1
|
Xu L, Chen L, Jiang L, Zhang J, Wu P, Wang W. Chlorella's transport inhibition: A powerful defense against high ammonium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117460. [PMID: 39675076 DOI: 10.1016/j.ecoenv.2024.117460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 12/17/2024]
Abstract
Ammonium (NH₄⁺) is a primary nitrogen source for many species, yet NH₄⁺-rich wastewater presents a substantial risk to environment. Chlorella sorokiniana is widely recognized for wastewater treatment. The development of high NH₄⁺ tolerant strains has the potential to significantly enhance wastewater treatment efficiency and reduce treatment costs. This study reports the identification of a C. sorokiniana strain designated hact (high ammonium concentration tolerance). This strain demonstrates a remarkable tolerance to NH₄⁺ (1000 mg/L). Integrative analyses of physiology, metabolomics, and transcriptomics demonstrated that transport inhibition is the principal resistance mechanism against high NH₄⁺ stress in C. sorokiniana. Notably, under elevated NH₄⁺ conditions, the hact strain maintained robust intracellular homeostasis. In contrast, the wild-type (WT) strain exhibited suppressed metabolic activity, reactive oxygen species (ROS), and an excess of detrimental metabolites such as amines. This research enriches our understanding of microalgal molecular responses to high NH₄⁺ stress, paving the way for the development of engineered optimization strategies for microalgal bioremediation systems treating NH₄⁺-rich wastewater.
Collapse
Affiliation(s)
- Lihe Xu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Li Chen
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Longxing Jiang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Jingni Zhang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Peike Wu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Wenguo Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, China.
| |
Collapse
|
2
|
Poucet T, Beauvoit B, González‐Moro MB, Cabasson C, Pétriacq P, Flandin A, Gibon Y, Marino D, Dieuaide‐Noubhani M. Impaired cell growth under ammonium stress explained by modeling the energy cost of vacuole expansion in tomato leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1014-1028. [PMID: 36198049 PMCID: PMC9828129 DOI: 10.1111/tpj.15991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Ammonium (NH4 + )-based fertilization efficiently mitigates the adverse effects of nitrogen fertilization on the environment. However, high concentrations of soil NH4 + provoke growth inhibition, partly caused by the reduction of cell enlargement and associated with modifications of cell composition, such as an increase of sugars and a decrease in organic acids. Cell expansion depends largely on the osmotic-driven enlargement of the vacuole. However, the involvement of subcellular compartmentation in the adaptation of plants to ammonium nutrition has received little attention, until now. To investigate this, tomato (Solanum lycopersicum) plants were cultivated under nitrate and ammonium nutrition and the fourth leaf was harvested at seven developmental stages. The vacuolar expansion was monitored and metabolites and inorganic ion contents, together with intracellular pH, were determined. A data-constrained model was constructed to estimate subcellular concentrations of major metabolites and ions. It was first validated at the three latter developmental stages by comparison with subcellular concentrations obtained experimentally using non-aqueous fractionation. Then, the model was used to estimate the subcellular concentrations at the seven developmental stages and the net vacuolar uptake of solutes along the developmental series. Our results showed ammonium nutrition provokes an acidification of the vacuole and a reduction in the flux of solutes into the vacuoles. Overall, analysis of the subcellular compartmentation reveals a mechanism behind leaf growth inhibition under ammonium stress linked to the higher energy cost of vacuole expansion, as a result of alterations in pH, the inhibition of glycolysis routes and the depletion of organic acids.
Collapse
Affiliation(s)
- Théo Poucet
- Department of Plant Biology and EcologyUniversity of the Basque Country (UPV/EHU)E‐48940LeioaSpain
- Université de Bordeaux, INRAE, UMR Biologie du Fruit et PathologieVillenave d'Ornon33140France
| | - Bertrand Beauvoit
- Université de Bordeaux, INRAE, UMR Biologie du Fruit et PathologieVillenave d'Ornon33140France
| | | | - Cécile Cabasson
- Université de Bordeaux, INRAE, UMR Biologie du Fruit et PathologieVillenave d'Ornon33140France
- Bordeaux Metabolome, MetaboHUBPHENOME‐EMPHASISVillenave d'Ornon33140France
| | - Pierre Pétriacq
- Université de Bordeaux, INRAE, UMR Biologie du Fruit et PathologieVillenave d'Ornon33140France
- Bordeaux Metabolome, MetaboHUBPHENOME‐EMPHASISVillenave d'Ornon33140France
| | - Amélie Flandin
- Université de Bordeaux, INRAE, UMR Biologie du Fruit et PathologieVillenave d'Ornon33140France
- Bordeaux Metabolome, MetaboHUBPHENOME‐EMPHASISVillenave d'Ornon33140France
| | - Yves Gibon
- Université de Bordeaux, INRAE, UMR Biologie du Fruit et PathologieVillenave d'Ornon33140France
- Bordeaux Metabolome, MetaboHUBPHENOME‐EMPHASISVillenave d'Ornon33140France
| | - Daniel Marino
- Department of Plant Biology and EcologyUniversity of the Basque Country (UPV/EHU)E‐48940LeioaSpain
- Ikerbasque, Basque Foundation for ScienceE‐48011BilbaoSpain
| | | |
Collapse
|
3
|
Di DW, Sun L, Wang M, Wu J, Kronzucker HJ, Fang S, Chu J, Shi W, Li G. WRKY46 promotes ammonium tolerance in Arabidopsis by repressing NUDX9 and indole-3-acetic acid-conjugating genes and by inhibiting ammonium efflux in the root elongation zone. THE NEW PHYTOLOGIST 2021; 232:190-207. [PMID: 34128546 DOI: 10.1111/nph.17554] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/08/2021] [Indexed: 05/11/2023]
Abstract
Ammonium (NH4+ ) is toxic to root growth in most plants, even at moderate concentrations. Transcriptional regulation is one of the most important mechanisms in the response of plants to NH4+ toxicity, but the nature of the involvement of transcription factors (TFs) in this regulation remains unclear. Here, RNA-seq analysis was performed on Arabidopsis roots to screen for ammonium-responsive TFs. WRKY46, the member of the WRKY transcription factor family most responsive to NH4+ , was selected. We defined the role of WRKY46 using mutation and overexpression assays, and characterized the regulation of NUDX9 and indole-3-acetic acid (IAA)-conjugating genes by WRKY46 via yeast one-hybrid and electrophoretic mobility shift assays and chromatin immunoprecipitation-quantitative real-time polymerase chain reaction (ChIP-qPCR). Knockout of WRKY46 increased, while overexpression of WRKY46 decreased, NH4+ -suppression of the primary root. WRKY46 is shown to directly bind to the promoters of the NUDX9 and IAA-conjugating genes (GH3.1, GH3.6, UGT75D1, UGT84B2) and to inhibit their transcription, thus positively regulating free IAA content and stabilizing protein N-glycosylation, leading to an inhibition of NH4+ efflux in the root elongation zone (EZ). We identify TF involvement in the regulation of NH4+ efflux in the EZ, and show that WRKY46 inhibits NH4+ efflux by negative regulation of NUDX9 and IAA-conjugating genes.
