1
|
Wu JW, Zheng GM, Zhang L, Zhao YJ, Yan RY, Ren RC, Wei YM, Li K, Zhang XS, Zhao XY. N6-methyladenosine transcriptome-wide profiles of maize kernel development. PLANT PHYSIOLOGY 2024; 196:2476-2489. [PMID: 39222356 DOI: 10.1093/plphys/kiae451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/10/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Maize (Zea mays L.) kernel development is a complex and dynamic process involving cell division and differentiation, into a variety of cell types. Epigenetic modifications, including DNA methylation, play a pivotal role in regulating this process. N6-methyladenosine modification is a universal and dynamic posttranscriptional epigenetic modification that is involved in the regulation of plant development. However, the role of N6-methyladenosine in maize kernel development remains unknown. In this study, we have constructed transcriptome-wide profiles for maize kernels at various stages of early development. Utilizing a combination of MeRIP-seq and RNA-seq analyses, we identified a total of 11,170, 10,973, 11,094, 11,990, 12,203, and 10,893 N6-methyladenosine peaks in maize kernels at 0, 2, 4, 6, 8, and 12 days after pollination, respectively. These N6-methyladenosine modifications were primarily deposited at the 3'-UTRs and were associated with the conserved motif-UGUACA. Additionally, we found that conserved N6-methyladenosine modification is involved in the regulation of genes that are ubiquitously expressed during kernel development. Further analysis revealed that N6-methyladenosine peak intensity was negatively correlated with the mRNA abundance of these ubiquitously expressed genes. Meanwhile, we employed phylogenetic analysis to predict potential regulatory proteins involved in maize kernel development and identified several that participate in the regulation of N6-methyladenosine modifications. Collectively, our results suggest the existence of a novel posttranscriptional epigenetic modification mechanism involved in the regulation of maize kernel development, thereby providing a novel perspective for maize molecular breeding.
Collapse
Affiliation(s)
- Jia Wen Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Guang Ming Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Lin Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Ya Jie Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Ru Yu Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Ru Chang Ren
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yi Ming Wei
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Kunpeng Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Shanda South Road 27, Jinan, Shandong 250100, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xiang Yu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| |
Collapse
|
2
|
Wang L, Foster CM, Mentzen WI, Tanvir R, Meng Y, Nikolau BJ, Wurtele ES, Li L. Modulation of the Arabidopsis Starch Metabolic Network by the Cytosolic Acetyl-CoA Pathway in the Context of the Diurnal Illumination Cycle. Int J Mol Sci 2024; 25:10850. [PMID: 39409177 PMCID: PMC11477042 DOI: 10.3390/ijms251910850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
The starch metabolic network was investigated in relation to other metabolic processes by examining a mutant with altered single-gene expression of ATP citrate lyase (ACL), an enzyme responsible for generating cytosolic acetyl-CoA pool from citrate. Previous research has shown that transgenic antisense plants with reduced ACL activity accumulate abnormally enlarged starch granules. In this study, we explored the underlying molecular mechanisms linking cytosolic acetyl-CoA generation and starch metabolism under short-day photoperiods. We performed transcriptome and quantification of starch accumulation in the leaves of wild-type and antisense seedlings with reduced ACL activity. The antisense-ACLA mutant accumulated more starch than the wild type under short-day conditions. Zymogram analyses were conducted to compare the activities of starch-metabolizing enzymes with transcriptomic changes in the seedling. Differential expression between wild-type and antisense-ACLA plants was detected in genes implicated in starch and acetyl-CoA metabolism, and cell wall metabolism. These analyses revealed a strong correlation between the transcript levels of genes responsible for starch synthesis and degradation, reflecting coordinated regulation at the transcriptomic level. Furthermore, our data provide novel insights into the regulatory links between cytosolic acetyl-CoA metabolism and starch metabolic pathways.
