, many of these CREs become highly susceptible to transcriptional silencing when in a transgenic state, particularly when organised as tandem repeats. We investigated the mechanism of this phenomenon and found that three of the six selected flower-specific CREs were prone to transcriptional silencing when in a transgenic context. We determined that this silencing was caused by the ectopic expression of non-coding RNAs (ncRNAs), which were processed into 24-nt small interfering RNAs (siRNAs) that drove RNA-directed DNA methylation (RdDM). Detailed analyses revealed that aberrant ncRNA transcription within the AGAMOUS enhancer (AGe) in a transgenic context was significantly enhanced by an adjacent CaMV35S enhancer (35Se). This particular enhancer is known to mis-activate the regulatory activities of various CREs, including the AGe. Furthermore, an insertion of 35Se approximately 3.5 kb upstream of the AGe in its genomic locus also resulted in the ectopic induction of ncRNA/siRNA production and de novo methylation specifically in the AGe, but not other regions, as well as the production of mutant flowers. This confirmed that interactions between the 35Se and AGe can induce RdDM activity in both genomic and transgenic states. These findings highlight a novel epigenetic role for CRE-CRE interactions in plants, shedding light on the underlying forces driving hypermethylation in transgenes, duplicate genes/enhancers, and repetitive transposons, in which interactions between CREs are inevitable.
Collapse
Affiliation(s)
- Yazhou Yang
- College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Jia Liu
- College of Landscape, Architecture and Life science/Institute of Special PlantsChongqing University of Arts and SciencesYongchuanChongqingChina
| | - Stacy D. Singer
- Agriculture and Agri‐Food Canada, Lethbridge Research and Development CentreLethbridgeAlbertaCanada
| | - Guohua Yan
- The Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Dennis R. Bennet
- USDA‐ARS Appalachian Fruit Research StationKearneysvilleWest VirginiaUSA
| | - Yue Liu
- College of HorticultureQingdao Agricultural UniversityQingdaoChina
| | - Jean‐Michel Hily
- Institut Français de la Vigne et du Vin (IFV)Le Grau du RoiFrance
| | - Weirong Xu
- School of Food & WineNingxia UniversityYinchuanNingxiaChina
| | - Yingzhen Yang
- USDA‐ARS, Grape Genetic Research UnitGenevaNew YorkUSA
| | - Xiping Wang
- College of HorticultureNorthwest A&F UniversityYanglingChina
| | | | - Zhongchi Liu
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Yong‐Qiang Charles An
- USDA‐ARS, Plant Genetics Research Unit, Donald Danforth Plant Science CenterSt LouisMissouriUSA
| | - Huawei Liu
- Xinjiang Institute of Ecology and Geography, Chinese Academy of SciencesUrumqiChina
| | - Zongrang Liu
- USDA‐ARS Appalachian Fruit Research StationKearneysvilleWest VirginiaUSA
| |
Collapse
|
6
|
Hountalas JE, Bunsick M, Xu Z, Taylor AA, Pescetto G, Ly G, Boyer FD, McErlean CSP, Lumba S. HTL/KAI2 signaling substitutes for light to control plant germination. PLoS Genet 2024; 20:e1011447. [PMID: 39432524 PMCID: PMC11527322 DOI: 10.1371/journal.pgen.1011447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 10/31/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024] Open
Abstract
Plants monitor multiple environmental cues, such as light and temperature, to ensure they germinate at the right time and place. Some specialist plants, like ephemeral fire-following weeds and root parasitic plants, germinate primarily in response to small molecules found in specific environments. Although these species come from distinct clades, they use the same HYPOSENSITIVE TO LIGHT/KARRIKIN INSENSITIVE 2 (HTL/KAI2) signaling pathway, to perceive different small molecules suggesting convergent evolution on this pathway. Here, we show that HTL/KAI2 signaling in Arabidopsis thaliana bypasses the light requirement for germination. The HTL/KAI2 downstream component, SUPPRESSOR OF MAX2 1 (SMAX1) accumulates in the dark and is necessary for PHYTOCHROME INTERACTING FACTOR 1/PHYTOCHROME INTERACTING FACTOR 3-LIKE 5 (PIF1/PIL5) to regulate hormone response pathways conducive to germination. The interaction of HTL/KAI2 and light signaling may help to explain how specialist plants like ephemeral and parasitic weeds evolved their germination behaviour in response to specific environments.
Collapse
Affiliation(s)
- Jenna E. Hountalas
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Michael Bunsick
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Zhenhua Xu
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Andrea A. Taylor
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Gianni Pescetto
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - George Ly
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - François-Didier Boyer
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | | | - Shelley Lumba
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| |
Collapse
|
7
|
Yun J, Lee I, Lee JH, Kim S, Jung SH, Oh SA, Lee J, Park SK, Soh MS, Lee Y, Kwak JM. The single RRM domain-containing protein SARP1 is required for establishment of the separation zone in Arabidopsis. THE NEW PHYTOLOGIST 2024; 244:558-570. [PMID: 39061105 DOI: 10.1111/nph.19997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Abscission is the shedding of plant organs in response to developmental and environmental cues. Abscission involves cell separation between two neighboring cell types, residuum cells (RECs) and secession cells (SECs) in the floral abscission zone (AZ) in Arabidopsis thaliana. However, the regulatory mechanisms behind the spatial determination that governs cell separation are largely unknown. The class I KNOTTED-like homeobox (KNOX) transcription factor BREVIPEDICELLUS (BP) negatively regulates AZ cell size and number in Arabidopsis. To identify new players participating in abscission, we performed a genetic screen by activation tagging a weak complementation line of bp-3. We identified the mutant ebp1 (enhancer of BP1) displaying delayed floral organ abscission. The ebp1 mutant showed a concaved surface in SECs and abnormally stacked cells on the top of RECs, in contrast to the precisely separated surface in the wild-type. Molecular and histological analyses revealed that the transcriptional programming during cell differentiation in the AZ is compromised in ebp1. The SECs of ebp1 have acquired REC-like properties, including cuticle formation and superoxide production. We show that SEPARATION AFFECTING RNA-BINDING PROTEIN1 (SARP1) is upregulated in ebp1 and plays a role in the establishment of the cell separation layer during floral organ abscission in Arabidopsis.
Collapse
Affiliation(s)
- Ju Yun
- Department of New Biology, DGIST, Daegu, 42988, Korea
| | - Inhye Lee
- Division of Integrative Bioscience and Bioengineering, Sejong University, Seoul, 05006, Korea
| | - Jae Ho Lee
- Korea Bioinformation Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, 34141, Korea
| | - Seonghwan Kim
- Department of New Biology, DGIST, Daegu, 42988, Korea
| | - Su Hyun Jung
- Department of New Biology, DGIST, Daegu, 42988, Korea
| | - Sung Aeong Oh
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Jiyoun Lee
- Department of New Biology, DGIST, Daegu, 42988, Korea
| | - Soon Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Moon-Soo Soh
- Division of Integrative Bioscience and Bioengineering, Sejong University, Seoul, 05006, Korea
| | - Yuree Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| | - June M Kwak
- Department of New Biology, DGIST, Daegu, 42988, Korea
- Center for Cell Fate Control and Reprogramming, DGIST, Daegu, 42988, Korea
| |
Collapse
|
8
|
Cao L, Ren W, Liu L, Zheng J, Tao C, Zhu W, Xiang M, Wang L, Liu Y, Zheng P. CDR1, a DUF946 domain containing protein, positively regulates cadmium tolerance in Arabidopsis thaliana by maintaining the stability of OPT3 protein. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135313. [PMID: 39067296 DOI: 10.1016/j.jhazmat.2024.135313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Industrial and agricultural production processes lead to the accumulation of cadmium (Cd) in soil, resulting in crops absorb Cd from contaminated soil and then transfer it to human body through the food chain, posing a serious threat to human health. Thus, it is necessary to explore novel genes and mechanisms involved in regulating Cd tolerance and detoxification in plants. Here, we found that CDR1, a DUF946 domain containing protein, localizes to the plasma membrane and positively regulates Cd stress tolerance. The cdr1 mutants exhibited Cd sensitivity, accumulated excessive Cd in the seeds and roots, but decreased in leaves. However, CDR1-OE transgenic plants not only showed Cd tolerance but also significantly reduced Cd in seeds and roots. Additionally, both in vitro and in vivo assays demonstrated an interaction between CDR1 and OPT3. Cell free protein degradation and OPT3 protein level determination assays indicated that CDR1 could maintain the stability of OPT3 protein. Moreover, genetic phenotype analysis and Cd content determination showed that CDR1 regulates Cd stress tolerance and affect the distribution of Cd in plants by maintaining the stability of OPT3 protein. Our discoveries provide a key candidate gene for directional breeding to reduce Cd accumulation in edible seeds of crops.
Collapse
Affiliation(s)
- Lei Cao
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Wangmei Ren
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Linyao Liu
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Jiale Zheng
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Cheng Tao
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Wenyan Zhu
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Minghao Xiang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Lihuan Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Yongsheng Liu
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China.
| | - Pengpeng Zheng
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
9
|
Du Q, Yuan B, Thapa Chhetri G, Wang T, Qi L, Wang H. A transcriptional repressor HVA regulates vascular bundle formation through auxin transport in Arabidopsis stem. THE NEW PHYTOLOGIST 2024; 243:1681-1697. [PMID: 39014537 DOI: 10.1111/nph.19970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
Vascular bundles transport water and photosynthate to all organs, and increased bundle number contributes to crop lodging resistance. However, the regulation of vascular bundle formation is poorly understood in the Arabidopsis stem. We report a novel semi-dominant mutant with high vascular activity, hva-d, showing increased vascular bundle number and enhanced cambium proliferation in the stem. The activation of a C2H2 zinc finger transcription factor, AT5G27880/HVA, is responsible for the hva-d phenotype. Genetic, biochemical, and fluorescent microscopic analyses were used to dissect the functions of HVA. HVA functions as a repressor and interacts with TOPLESS via the conserved Ethylene-responsive element binding factor-associated Amphiphilic Repression motif. In contrast to the HVA activation line, knockout of HVA function with a CRISPR-Cas9 approach or expression of HVA fused with an activation domain VP16 (HVA-VP16) resulted in fewer vascular bundles. Further, HVA directly regulates the expression of the auxin transport efflux facilitator PIN1, as a result affecting auxin accumulation. Genetics analysis demonstrated that PIN1 is epistatic to HVA in controlling bundle number. This research identifies HVA as a positive regulator of vascular initiation through negatively modulating auxin transport and sheds new light on the mechanism of bundle formation in the stem.
Collapse
Affiliation(s)
- Qian Du
- Department of Plant Science and Landscape Architecture, University of Connecticut, 1376 Storrs Rd, Storrs, CT, 06269, USA
| | - Bingjian Yuan
- Department of Plant Science and Landscape Architecture, University of Connecticut, 1376 Storrs Rd, Storrs, CT, 06269, USA
| | - Gaurav Thapa Chhetri
- Department of Plant Science and Landscape Architecture, University of Connecticut, 1376 Storrs Rd, Storrs, CT, 06269, USA
| | - Tong Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, 1376 Storrs Rd, Storrs, CT, 06269, USA
| | - Liying Qi
- Department of Plant Science and Landscape Architecture, University of Connecticut, 1376 Storrs Rd, Storrs, CT, 06269, USA
| | - Huanzhong Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, 1376 Storrs Rd, Storrs, CT, 06269, USA
- Institute for System Genomics, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
10
|
Li B, Zhou Q, Cai L, Li L, Xie C, Li D, Zhu F, Li X, Zhao X, Liu X, Shen L, Xu T, He C. TMK4-mediated FIP37 phosphorylation regulates auxin-triggered N 6-methyladenosine modification of auxin biosynthetic genes in Arabidopsis. Cell Rep 2024; 43:114597. [PMID: 39106180 DOI: 10.1016/j.celrep.2024.114597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 03/20/2024] [Accepted: 07/23/2024] [Indexed: 08/09/2024] Open
Abstract
The dynamics of N6-methyladenosine (m6A) mRNA modification are tightly controlled by the m6A methyltransferase complex and demethylases. Here, we find that auxin treatment alters m6A modification on auxin-responsive genes. Mechanically, TRANSMEMBRANE KINASE 4 (TMK4), a component of the auxin signaling pathway, interacts with and phosphorylates FKBP12-INTERACTING PROTEIN 37 (FIP37), a core component of the m6A methyltransferase complex, in an auxin-dependent manner. Phosphorylation of FIP37 enhances its interaction with RNA, thereby increasing m6A modification on its target genes, such as NITRILASE 1 (NIT1), a gene involved in indole-3-acetic acid (IAA) biosynthesis. 1-Naphthalacetic acid (NAA) treatment accelerates the mRNA decay of NIT1, in a TMK4- and FIP37-dependent manner, which leads to inhibition of auxin biosynthesis. Our findings identify a regulatory mechanism by which auxin modulates m6A modification through the phosphorylation of FIP37, ultimately affecting mRNA stability and auxin biosynthesis in plants.