Collapse
Affiliation(s)
- Dong-Wei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Li Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, 210095, China
| | - Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jingjing Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Herbert J Kronzucker
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Shuang Fang
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Guangjie Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
4
|
Chen M, Chen G, Di D, Kronzucker HJ, Shi W. Higher nitrogen use efficiency (NUE) in hybrid "super rice" links to improved morphological and physiological traits in seedling roots. JOURNAL OF PLANT PHYSIOLOGY 2020; 251:153191. [PMID: 32585498 DOI: 10.1016/j.jplph.2020.153191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 05/09/2023]
Abstract
Great progress has been achieved in developing hybrid "super rice" varieties in China. Understanding morphological root traits in super rice and the mechanisms of nitrogen acquisition by the root system are of fundamental importance to developing proper fertilisation and nutrient management practices in their production. The present study was designed to study morphological and physiological traits in hybrid super rice roots that are associated with nitrogen use efficiency (NUE). Two hybrid super rice varieties (Yongyou12, YY; Jiayou 6, JY) and one common variety (Xiushui 134, XS) with differing NUE were cultivated hydroponically, and morphological and physiological traits of seedling roots in response to varying nitrogen conditions were investigated. Our results show that the hybrid cultivars YY and JY exhibit larger root systems, arising from a maximisation of root tips and from longer roots without changes in root diameter. The cross-sectional proportion of aerenchyma was significantly higher in super rice roots. The larger root system of super hybrid rice contributed to higher N accumulation and resulted in higher N uptake efficiency. 15N (15NH4+) labeling results show that YY and JY had an enhanced capacity for ammonium (NH4+) uptake. Moreover, YY and JY were more tolerant to high NH4+ and showed reduced futile NH4+ efflux. NH4+ efflux in the root elongation zone, measured by Non-invasive Micro-test Technology, was significantly lower than in XS. Taken together, our results suggest that a longer root, a larger number of tips, a better developed aerenchyma, a higher capacity for N uptake, and reduced NH4+ efflux from roots are associated with higher NUE and growth performance in hybrid super rice.
Collapse
Affiliation(s)
- Mei Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Gui Chen
- Development of Agricultural Ecological Environment, Jiaxing Academy of Agricultural Science, Jiaxing 314016, China.
| | - Dongwei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Herbert J Kronzucker
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4 Canada.
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
5
|
Kusano M, Fukushima A, Tabuchi-Kobayashi M, Funayama K, Kojima S, Maruyama K, Yamamoto YY, Nishizawa T, Kobayashi M, Wakazaki M, Sato M, Toyooka K, Osanai-Kondo K, Utsumi Y, Seki M, Fukai C, Saito K, Yamaya T. Cytosolic GLUTAMINE SYNTHETASE1;1 Modulates Metabolism and Chloroplast Development in Roots. PLANT PHYSIOLOGY 2020; 182:1894-1909. [PMID: 32024696 PMCID: PMC7140926 DOI: 10.1104/pp.19.01118] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/09/2020] [Indexed: 05/31/2023]
Abstract
Nitrogen (N) is an essential macronutrient, and the final form of endogenous inorganic N is ammonium, which is assimilated by Gln synthetase (GS) into Gln. However, how the multiple isoforms of cytosolic GSs contribute to metabolic systems via the regulation of ammonium assimilation remains unclear. In this study, we compared the effects of two rice (Oryza sativa) cytosolic GSs, namely OsGS1;1 and OsGS1;2, on central metabolism in roots using reverse genetics, metabolomic and transcriptomic profiling, and network analyses. We observed (1) abnormal sugar and organic N accumulation and (2) significant up-regulation of genes associated with photosynthesis and chlorophyll biosynthesis in the roots of Osgs1;1 but not Osgs1;2 knockout mutants. Network analysis of the Osgs1;1 mutant suggested that metabolism of Gln was coordinated with the metabolic modules of sugar metabolism, tricarboxylic acid cycle, and carbon fixation. Transcript profiling of Osgs1;1 mutant roots revealed that expression of the rice sigma-factor (OsSIG) genes in the mutants were transiently upregulated. GOLDEN2-LIKE transcription factor-encoding genes, which are involved in chloroplast biogenesis in rice, could not compensate for the lack of OsSIGs in the Osgs1;1 mutant. Microscopic analysis revealed mature chloroplast development in Osgs1;1 roots but not in the roots of Osgs1;2, Osgs1;2-complemented lines, or the wild type. Thus, organic N assimilated by OsGS1;1 affects a broad range of metabolites and transcripts involved in maintaining metabolic homeostasis and plastid development in rice roots, whereas OsGS1;2 has a more specific role, affecting mainly amino acid homeostasis but not carbon metabolism.