Collapse
Affiliation(s)
- Lei Wang
- College of Life Sciences, Shihezi University, Shihezi 832003, China;
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA;
| | - Carol M. Foster
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; (C.M.F.); (W.I.M.)
| | - Wieslawa I. Mentzen
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; (C.M.F.); (W.I.M.)
| | - Rezwan Tanvir
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA;
| | - Yan Meng
- Department of Agriculture, Alcorn State University, Lorman, MS 39096, USA;
| | - Basil J. Nikolau
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA;
- Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
| | - Eve Syrkin Wurtele
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; (C.M.F.); (W.I.M.)
- Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
| | - Ling Li
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA;
| |
Collapse
|
3
|
Wu H, Galli M, Spears CJ, Zhan J, Liu P, Yadegari R, Dannenhoffer JM, Gallavotti A, Becraft PW. NAKED ENDOSPERM1, NAKED ENDOSPERM2, and OPAQUE2 interact to regulate gene networks in maize endosperm development. THE PLANT CELL 2023; 36:19-39. [PMID: 37795691 PMCID: PMC10734603 DOI: 10.1093/plcell/koad247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 10/06/2023]
Abstract
NAKED ENDOSPERM1 (NKD1), NKD2, and OPAQUE2 (O2) are transcription factors important for cell patterning and nutrient storage in maize (Zea mays) endosperm. To study the complex regulatory interrelationships among these 3 factors in coregulating gene networks, we developed a set of nkd1, nkd2, and o2 homozygous lines, including all combinations of mutant and wild-type genes. Among the 8 genotypes tested, we observed diverse phenotypes and gene interactions affecting cell patterning, starch content, and storage proteins. From ∼8 to ∼16 d after pollination, maize endosperm undergoes a transition from cellular development to nutrient accumulation for grain filling. Gene network analysis showed that NKD1, NKD2, and O2 dynamically regulate a hierarchical gene network during this period, directing cellular development early and then transitioning to constrain cellular development while promoting the biosynthesis and storage of starch, proteins, and lipids. Genetic interactions regulating this network are also dynamic. The assay for transposase-accessible chromatin using sequencing (ATAC-seq) showed that O2 influences the global regulatory landscape, decreasing NKD1 and NKD2 target site accessibility, while NKD1 and NKD2 increase O2 target site accessibility. In summary, interactions of NKD1, NKD2, and O2 dynamically affect the hierarchical gene network and regulatory landscape during the transition from cellular development to grain filling in maize endosperm.
Collapse
Affiliation(s)
- Hao Wu
- Genetics, Development and Cell Biology Department, Iowa State University, Ames, IA 50011, USA
| | - Mary Galli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08901-8520, USA
| | - Carla J Spears
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Junpeng Zhan
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Peng Liu
- Department of Statistics, Iowa State University, Ames, IA 50011, USA
| | - Ramin Yadegari
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | | | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08901-8520, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ
| | - Philip W Becraft
- Genetics, Development and Cell Biology Department, Iowa State University, Ames, IA 50011, USA
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
4
|
Madhunapantula VP, Talekar SC, Kachapur RM, Salakinkop SR, Lal M, Naidu G. Frequency of heterotic hybrids in relation to general combining ability of parents in sweet corn. PeerJ 2023; 11:e16134. [PMID: 38144181 PMCID: PMC10740663 DOI: 10.7717/peerj.16134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/29/2023] [Indexed: 12/26/2023] Open
Abstract
The success of developing prominent hybrids directly depends on the selection of parents with good combining ability which can transfer desirable genes with additive effects to their progeny. The data of 42 hybrids generated using 7 × 7 full diallel design; their seven parents along with three check hybrids were subjected to combining ability analysis from the experiment that was carried out during rainy season 2019. The analysis of variance showed significant general combining ability, and specific combining ability mean sum of squares for all the thirteen characters studied. It is obvious from the results that three lines (SC Sel 2, SC Sel 1 and SC Sel 3) showed high overall general combining ability status, suggesting these lines as good general combiners across traits. Eighteen hybrids had high overall specific combining ability status, while nearly 52% (22 hybrids), 57% (24 hybrids) and 47% (20 hybrids) of crosses showed high overall mid-parent, better-parent and standard heterosis. The unique superiority of crosses involving high overall general combiner parent in the crosses highlighted the importance of using such parents to realize high heterotic crosses. A non-linear relationship between high overall specific combining ability status and heterotic status of hybrids was noticed. The probability of obtaining a cross with high standard heterosis was more with employing parents with high general combining ability status.