Collapse
Affiliation(s)
- Bin Li
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China; State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410082, China
| | - Qiting Zhou
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China
| | - Linjun Cai
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China
| | - Lan Li
- School of Pharmacy, Xiangnan University, Chenzhou, Hunan 423000, China
| | - Chong Xie
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China
| | - Donghao Li
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China
| | - Fan Zhu
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China
| | - Xiushan Li
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China
| | - Xiaoying Zhao
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China
| | - Xuanming Liu
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China
| | - Lisha Shen
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Tongda Xu
- FAFU-Joint Center, Horticulture and Metabolic Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Chongsheng He
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China.
| |
Collapse
|
11
|
Hu S, Chen Y, Qian C, Ren H, Liang X, Tao W, Chen Y, Wang J, Dong Y, Han J, Ouyang X, Huang X. Nuclear accumulation of rice UV-B photoreceptors is UV-B- and OsCOP1-independent for UV-B responses. Nat Commun 2024; 15:6396. [PMID: 39080288 PMCID: PMC11289442 DOI: 10.1038/s41467-024-50755-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
In plants, the conserved plant-specific photoreceptor UV RESISTANCE LOCUS 8 (UVR8) perceives ultraviolet-B (UV-B) light and mediates UV-B-induced photomorphogenesis and stress acclimation. In this study, we reveal that UV-B light treatment shortens seedlings, increases stem thickness, and enhances UV-B stress tolerance in rice (Oryza sativa) via its two UV-B photoreceptors OsUVR8a and OsUVR8b. Although the rice and Arabidopsis (Arabidopsis thaliana) UVR8 (AtUVR8) photoreceptors all form monomers in response to UV-B light, OsUVR8a, and OsUVR8b function is only partially conserved with respect to AtUVR8 in UV-B-induced photomorphogenesis and stress acclimation. UV-B light and CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) promote the nuclear accumulation of AtUVR8; by contrast, OsUVR8a and OsUVR8b constitutively localize to the nucleus via their own nuclear localization signals, independently of UV-B light and the RING-finger mutation of OsCOP1. We show that OsCOP1 negatively regulates UV-B responses, and shows weak interaction with OsUVR8s, which is ascribed to the N terminus of OsCOP1, which is conserved in several monocots. Furthermore, transcriptome analysis demonstrates that UV-B-responsive gene expression differs globally between Arabidopsis and rice, illuminating the evolutionary divergence of UV-B light signaling pathways between monocot and dicot plants.
Collapse
Affiliation(s)
- Shan Hu
- State Key Laboratory of Cellular Stress Biology, Xiamen Key Laboratory of Plant Genetics, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yihan Chen
- State Key Laboratory of Cellular Stress Biology, Xiamen Key Laboratory of Plant Genetics, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chongzhen Qian
- State Key Laboratory of Cellular Stress Biology, Xiamen Key Laboratory of Plant Genetics, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Hui Ren
- State Key Laboratory of Cellular Stress Biology, Xiamen Key Laboratory of Plant Genetics, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xinwen Liang
- State Key Laboratory of Cellular Stress Biology, Xiamen Key Laboratory of Plant Genetics, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Wenjing Tao
- State Key Laboratory of Cellular Stress Biology, Xiamen Key Laboratory of Plant Genetics, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yanling Chen
- State Key Laboratory of Cellular Stress Biology, Xiamen Key Laboratory of Plant Genetics, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jue Wang
- State Key Laboratory of Cellular Stress Biology, Xiamen Key Laboratory of Plant Genetics, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yuan Dong
- State Key Laboratory of Cellular Stress Biology, Xiamen Key Laboratory of Plant Genetics, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jiupan Han
- State Key Laboratory of Cellular Stress Biology, Xiamen Key Laboratory of Plant Genetics, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xinhao Ouyang
- State Key Laboratory of Cellular Stress Biology, Xiamen Key Laboratory of Plant Genetics, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China.
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, Xiamen Key Laboratory of Plant Genetics, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
12
|
Yu Y, Zhu R, Xu H, Enugutti B, Schneitz K, Wang X, Li J. Twin Embryos in Arabidopsis thaliana KATANIN 1 Mutants. PLANTS (BASEL, SWITZERLAND) 2024; 13:1824. [PMID: 38999664 PMCID: PMC11244573 DOI: 10.3390/plants13131824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
Regulation of microtubule dynamics is crucial during key developmental transitions such as gametogenesis, fertilization, embryogenesis, and seed formation, where cells undergo rapid changes in shape and function. In plants, katanin plays an essential role in microtubule dynamics. This study investigates two seed developmental mutants in Arabidopsis thaliana, named elk5-1D (erecta-like 5, ELK5) and loo1 (lollipop 1), which are characterized by round seeds, dwarfism, and fertility defects. Notably, elk5-1D exhibits a dominant inheritance pattern, whereas loo1 is recessive. Through positional cloning, we identified both mutants as new alleles of the KATANIN 1 (KTN1) gene, which encodes a microtubule-severing enzyme critical for cell division and morphology. Mutations in KTN1 disrupt embryo cell division and lead to the emergence of a twin embryo phenotype. Our findings underscore the essential role of KTN1 in fertility and early embryonic development, potentially influencing the fate of reproductive cells.
Collapse
Affiliation(s)
- Youfeng Yu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Rui Zhu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Xu
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Balaji Enugutti
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Kay Schneitz
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Xuanpeng Wang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Jing Li
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
13
|
Min JH, Park CR, Gong Y, Chung MS, Nam SH, Yun HS, Kim CS. Rhamnogalacturonan lyase 1 (RGL1), as a suppressor of E3 ubiquitin ligase Arabidopsis thaliana ring zinc finger 1 (AtRZF1), is involved in dehydration response to mediate proline synthesis and pectin rhamnogalacturonan-I composition. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:942-959. [PMID: 38743860 DOI: 10.1111/tpj.16808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
Proline metabolism plays a crucial role in both environmental stress responses and plant growth. However, the specific mechanism by which proline contributes to abiotic stress processes remains to be elucidated. In this study, we utilized atrzf1 (Arabidopsis thaliana ring zinc finger 1) as a parental line for T-DNA tagging mutagenesis and identified a suppressor mutant of atrzf1, designated proline content alterative 31 (pca31). The pca31 mutant suppressed the insensitivity of atrzf1 to dehydration stress during early seedling growth. Using Thermal Asymmetric Interlaced-PCR, we found that the T-DNA of pca31 was inserted into the promoter region of the At2g22620 gene, which encodes the cell wall enzyme rhamnogalacturonan lyase 1 (RGL1). Enzymatic assays indicated that RGL1 exhibited rhamnogalacturonan lyase activity, influencing cell wall pectin composition. The decrease in RGL1 gene expression suppressed the transcriptomic perturbation of the atrzf1 mutant. Silencing of the RGL1 gene in atrzf1 resulted in a sensitive phenotype similar to pca31 under osmotic stress conditions. Treatment with mannitol, salt, hydrogen peroxide, and abscisic acid induced RGL1 expression. Furthermore, we uncovered that RGL1 plays a role in modulating root growth and vascular tissue development. Molecular, physiological, and genetic experiments revealed that the positive modulation of RGL1 during abiotic stress was linked to the AtRZF1 pathway. Taken together, these findings establish that pca31 acts as a suppressor of atrzf1 in abiotic stress responses through proline and cell wall metabolisms.
Collapse
Affiliation(s)
- Ji-Hee Min
- Department of Applied Biology, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas, 77843-2128, USA
| | - Cho-Rong Park
- Department of Applied Biology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ying Gong
- Department of Applied Biology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Moon-Soo Chung
- Research Division for Radiation Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeonlabuk-do, 56212, Republic of Korea
| | - Seung-Hee Nam
- Institute of Agricultural Science and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hye Sup Yun
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Cheol Soo Kim
- Department of Applied Biology, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
14
|
Liu Q, Wang T, Ke M, Qian C, Li J, Huang X, Gao Z, Chen X, Tu T. UV-B Radiation Disrupts Membrane Lipid Organization and Suppresses Protein Mobility of GmNARK in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1536. [PMID: 38891343 PMCID: PMC11174901 DOI: 10.3390/plants13111536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
While it is well known that plants interpret UV-B as an environmental cue and a potential stressor influencing their growth and development, the specific effects of UV-B-induced oxidative stress on the dynamics of membrane lipids and proteins remain underexplored. Here, we demonstrate that UV-B exposure notably increases the formation of ordered lipid domains on the plasma membrane (PM) and significantly alters the behavior of the Glycine max nodule autoregulation receptor kinase (GmNARK) protein in Arabidopsis leaves. The GmNARK protein was located on the PM and accumulated as small particles in the cytoplasm. We found that UV-B irradiation interrupted the lateral diffusion of GmNARK proteins on the PM. Furthermore, UV-B light decreases the efficiency of surface molecule internalization by clathrin-mediated endocytosis (CME). In brief, UV-B irradiation increased the proportion of the ordered lipid phase and disrupted clathrin-dependent endocytosis; thus, the endocytic trafficking and lateral mobility of GmNARK protein on the plasma membrane are crucial for nodule formation tuning. Our results revealed a novel role of low-intensity UV-B stress in altering the organization of the plasma membrane and the dynamics of membrane-associated proteins.
Collapse
Affiliation(s)
- Qiulin Liu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (T.W.); (M.K.); (Z.G.)
- Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianyu Wang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (T.W.); (M.K.); (Z.G.)
- Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meiyu Ke
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (T.W.); (M.K.); (Z.G.)
- Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chongzhen Qian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.H.)
| | - Jiejie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China;
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.H.)
| | - Zhen Gao
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (T.W.); (M.K.); (Z.G.)
- Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu Chen
- Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianli Tu
- Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
15
|
Yu Q, Li H, Zhang B, Song Y, Sun Y, Ding Z. ATP Hydrolases Superfamily Protein 1 (ASP1) Maintains Root Stem Cell Niche Identity through Regulating Reactive Oxygen Species Signaling in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1469. [PMID: 38891278 PMCID: PMC11174532 DOI: 10.3390/plants13111469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
The maintenance of the root stem cell niche identity in Arabidopsis relies on the delicate balance of reactive oxygen species (ROS) levels in root tips; however, the intricate molecular mechanisms governing ROS homeostasis within the root stem cell niche remain unclear. In this study, we unveil the role of ATP hydrolase superfamily protein 1 (ASP1) in orchestrating root stem cell niche maintenance through its interaction with the redox regulator cystathionine β-synthase domain-containing protein 3 (CBSX3). ASP1 is exclusively expressed in the quiescent center (QC) cells and governs the integrity of the root stem cell niche. Loss of ASP1 function leads to enhanced QC cell division and distal stem cell differentiation, attributable to reduced ROS levels and diminished expression of SCARECROW and SHORT ROOT in root tips. Our findings illuminate the pivotal role of ASP1 in regulating ROS signaling to maintain root stem cell niche homeostasis, achieved through direct interaction with CBSX3.