Collapse
Affiliation(s)
- Miyako Kusano
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Atsushi Fukushima
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | | | - Kazuhiro Funayama
- Graduate School of Agricultural Science, Tohoku University, Sendai 981-0845, Japan
| | - Soichi Kojima
- Graduate School of Agricultural Science, Tohoku University, Sendai 981-0845, Japan
| | - Kyonoshin Maruyama
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba 305-8686, Japan
| | - Yoshiharu Y Yamamoto
- The United Graduate School of Agricultural Science, Gifu University, Gifu 501-1193, Japan
| | - Tomoko Nishizawa
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Makoto Kobayashi
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Mayumi Wakazaki
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Kumiko Osanai-Kondo
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Yoshinori Utsumi
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Motoaki Seki
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Chihaya Fukai
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Tomoyuki Yamaya
- Graduate School of Agricultural Science, Tohoku University, Sendai 981-0845, Japan
| |
Collapse
|
6
|
Munzi S, Sheppard LJ, Leith ID, Cruz C, Branquinho C, Bini L, Gagliardi A, Cai G, Parrotta L. The cost of surviving nitrogen excess: energy and protein demand in the lichen Cladonia portentosa as revealed by proteomic analysis. PLANTA 2017; 245:819-833. [PMID: 28054148 DOI: 10.1007/s00425-017-2647-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/01/2017] [Indexed: 05/10/2023]
Abstract
Different nitrogen forms affect different metabolic pathways in lichens. In particular, the most relevant changes in protein expression were observed in the fungal partner, with NO 3- mostly affecting the energetic metabolism and NH 4+ affecting transport and regulation of proteins and the energetic metabolism much more than NO 3- did. Excess deposition of reactive nitrogen is a well-known agent of stress for lichens, but which symbiont is most affected and how, remains a mystery. Using proteomics can expand our understanding of stress effects on lichens. We investigated the effects of different doses and forms of reactive nitrogen, with and without supplementary phosphorus and potassium, on the proteome of the lichen Cladonia portentosa growing in a 'real-world' simulation of nitrogen deposition. Protein expression changed with the nitrogen treatments but mostly in the fungal partner, with NO3- mainly affecting the energetic metabolism and NH4+ also affecting the protein synthesis machinery. The photobiont mainly responded overexpressing proteins involved in energy production. This suggests that in response to nitrogen stress, the photobiont mainly supports the defensive mechanisms initiated by the mycobiont with an increased energy production. Such surplus energy is then used by the cell to maintain functionality in the presence of NO3-, while a futile cycle of protein production can be hypothesized to be induced by NH4+ excess. External supply of potassium and phosphorus influenced differently the responses of particular enzymes, likely reflecting the many processes in which potassium exerts a regulatory function.
Collapse
Affiliation(s)
- Silvana Munzi
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Bloco C2, 1749-016, Lisbon, Portugal.
| | - Lucy J Sheppard
- Centre for Ecology and Hydrology (CEH) Edinburgh, Bush Estate, Penicuik, EH26 0QB, UK
| | - Ian D Leith
- Centre for Ecology and Hydrology (CEH) Edinburgh, Bush Estate, Penicuik, EH26 0QB, UK
| | - Cristina Cruz
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Bloco C2, 1749-016, Lisbon, Portugal
| | - Cristina Branquinho
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Bloco C2, 1749-016, Lisbon, Portugal
| | - Luca Bini
- Department of Life Sciences, University of Siena, Via Aldo Moro, 2, 53100, Siena, Italy
| | - Assunta Gagliardi
- Department of Life Sciences, University of Siena, Via Aldo Moro, 2, 53100, Siena, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, Via Pier Andrea Mattioli, 4, 53100, Siena, Italy
| | - Luigi Parrotta
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio, 42, 40126, Bologna, Italy
| |
Collapse
|
7
|
Li H, Han JL, Chang YH, Lin J, Yang QS. Gene characterization and transcription analysis of two new ammonium transporters in pear rootstock (Pyrus betulaefolia). JOURNAL OF PLANT RESEARCH 2016; 129:737-748. [PMID: 26943161 DOI: 10.1007/s10265-016-0799-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/29/2015] [Indexed: 05/07/2023]
Abstract
Ammonium is the primarily nitrogen source for plant growth, but the molecular basis of ammonium acquisition in fruit species remains poorly understood. In this study, we report on the characterization of two new ammonium transporters (AMT) in the perennial tree Pyrus betulaefolia. In silico analyses and yeast complementation assays revealed that both PbAMT1;3 and PbAMT1;5 can be classified in the AMT1 sub-family. The specific expression of PbAMT1;3 in roots and of PbAMT1;5 in leaves indicates that they have diverse functions in ammonium uptake or transport in P. betulaefolia. Their expression was strongly influenced by ammonium availability. In addition, the transcript level of PbAMT1;5 was significantly affected by the diurnal cycle and senescence hormones. They conferred the ability to uptake nitrogen to the yeast strain 31019b; however, the (15)NH4 (+) uptake kinetics of PbAMT1;3 were different from those of PbAMT1;5. Indeed, PbAMT1;3 had a higher affinity for (15)NH4 (+), and pH changes were associated with this substrates' transport in yeast. The present study provides basic gene features and transcriptional information for the two new members of the AMT1 sub-family in P. betulaefolia and will aid in decoding the precise roles of AMTs in P. betulaefolia physiology.
Collapse
Affiliation(s)
- Hui Li
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, No. 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Jin-Long Han
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, No. 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - You-Hong Chang
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, No. 50 Zhongling Street, Nanjing, 210014, Jiangsu, China.
| | - Jing Lin
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, No. 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Qing-Song Yang
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, No. 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| |
Collapse
|
8
|
Reddy MM, Ulaganathan K. Nitrogen Nutrition, Its Regulation and Biotechnological Approaches to Improve Crop Productivity. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ajps.2015.618275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Collos Y, Harrison PJ. Acclimation and toxicity of high ammonium concentrations to unicellular algae. MARINE POLLUTION BULLETIN 2014; 80:8-23. [PMID: 24533997 DOI: 10.1016/j.marpolbul.2014.01.006] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 12/17/2013] [Accepted: 01/03/2014] [Indexed: 05/20/2023]
Abstract
A literature review on the effects of high ammonium concentrations on the growth of 6 classes of microalgae suggests the following rankings. Mean optimal ammonium concentrations were 7600, 2500, 1400, 340, 260, 100 μM for Chlorophyceae, Cyanophyceae, Prymnesiophyceae, Diatomophyceae, Raphidophyceae, and Dinophyceae respectively and their tolerance to high toxic ammonium levels was 39,000, 13,000, 2300, 3600, 2500, 1200 μM respectively. Field ammonium concentrations <100 μM would not likely reduce the growth rate of most microalgae. Chlorophytes were significantly more tolerant to high ammonium than diatoms, prymnesiophytes, dinoflagellates, and raphidophytes. Cyanophytes were significantly more tolerant than dinoflagellates which were the least tolerant. A smaller but more complete data set was used to estimate ammonium EC₅₀ values, and the ranking was: Chlorophyceae>Cyanophyceae, Dinophyceae, Diatomophyceae, and Raphidophyceae. Ammonia toxicity is mainly attributed to NH₃ at pHs >9 and at pHs <8, toxicity is likely associated with the ammonium ion rather than ammonia.