Collapse
|
5
|
Boehlein SK, Pfister B, Hennen-Bierwagen TA, Liu C, Ritter M, Hannah LC, Zeeman SC, Resende MFR, Myers AM. Soluble and insoluble α-glucan synthesis in yeast by enzyme suites derived exclusively from maize endosperm. PLANT PHYSIOLOGY 2023; 193:1456-1478. [PMID: 37339339 PMCID: PMC10517254 DOI: 10.1093/plphys/kiad358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/22/2023]
Abstract
Molecular mechanisms that distinguish the synthesis of semi-crystalline α-glucan polymers found in plant starch granules from the synthesis of water-soluble polymers by nonplant species are not well understood. To address this, starch biosynthetic enzymes from maize (Zea mays L.) endosperm were isolated in a reconstituted environment using yeast (Saccharomyces cerevisiae) as a test bed. Ninety strains were constructed containing unique combinations of 11 synthetic transcription units specifying maize starch synthase (SS), starch phosphorylase (PHO), starch branching enzyme (SBE), or isoamylase-type starch debranching enzyme (ISA). Soluble and insoluble branched α-glucans accumulated in varying proportions depending on the enzyme suite, with ISA function stimulating distribution into the insoluble form. Among the SS isoforms, SSIIa, SSIII, and SSIV individually supported the accumulation of glucan polymer. Neither SSI nor SSV alone produced polymers; however, synergistic effects demonstrated that both isoforms can stimulate α-glucan accumulation. PHO did not support α-glucan production by itself, but it had either positive or negative effects on polymer content depending on which SS or a combination thereof was present. The complete suite of maize enzymes generated insoluble particles resembling native starch granules in size, shape, and crystallinity. Ultrastructural analysis revealed a hierarchical assembly starting with subparticles of approximately 50 nm diameter that coalesce into discrete structures of approximately 200 nm diameter. These are assembled into semi-crystalline α-glucan superstructures up to 4 μm in length filling most of the yeast cytosol. ISA was not essential for the formation of such particles, but their abundance was increased dramatically by ISA presence.
Collapse
Affiliation(s)
- Susan K Boehlein
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32601, USA
| | - Barbara Pfister
- Institute of Molecular Plant Biology, ETH Zurich, Zurich 8092, Switzerland
| | - Tracie A Hennen-Bierwagen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Chun Liu
- Institute of Molecular Plant Biology, ETH Zurich, Zurich 8092, Switzerland
| | - Maximilian Ritter
- Institute for Building Materials, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich 8093, Switzerland
| | - L Curtis Hannah
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32601, USA
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, ETH Zurich, Zurich 8092, Switzerland
| | - Marcio F R Resende
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32601, USA
| | - Alan M Myers
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
6
|
Luo M, Lu B, Shi Y, Zhao Y, Liu J, Zhang C, Wang Y, Liu H, Shi Y, Fan Y, Xu L, Wang R, Zhao J. Genetic basis of the oil biosynthesis in ultra-high-oil maize grains with an oil content exceeding 20. FRONTIERS IN PLANT SCIENCE 2023; 14:1168216. [PMID: 37251765 PMCID: PMC10213527 DOI: 10.3389/fpls.2023.1168216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023]
Abstract