Collapse
Affiliation(s)
- Qianqian Yu
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China; (H.L.); (B.Z.); (Y.S.); (Y.S.)
| | - Hongyu Li
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China; (H.L.); (B.Z.); (Y.S.); (Y.S.)
| | - Bing Zhang
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China; (H.L.); (B.Z.); (Y.S.); (Y.S.)
| | - Yun Song
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China; (H.L.); (B.Z.); (Y.S.); (Y.S.)
| | - Yueying Sun
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China; (H.L.); (B.Z.); (Y.S.); (Y.S.)
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao 266237, China;
| |
Collapse
|
16
|
Bernal-Gallardo JJ, de Folter S. Plant genome information facilitates plant functional genomics. PLANTA 2024; 259:117. [PMID: 38592421 PMCID: PMC11004055 DOI: 10.1007/s00425-024-04397-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
MAIN CONCLUSION In this review, we give an overview of plant sequencing efforts and how this impacts plant functional genomics research. Plant genome sequence information greatly facilitates the studies of plant biology, functional genomics, evolution of genomes and genes, domestication processes, phylogenetic relationships, among many others. More than two decades of sequencing efforts have boosted the number of available sequenced plant genomes. The first plant genome, of Arabidopsis, was published in the year 2000 and currently, 4604 plant genomes from 1482 plant species have been published. Various large sequence initiatives are running, which are planning to produce tens of thousands of sequenced plant genomes in the near future. In this review, we give an overview on the status of sequenced plant genomes and on the use of genome information in different research areas.
Collapse
Affiliation(s)
- Judith Jazmin Bernal-Gallardo
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato, Mexico
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato, Mexico.
| |
Collapse
|
17
|
He J, Zeng C, Li M. Plant Functional Genomics Based on High-Throughput CRISPR Library Knockout Screening: A Perspective. ADVANCED GENETICS (HOBOKEN, N.J.) 2024; 5:2300203. [PMID: 38465224 PMCID: PMC10919289 DOI: 10.1002/ggn2.202300203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Indexed: 03/12/2024]
Abstract
Plant biology studies in the post-genome era have been focused on annotating genome sequences' functions. The established plant mutant collections have greatly accelerated functional genomics research in the past few decades. However, most plant genome sequences' roles and the underlying regulatory networks remain substantially unknown. Clustered, regularly interspaced short palindromic repeat (CRISPR)-associated systems are robust, versatile tools for manipulating plant genomes with various targeted DNA perturbations, providing an excellent opportunity for high-throughput interrogation of DNA elements' roles. This study compares methods frequently used for plant functional genomics and then discusses different DNA multi-targeted strategies to overcome gene redundancy using the CRISPR-Cas9 system. Next, this work summarizes recent reports using CRISPR libraries for high-throughput gene knockout and function discoveries in plants. Finally, this work envisions the future perspective of optimizing and leveraging CRISPR library screening in plant genomes' other uncharacterized DNA sequences.
Collapse
Affiliation(s)
- Jianjie He
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Key Laboratory of Molecular Biophysics of the Ministry of EducationWuhan430074China
| | - Can Zeng
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Key Laboratory of Molecular Biophysics of the Ministry of EducationWuhan430074China
| | - Maoteng Li
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Key Laboratory of Molecular Biophysics of the Ministry of EducationWuhan430074China
| |
Collapse
|
18
|
Lemke MD, Woodson JD. A genetic screen for dominant chloroplast reactive oxygen species signaling mutants reveals life stage-specific singlet oxygen signaling networks. FRONTIERS IN PLANT SCIENCE 2024; 14:1331346. [PMID: 38273946 PMCID: PMC10809407 DOI: 10.3389/fpls.2023.1331346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
Introduction Plants employ intricate molecular mechanisms to respond to abiotic stresses, which often lead to the accumulation of reactive oxygen species (ROS) within organelles such as chloroplasts. Such ROS can produce stress signals that regulate cellular response mechanisms. One ROS, singlet oxygen (1O2), is predominantly produced in the chloroplast during photosynthesis and can trigger chloroplast degradation, programmed cell death (PCD), and retrograde (organelle-to-nucleus) signaling. However, little is known about the molecular mechanisms involved in these signaling pathways or how many different signaling 1O2 pathways may exist. Methods The Arabidopsis thaliana plastid ferrochelatase two (fc2) mutant conditionally accumulates chloroplast 1O2, making fc2 a valuable genetic system for studying chloroplast 1O2-initiated signaling. Here, we have used activation tagging in a new forward genetic screen to identify eight dominant fc2 activation-tagged (fas) mutations that suppress chloroplast 1O2-initiated PCD. Results While 1O2-triggered PCD is blocked in all fc2 fas mutants in the adult stage, such cellular degradation in the seedling stage is blocked in only two mutants. This differential blocking of PCD suggests that life-stage-specific 1O2-response pathways exist. In addition to PCD, fas mutations generally reduce 1O2-induced retrograde signals. Furthermore, fas mutants have enhanced tolerance to excess light, a natural mechanism to produce chloroplast 1O2. However, general abiotic stress tolerance was only observed in one fc2 fas mutant (fc2 fas2). Together, this suggests that plants can employ general stress tolerance mechanisms to overcome 1O2 production but that this screen was mostly specific to 1O2 signaling. We also observed that salicylic acid (SA) and jasmonate (JA) stress hormone response marker genes were induced in 1O2-stressed fc2 and generally reduced by fas mutations, suggesting that SA and JA signaling is correlated with active 1O2 signaling and PCD. Discussion Together, this work highlights the complexity of 1O2 signaling by demonstrating that multiple pathways may exist and introduces a suite of new 1O2 signaling mutants to investigate the mechanisms controlling chloroplast-initiated degradation, PCD, and retrograde signaling.
Collapse
Affiliation(s)
| | - Jesse D. Woodson
- The School of Plant Sciences, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
19
|
Smyth DR. How flower development genes were identified using forward genetic screens in Arabidopsis thaliana. Genetics 2023; 224:iyad102. [PMID: 37294732 PMCID: PMC10411571 DOI: 10.1093/genetics/iyad102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/20/2023] [Indexed: 06/11/2023] Open
Abstract
In the later part of the 1980s, the time was ripe for identifying genes controlling flower development. In that pregenomic era, the easiest way to do this was to induce random mutations in seeds by chemical mutagens (or irradiation) and to screen thousands of plants for those with phenotypes specifically defective in floral morphogenesis. Here, we discuss the results of premolecular screens for flower development mutants in Arabidopsis thaliana, carried out at Caltech and Monash University, emphasizing the usefulness of saturation mutagenesis, multiple alleles to identify full loss-of-function, conclusions based on multiple mutant analyses, and from screens for enhancer and suppressor modifiers of original mutant phenotypes. One outcome was a series of mutants that led to the ABC floral organ identity model (AP1, AP2, AP3, PI, and AG). In addition, genes controlling flower meristem identity (AP1, CAL, and LFY), floral meristem size (CLV1 and CLV3), development of individual floral organ types (CRC, SPT, and PTL), and inflorescence meristem properties (TFL1, PIN1, and PID) were defined. These occurrences formed targets for cloning that eventually helped lead to an understanding of transcriptional control of the identity of floral organs and flower meristems, signaling within meristems, and the role of auxin in initiating floral organogenesis. These findings in Arabidopsis are now being applied to investigate how orthologous and paralogous genes act in other flowering plants, allowing us to wander in the fertile fields of evo-devo.
Collapse
Affiliation(s)
- David R Smyth
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
20
|
Cai YS, Cai JL, Lee JT, Li YM, Balladona FK, Sukma D, Chan MT. Arabidopsis AtMSRB5 functions as a salt-stress protector for both Arabidopsis and rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1072173. [PMID: 37035039 PMCID: PMC10073502 DOI: 10.3389/fpls.2023.1072173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Salinity, drought and low temperature are major environmental factors that adversely affect crop productivity worldwide. In this study we adopted an activation tagging approach to identify salt tolerant mutants of Arabidopsis. Thousands of tagged Arabidopsis lines were screened to obtain several potential mutant lines resistant to 150 mM NaCl. Transcript analysis of a salt-stress tolerance 1 (sst1) mutant line indicated activation of AtMSRB5 and AtMSRB6 which encode methionine sulfoxide reductases. Overexpression of AtMSRB5 in Arabidopsis (B5OX) showed a similar salt tolerant phenotype. Furthermore, biochemical analysis indicated stability of the membrane protein, H+-ATPase 2 (AHA2) through regulation of Na+/K+ homeostasis which may be involved in a stress tolerance mechanism. Similarly, overexpression of AtMSRB5 in transgenic rice demonstrated a salt tolerant phenotype via the modulation of Na+/K+ homeostasis without a yield drag under salt and oxidative stress conditions.
Collapse
Affiliation(s)
- Yu-Si Cai
- Graduate Program of Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, Tainan, Taiwan
- Academia Sinica Biotechnology Center in Southern Taiwan, Agricultural Biotechnology Research Center, Academia Sinica, Tainan, Taiwan
| | - Jung-Long Cai
- Academia Sinica Biotechnology Center in Southern Taiwan, Agricultural Biotechnology Research Center, Academia Sinica, Tainan, Taiwan
| | - Jent-Turn Lee
- Academia Sinica Biotechnology Center in Southern Taiwan, Agricultural Biotechnology Research Center, Academia Sinica, Tainan, Taiwan
| | - Yi-Min Li
- Academia Sinica Biotechnology Center in Southern Taiwan, Agricultural Biotechnology Research Center, Academia Sinica, Tainan, Taiwan
| | - Freta Kirana Balladona
- Graduate Program of Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, Tainan, Taiwan
- Academia Sinica Biotechnology Center in Southern Taiwan, Agricultural Biotechnology Research Center, Academia Sinica, Tainan, Taiwan
| | - Dewi Sukma
- Department of Agronomy & Horticulture, Faculty of Agriculture, IPB University, Bogor, Indonesia
| | - Ming-Tsair Chan
- Graduate Program of Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, Tainan, Taiwan
- Academia Sinica Biotechnology Center in Southern Taiwan, Agricultural Biotechnology Research Center, Academia Sinica, Tainan, Taiwan
| |
Collapse
|
21
|
Li N, Wong WS, Feng L, Wang C, Wong KS, Zhang N, Yang W, Jiang Y, Jiang L, He JX. The thylakoid membrane protein NTA1 is an assembly factor of the cytochrome b 6f complex essential for chloroplast development in Arabidopsis. PLANT COMMUNICATIONS 2023; 4:100509. [PMID: 36560880 PMCID: PMC9860185 DOI: 10.1016/j.xplc.2022.100509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The cytochrome b6f (Cyt b6f) complex is a multisubunit protein complex in chloroplast thylakoid membranes required for photosynthetic electron transport. Here we report the isolation and characterization of the new tiny albino 1 (nta1) mutant in Arabidopsis, which has severe defects in Cyt b6f accumulation and chloroplast development. Gene cloning revealed that the nta1 phenotype was caused by disruption of a single nuclear gene, NTA1, which encodes an integral thylakoid membrane protein conserved across green algae and plants. Overexpression of NTA1 completely rescued the nta1 phenotype, and knockout of NTA1 in wild-type plants recapitulated the mutant phenotype. Loss of NTA1 function severely impaired the accumulation of multiprotein complexes related to photosynthesis in thylakoid membranes, particularly the components of Cyt b6f. NTA1 was shown to directly interact with four subunits (Cyt b6/PetB, PetD, PetG, and PetN) of Cyt b6f through the DUF1279 domain and C-terminal sequence to mediate their assembly. Taken together, our results identify NTA1 as a new and key regulator of chloroplast development that plays essential roles in assembly of the Cyt b6f complex by interacting with multiple Cyt b6f subunits.