Collapse
Affiliation(s)
- Yves Collos
- Ecologie des Systèmes Marins Côtiers (UMR5119), Université Montpellier 2, CNRS, IRD, case 093, 34095 Montpellier Cedex 5, France.
| | - Paul J Harrison
- University of British Columbia, Department of Earth & Ocean Sciences, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
10
|
Coskun D, Britto DT, Li M, Becker A, Kronzucker HJ. Rapid ammonia gas transport accounts for futile transmembrane cycling under NH3/NH4+ toxicity in plant roots. PLANT PHYSIOLOGY 2013; 163:1859-67. [PMID: 24134887 PMCID: PMC3850193 DOI: 10.1104/pp.113.225961] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/14/2013] [Indexed: 05/17/2023]
Abstract
Futile transmembrane NH3/NH4(+) cycling in plant root cells, characterized by extremely rapid fluxes and high efflux to influx ratios, has been successfully linked to NH3/NH4(+) toxicity. Surprisingly, the fundamental question of which species of the conjugate pair (NH3 or NH4(+)) participates in such fluxes is unresolved. Using flux analyses with the short-lived radioisotope (13)N and electrophysiological, respiratory, and histochemical measurements, we show that futile cycling in roots of barley (Hordeum vulgare) seedlings is predominately of the gaseous NH3 species, rather than the NH4(+) ion. Influx of (13)NH3/(13)NH4(+), which exceeded 200 µmol g(-1) h(-1), was not commensurate with membrane depolarization or increases in root respiration, suggesting electroneutral NH3 transport. Influx followed Michaelis-Menten kinetics for NH3 (but not NH4(+)), as a function of external concentration (Km = 152 µm, Vmax = 205 µmol g(-1) h(-1)). Efflux of (13)NH3/(13)NH4(+) responded with a nearly identical Km. Pharmacological characterization of influx and efflux suggests mediation by aquaporins. Our study fundamentally revises the futile-cycling model by demonstrating that NH3 is the major permeating species across both plasmalemma and tonoplast of root cells under toxicity conditions.
Collapse
Affiliation(s)
- Devrim Coskun
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Dev T. Britto
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Mingyuan Li
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Alexander Becker
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Herbert J. Kronzucker
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| |
Collapse
|
11
|
Martínez-Andújar C, Ghanem ME, Albacete A, Pérez-Alfocea F. Response to nitrate/ammonium nutrition of tomato (Solanum lycopersicum L.) plants overexpressing a prokaryotic NH4(+)-dependent asparagine synthetase. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:676-87. [PMID: 23394787 DOI: 10.1016/j.jplph.2012.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 05/03/2023]
Abstract
Nitrogen availability is an important limiting factor for plant growth. Although NH4(+) assimilation is energetically more favorable than NO3(-), it is usually toxic for plants. In order to study if an improved ammonium assimilatory metabolism could increase the plant tolerance to ammonium nutrition, tomato (Solanum lycopersicum L. cv P-73) plants were transformed with an NH4(+)-dependent asparagine synthetase (AS-A) gene from Escherichia coli (asnA) under the control of a PCpea promoter (pea isolated constitutive promotor). Homozygous (Hom), azygous (Az) asnA and wild type (WT) plants were grown hydroponically for 6 weeks with normal Hoagland nutrition (NO3(-)/NH4(+)=6/0.5) and high ammonium nutrition (NO3(-)/NH4(+)=3.5/3). Under Hoagland's conditions, Hom plants produced 40-50% less biomass than WT and Az plants. However, under NO3(-)/NH4(+)=3.5/3 the biomass of Hom was not affected while it was reduced by 40-70% in WT and Az plants compared to Hoagland, respectively. The Hom plants accumulated 1.5-4 times more asparagine, glycine, serine and soluble proteins and registered higher glutamine synthetase (GS) and glutamate synthase (GOGAT) activities in the light-adapted leaves than the other genotypes, but had similar NH4(+) and NO3(-) levels in all conditions. In the dark-adapted leaves, a protein catabolism occurred in the Hom plants with a concomitant 25-40% increase in organic acid concentration, while asparagine accumulation registered the highest values. The aforementioned processes might be responsible for a positive energetic balance as regards the futile cycle of the transgenic protein synthesis and catabolism. This explains growth penalty under standard nutrition and growth stability under NO3(-)/NH4(+)=3.5/3, respectively.
Collapse
Affiliation(s)
- Cristina Martínez-Andújar
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario de Espinardo, E-30100, Murcia, Spain.
| | | | | | | |
Collapse
|
12
|
Ullmann RT, Andrade SLA, Ullmann GM. Thermodynamics of transport through the ammonium transporter Amt-1 investigated with free energy calculations. J Phys Chem B 2012; 116:9690-703. [PMID: 22804733 DOI: 10.1021/jp305440f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Amt-1 from Archaeoglobus fulgidus (AfAmt-1) belongs to the Amt/Rh family of ammonium/ammonia transporting membrane proteins. The transport mode and the precise microscopic permeation mechanism utilized by these proteins are intensely debated. Open questions concern the identity of the transported substrate (ammonia and/or ammonium) and whether the transport is passive or active. To address these questions, we studied the overall thermodynamics of the different transport modes as a function of the environmental conditions. Then, we investigated the thermodynamics of the underlying microscopic transport mechanisms with free energy calculations within a continuum electrostatics model. The formalism developed for this purpose is of general utility in the calculation of binding free energies for ligands with multiple protonation forms or other binding forms. The results of our calculations are compared to the available experimental and theoretical data on Amt/Rh proteins and discussed in light of the current knowledge on the physiological conditions experienced by microorganisms and plants. We found that microscopic models of electroneutral and electrogenic transport modes are in principle thermodynamically viable. However, only the electrogenic variants have a net thermodynamic driving force under the physiological conditions experienced by microorganisms and plants. Thus, the transport mechanism of AfAmt-1 is most likely electrogenic.