Vegetable oil is an important part of the human diet and has multiple industrial uses. The rapid increase in vegetable oil consumption has necessitated the development of viable methods for optimizing the oil content of plants. The key genes regulating the biosynthesis of maize grain oil remain mostly uncharacterized. In this study, by analyzing oil contents and performing bulked segregant RNA sequencing and mapping analyses, we determined that su1 and sh2-R mediate the shrinkage of ultra-high-oil maize grains and contribute to the increase in the grain oil content. Functional kompetitive allele-specific PCR (KASP) markers developed for su1 and sh2-R detected su1su1Sh2Sh2, Su1Su1sh2sh2, and su1su1sh2sh2 mutants among 183 sweet maize inbred lines. An RNA sequencing (RNA-seq) analysis indicated that genes differentially expressed between two conventional sweet maize lines and two ultra-high-oil maize lines were significantly associated with linoleic acid metabolism, cyanoamino acid metabolism, glutathione metabolism, alanine, aspartate, and glutamate metabolism, and nitrogen metabolism. A bulk segregant analysis and sequencing (BSA-seq) analysis identified another 88 genomic intervals related to grain oil content, 16 of which overlapped previously reported maize grain oil-related QTLs. The combined analysis of BSA-seq and RNA-seq data enabled the identification of candidate genes. The KASP markers for GRMZM2G176998 (putative WD40-like beta propeller repeat family protein), GRMZM2G021339 (homeobox-transcription factor 115), and GRMZM2G167438 (3-ketoacyl-CoA synthase) were significantly related to maize grain oil content. Another candidate gene, GRMZM2G099802 (GDSL-like lipase/acylhydrolase), catalyzes the final step of the triacylglycerol synthesis pathway and was expressed at significantly higher levels in the two ultra-high-oil maize lines than in the two conventional sweet maize lines. These novel findings will help clarify the genetic basis of the increased oil production in ultra-high-oil maize lines with grain oil contents exceeding 20%. The KASP markers developed in this study may be useful for breeding new high-oil sweet maize varieties.
Collapse
Affiliation(s)
- Meijie Luo
- *Correspondence: Meijie Luo, ; Jiuran Zhao, ; Ronghuan Wang,
| | | | | | | | | | | | | | | | | | | | | | - Ronghuan Wang
- *Correspondence: Meijie Luo, ; Jiuran Zhao, ; Ronghuan Wang,
| | - Jiuran Zhao
- *Correspondence: Meijie Luo, ; Jiuran Zhao, ; Ronghuan Wang,
| |
Collapse
|
7
|
Harris PJ, Burrell MM, Emes MJ, Tetlow IJ. Effects of Post Anthesis High Temperature Stress on Carbon Partitioning and Starch Biosynthesis in a Spring Wheat (Triticum aestivum L.) Adapted to Moderate Growth Temperatures. PLANT & CELL PHYSIOLOGY 2023:pcad030. [PMID: 37026703 DOI: 10.1093/pcp/pcad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
This study investigates carbon partitioning in the developing endosperm of a European variety of spring wheat subjected to moderately elevated daytime temperatures (27°C/16°C day/night) from anthesis to grain maturity. Elevated daytime temperatures caused significant reductions in both fresh and dry weights and reduced starch content of harvested grains compared to plants grown under a 20°C/16°C day/night regime. Accelerated grain development caused by elevated temperatures was accounted for by representing plant development as thermal time (°CDPA). We examined effects of high temperature stress (HTS) on uptake and partitioning of [U-14C]-sucrose supplied to isolated endosperms. HTS caused reduced sucrose uptake into developing endosperms from the second major grain filling stage (approximately 260°CDPA) up to maturity. Enzymes involved in sucrose metabolism were unaffected by HTS, whereas key enzyme activities involved in endosperm starch deposition such as ADP-glucose pyrophosphorylase and soluble isoforms of starch synthase were sensitive to HTS throughout grain development. HTS caused a decrease in other major carbon sinks such as evolved CO2, ethanol-soluble material, cell walls and protein. Despite reductions in labelling of carbon pools caused by HTS, the relative proportions of sucrose taken up by endosperm cells allocated to each cellular pool remain unchanged, except for evolved CO2, which increased under HTS and may reflect enhanced respiratory activity. The results of this study show that moderate temperature increases in some temperate wheat cultivars can cause significant yield reductions chiefly through three effects: reduced sucrose uptake by the endosperm, reduced starch synthesis, and increased partitioning of carbon into evolved CO2.