Collapse
Affiliation(s)
- Na Li
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Wing Shing Wong
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Lei Feng
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Chunming Wang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - King Shing Wong
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Nianhui Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Wei Yang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Liwen Jiang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jun-Xian He
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
22
|
Huang Z, Dinh TT, Luscher E, Li S, Liu X, Won SY, Chen X. Genetic Screens for Floral Mutants in Arabidopsis thaliana: Enhancers and Suppressors. Methods Mol Biol 2023; 2686:131-162. [PMID: 37540357 DOI: 10.1007/978-1-0716-3299-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The flower is a hallmark feature that has contributed to the evolutionary success of land plants. Diverse mutagenic agents have been employed as a tool to genetically perturb flower development and identify genes involved in floral patterning and morphogenesis. Since the initial studies to identify genes governing processes such as floral organ specification, mutagenesis in sensitized backgrounds has been used to isolate enhancers and suppressors to further probe the molecular basis of floral development. Here, we first describe two commonly employed methods for mutagenesis (using ethyl methanesulfonate (EMS) or T-DNAs as mutagens), and then describe three methods for identifying a mutation that leads to phenotypic alterations: traditional map-based cloning, modified high-efficiency thermal asymmetric interlaced PCR (mhiTAIL-PCR), and deep sequencing in the plant model Arabidopsis thaliana.
Collapse
Affiliation(s)
- Zhigang Huang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Thanh Theresa Dinh
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Elizabeth Luscher
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Shaofang Li
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Xigang Liu
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - So Youn Won
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Xuemei Chen
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA.
| |
Collapse
|
23
|
Xu Y, Gan ES, Ito T. Misexpression Approaches for the Manipulation of Flower Development. Methods Mol Biol 2023; 2686:429-451. [PMID: 37540372 DOI: 10.1007/978-1-0716-3299-4_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The generation of dominant gain-of-function mutants through activation tagging is a forward genetic approach that can be applied to study the mechanisms of flower development, complementing the screening of loss-of-function mutants. In addition, the functions of genes of interest can be further analyzed through reverse genetics. A commonly used method is gene overexpression, where ectopic expression can result in an opposite phenotype to that caused by a loss-of-function mutation. When overexpression is detrimental, the misexpression of a gene using tissue-specific promoters can be useful to study spatial-specific function. As flower development is a multistep process, it can be advantageous to control gene expression, or its protein product activity, in a temporal and/or spatial manner. This has been made possible through several inducible promoter systems as well as inducible proteins by constructing chimeric fusions between the ligand-binding domain of the glucocorticoid receptor (GR) and the protein of interest. The recently introduced CRISPR-Cas9-based platform provides a new way of bioengineering transcriptional regulators in plants. By fusing a catalytically inactive dCas9 with functional activation or repression domains, the CRISPR-Cas9 module can achieve transcriptional activation or repression of endogenous genes. All these methods allow us to genetically manipulate gene expression during flower development. In this chapter, we describe methods to produce the expression constructs, method of screening, and more general applications of the techniques.
Collapse
Affiliation(s)
- Yifeng Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Eng-Seng Gan
- Republic Polytechnic, School of Applied Science (SAS), Singapore, Singapore
| | - Toshiro Ito
- Nara Institute of Science and Technology, Biological Sciences, Plant Stem Cell Regulation and Floral Patterning Laboratory, Ikoma, Nara, Japan.
| |
Collapse
|
24
|
Jiang H, Chen Y, Liu Y, Shang J, Sun X, Du J. Multifaceted roles of the ERECTA family in plant organ morphogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7208-7218. [PMID: 36056777 DOI: 10.1093/jxb/erac353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Receptor-like kinases (RLKs) can participate in multiple signalling pathways and are considered one of the most critical components of the early events of intercellular signalling. As an RLK, the ERECTA family (ERf), which comprises ERECTA (ER), ERECTA-Like1 (ERL1), and ERECTA-Like2 (ERL2) in Arabidopsis, regulates multiple signalling pathways in plant growth and development. Despite its indispensability, detailed information on ERf-manipulated signalling pathways remains elusive. In this review, we attempt to summarize the essential roles of the ERf in plant organ morphogenesis, including shoot apical meristem, stem, and reproductive organ development.
Collapse
Affiliation(s)
- Hengke Jiang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhui Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhan Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Shang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Sun
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Junbo Du
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
25
|
Zhao Z, Dent C, Liang H, Lv J, Shang G, Liu Y, Feng F, Wang F, Pang J, Li X, Ma L, Li B, Sureshkumar S, Wang JW, Balasubramanian S, Liu H. CRY2 interacts with CIS1 to regulate thermosensory flowering via FLM alternative splicing. Nat Commun 2022; 13:7045. [PMID: 36396657 PMCID: PMC9671898 DOI: 10.1038/s41467-022-34886-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
Cryptochromes (CRYs) are evolutionarily conserved photolyase-like photoreceptors found in almost all species, including mammals. CRYs regulate transcription by modulating the activity of several transcription factors, but whether and how they affect pre-mRNA processing are unknown. Photoperiod and temperature are closely associated seasonal cues that influence reproductive timing in plants. CRYs mediate photoperiod-responsive floral initiation, but it is largely unknown whether and how they are also involved in thermosensory flowering. We establish here that blue light and CRY2 play critical roles in thermosensory flowering in Arabidopsis thaliana by regulating RNA alternative splicing (AS) to affect protein expression and development. CRY2 INTERACTING SPLICING FACTOR 1 (CIS1) interacts with CRY2 in a blue light-dependent manner and promotes CRY2-mediated thermosensory flowering. Blue light, CRYs, and CISs affect transcriptome-wide AS profiles, including those of FLOWERING LOCUS M (FLM), which is critical for temperature modulation of flowering. Moreover, CIS1 binds to the FLM pre-mRNA to regulate its AS, while CRY2 regulates the RNA-binding activity of CIS1. Thus, blue light regulates thermosensory flowering via a CRY2-CIS1-FLM signaling pathway that links flowering responses to both light and ambient temperature.
Collapse
Affiliation(s)
- Zhiwei Zhao
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 200032 Shanghai, China
| | - Craig Dent
- grid.1002.30000 0004 1936 7857School of Biological Sciences, Monash University, Clayton Campus, VIC 3800 Australia
| | - Huafeng Liang
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 200032 Shanghai, China
| | - Junqing Lv
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China ,grid.256922.80000 0000 9139 560XCollege of Life Sciences, Henan University, 475001 Kaifeng, China
| | - Guandong Shang
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 200032 Shanghai, China
| | - Yawen Liu
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Fan Feng
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Fei Wang
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Junhong Pang
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China ,grid.256884.50000 0004 0605 1239College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China
| | - Xu Li
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Libang Ma
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 200032 Shanghai, China
| | - Bing Li
- grid.256884.50000 0004 0605 1239College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China
| | - Sridevi Sureshkumar
- grid.1002.30000 0004 1936 7857School of Biological Sciences, Monash University, Clayton Campus, VIC 3800 Australia
| | - Jia-Wei Wang
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Sureshkumar Balasubramanian
- grid.1002.30000 0004 1936 7857School of Biological Sciences, Monash University, Clayton Campus, VIC 3800 Australia
| | - Hongtao Liu
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China
| |
Collapse
|
26
|
Li Y, Du Y, Huai J, Jing Y, Lin R. The RNA helicase UAP56 and the E3 ubiquitin ligase COP1 coordinately regulate alternative splicing to repress photomorphogenesis in Arabidopsis. THE PLANT CELL 2022; 34:4191-4212. [PMID: 35920787 PMCID: PMC9614450 DOI: 10.1093/plcell/koac235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Light is a key environmental signal that regulates plant growth and development. While posttranscriptional regulatory mechanisms of gene expression include alternative splicing (AS) of pre-messenger RNA (mRNA) in both plants and animals, how light signaling affects AS in plants is largely unknown. Here, we identify DExD/H RNA helicase U2AF65-associated protein (UAP56) as a negative regulator of photomorphogenesis in Arabidopsis thaliana. UAP56 is encoded by the homologs UAP56a and UAP56b. Knockdown of UAP56 led to enhanced photomorphogenic responses and diverse developmental defects during vegetative and reproductive growth. UAP56 physically interacts with the central light signaling repressor constitutive photomorphogenic 1 (COP1) and U2AF65. Global transcriptome analysis revealed that UAP56 and COP1 co-regulate the transcription of a subset of genes. Furthermore, deep RNA-sequencing analysis showed that UAP56 and COP1 control pre-mRNA AS in both overlapping and distinct manners. Ribonucleic acid immunoprecipitation assays showed that UAP56 and COP1 bind to common small nuclear RNAs and mRNAs of downstream targets. Our study reveals that both UAP56 and COP1 function as splicing factors that coordinately regulate AS during light-regulated plant growth and development.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanxin Du
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junling Huai
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yanjun Jing
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | |
Collapse
|
27
|
Vlad D, Langdale JA. DEFECTIVELY ORGANIZED TRIBUTARIES 5 is not required for leaf venation patterning in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:451-459. [PMID: 36042697 PMCID: PMC9826136 DOI: 10.1111/tpj.15958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
The search for genetic regulators of leaf venation patterning started over 30 years ago, primarily focused on mutant screens in the eudicotyledon Arabidopsis thaliana. Developmental perturbations in either cotyledons or true leaves led to the identification of transcription factors required to elaborate the characteristic reticulated vein network. An ortholog of one of these, the C2H2 zinc finger protein DEFECTIVELY ORGANIZED TRIBUTARIES 5 (AtDOT5), was recently identified through transcriptomics as a candidate regulator of parallel venation in maize (Zea mays) leaves. To elucidate how AtDOT5 regulates vein patterning, we generated three independent loss-of-function mutations by gene editing in Arabidopsis. Surprisingly, none of them exhibited any obvious phenotypic perturbations. To reconcile our findings with earlier reports, we re-evaluated the original Atdot5-1 and Atdot5-2 alleles. By genome sequencing, we show that reported mutations at the Atdot5-1 locus are actually polymorphisms between Landsberg erecta and Columbia ecotypes, and that other mutations present in the background most likely cause the pleiotropic mutant phenotype observed. We further show that a T-DNA insertion in the Atdot5-2 locus has no impact on leaf venation patterns when segregated from other T-DNA insertions present in the original line. We thus conclude that AtDOT5 plays no role in leaf venation patterning in Arabidopsis.
Collapse
Affiliation(s)
- Daniela Vlad
- Department of BiologyUniversity of OxfordSouth Parks RdOxfordOX1 3RBUK
| | - Jane A. Langdale
- Department of BiologyUniversity of OxfordSouth Parks RdOxfordOX1 3RBUK
| |
Collapse
|
28
|
Petrella R, Gabrieli F, Cavalleri A, Schneitz K, Colombo L, Cucinotta M. Pivotal role of STIP in ovule pattern formation and female germline development in Arabidopsis thaliana. Development 2022; 149:276792. [DOI: 10.1242/dev.201184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/30/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
In spermatophytes the sporophytic (diploid) and the gametophytic (haploid) generations co-exist in ovules, and the coordination of their developmental programs is of pivotal importance for plant reproduction. To achieve efficient fertilization, the haploid female gametophyte and the diploid ovule structures must coordinate their development to form a functional and correctly shaped ovule. WUSCHEL-RELATED HOMEOBOX (WOX) genes encode a family of transcription factors that share important roles in a wide range of processes throughout plant development. Here, we show that STIP is required for the correct patterning and curvature of the ovule in Arabidopsis thaliana. The knockout mutant stip-2 is characterized by a radialized ovule phenotype due to severe defects in outer integument development. In addition, alteration of STIP expression affects the correct differentiation and progression of the female germline. Finally, our results reveal that STIP is required to tightly regulate the key ovule factors INNER NO OUTER, PHABULOSA and WUSCHEL, and they define a novel genetic interplay in the regulatory networks determining ovule development.