Collapse
Affiliation(s)
- R Thomas Ullmann
- Structural Biology/Bioinformatics, University of Bayreuth, Universitätsstrasse 30, BGI, 95447 Bayreuth, Germany.
| | | | | |
Collapse
|
13
|
Garnett T, Conn V, Kaiser BN. Root based approaches to improving nitrogen use efficiency in plants. PLANT, CELL & ENVIRONMENT 2009; 32:1272-83. [PMID: 19558408 DOI: 10.1111/j.1365-3040.2009.02011.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In the majority of agricultural growing regions, crop production is highly dependent on the supply of exogenous nitrogen (N) fertilizers. Traditionally, this dependency and the use of N-fertilizers to restore N depleted soils has been rewarded with increased plant health and yields. In recent years, increased competition for non-renewable fossil fuel reserves has directly elevated prices of N-fertilizers and the cost of agricultural production worldwide. Furthermore, N-fertilizer based pollution is becoming a serious issue for many regions where agriculture is highly concentrated. To help minimize the N footprint associated with agricultural production there is significant interest at the plant level to develop technologies which can allow economically viable production while using less applied N. To complement recent reviews examining N utilization efficiency in agricultural plants, this review will explore those strategies operating specifically at the root level, which may directly contribute to improved N use efficiencies in agricultural crops such as cereals, where the majority of N-fertilizers are used and lost to the environment. Root specific phenotypes that will be addressed in the context of improvements to N acquisition and assimilation efficiencies include: root morphology; root to shoot ratios; root vigour, root length density; and root N transport and metabolism.
Collapse
Affiliation(s)
- Trevor Garnett
- School of Agriculture Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia
| | | | | |
Collapse
|
14
|
Channel-like NH3flux by ammonium transporter AtAMT2. FEBS Lett 2009; 583:2833-8. [DOI: 10.1016/j.febslet.2009.07.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 07/01/2009] [Indexed: 12/16/2022]
|
15
|
Jentsch A, Friedrich S, Steinlein T, Beyschlag W, Nezadal W. Assessing Conservation Action for Substitution of Missing Dynamics on Former Military Training Areas in Central Europe. Restor Ecol 2009. [DOI: 10.1111/j.1526-100x.2007.00339.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Mayer M, Ludewig U. Role of AMT1;1 in NH4+ acquisition in Arabidopsis thaliana. PLANT BIOLOGY (STUTTGART, GERMANY) 2006; 8:522-8. [PMID: 16917981 DOI: 10.1055/s-2006-923877] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
AtAMT1;1 was the founding member of the family of AMT/Rh ammonium transporters and accounts for about one third of the total ammonium absorption in the roots of the model plant Arabidopsis. Recent evidence suggested that at least some AMT/Rh proteins are NH3 gas channels. In order to evaluate the transported form of ammonium in AtAMT1;1, the protein was functionally expressed in Xenopus oocytes. AtAMT1;1 elicited NH4+ and methylammonium (MeA+) inward currents that saturated in a voltage-dependent manner with a half maximal concentration of 2.7 +/- 1.6 microM for NH4+ and 5.0 +/- 0.7 microM for the transport analogue methylammonium. AtAMT1;1 was plasma membrane localized and expressed in the root cortex and epidermis, including root hairs. The AtAMT1;1-GFP fusion construct under control of its endogenous promoter revealed additional localization of the protein in the pericycle, in the leaf epidermis, and in mesophyll cells. The functional data and its localization suggest that AtAMT1;1 participates in concentrative NH4+ acquisition in roots, in long-distance transport to the shoots, and in re-uptake of apoplastic NH4+ that derives from photorespiration in shoots.
Collapse
Affiliation(s)
- M Mayer
- Zentrum für Molekularbiologie der Pflanzen (ZMBP), Pflanzenphysiologie, Universität Tübingen, Auf der Morgenstelle 1, 72076 Tübingen, Germany
| | | |
Collapse
|
17
|
Obermeyer G, Tyerman SD. NH4+ currents across the peribacteroid membrane of soybean. Macroscopic and microscopic properties, inhibition by Mg2+, and temperature dependence indicate a SubpicoSiemens channel finely regulated by divalent cations. PLANT PHYSIOLOGY 2005; 139:1015-29. [PMID: 16183839 PMCID: PMC1256014 DOI: 10.1104/pp.105.066670] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 07/28/2005] [Accepted: 07/30/2005] [Indexed: 05/04/2023]
Abstract
The control of ammonium (NH(4)(+)) transport is critical in preventing futile cycles of NH(4)(+)/ammonia transport. An unusual nonselective cation channel with subpicoSiemens single-channel conductance permeable to NH(4)(+) had previously been identified in the peribacteroid membrane (PBM) of symbiosomes from soybean (Glycine max) nodules. Here, we investigate the proposed channel mechanism and its control by luminal magnesium. Currents carried by NH(4)(+) were measured in inside-out PBM patches by patch clamp. NH(4)(+) transport corresponding to the physiological direction of net transfer showed time-dependent activation and associated single-channel-like events. These could not be resolved to discrete conductances but had the same selectivity as the total current. The voltage dependence of the steady-state current was affected by temperature consistent with the rate constant of channel opening being reduced with decreased temperature. This resulted in steady-state currents that were more temperature sensitive at voltages where the current was only partially activated. When fully activated, the current reflected more the ion conduction through open channels and had an activation energy of 28.2 kJ mol(-1) (Q10 = 1.51, 8 degrees C-24 degrees C). Increased Mg(2+) on the symbiosome lumen side blocked the current (ID(50) = 351 microm, with 60 mm NH(4)(+)). Complete inhibition with 2 mm Mg(2+) was relieved with a small increase in NH(4)(+) on the lumen side of the membrane (shift of 60-70 mm). With Mg(2+) the selectivity of the transport for divalent cations increased. From these features, we propose a divalent-dependent feedback regulation of the PBM-nonselective cation channel that could maintain a constant NH(4)(+) gradient across the membrane.