Collapse
Affiliation(s)
- P J Harris
- Department of Molecular and Cellular Biology, College of Biological Sciences, Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 Canada
| | - M M Burrell
- Department of Molecular and Cellular Biology, College of Biological Sciences, Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 Canada
| | - M J Emes
- Department of Molecular and Cellular Biology, College of Biological Sciences, Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 Canada
| | - I J Tetlow
- Department of Molecular and Cellular Biology, College of Biological Sciences, Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 Canada
| |
Collapse
|
8
|
Matsushima R, Hisano H, Galis I, Miura S, Crofts N, Takenaka Y, Oitome NF, Ishimizu T, Fujita N, Sato K. FLOURY ENDOSPERM 6 mutations enhance the sugary phenotype caused by the loss of ISOAMYLASE1 in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:94. [PMID: 37010621 PMCID: PMC10070237 DOI: 10.1007/s00122-023-04339-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
Barley double mutants in two genes involved in starch granule morphology, HvFLO6 and HvISA1, had impaired starch accumulation and higher grain sugar levels than either single mutant. Starch is a biologically and commercially important glucose polymer synthesized by plants as semicrystalline starch granules (SGs). Because SG morphology affects starch properties, mutants with altered SG morphology may be useful in breeding crops with desirable starch properties, including potentially novel properties. In this study, we employed a simple screen for mutants with altered SG morphology in barley (Hordeum vulgare). We isolated mutants that formed compound SGs together with the normal simple SGs in the endosperm and found that they were allelic mutants of the starch biosynthesis genes ISOAMYLASE1 (HvISA1) and FLOURY ENDOSPERM 6 (HvFLO6), encoding starch debranching enzyme and CARBOHYDRATE-BINDING MODULE 48-containing protein, respectively. We generated the hvflo6 hvisa1 double mutant and showed that it had significantly reduced starch biosynthesis and developed shrunken grains. In contrast to starch, soluble α-glucan, phytoglycogen, and sugars accumulated to higher levels in the double mutant than in the single mutants. In addition, the double mutants showed defects in SG morphology in the endosperm and in the pollen. This novel genetic interaction suggests that hvflo6 acts as an enhancer of the sugary phenotype caused by hvisa1 mutation.
Collapse
Affiliation(s)
- Ryo Matsushima
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan.
| | - Hiroshi Hisano
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Satoko Miura
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195, Japan
| | - Naoko Crofts
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195, Japan
| | - Yuto Takenaka
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Naoko F Oitome
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195, Japan
| | - Takeshi Ishimizu
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Naoko Fujita
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195, Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| |
Collapse
|
9
|
Hershberger J, Tanaka R, Wood JC, Kaczmar N, Wu D, Hamilton JP, DellaPenna D, Buell CR, Gore MA. Transcriptome-wide association and prediction for carotenoids and tocochromanols in fresh sweet corn kernels. THE PLANT GENOME 2022; 15:e20197. [PMID: 35262278 DOI: 10.1002/tpg2.20197] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Sweet corn (Zea mays L.) is consistently one of the most highly consumed vegetables in the United States, providing a valuable opportunity to increase nutrient intake through biofortification. Significant variation for carotenoid (provitamin A, lutein, zeaxanthin) and tocochromanol (vitamin E, antioxidants) levels is present in temperate sweet corn germplasm, yet previous genome-wide association studies (GWAS) of these traits have been limited by low statistical power and mapping resolution. Here, we employed a high-quality transcriptomic dataset collected from fresh sweet corn kernels to conduct transcriptome-wide association studies (TWAS) and transcriptome prediction studies for 39 carotenoid and tocochromanol traits. In agreement with previous GWAS findings, TWAS detected significant associations for four causal genes, β-carotene hydroxylase (crtRB1), lycopene epsilon cyclase (lcyE), γ-tocopherol methyltransferase (vte4), and homogentisate geranylgeranyltransferase (hggt1) on a transcriptome-wide level. Pathway-level analysis revealed additional associations for deoxy-xylulose synthase2 (dxs2), diphosphocytidyl methyl erythritol synthase2 (dmes2), cytidine methyl kinase1 (cmk1), and geranylgeranyl hydrogenase1 (ggh1), of which, dmes2, cmk1, and ggh1 have not previously been identified through maize association studies. Evaluation of prediction models incorporating genome-wide markers and transcriptome-wide abundances revealed a trait-dependent benefit to the inclusion of both genomic and transcriptomic data over solely genomic data, but both transcriptome- and genome-wide datasets outperformed a priori candidate gene-targeted prediction models for most traits. Altogether, this study represents an important step toward understanding the role of regulatory variation in the accumulation of vitamins in fresh sweet corn kernels.