Collapse
Affiliation(s)
- Rosanna Petrella
- Università degli Studi di Milano 1 Dipartimento di Bioscienze , , Via Celoria 26, 20133 Milan , Italy
| | - Flavio Gabrieli
- Università degli Studi di Milano 1 Dipartimento di Bioscienze , , Via Celoria 26, 20133 Milan , Italy
| | - Alex Cavalleri
- Università degli Studi di Milano 1 Dipartimento di Bioscienze , , Via Celoria 26, 20133 Milan , Italy
| | - Kay Schneitz
- , Technical University of Munich 2 Plant Developmental Biology, School of Life Sciences , 85354 Freising , Germany
| | - Lucia Colombo
- Università degli Studi di Milano 1 Dipartimento di Bioscienze , , Via Celoria 26, 20133 Milan , Italy
| | - Mara Cucinotta
- Università degli Studi di Milano 1 Dipartimento di Bioscienze , , Via Celoria 26, 20133 Milan , Italy
| |
Collapse
|
29
|
Jacques CN, Favero DS, Kawamura A, Suzuki T, Sugimoto K, Neff MM. SUPPRESSOR OF PHYTOCHROME B-4 #3 reduces the expression of PIF-activated genes and increases expression of growth repressors to regulate hypocotyl elongation in short days. BMC PLANT BIOLOGY 2022; 22:399. [PMID: 35965321 PMCID: PMC9377115 DOI: 10.1186/s12870-022-03737-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
SUPPRESSOR OF PHYTOCHROME B-4 #3 (SOB3) is a member of the AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED (AHL) family of transcription factors that are involved in light-mediated growth in Arabidopsis thaliana, affecting processes such as hypocotyl elongation. The majority of the research on the AHLs has been conducted in continuous light. However, there are unique molecular events that promote growth in short days (SD) compared to constant light conditions. Therefore, we investigated how AHLs affect hypocotyl elongation in SD. Firstly, we observed that AHLs inhibit hypocotyl growth in SD, similar to their effect in constant light. Next, we identified AHL-regulated genes in SD-grown seedlings by performing RNA-seq in two sob3 mutants at different time points. Our transcriptomic data indicate that PHYTOCHROME INTERACTING FACTORS (PIFs) 4, 5, 7, and 8 along with PIF-target genes are repressed by SOB3 and/or other AHLs. We also identified PIF target genes that are repressed and have not been previously described as AHL-regulated, including PRE1, PIL1, HFR1, CDF5, and XTR7. Interestingly, our RNA-seq data also suggest that AHLs activate the expression of growth repressors to control hypocotyl elongation, such as HY5 and IAA17. Notably, many growth-regulating and other genes identified from the RNA-seq experiment were differentially regulated between these two sob3 mutants at the time points tested. Surprisingly, our ChIP-seq data suggest that SOB3 mostly binds to similar genes throughout the day. Collectively, these data suggest that AHLs affect gene expression in a time point-specific manner irrespective of changes in binding to DNA throughout SD.
Collapse
Affiliation(s)
- Caitlin N Jacques
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Department of Crops and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA, 99164, USA
| | - David S Favero
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan.
| | - Ayako Kawamura
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Biosciences and Biotechnology, Chubu University, Kasugai, Aichi, 487-8501, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Department of Biological Sciences, The University of Tokyo, Tokyo, 119-0033, Japan
| | - Michael M Neff
- Department of Crops and Soil Sciences, Washington State University, Pullman, WA, 99164, USA.
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
30
|
Wei Q, Hu T, Xu X, Tian Z, Bao C, Wang J, Pang H, Hu H, Yan Y, Liu T, Wang W. The New Variation in the Promoter Region of FLOWERING LOCUS T Is Involved in Flowering in Brassica rapa. Genes (Basel) 2022; 13:genes13071162. [PMID: 35885945 PMCID: PMC9317459 DOI: 10.3390/genes13071162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 12/10/2022] Open
Abstract
Flowering time is an important agronomic trait in Brassica rapa and has a wide range of variation. The change from vegetative to reproductive development is a major transition period, especially in flowering vegetable crops. In this study, two non-heading Chinese cabbage varieties with significantly different flowering times, Pak-choi (B. rapa var. communis Tesn et Lee) and Caitai (B. rapa var. tsaitai Hort.), were used to construct segregated F2 populations. The bulk-segregant approach coupled with whole genome re-sequencing was used for QTL sequencing (QTL-seq) analysis to map flowering time traits. The candidate genes controlling flowering time in B. rapa were predicted by homologous gene alignment and function annotation. The major-effect QTL ft7.1 was detected on chromosome A07 of B. rapa, and the FT family gene BrFT was predicted as the candidate gene. Moreover, a new promoter regional difference of 1577 bp was revealed by analyzing the sequence of the BrFT gene. The promoter region activity analysis and divergent gene expression levels indicated that the difference in the promoter region may contribute to different flowering times. These findings provide insights into the mechanisms underlying the flowering time in Brassica and the candidate genes regulating flowering in production.
Collapse
Affiliation(s)
- Qingzhen Wei
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Q.W.); (T.H.); (C.B.); (J.W.); (H.P.); (H.H.); (Y.Y.)
| | - Tianhua Hu
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Q.W.); (T.H.); (C.B.); (J.W.); (H.P.); (H.H.); (Y.Y.)
| | - Xinfeng Xu
- Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education, Nanjing 210095, China;
| | - Zhen Tian
- College of Ecology, Lishui University, Lishui 323000, China;
| | - Chonglai Bao
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Q.W.); (T.H.); (C.B.); (J.W.); (H.P.); (H.H.); (Y.Y.)
| | - Jinglei Wang
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Q.W.); (T.H.); (C.B.); (J.W.); (H.P.); (H.H.); (Y.Y.)
| | - Hongtao Pang
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Q.W.); (T.H.); (C.B.); (J.W.); (H.P.); (H.H.); (Y.Y.)
| | - Haijiao Hu
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Q.W.); (T.H.); (C.B.); (J.W.); (H.P.); (H.H.); (Y.Y.)
| | - Yaqin Yan
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Q.W.); (T.H.); (C.B.); (J.W.); (H.P.); (H.H.); (Y.Y.)
| | - Tongkun Liu
- Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education, Nanjing 210095, China;
- Correspondence: (T.L.); (W.W.); Tel.: +86-571-86409722 (W.W.)
| | - Wuhong Wang
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Q.W.); (T.H.); (C.B.); (J.W.); (H.P.); (H.H.); (Y.Y.)
- Correspondence: (T.L.); (W.W.); Tel.: +86-571-86409722 (W.W.)
| |
Collapse
|
31
|
Zhang WM, Cheng XZ, Fang D, Cao J. AT-HOOK MOTIF NUCLEAR LOCALIZED (AHL) proteins of ancient origin radiate new functions. Int J Biol Macromol 2022; 214:290-300. [PMID: 35716788 DOI: 10.1016/j.ijbiomac.2022.06.100] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/11/2022] [Accepted: 06/12/2022] [Indexed: 11/05/2022]
Abstract
AHL (AT-HOOK MOTIF NUCLEAR LOCALIZED) protein is an important transcription factor in plants that regulates a wide range of biological process. It is considered to have evolved from an independent PPC domain in prokaryotes to a complete protein in modern plants. AT-hook motif and PPC conserved domains are the main functional domains of AHL. Since the discovery of AHL, their evolution and function have been continuously studied. The AHL gene family has been identified in multiple species and the functions of several members of the gene family have been studied. Here, we summarize the evolution and structural characteristics of AHL genes, and emphasize their biological functions. This review will provide a basis for further functional study and crop breeding.
Collapse
Affiliation(s)
- Wei-Meng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xiu-Zhu Cheng
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Da Fang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
32
|
Irigoyen S, Ramasamy M, Misra A, McKnight TD, Mandadi KK. A BTB-TAZ protein is required for gene activation by Cauliflower mosaic virus 35S multimerized enhancers. PLANT PHYSIOLOGY 2022; 188:397-410. [PMID: 34597402 PMCID: PMC8774732 DOI: 10.1093/plphys/kiab450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) BTB-TAZ DOMAIN PROTEIN 2 (BT2) contains an N-terminal BTB domain, a central TAZ zinc-finger protein-protein interaction domain, and a C-terminal calmodulin-binding domain. We previously demonstrated that BT2 regulates telomerase activity and mediates multiple responses to nutrients, hormones, and abiotic stresses in Arabidopsis. Here, we describe the essential role of BT2 in activation of genes by multimerized Cauliflower mosaic virus 35S (35S) enhancers. Loss of BT2 function in several well-characterized 35S enhancer activation-tagged lines resulted in suppression of the activation phenotypes. Suppression of the phenotypes was associated with decreased transcript abundance of the tagged genes. Nuclear run-on assays, mRNA decay studies, and bisulfite sequencing revealed that BT2 is required to maintain the transcriptionally active state of the multimerized 35S enhancers, and lack of BT2 leads to hypermethylation of the 35S enhancers. The TAZ domain and the Ca++/calmodulin-binding domain of BT2 are critical for its function and 35S enhancer activity. We further demonstrate that BT2 requires CULLIN3 and two bromodomain-containing Global Transcription factor group E proteins (GTE9 and GTE11), to regulate 35S enhancer activity. We propose that the BT2-CULLIN3 ubiquitin ligase, through interactions with GTE9 and GTE11, regulates 35S enhancer activity in Arabidopsis.
Collapse
Affiliation(s)
- Sonia Irigoyen
- Texas A&M AgriLife Research and Extension Center, Weslaco, Texas 79596, USA
| | | | - Anjali Misra
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Thomas D McKnight
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Kranthi K Mandadi
- Texas A&M AgriLife Research and Extension Center, Weslaco, Texas 79596, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
33
|
Singh SK, Patra B, Singleton JJ, Liu Y, Paul P, Sui X, Suttipanta N, Pattanaik S, Yuan L. Identification and Characterization of Transcription Factors Regulating Terpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus. Methods Mol Biol 2022; 2505:203-221. [PMID: 35732947 DOI: 10.1007/978-1-0716-2349-7_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biosynthesis of the therapeutically valuable terpenoid indole alkaloids (TIAs), in the medicinal plant Catharanthus roseus, is one of the most elaborate and complex metabolic processes. Although genomic and transcriptomic resources have significantly accelerated gene discovery in the TIA pathway, relatively few genes of transcription factors (TFs) have been identified and characterized thus far. Systematic identification of TFs and elucidation of their functions are crucial for understanding TIA pathway regulation. The successful discovery of TFs in the TIA pathway has relied mostly on three different approaches, (1) identification of cis-regulatory motifs (CRMs) present in the pathway gene promoters as they often provide clues on potential TFs that bind to the promoters, (2) co-expression analysis, based on the assumption that TFs regulating a metabolic or developmental pathway exhibit similar spatiotemporal expression as the pathway genes, and (3) isolation of homologs of TFs known to regulate structurally similar or diverse specialized metabolites in different plant species. TFs regulating TIA pathway have been isolated using either an individual or a combination of the three approaches. Here we describe transcriptome-based coexpression analysis and cis-element determination to identify TFs in C. roseus. In addition, we describe the protocols for generation of transgenic hairy roots, Agrobacterium infiltration of flowers, and electrophoretic mobility shift assay (EMSA). The methods described here are useful for the identification and characterization of potential TFs involved in the regulation of special metabolism in other medicinal plants.