Collapse
Affiliation(s)
- Gerhard Obermeyer
- Molecular Plant Physiology, Division of Allergy and Immunobiology, Department of Molecular Biology, University of Salzburg, Austria
| | | |
Collapse
|
18
|
Loqué D, Ludewig U, Yuan L, von Wirén N. Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole. PLANT PHYSIOLOGY 2005; 137:671-80. [PMID: 15665250 PMCID: PMC1065367 DOI: 10.1104/pp.104.051268] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 11/12/2004] [Accepted: 11/12/2004] [Indexed: 05/18/2023]
Abstract
While membrane transporters mediating ammonium uptake across the plasma membrane have been well described at the molecular level, little is known about compartmentation and cellular export of ammonium. (The term ammonium is used to denote both NH3 and NH4+ and chemical symbols are used when specificity is required.) We therefore developed a yeast (Saccharomyces cerevisiae) complementation approach and isolated two Arabidopsis (Arabidopsis thaliana) genes that conferred tolerance to the toxic ammonium analog methylammonium in yeast. Both genes, AtTIP2;1 and AtTIP2;3, encode aquaporins of the tonoplast intrinsic protein subfamily and transported methylammonium or ammonium in yeast preferentially at high medium pH. AtTIP2;1 expression in Xenopus oocytes increased 14C-methylammonium accumulation with increasing pH. AtTIP2;1- and AtTIP2;3-mediated methylammonium detoxification in yeast depended on a functional vacuole, which was in agreement with the subcellular localization of green fluorescent protein-fusion proteins on the tonoplast in planta. Transcript levels of both AtTIPs were influenced by nitrogen supply but did not follow those of the nitrogen-derepressed ammonium transporter gene AtAMT1;1. Transgenic Arabidopsis plants overexpressing AtTIP2;1 did not show altered ammonium accumulation in roots after ammonium supply, although AtTIP2;1 mRNA levels in wild-type plants were up-regulated under these conditions. This study shows that AtTIP2;1 and AtTIP2;3 can mediate the extracytosolic transport of methyl-NH2 and NH3 across the tonoplast membrane and may thus participate in vacuolar ammonium compartmentation.
Collapse
Affiliation(s)
- Dominique Loqué
- Institut für Pflanzenernährung, Universität Hohenheim, D-70593 Stuttgart, Germany
| | | | | | | |
Collapse
|
19
|
|
20
|
González-Ballester D, Camargo A, Fernández E. Ammonium transporter genes in Chlamydomonas: the nitrate-specific regulatory gene Nit2 is involved in Amt1;1 expression. PLANT MOLECULAR BIOLOGY 2004; 56:863-78. [PMID: 15821986 DOI: 10.1007/s11103-004-5292-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Accepted: 10/21/2004] [Indexed: 05/04/2023]
Abstract
Ammonium transport is a key process in nitrogen metabolism. In the green alga Chlamydomonas, we have characterized molecularly the largest family of ammonium transporters (AMT1) so far described consisting of eight members. CrAmt1 genes have an interesting transcript structure with some very small exons. Differential expression patterns were found for each CrAmt1 gene in response to the nitrogen source by using Real Time PCR. These expression patterns were similar under high and low CO2 atmosphere. CrAmt1;1 expression was characterized in detail. It was repressed in both ammonium and nitrate medium, and strongly expressed in nitrogen-free media. Treatment with a Glutamine synthetase inhibitor released partially repression in ammonium and nitrate suggesting that ammonium and its derivatives participate in the observed repressing effects. By studying CrAmt1;1 expression in mutants deficient at different steps of the nitrate assimilation pathway, it has been shown that nitrate has a double negative effect on this gene expression; one related to its reduction to ammonium, and a second one by itself. This second effect of nitrate was dependent on the functionality of the regulatory gene Nit2, specific for nitrate assimilation. Thus, NIT2 would have a dual role on gene expression: the well-known positive one on nitrate assimilation and a novel negative one on Amt1;1 regulation.
Collapse
Affiliation(s)
- David González-Ballester
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Edificio Severo Ochoa Planta baja, Universidad de Córdoba, Campus de Rabanales, Spain
| | | | | |
Collapse
|
21
|
Loqué D, von Wirén N. Regulatory levels for the transport of ammonium in plant roots. JOURNAL OF EXPERIMENTAL BOTANY 2004; 55:1293-305. [PMID: 15133056 DOI: 10.1093/jxb/erh147] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Ammonium is an attractive nitrogen form for root uptake due to its permanent availability and the reduced state of the nitrogen. On the other hand, ammonium fluxes are difficult to control because ammonium represents an equilibrium between NH4+ and NH3, which are two N forms with different membrane permeabilities. There is increasing evidence that AMT-type ammonium transporters represent the major entry pathways for root uptake of NH4+. Since excess uptake of ammonium might cause toxicity and since ammonium is also released from catabolic processes within the cell, ammonium uptake across the root plasma membrane has to be tightly regulated. To take over a function in cellular ammonium homeostasis, various AMT transporters are synthesized that differ in their biochemical properties, their localization, and in their regulation at the transcriptional level. At the same time, AMT-driven transport is subject to control by the nitrogen status of a local root portion as well as of the whole plant. In this review, the focus is on the different levels at which AMT-dependent ammonium uptake is regulated and the gaps in current knowledge are highlighted.