Collapse
Affiliation(s)
- Jenna Hershberger
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853, USA
| | - Ryokei Tanaka
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853, USA
| | - Joshua C Wood
- Dep. of Crop & Soil Sciences, Univ. of Georgia, Athens, GA, 30602, USA
| | - Nicholas Kaczmar
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853, USA
| | - Di Wu
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853, USA
| | - John P Hamilton
- Dep. of Crop & Soil Sciences, Univ. of Georgia, Athens, GA, 30602, USA
| | - Dean DellaPenna
- Dep. of Biochemistry and Molecular Biology, Michigan State Univ., East Lansing, MI, 48824, USA
| | - C Robin Buell
- Dep. of Crop & Soil Sciences, Univ. of Georgia, Athens, GA, 30602, USA
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853, USA
| |
Collapse
|
10
|
Fu Y, Jiang E, Yao Y. New Techniques in Structural Tailoring of Starch Functionality. Annu Rev Food Sci Technol 2022; 13:117-143. [PMID: 35080964 DOI: 10.1146/annurev-food-102821-035457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inherent characteristics of native starches such as water insolubility, retrogradation and syneresis, and instability in harsh processing conditions (e.g., high temperature and shearing, low pH) limit their industrial applications. As starch properties mainly depend on starch composition and structure, structural tailoring of starch has been important for overcoming functional limitations and expanding starch applications in different fields. In this review, we first introduce the basics of starch structure, properties, and functionalities and then describe the interactions of starch with lipids, polysaccharides, and phenolics. After reviewing genetic, chemical, and enzymatic modifications of starch, we describe current progress in the areas of porous starch and starch-based nanoparticles. New techniques, such as using the CRISPR-Cas9 technique to tailor starch structures and using an emulsion-assisted approach in forming functional starch nanoparticles, are only feasible when they are established based on fundamental knowledge of starch. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yezhi Fu
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania
| | - Evelyn Jiang
- Department of Food Science, Purdue University, West Lafayette, Indiana; .,Lincolnshire, Illinois
| | - Yuan Yao
- Department of Food Science, Purdue University, West Lafayette, Indiana;
| |
Collapse
|
11
|
Kumar A, Anju T, Kumar S, Chhapekar SS, Sreedharan S, Singh S, Choi SR, Ramchiary N, Lim YP. Integrating Omics and Gene Editing Tools for Rapid Improvement of Traditional Food Plants for Diversified and Sustainable Food Security. Int J Mol Sci 2021; 22:8093. [PMID: 34360856 PMCID: PMC8348985 DOI: 10.3390/ijms22158093] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/20/2022] Open
Abstract
Indigenous communities across the globe, especially in rural areas, consume locally available plants known as Traditional Food Plants (TFPs) for their nutritional and health-related needs. Recent research shows that many TFPs are highly nutritious as they contain health beneficial metabolites, vitamins, mineral elements and other nutrients. Excessive reliance on the mainstream staple crops has its own disadvantages. Traditional food plants are nowadays considered important crops of the future and can act as supplementary foods for the burgeoning global population. They can also act as emergency foods in situations such as COVID-19 and in times of other pandemics. The current situation necessitates locally available alternative nutritious TFPs for sustainable food production. To increase the cultivation or improve the traits in TFPs, it is essential to understand the molecular basis of the genes that regulate some important traits such as nutritional components and resilience to biotic and abiotic stresses. The integrated use of modern omics and gene editing technologies provide great opportunities to better understand the genetic and molecular basis of superior nutrient content, climate-resilient traits and adaptation to local agroclimatic zones. Recently, realizing the importance and benefits of TFPs, scientists have shown interest in the prospection and sequencing of TFPs for their improvements, cultivation and mainstreaming. Integrated omics such as genomics, transcriptomics, proteomics, metabolomics and ionomics are successfully used in plants and have provided a comprehensive understanding of gene-protein-metabolite networks. Combined use of omics and editing tools has led to successful editing of beneficial traits in several TFPs. This suggests that there is ample scope for improvement of TFPs for sustainable food production. In this article, we highlight the importance, scope and progress towards improvement of TFPs for valuable traits by integrated use of omics and gene editing techniques.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Plant Science, Central University of Kerala, Kasaragod 671316, Kerala, India; (T.A.); (S.S.)