Collapse
Affiliation(s)
- Sanjay K Singh
- Department of Plant and Soil Sciences, and the Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA
| | - Barunava Patra
- Department of Plant and Soil Sciences, and the Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA
| | - Joshua J Singleton
- Department of Plant and Soil Sciences, and the Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA
| | - Yongliang Liu
- Department of Plant and Soil Sciences, and the Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA
| | - Priyanka Paul
- Department of Plant and Soil Sciences, and the Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA
| | - Xueyi Sui
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Nitima Suttipanta
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubonratchathani, Thailand
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences, and the Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA.
| | - Ling Yuan
- Department of Plant and Soil Sciences, and the Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
34
|
Chien CH, Huang LY, Lo SF, Chen LJ, Liao CC, Chen JJ, Chu YW. Using Machine Learning Approaches to Predict Target Gene Expression in Rice T-DNA Insertional Mutants. Front Genet 2021; 12:798107. [PMID: 34976025 PMCID: PMC8718795 DOI: 10.3389/fgene.2021.798107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
To change the expression of the flanking genes by inserting T-DNA into the genome is commonly used in rice functional gene research. However, whether the expression of a gene of interest is enhanced must be validated experimentally. Consequently, to improve the efficiency of screening activated genes, we established a model to predict gene expression in T-DNA mutants through machine learning methods. We gathered experimental datasets consisting of gene expression data in T-DNA mutants and captured the PROMOTER and MIDDLE sequences for encoding. In first-layer models, support vector machine (SVM) models were constructed with nine features consisting of information about biological function and local and global sequences. Feature encoding based on the PROMOTER sequence was weighted by logistic regression. The second-layer models integrated 16 first-layer models with minimum redundancy maximum relevance (mRMR) feature selection and the LADTree algorithm, which were selected from nine feature selection methods and 65 classified methods, respectively. The accuracy of the final two-layer machine learning model, referred to as TIMgo, was 99.3% based on fivefold cross-validation, and 85.6% based on independent testing. We discovered that the information within the local sequence had a greater contribution than the global sequence with respect to classification. TIMgo had a good predictive ability for target genes within 20 kb from the 35S enhancer. Based on the analysis of significant sequences, the G-box regulatory sequence may also play an important role in the activation mechanism of the 35S enhancer.
Collapse
Affiliation(s)
- Ching-Hsuan Chien
- Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Lan-Ying Huang
- Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Shuen-Fang Lo
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Liang-Jwu Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center National Chung Hsing University, Taichung, Taiwan
| | - Chi-Chou Liao
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Jia-Jyun Chen
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Yen-Wei Chu
- Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
35
|
Liu Y, Chen X, Xue S, Quan T, Cui D, Han L, Cong W, Li M, Yun D, Liu B, Xu Z. SET DOMAIN GROUP 721 protein functions in saline-alkaline stress tolerance in the model rice variety Kitaake. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2576-2588. [PMID: 34416090 PMCID: PMC8633509 DOI: 10.1111/pbi.13683] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 06/12/2023]
Abstract
To isolate the genetic locus responsible for saline-alkaline stress tolerance, we developed a high-throughput activation tagging-based T-DNA insertion mutagenesis method using the model rice (Oryza sativa L.) variety Kitaake. One of the activation-tagged insertion lines, activation tagging 7 (AC7), showed increased tolerance to saline-alkaline stress. This phenotype resulted from the overexpression of a gene that encodes a SET DOMAIN GROUP 721 protein with H3K4 methyltransferase activity. Transgenic plants overexpressing OsSDG721 showed saline-alkaline stress-tolerant phenotypes, along with increased leaf angle, advanced heading and ripening dates. By contrast, ossdg721 loss-of-function mutants showed increased sensitivity to saline-alkaline stress characterized by decreased survival rates and reduction in plant height, grain size, grain weight and leaf angle. RNA sequencing (RNA-seq) analysis of wild-type Kitaake and ossdg721 mutants indicated that OsSDG721 positively regulates the expression level of HIGH-AFFINITY POTASSIUM (K+ ) TRANSPORTER1;5 (OsHKT1;5), which encodes a Na+ -selective transporter that maintains K+ /Na+ homeostasis under salt stress. Furthermore, we showed that OsSDG721 binds to and deposits the H3K4me3 mark in the promoter and coding region of OsHKT1;5, thereby upregulating OsHKT1;5 expression under saline-alkaline stress. Overall, by generating Kitaake activation-tagging pools, we established that the H3K4 methyltransferase OsSDG721 enhances saline-alkaline stress tolerance in rice.
Collapse
Affiliation(s)
- Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunP. R. China
| | - Xi Chen
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunP. R. China
| | - Shangyong Xue
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunP. R. China
| | - Taiyong Quan
- School of Life ScienceShandong UniversityQingdaoP. R. China
| | - Di Cui
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingP. R. China
| | - Longzhi Han
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingP. R. China
| | - Weixuan Cong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunP. R. China
| | - Mengting Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunP. R. China
| | - Dae‐Jin Yun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunP. R. China
- Department of Biomedical Science and EngineeringKonkuk UniversitySeoulSouth Korea
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunP. R. China
| | - Zheng‐Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunP. R. China
| |
Collapse
|
36
|
Raja KV, Sekhar KM, Reddy VD, Reddy AR, Rao KV. Activation of CDC48 and acetyltransferase encoding genes contributes to enhanced abiotic stress tolerance and improved productivity traits in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:329-339. [PMID: 34688194 DOI: 10.1016/j.plaphy.2021.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
World-wide crop productivity is highly impacted by various extreme environmental conditions. In the present investigation, activation tagged (AT) line A10-Ds-RFP6 of rice endowed with improved agronomic attributes was tested for its tolerance ability against drought and salinity stress conditions as well as identification of genes associated with these traits. Under both drought and salinity stress conditions, A10-Ds-RFP6 line exhibited increased seed germination rates and improved plant growth characteristics at seedling, vegetative and reproductive stages as compared to wild-type (WT) plants. Moreover, A10-Ds-RFP6 revealed effective antioxidant systems resulting in decreased accumulation of reactive oxygen species and delayed stress symptoms compared to WT plants. Reduced accumulation of malondialdehyde with concomitant increase in proline and soluble sugars in A10-Ds-RFP6 line further endorse its improved stress tolerance levels. Furthermore, A10-Ds-RFP6 disclosed enhanced plant water content, photosynthetic efficiency, stomatal conductance, water use efficiency and maximum quantum yield compared to WT plants. TAIL and qRT-PCR analyses of AT rice line revealed the integration site of Ds element in the genome and increased expression levels of CDC48 and acetyltransferase genes involved in various aspects of plant development and stress tolerance. As such, the promising AT line plausibly serve as a rare genetic resource for fortifying stress tolerance and productivity traits of elite rice cultivars.
Collapse
Affiliation(s)
- Kota Vamsee Raja
- Centre for Plant Molecular Biology, Osmania University, Hyderabad, 500 007, India
| | - Kalva Madhana Sekhar
- Centre for Plant Molecular Biology, Osmania University, Hyderabad, 500 007, India
| | | | | | | |
Collapse
|
37
|
Molecular characterization and expression of cyclic nucleotide gated ion channels 19 and 20 in Arabidopsis thaliana for their potential role in salt stress. Saudi J Biol Sci 2021; 28:5800-5807. [PMID: 34588894 PMCID: PMC8459076 DOI: 10.1016/j.sjbs.2021.06.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 12/05/2022] Open
Abstract
Cyclic nucleotide gated ion channels (CNGCs) in plants have very important role in signaling and development. The study reports role of CNGC19 and CNGC20 in salt stress in A. thaliana. In-silico, genome wide analysis showed that CNGC19 and CNGC20 are related to salt stress with maximum expression after 6 h in A. thaliana. The position of inserted T-DNA was determined (in-vivo) through TAIL-PCR for activation tagged mutants of CNGC19 and CNGC20 under salt stress. The expression of AtCNGC19 and AtCNGC20 after cloning under 35S promoter of expression vectors pBCH1 and pEarleyGate100 was determined in A. thaliana by real-time PCR analysis. Genome wide analysis showed that AtCNGC11 had lowest and AtCNGC20 highest molecular weight as well as number of amino acid residues. In-vivo expression of AtCNGC19 and AtCNGC20 was enhanced through T-DNA insertion and 35S promoter in over-expressed plants under high salt concentration. AtCNGC19 was activated twice in control and about five times under 150 mM NaCl stress level, and expression value was also higher than AtCNGC20. Phenotypically, over-expressed plants and calli were healthier while knock-out plants and calli showed retarded growth under salinity stress. The study provides new insight for the role of AtCNGC19 and AtCNGC20 under salt stress regulation in A. thaliana and will be helpful for improvement of crop plants for salt stress to combat food shortage and security.
Collapse
|
38
|
El-Sappah AH, Yan K, Huang Q, Islam MM, Li Q, Wang Y, Khan MS, Zhao X, Mir RR, Li J, El-Tarabily KA, Abbas M. Comprehensive Mechanism of Gene Silencing and Its Role in Plant Growth and Development. FRONTIERS IN PLANT SCIENCE 2021; 12:705249. [PMID: 34589097 PMCID: PMC8475493 DOI: 10.3389/fpls.2021.705249] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/10/2021] [Indexed: 05/19/2023]
Abstract
Gene silencing is a negative feedback mechanism that regulates gene expression to define cell fate and also regulates metabolism and gene expression throughout the life of an organism. In plants, gene silencing occurs via transcriptional gene silencing (TGS) and post-transcriptional gene silencing (PTGS). TGS obscures transcription via the methylation of 5' untranslated region (5'UTR), whereas PTGS causes the methylation of a coding region to result in transcript degradation. In this review, we summarized the history and molecular mechanisms of gene silencing and underlined its specific role in plant growth and crop production.
Collapse
Affiliation(s)
- Ahmed H. El-Sappah
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Kuan Yan
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Qiulan Huang
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
- College of Tea Science, Yibin University, Yibin, China
| | | | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yu Wang
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Muhammad Sarwar Khan
- Center of Agriculture Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Xianming Zhao
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture (FoA), Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST–K), Sopore, India
| | - Jia Li
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Manzar Abbas
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| |
Collapse
|
39
|
Chin S, Kwon T, Khan BR, Sparks JA, Mallery EL, Szymanski DB, Blancaflor EB. Spatial and temporal localization of SPIRRIG and WAVE/SCAR reveal roles for these proteins in actin-mediated root hair development. THE PLANT CELL 2021; 33:2131-2148. [PMID: 33881536 PMCID: PMC8364238 DOI: 10.1093/plcell/koab115] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 05/31/2023]
Abstract
Root hairs are single-cell protrusions that enable roots to optimize nutrient and water acquisition. These structures attain their tubular shapes by confining growth to the cell apex, a process called tip growth. The actin cytoskeleton and endomembrane systems are essential for tip growth; however, little is known about how these cellular components coordinate their activities during this process. Here, we show that SPIRRIG (SPI), a beige and Chediak Higashi domain-containing protein involved in membrane trafficking, and BRK1 and SCAR2, subunits of the WAVE/SCAR (W/SC) actin nucleating promoting complex, display polarized localizations in Arabidopsis thaliana root hairs during distinct developmental stages. SPI accumulates at the root hair apex via post-Golgi compartments and positively regulates tip growth by maintaining tip-focused vesicle secretion and filamentous-actin integrity. BRK1 and SCAR2 on the other hand, mark the root hair initiation domain to specify the position of root hair emergence. Consistent with the localization data, tip growth was reduced in spi and the position of root hair emergence was disrupted in brk1 and scar1234. BRK1 depletion coincided with SPI accumulation as root hairs transitioned from initiation to tip growth. Taken together, our work uncovers a role for SPI in facilitating actin-dependent root hair development in Arabidopsis through pathways that might intersect with W/SC.
Collapse
Affiliation(s)
- Sabrina Chin
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, USA
| | - Taegun Kwon
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, USA
| | - Bibi Rafeiza Khan
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, USA
| | - J. Alan Sparks
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, USA
| | - Eileen L. Mallery
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Daniel B. Szymanski
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - Elison B. Blancaflor
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, USA
| |
Collapse
|
40
|
Khakhar A, Wang C, Swanson R, Stokke S, Rizvi F, Sarup S, Hobbs J, Voytas DF. VipariNama: RNA viral vectors to rapidly elucidate the relationship between gene expression and phenotype. PLANT PHYSIOLOGY 2021; 186:2222-2238. [PMID: 34009393 PMCID: PMC8331131 DOI: 10.1093/plphys/kiab197] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 04/01/2021] [Indexed: 05/05/2023]
Abstract
Synthetic transcription factors have great promise as tools to help elucidate relationships between gene expression and phenotype by allowing tunable alterations of gene expression without genomic alterations of the loci being studied. However, the years-long timescales, high cost, and technical skill associated with plant transformation have limited their use. In this work, we developed a technology called VipariNama (ViN) in which vectors based on the tobacco rattle virus are used to rapidly deploy Cas9-based synthetic transcription factors and reprogram gene expression in planta. We demonstrate that ViN vectors can implement activation or repression of multiple genes systemically and persistently over several weeks in Nicotiana benthamiana, Arabidopsis (Arabidopsis thaliana), and tomato (Solanum lycopersicum). By exploring strategies including RNA scaffolding, viral vector ensembles, and viral engineering, we describe how the flexibility and efficacy of regulation can be improved. We also show how this transcriptional reprogramming can create predictable changes to metabolic phenotypes, such as gibberellin biosynthesis in N. benthamiana and anthocyanin accumulation in Arabidopsis, as well as developmental phenotypes, such as plant size in N. benthamiana, Arabidopsis, and tomato. These results demonstrate how ViN vector-based reprogramming of different aspects of gibberellin signaling can be used to engineer plant size in a range of plant species in a matter of weeks. In summary, ViN accelerates the timeline for generating phenotypes from over a year to just a few weeks, providing an attractive alternative to transgenesis for synthetic transcription factor-enabled hypothesis testing and crop engineering.