Collapse
Affiliation(s)
- Dominique Loqué
- Institut für Pflanzenernährung, Universität Hohenheim, D-70593 Stuttgart, Germany
| | | |
Collapse
|
22
|
Wirén NV, Merrick M. Regulation and function of ammonium carriers in bacteria, fungi, and plants. MOLECULAR MECHANISMS CONTROLLING TRANSMEMBRANE TRANSPORT 2004. [DOI: 10.1007/b95775] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Ludewig U, Wilken S, Wu B, Jost W, Obrdlik P, El Bakkoury M, Marini AM, André B, Hamacher T, Boles E, von Wirén N, Frommer WB. Homo- and hetero-oligomerization of ammonium transporter-1 NH4 uniporters. J Biol Chem 2003; 278:45603-10. [PMID: 12952951 DOI: 10.1074/jbc.m307424200] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In most organisms, high affinity ammonium uptake is catalyzed by members of the ammonium transporter family (AMT/MEP/Rh). A single point mutation (G458D) in the cytosolic C terminus of the plasma membrane transporter LeAMT1;1 from tomato leads to loss of function, although mutant and wild type proteins show similar localization when expressed in yeast or plant protoplasts. Co-expression of LeAMT1;1 and mutant in Xenopus oocytes inhibited ammonium transport in a dominant negative manner, suggesting homo-oligomerization. In vivo interaction between LeAMT1;1 proteins was confirmed by the split ubiquitin yeast two-hybrid system. LeAMT1;1 is isolated from root membranes as a high molecular mass oligomer, converted to a approximately 35-kDa polypeptide by denaturation. To investigate interactions with the LeAMT1;2 paralog, co-localizing with LeAMT1;1 in root hairs, LeAMT1;2 was characterized as a lower affinity NH4+ uniporter. Co-expression of wild types with the respective G458D/G465D mutants inhibited ammonium transport in a dominant negative manner, supporting the formation of heteromeric complexes in oocytes. Thus, in yeast, oocytes, and plants, ammonium transporters are able to oligomerize, which may be relevant for regulation of ammonium uptake.
Collapse
Affiliation(s)
- Uwe Ludewig
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Universität Tübingen, Auf der Morgenstelle 1, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Dijkstra P, Williamson C, Menyailo O, Doucett R, Koch G, Hungate BA. Nitrogen stable isotope composition of leaves and roots of plants growing in a forest and a meadow. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2003; 39:29-39. [PMID: 12812253 DOI: 10.1080/1025601031000102189] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In controlled N-nutrition experiments, differences in delta15N composition of leaves and roots are regularly found. In this paper we report results from a survey of nitrogen stable isotope signatures of leaves and roots of 16 plant species growing under natural conditions in a meadow and a forest understorey, which differed in nitrate and ammonium availability. Significant differences between leaf and root were observed. The range of delta15N [leaf-root] values was -0.97 to +0.86 per thousand, small compared to published values from controlled N-nutrition experiment, but almost as large as the range of leaf delta15N values (-1.04 to +1.08 per thousand). Forbs showed the largest differences between leaves and roots and showed a significant difference with respect to habitat. Grasses and legumes did not show significant differences in delta15N [leaf-root] between the two habitats. Care must be taken when using leaf delta15N values as representative for whole-plant 15N composition in these two habitats.
Collapse
Affiliation(s)
- P Dijkstra
- Department of Biological Sciences, Northern Arizona University, Building 21, Beaver St, Flagstaff, AZ 86011, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Reid R, Hayes J. Mechanisms and Control of Nutrient Uptake in Plants. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 229:73-114. [PMID: 14669955 DOI: 10.1016/s0074-7696(03)29003-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review is a distillation of the vast amount of physiological and molecular data on plant membrane transport, to provide a concise overview of the main processes involved in the uptake of mineral nutrients in plants. Emphasis has been placed on transport across the plasma membrane, and on the primary uptake from soil into roots, or in the case of aquatic plants, from their aqueous environment. Control of uptake has been mainly considered in terms of local effects on the rate of transport and not in terms of long-distance signaling. The general picture emerging is of a large array of membrane transporters, few of which display any strong selectivity for individual nutrients. Instead, many transporters allow low-affinity uptake of several different nutrients. These features, plus the huge number of potential transporter genes that has been revealed by sequencing of plant genomes, raise some interesting questions about their evolution and likely function.
Collapse
Affiliation(s)
- Robert Reid
- Department of Environmental Biology, University of Adelaide, Adelaide 5005, Australia
| | | |
Collapse
|
26
|
Norici A, Dalsass A, Giordano M. Role of phosphoenolpyruvate carboxylase in anaplerosis in the green microalga Dunaliella salina cultured under different nitrogen regimes. PHYSIOLOGIA PLANTARUM 2002; 116:186-191. [PMID: 12354194 DOI: 10.1034/j.1399-3054.2002.1160207.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Anaplerosis plays a very important role in providing C for N assimilation. In green algae and higher plants, phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) is the main anaplerotic carboxylase. On this basis we hypothesize that N availability affects PEPC expression. In order to test this hypothesis, the model organism Dunaliella salina was cultured under a variety of N growth regimes. Our results show that the level of PEC activity was unaffected by the N form in which N was supplied to the cells, when N concentration was low (0.5-0.01 mM). When cells were adapted to growth at 5 mM N, however, PEPC activity on a per cell basis was substantially higher in NH4+-adapted cells as compared to their NO3--adapted counterparts; however, the same difference was not observed on a protein basis. This notwithstanding, even at low N, PEPC of cells cultured in the presence of either NH4+ or NO3- appeared to differ in their molecular masses. These results suggest that cells adapted to different N-form express distinct PEPC isoforms. In addition to this, we observed that, in algae adapted to high (5 mM) NH4+ concentration, a PEPC isoform was induced that differed from the isoforms observed in algae adapted to lower concentrations of the same N-source. These findings lead us to conclude that the expression of PEPC isoforms in D. salina responds to the variation in the C-skeleton demand deriving from changes in the chemical form and availability of N.