| | - Thattantavide Anju
- Department of Plant Science, Central University of Kerala, Kasaragod 671316, Kerala, India; (T.A.); (S.S.)
| | - Sushil Kumar
- Department of Botany, Govt. Degree College, Kishtwar 182204, Jammu and Kashmir, India;
| | - Sushil Satish Chhapekar
- Molecular Genetics & Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.S.C.); (S.S.); (S.R.C.)
| | - Sajana Sreedharan
- Department of Plant Science, Central University of Kerala, Kasaragod 671316, Kerala, India; (T.A.); (S.S.)
| | - Sonam Singh
- Molecular Genetics & Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.S.C.); (S.S.); (S.R.C.)
| | - Su Ryun Choi
- Molecular Genetics & Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.S.C.); (S.S.); (S.R.C.)
| | - Nirala Ramchiary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, Delhi, India
| | - Yong Pyo Lim
- Molecular Genetics & Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.S.C.); (S.S.); (S.R.C.)
| |
Collapse
|
12
|
Chhabra R, Muthusamy V, Gain N, Katral A, Prakash NR, Zunjare RU, Hossain F. Allelic variation in sugary1 gene affecting kernel sweetness among diverse-mutant and -wild-type maize inbreds. Mol Genet Genomics 2021; 296:1085-1102. [PMID: 34159441 DOI: 10.1007/s00438-021-01807-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/16/2021] [Indexed: 12/01/2022]
Abstract
Sweet corn is popular worldwide as vegetable. Though large numbers of sugary1 (su1)-based sweet corn germplasm are available, allelic diversity in su1 gene encoding SU1 isoamylase among diverse maize inbreds has not been analyzed. Here, we characterized the su1 gene in maize and compared with allied species. The entire su1 gene (11,720 bp) was sequenced among six mutant (su1) and five wild (Su1) maize inbreds. Fifteen InDels of 2-45 bp were selected to develop markers for studying allelic diversity in su1 gene among 19 mutant- (su1) and 29 wild-type (Su1) inbreds. PIC ranged from 0.15 (SU-InDel7) to 0.37 (SU-InDel13). Major allele frequency varied from 0.52 to 0.90, while gene diversity ranged from 0.16 to 0.49. Phylogenetic tree categorized 48 maize inbreds in two clusters each for wild- type (Su1) and mutant (su1) types. 44 haplotypes of su1 were observed, with three haplotypes (Hap6, Hap22 and Hap29) sharing more than one genotype. Further, comparisons were made with 23 orthologues of su1 from 16 grasses and Arabidopsis. Maize possessed 15-19 exons in su1, while it was 11-24 exons among orthologues. Introns among the orthologues were longer (77-2206 bp) than maize (859-1718 bp). SU1 protein of maize and orthologues had conserved α-amylase and CBM_48 domains. The study also provided physicochemical properties and secondary structure of SU1 protein in maize and its orthologues. Phylogenetic analysis showed closer relationship of maize SU1 protein with P. hallii, S. bicolor and E. tef than Triticum sp. and Oryza sp. The study showed that presence of high allelic diversity in su1 gene which can be utilized in the sweet corn breeding program. This is the first report of comprehensive characterization of su1 gene and its allelic forms in diverse maize and related orthologues.