Collapse
Affiliation(s)
- Arjun Khakhar
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St Paul, Minneapolis 55108, USA
| | - Cecily Wang
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St Paul, Minneapolis 55108, USA
| | - Ryan Swanson
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St Paul, Minneapolis 55108, USA
| | - Sydney Stokke
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St Paul, Minneapolis 55108, USA
| | - Furva Rizvi
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St Paul, Minneapolis 55108, USA
| | - Surbhi Sarup
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St Paul, Minneapolis 55108, USA
| | - John Hobbs
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St Paul, Minneapolis 55108, USA
| | - Daniel F Voytas
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St Paul, Minneapolis 55108, USA
| |
Collapse
|
41
|
Dutta M, Moin M, Saha A, Dutta D, Bakshi A, Kirti PB. Gain-of-function mutagenesis through activation tagging identifies XPB2 and SEN1 helicase genes as potential targets for drought stress tolerance in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2253-2272. [PMID: 33821294 DOI: 10.1007/s00122-021-03823-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 03/23/2021] [Indexed: 05/13/2023]
Abstract
XPB2 and SEN1 helicases were identified through activation tagging as potential candidate genes in rice for inducing high water-use efficiency (WUE) and maintaining sustainable yield under drought stress. As a follow-up on the high-water-use-efficiency screening and physiological analyses of the activation-tagged gain-of-function mutant lines that were developed in an indica rice variety, BPT-5204 (Moin et al. in Plant Cell Environ 39:2440-2459, 2016a, https://doi.org/10.1111/pce.12796 ), we have identified two gain-of-function mutant lines (XM3 and SM4), which evidenced the activation of two helicases, ATP-dependent DNA helicase (XPB2) and RNA helicase (SEN1), respectively. We performed the transcript profiling of XPB2 and SEN1 upon exposure to various stress conditions and found their significant upregulation, particularly in ABA and PEG treatments. Extensive morpho-physiological and biochemical analyses based on 24 metrics were performed under dehydration stress (PEG) and phytohormone (ABA) treatments for the wild-type and the two mutant lines. Principal component analysis (PCA) performed on the dataset captured 72.73% of the cumulative variance using the parameters influencing the first two principal components. The tagged mutants exhibited reduced leaf wilting, improved revival efficiency, constant amylose:amylopectin ratio, high chlorophyll and proline contents, profuse tillering, high quantum efficiency and yield-related traits with respect to their controls. These observations were further validated under greenhouse conditions by the periodic withdrawal of water at the pot level. Germination of the seeds of these mutant lines indicated their insensitivity to high ABA concentration. The associated upregulation of stress-specific genes further suggests that their drought tolerance might be because of the coordinated expression of several stress-responsive genes in these two mutants. Altogether, our results provided a firm basis for SEN1 and XPB2 as potential candidates for manipulation of drought tolerance and improving rice performance and yield under limited water conditions.
Collapse
Affiliation(s)
- Mouboni Dutta
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Mazahar Moin
- Biotechnology Division, Indian Institute of Rice Research, Hyderabad, 500030, India.
| | - Anusree Saha
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Dibyendu Dutta
- Department of Chemical Engineering, Indian Institute of Technology, Bombay, Mumbai, 400076, India
| | - Achala Bakshi
- Biotechnology Division, Indian Institute of Rice Research, Hyderabad, 500030, India
| | - P B Kirti
- Agri Biotech Foundation, PJTS Agricultural University Campus, Hyderabad, 500030, India.
| |
Collapse
|
42
|
Wang Y, Huang N, Ye N, Qiu L, Li Y, Ma H. An Efficient Virus-Induced Gene Silencing System for Functional Genomics Research in Walnut ( Juglans regia L.) Fruits. FRONTIERS IN PLANT SCIENCE 2021; 12:661633. [PMID: 34249033 PMCID: PMC8261060 DOI: 10.3389/fpls.2021.661633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
The Persian walnut (Juglans regia L.) is a leading source of woody oil in warm temperate regions and has high nutritional and medicinal values. It also provides both tree nuts and woody products. Nevertheless, incomplete characterization of the walnut genetic system limits the walnut gene function analysis. This study used the tobacco rattle virus (TRV) vector to construct an infectious pTRV-JrPDS recombinant clone. A co-culture inoculation method utilizing Agrobacterium was screened out from four inoculation methods and optimized to set up an efficient virus-induced gene silencing (VIGS) system for J. regia fruit. The optimized VIGS-TRV system induced complete photobleaching phenotype on the walnut fruits of four cultivars, and the JrPDS transcript levels decreased by up to 88% at 8 days post-inoculation (dpi). While those of browning-related J. regia polyphenol oxidase (PPO) genes JrPPO1 and JrPPO2 decreased by 67 and 80% at 8 dpi, respectively, accompanied by a significant reduction in fruit browning phenotype. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis screening and Western Blot showed that the PPO protein levels were significantly reduced. Moreover, a model of TRV-mediated VIGS system for inoculating J. regia fruit with efficient silence efficiency via co-culture was developed. These results indicate that the VIGS-TRV system is an efficient tool for rapid gene function analysis in J. regia fruits.
Collapse
|
43
|
Santos RB, Figueiredo A. Two sides of the same story in grapevine-pathogen interactions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3367-3380. [PMID: 33631010 DOI: 10.1093/jxb/erab091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Proteases are an integral part of plant defence systems, and their role in plant-pathogen interactions is unequivocal. Emerging evidence suggests that different protease families contribute to the establishment not only of hypersensitive response, priming, and signalling, but also of recognition events through complex proteolytic cascades. Moreover, they play a crucial role in pathogen/microbe-associated molecular pattern (PAMP/MAMP)-triggered immunity as well as in effector-triggered immunity. However, despite important advances in our understanding of the role of proteases in plant defence, the contribution of proteases to pathogen defence in grapevine remains poorly understood. In this review, we summarize current knowledge of the main grapevine pathosystems and explore the role of serine, cysteine, and aspartic proteases from both the host and pathogen point of views.
Collapse
Affiliation(s)
- Rita B Santos
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Andreia Figueiredo
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
44
|
Oh SA, Park HJ, Kim MH, Park SK. Analysis of sticky generative cell mutants reveals that suppression of callose deposition in the generative cell is necessary for generative cell internalization and differentiation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:228-244. [PMID: 33458909 DOI: 10.1111/tpj.15162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
In flowering plants, double fertilization between male and female gametophytes, which are separated by distance, largely depends on the unique pattern of the male gametophyte (pollen): two non-motile sperm cells suspended within a tube-producing vegetative cell. A morphological screen to elucidate the genetic control governing the strategic patterning of pollen has led to the isolation of a sticky generative cell (sgc) mutant that dehisces abnormal pollen with the generative cell immobilized at the pollen wall. Analyses revealed that the sgc mutation is specifically detrimental to pollen development, causing ectopic callose deposition that impedes the timely internalization and differentiation of the generative cell. We found that the SGC gene encodes the highly conserved domain of unknown function 707 (DUF707) gene that is broadly expressed but is germline specific during pollen development. Additionally, transgenic plants co-expressing fluorescently fused SGC protein and known organelle markers showed that SGC localizes in the endoplasmic reticulum, Golgi apparatus and vacuoles in pollen. A yeast two-hybrid screen with an SGC bait identified a thaumatin-like protein that we named GCTLP1, some homologs of which bind and/or digest β-1,3-glucans, the main constituent of callose. GCTLP1 is expressed in a germline-specific manner and colocalizes with SGC during pollen development, indicating that GCTLP1 is a putative SGC interactor. Collectively, our results show that SGC suppresses callose deposition in the nascent generative cell, thereby allowing the generative cell to fully internalize into the vegetative cell and correctly differentiate as the germline progenitor, with the potential involvement of the GCTLP1 protein, during pollen development in Arabidopsis.
Collapse
Affiliation(s)
- Sung-Aeong Oh
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hyo-Jin Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Myung-Hee Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Soon-Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
45
|
Zhang L, Luo P, Bai J, Wu L, Di DW, Liu HQ, Li JJ, Liu YL, Khaskheli AJ, Zhao CM, Guo GQ. Function of histone H2B monoubiquitination in transcriptional regulation of auxin biosynthesis in Arabidopsis. Commun Biol 2021; 4:206. [PMID: 33589721 PMCID: PMC7884795 DOI: 10.1038/s42003-021-01733-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 01/13/2021] [Indexed: 11/09/2022] Open
Abstract
The auxin IAA is a vital plant hormone in controlling growth and development, but our knowledge about its complicated biosynthetic pathways and molecular regulation are still limited and fragmentary. cytokinin induced root waving 2 (ckrw2) was isolated as one of the auxin-deficient mutants in a large-scale forward genetic screen aiming to find more genes functioning in auxin homeostasis and/or its regulation. Here we show that CKRW2 is identical to Histone Monoubiquitination 1 (HUB1), a gene encoding an E3 ligase required for histone H2B monoubiquitination (H2Bub1) in Arabidopsis. In addition to pleiotropic defects in growth and development, loss of CKRW2/HUB1 function also led to typical auxin-deficient phenotypes in roots, which was associated with significantly lower expression levels of several functional auxin synthetic genes, namely TRP2/TSB1, WEI7/ASB1, YUC7 and AMI1. Corresponding defects in H2Bub1 were detected in the coding regions of these genes by chromatin immunoprecipitation (ChIP) analysis, indicating the involvement of H2Bub1 in regulating auxin biosynthesis. Importantly, application of exogenous cytokinin (CK) could stimulate CKRW2/HUB1 expression, providing an epigenetic avenue for CK to regulate the auxin homeostasis. Our results reveal a previously unknown mechanism for regulating auxin biosynthesis via HUB1/2-mediated H2Bub1 at the chromatin level.
Collapse
Affiliation(s)
- Li Zhang
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Pan Luo
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, P.R. China.,College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, P.R. China
| | - Jie Bai
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Lei Wu
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Dong-Wei Di
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, P.R. China.,State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P.R. China
| | - Hai-Qing Liu
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Jing-Jing Li
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Ya-Li Liu
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Allah Jurio Khaskheli
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Chang-Ming Zhao
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, P.R. China. .,State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, P.R. China.
| | - Guang-Qin Guo
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, P.R. China.
| |
Collapse
|
46
|
Roesler K, Lu C, Thomas J, Xu Q, Vance P, Hou Z, Williams RW, Liu L, Owens MA, Habben JE. Arabidopsis Carboxylesterase 20 Binds Strigolactone and Increases Branches and Tillers When Ectopically Expressed in Arabidopsis and Maize. FRONTIERS IN PLANT SCIENCE 2021; 12:639401. [PMID: 33986761 PMCID: PMC8110907 DOI: 10.3389/fpls.2021.639401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/01/2021] [Indexed: 05/08/2023]
Abstract
Severe drought stress can delay maize silk emergence relative to the pollen shedding period, resulting in poor fertilization and reduced grain yield. Methods to minimize the delay in silking could thus improve yield stability. An Arabidopsis enhancer-tagged carboxylesterase 20 (AtCXE20) line was identified in a drought tolerance screen. Ectopic expression of AtCXE20 in Arabidopsis and maize resulted in phenotypes characteristic of strigolactone (SL)-deficient mutants, including increased branching and tillering, decreased plant height, delayed senescence, hyposensitivity to ethylene, and reduced flavonols. Maize silk growth was increased by AtCXE20 overexpression, and this phenotype was partially complemented by exogenous SL treatments. In drought conditions, the transgenic maize plants silked earlier than controls and had decreased anthesis-silking intervals. The purified recombinant AtCXE20 protein bound SL in vitro, as indicated by SL inhibiting AtCXE20 esterase activity and altering AtCXE20 intrinsic fluorescence. Homology modeling of the AtCXE20 three-dimensional (3D) protein structure revealed a large hydrophobic binding pocket capable of accommodating, but not hydrolyzing SLs. The AtCXE20 protein concentration in transgenic maize tissues was determined by mass spectrometry to be in the micromolar range, well-above known endogenous SL concentrations. These results best support a mechanism where ectopic expression of AtCXE20 with a strong promoter effectively lowers the concentration of free SL by sequestration. This study revealed an agriculturally important role for SL in maize silk growth and provided a new approach for altering SL levels in plants.