Collapse
Affiliation(s)
- Alessandra Norici
- Istituto di Scienze del Mare, Facoltà di Scienze, Università di Ancona, Via Brecce ianche, 6013 Ancona, Italy Corresponding author, e-mail:
| | | | | |
Collapse
|
27
|
Britto DT, Siddiqi MY, Glass ADM, Kronzucker HJ. Subcellular NH 4 + flux analysis in leaf segments of wheat (Triticum aestivum). THE NEW PHYTOLOGIST 2002; 155:373-380. [PMID: 33873307 DOI: 10.1046/j.1469-8137.2002.00471.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
• We report the first use of tracer 13 NH4 + (13 N-ammonium) efflux and retention data to analyse subcellular fluxes and compartmentation of NH4 + in the leaves of a higher plant (wheat, Triticum aestivum). • Leaf segments, 1-2 mm, were obtained from 8-d-old seedlings. The viability of the segments, and stability of NH 4 + acquisition over time, were confirmed using oxygen-exchange and NH 4 + -depletion measurements. Fluxes of NH 4 + and compartment sizes were estimated using tracer efflux kinetics and retention data. • Influx and efflux across the plasma membrane, half-lives of exchange and cytosolic pool sizes were broadly similar to those in root systems. As the external concentration of NH 4 + ([NH 4 + ] o ) increased from 10 µ m to 10 m m , both influx and efflux greatly increased, with a sixfold increase in the ratio of efflux to influx. Half-lives were similar among treatments, except at [NH 4 + ] o = 10 m m , where they declined. Concentrations of NH 4 + in the cytosol ([NH 4 + ] c ) increased from 2.6 to 400 m m . • Although [NH 4 + ] c became large as [NH 4 + ] o increased, the ratio of [NH 4 + ] c to [NH 4 + ] o decreased more than sixfold. The apparently futile cycling of NH 4 + at high [NH 4 + ] o suggested by the large fluxes of NH 4 + in both directions across the membrane indicate that leaf cells respond to potentially toxic NH 4 + concentrations in a manner similar to root cells.
Collapse
Affiliation(s)
- Dev T Britto
- Division of Life Sciences, University of Toronto, 1265 Military Trail, Scarborough, Ontario, Canada M1C 1A4
| | - M Yaeesh Siddiqi
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, British Columbia, Canada V6T 1Z4
| | - Anthony D M Glass
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, British Columbia, Canada V6T 1Z4
| | - Herbert J Kronzucker
- Division of Life Sciences, University of Toronto, 1265 Military Trail, Scarborough, Ontario, Canada M1C 1A4
| |
Collapse
|
28
|
Ludewig U, von Wirén N, Frommer WB. Uniport of NH4+ by the root hair plasma membrane ammonium transporter LeAMT1;1. J Biol Chem 2002; 277:13548-55. [PMID: 11821433 DOI: 10.1074/jbc.m200739200] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transport of ammonium/ammonia is a key process for the acquisition and metabolism of nitrogen. Ammonium transport is mediated by the AMT/MEP/Rh family of membrane proteins which are found in microorganisms, plants, and animals, including the Rhesus blood group antigens in humans. Although ammonium transporters from all kingdoms have been functionally expressed and partially characterized, the transport mechanism, as well as the identity of the true substrate (NH(4+) or NH(3)) remains unclear. Here we describe the functional expression and characterization of LeAMT1;1, a root hair ammonium transporter from tomato (Lycopersicon esculentum) in Xenopus oocytes. Micromolar concentrations of external ammonium were found to induce concentration- and voltage-dependent inward currents in oocytes injected with LeAMT1;1 cRNA, but not in water-injected control oocytes. The NH(4+)-induced currents were more than 3-fold larger than methylammonium currents and were not subject to inhibition by Na(+) or K(+). The voltage dependence of the affinity of LeAMT1;1 toward its substrate strongly suggests that charged NH(4+), rather than NH(3), is the true transport substrate. Furthermore, ammonium transport was independent of the external proton concentration between pH 5.5 and pH 8.5. LeAMT1;1 is concluded to mediate potential-driven NH(4+) uptake and retrieval depending on root membrane potential and NH(4+) concentration gradient.
Collapse
Affiliation(s)
- Uwe Ludewig
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Universität Tübingen, Auf der Morgenstelle 1, Tübingen, Germany.
| | | | | |
Collapse
|
29
|
Schjoerring JK, Husted S, Mäck G, Mattsson M. The regulation of ammonium translocation in plants. JOURNAL OF EXPERIMENTAL BOTANY 2002; 53:883-90. [PMID: 11912231 DOI: 10.1093/jexbot/53.370.883] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Much controversy exists about whether or not NH(+)(4) is translocated in the xylem from roots to shoots. In this paper it is shown that such translocation can indeed take place, but that interference from other metabolites such as amino acids and amines may give rise to large uncertainties about the magnitude of xylem NH(+)(4) concentrations. Elimination of interference requires sample stabilization by, for instance, formic acid or methanol. Subsequent quantification of NH(+)(4) should be done by the OPA-fluorometric method at neutral pH with 2-mercaptoethanol as the reducing agent since this method is sensitive and reliable. Colorimetric methods based on the Berthelot reaction should never be used, as they are prone to give erroneous results. Significant concentrations of NH(+)(4), exceeding 1 mM, were measured in both xylem sap and leaf apoplastic solution of oilseed rape and tomato plants growing with NO(-)(3) as the sole N source. When NO(-)(3) was replaced by NH(+)(4), xylem sap NH(+)(4) concentrations increased with increasing external concentrations and with time of exposure to NH(+)(4). Up to 11% of the translocated N was constituted by NH(+)(4). Glutamine synthetase (GS) incorporates NH(+)(4) into glutamine, but root GS activity and expression were repressed when high levels of NH(+)(4) were supplied. Ammonium concentrations measured in xylem sap sampled just above the stem base were highly correlated with NH(+)(4) concentrations in apoplastic solution from the leaves. Young leaves tended to have higher apoplastic NH(+)(4) concentrations than older non-senescing leaves. The flux of NH(+)(4) (concentration multiplied by transpirational water flow) increased with temperature despite a decline in xylem NH(+)(4) concentration. Retrieval of leaf apoplastic NH(+)(4) involves both high and low affinity transporters in the plasma membrane of mesophyll cells. Current knowledge about these transporters and their regulation is discussed.
Collapse
Affiliation(s)
- J K Schjoerring
- Plant Nutrition Laboratory, The Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| | | | | | | |
Collapse
|
30
|
Britto DT, Kronzucker HJ. NH4+ toxicity in higher plants: a critical review. JOURNAL OF PLANT PHYSIOLOGY 2002. [PMID: 0 DOI: 10.1078/0176-1617-0774] [Citation(s) in RCA: 716] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
|
31
|
Kronzucker HJ, Britto DT, Davenport RJ, Tester M. Ammonium toxicity and the real cost of transport. TRENDS IN PLANT SCIENCE 2001; 6:335-337. [PMID: 11495764 DOI: 10.1016/s1360-1385(01)02022-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|