Collapse
|
47
|
Johnson A, Mcassey E, Diaz S, Reagin J, Redd PS, Parrilla DR, Nguyen H, Stec A, McDaniel LAL, Clemente TE, Stupar RM, Parrott WA, Hancock CN. Development of mPing-based activation tags for crop insertional mutagenesis. PLANT DIRECT 2021; 5:e00300. [PMID: 33506165 PMCID: PMC7814626 DOI: 10.1002/pld3.300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/13/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Modern plant breeding increasingly relies on genomic information to guide crop improvement. Although some genes are characterized, additional tools are needed to effectively identify and characterize genes associated with crop traits. To address this need, the mPing element from rice was modified to serve as an activation tag to induce expression of nearby genes. Embedding promoter sequences in mPing resulted in a decrease in overall transposition rate; however, this effect was negated by using a hyperactive version of mPing called mmPing20. Transgenic soybean events carrying mPing-based activation tags and the appropriate transposase expression cassettes showed evidence of transposition. Expression analysis of a line that contained a heritable insertion of the mmPing20F activation tag indicated that the activation tag induced overexpression of the nearby soybean genes. This represents a significant advance in gene discovery technology as activation tags have the potential to induce more phenotypes than the original mPing element, improving the overall effectiveness of the mutagenesis system.
Collapse
Affiliation(s)
- Alexander Johnson
- Institute of Plant Breeding, Genetics & Genomics/Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGAUSA
| | - Edward Mcassey
- Institute of Plant Breeding, Genetics & Genomics/Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGAUSA
- Present address:
School of Life SciencesUniversity of Hawaiʻi at MānoaHonoluluHIUSA
| | - Stephanie Diaz
- Department of Biology and GeologyUniversity of South Carolina AikenAikenSCUSA
- Present address:
Department of BiochemistryPurdue UniversityWest LafayetteINUSA
| | - Jacob Reagin
- Department of Biology and GeologyUniversity of South Carolina AikenAikenSCUSA
| | - Priscilla S. Redd
- Department of Biology and GeologyUniversity of South Carolina AikenAikenSCUSA
| | - Daymond R. Parrilla
- Department of Biology and GeologyUniversity of South Carolina AikenAikenSCUSA
- Present address:
Department of Molecular and Comparative PathobiologyJohns Hopkins School of MedicineBaltimoreMDUSA
| | - Hanh Nguyen
- Department of Agronomy and Horticulture/Center for Plant Science InnovationUniversity of NebraskaLincolnNEUSA
| | - Adrian Stec
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMNUSA
| | - Lauren A. L. McDaniel
- Institute of Plant Breeding, Genetics & Genomics/Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGAUSA
| | - Thomas E. Clemente
- Department of Agronomy and Horticulture/Center for Plant Science InnovationUniversity of NebraskaLincolnNEUSA
| | - Robert M. Stupar
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMNUSA
| | - Wayne A. Parrott
- Institute of Plant Breeding, Genetics & Genomics/Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGAUSA
| | - C. Nathan Hancock
- Department of Biology and GeologyUniversity of South Carolina AikenAikenSCUSA
| |
Collapse
|
48
|
Han R, Truco MJ, Lavelle DO, Michelmore RW. A Composite Analysis of Flowering Time Regulation in Lettuce. FRONTIERS IN PLANT SCIENCE 2021; 12:632708. [PMID: 33763095 PMCID: PMC7982828 DOI: 10.3389/fpls.2021.632708] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/16/2021] [Indexed: 05/08/2023]
Abstract
Plants undergo profound physiological changes when transitioning from vegetative to reproductive growth. These changes affect crop production, as in the case of leafy vegetables. Lettuce is one of the most valuable leafy vegetable crops in the world. Past genetic studies have identified multiple quantitative trait loci (QTLs) that affect the timing of the floral transition in lettuce. Extensive functional molecular studies in the model organism Arabidopsis provide the opportunity to transfer knowledge to lettuce to explore the mechanisms through which genetic variations translate into changes in flowering time. In this review, we integrated results from past genetic and molecular studies for flowering time in lettuce with orthology and functional inference from Arabidopsis. This summarizes the basis for all known genetic variation underlying the phenotypic diversity of flowering time in lettuce and how the genetics of flowering time in lettuce projects onto the established pathways controlling flowering time in plants. This comprehensive overview reveals patterns across experiments as well as areas in need of further study. Our review also represents a resource for developing cultivars with delayed flowering time.
Collapse
Affiliation(s)
- Rongkui Han
- The Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA, United States
- Plant Biology Graduate Group, University of California, Davis, Davis, CA, United States
| | - Maria José Truco
- The Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA, United States
| | - Dean O. Lavelle
- The Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA, United States
| | - Richard W. Michelmore
- The Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA, United States
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
- *Correspondence: Richard W. Michelmore,
| |
Collapse
|
49
|
Yang S, Wang S, Li S, Du Q, Qi L, Wang W, Chen J, Wang H. Activation of ACS7 in Arabidopsis affects vascular development and demonstrates a link between ethylene synthesis and cambial activity. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7160-7170. [PMID: 32926140 DOI: 10.1093/jxb/eraa423] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Ethylene is a gaseous hormone that affects many processes of plant growth and development. During vascular development, ethylene positively regulates cambial cell division in parallel with tracheary element differentiation inhibitory factor (TDIF) peptide signaling. In this study, we identified an ethylene overproducing mutant, acs7-d, exhibiting enhanced cambial activity and reduced wall development in fiber cells. Using genetic analysis, we found that ethylene signaling is necessary for the phenotypes of enhanced cambial cell division as well as defects in stem elongation and fiber cell wall development. Further, the cambial cell proliferation phenotype of acs7-d depends on WOX4, indicating that the two parallel pathways, ethylene and TDIF signaling, converge at WOX4 in regulating cambium activity. Gene expression analysis showed that ethylene impedes fiber cell wall biosynthesis through a conserved hierarchical transcriptional regulation. These results advance our understanding of the molecular mechanisms of ethylene in regulating vascular meristem activity.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, USA
- College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Sining Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, USA
| | - Shujia Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qian Du
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, USA
| | - Liying Qi
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, USA
| | - Wenguang Wang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, China
| | - Jingtang Chen
- College of Agronomy, Hebei Agricultural University, Baoding, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Huanzhong Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, USA
- Institute for System Genomics, University of Connecticut, Storrs CT, USA
| |
Collapse
|
50
|
Deng M, Wang Y, Kuzma M, Chalifoux M, Tremblay L, Yang S, Ying J, Sample A, Wang HM, Griffiths R, Uchacz T, Tang X, Tian G, Joslin K, Dennis D, McCourt P, Huang Y, Wan J. Activation tagging identifies Arabidopsis transcription factor AtMYB68 for heat and drought tolerance at yield determining reproductive stages. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1535-1550. [PMID: 33048399 DOI: 10.1111/tpj.15019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/13/2020] [Accepted: 09/23/2020] [Indexed: 05/23/2023]
Abstract
Heat stress occurring at reproductive stages can result in significant and permanent damage to crop yields. However, previous genetic studies in understanding heat stress response and signaling were performed mostly on seedling and plants at early vegetative stages. Here we identify, using a developmentally defined, gain-of-function genetic screen with approximately 18 000 Arabidopsis thaliana activation-tagged lines, a mutant that maintained productive seed set post-severe heat stress during flowering. Genome walking indicated this phenotype was caused by the insertion of 35S enhancers adjacent to a nuclear localized transcription factor AtMYB68. Subsequent overexpression analysis confirmed that AtMYB68 was responsible for the reproductive heat tolerance of the mutant. Furthermore, these transgenic Arabidopsis plants exhibited enhanced abscisic acid sensitivity at and post-germination, reduced transpirational water loss during a drought treatment, and enhanced seed yield under combined heat and drought stress during flowering. Ectopic expression of AtMYB68 in Brassica napus driven either by 35S or by heat-inducible promoter recapitulated the enhanced reproductive heat stress and drought tolerance phenotypes observed in the transgenic Arabidopsis. The improvement to heat stress is likely due to enhanced pollen viability observed in the transgenic plants. More importantly, the transgenic canola showed significant yield advantages over the non-transgenic controls in multiple locations, multiple season field trials under various drought and heat stress conditions. Together these results suggest that AtMYB68 regulate plant stress tolerance at the most important yield determining stage of plant development, and is an effective target for crop yield protection under current global climate volatility.
Collapse
Affiliation(s)
- Mingde Deng
- Performance Plants Inc., 1287 Gardiners Road, Kingston, Ontario, K7P 3J6, Canada
| | - Yang Wang
- Performance Plants Inc., 1287 Gardiners Road, Kingston, Ontario, K7P 3J6, Canada
| | - Monika Kuzma
- Performance Plants Inc., 1287 Gardiners Road, Kingston, Ontario, K7P 3J6, Canada
| | - Maryse Chalifoux
- Performance Plants Inc., 1287 Gardiners Road, Kingston, Ontario, K7P 3J6, Canada
| | - Linda Tremblay
- Performance Plants Inc., 1287 Gardiners Road, Kingston, Ontario, K7P 3J6, Canada
| | - Shujun Yang
- Performance Plants Inc., 1287 Gardiners Road, Kingston, Ontario, K7P 3J6, Canada
| | - Jifeng Ying
- Performance Plants Inc., 1287 Gardiners Road, Kingston, Ontario, K7P 3J6, Canada
| | - Angela Sample
- Performance Plants Inc., 1287 Gardiners Road, Kingston, Ontario, K7P 3J6, Canada
| | - Hung-Mei Wang
- Performance Plants Inc., 1287 Gardiners Road, Kingston, Ontario, K7P 3J6, Canada
| | - Rebecca Griffiths
- Performance Plants Inc., 1287 Gardiners Road, Kingston, Ontario, K7P 3J6, Canada
| | - Tina Uchacz
- Performance Plants Inc., 1287 Gardiners Road, Kingston, Ontario, K7P 3J6, Canada
| | - Xurong Tang
- Performance Plants Inc., 1287 Gardiners Road, Kingston, Ontario, K7P 3J6, Canada
| | - Gang Tian
- Performance Plants Inc., 1287 Gardiners Road, Kingston, Ontario, K7P 3J6, Canada
| | - Katelyn Joslin
- Performance Plants Inc., 1287 Gardiners Road, Kingston, Ontario, K7P 3J6, Canada
| | - David Dennis
- Performance Plants Inc., 1287 Gardiners Road, Kingston, Ontario, K7P 3J6, Canada
| | - Peter McCourt
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, M5S 3B2, Canada
| | - Yafan Huang
- Performance Plants Inc., 1287 Gardiners Road, Kingston, Ontario, K7P 3J6, Canada
| | - Jiangxin Wan
- Performance Plants Inc., 1287 Gardiners Road, Kingston, Ontario, K7P 3J6, Canada
| |
Collapse
|