Collapse
Affiliation(s)
- Rashmi Chhabra
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vignesh Muthusamy
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Nisrita Gain
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Nitish R Prakash
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Firoz Hossain
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
13
|
Genome assembly and population genomic analysis provide insights into the evolution of modern sweet corn. Nat Commun 2021; 12:1227. [PMID: 33623026 PMCID: PMC7902669 DOI: 10.1038/s41467-021-21380-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/26/2021] [Indexed: 01/31/2023] Open
Abstract
Sweet corn is one of the most important vegetables in the United States and Canada. Here, we present a de novo assembly of a sweet corn inbred line Ia453 with the mutated shrunken2-reference allele (Ia453-sh2). This mutation accumulates more sugar and is present in most commercial hybrids developed for the processing and fresh markets. The ten pseudochromosomes cover 92% of the total assembly and 99% of the estimated genome size, with a scaffold N50 of 222.2 Mb. This reference genome completely assembles the large structural variation that created the mutant sh2-R allele. Furthermore, comparative genomics analysis with six field corn genomes highlights differences in single-nucleotide polymorphisms, structural variations, and transposon composition. Phylogenetic analysis of 5,381 diverse maize and teosinte accessions reveals genetic relationships between sweet corn and other types of maize. Our results show evidence for a common origin in northern Mexico for modern sweet corn in the U.S. Finally, population genomic analysis identifies regions of the genome under selection and candidate genes associated with sweet corn traits, such as early flowering, endosperm composition, plant and tassel architecture, and kernel row number. Our study provides a high-quality reference-genome sequence to facilitate comparative genomics, functional studies, and genomic-assisted breeding for sweet corn.
Collapse
|
14
|
Starch physicochemical properties of double recessive sweet-waxy maize. Int J Biol Macromol 2021; 173:219-224. [PMID: 33482214 DOI: 10.1016/j.ijbiomac.2021.01.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/16/2020] [Accepted: 01/17/2021] [Indexed: 11/22/2022]
Abstract
Sweet-waxy is a new type of maize with waxy and sugary double recessive genes. This study aims to clarify starch structural and functional properties of this maize type. Grains with sweet-waxy and waxy phenotypes were separated from an ear using the two sweet-waxy maize hybrids of ATN and NKY as materials. Compared with waxy maize starch, the sweet-waxy maize starch mainly comprises small-sized round granules despite the typical waxy character of both starches. Mw, Mn, and relative crystallinity of sweet-waxy starch were higher than those of waxy starch in both hybrids. The average chain length of waxy starch was higher in ATN but lower in NKY compared with that of sweet-waxy starch. However, polydispersity (Mw/Mn) and F1 fraction were high in sweet-waxy and waxy starches in ATN and NKY, respectively. Breakdown viscosity, gelatinization enthalpy and temperatures of both hybrids were low in sweet-waxy starch. Peak viscosity was higher in waxy starch in NKY and similar between sweet-waxy and waxy starches in ATN. Retrogradation percentage was high and low for sweet-waxy starches in ATN and NKY, respectively.
Collapse
|
15
|
Xue J, Luo Y. Properties and applications of natural dendritic nanostructures: Phytoglycogen and its derivatives. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Starch and Glycogen Analyses: Methods and Techniques. Biomolecules 2020; 10:biom10071020. [PMID: 32660096 PMCID: PMC7407607 DOI: 10.3390/biom10071020] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 01/16/2023] Open
Abstract
For complex carbohydrates, such as glycogen and starch, various analytical methods and techniques exist allowing the detailed characterization of these storage carbohydrates. In this article, we give a brief overview of the most frequently used methods, techniques, and results. Furthermore, we give insights in the isolation, purification, and fragmentation of both starch and glycogen. An overview of the different structural levels of the glucans is given and the corresponding analytical techniques are discussed. Moreover, future perspectives of the analytical needs and the challenges of the currently developing scientific questions are included.
Collapse
|
17
|
Wang H, Ham TH, Im DE, Lar SM, Jang SG, Lee J, Mo Y, Jeung JU, Kim ST, Kwon SW. A New SNP in Rice Gene Encoding Pyruvate Phosphate Dikinase (PPDK) Associated with Floury Endosperm. Genes (Basel) 2020; 11:genes11040465. [PMID: 32344582 PMCID: PMC7230733 DOI: 10.3390/genes11040465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 01/26/2023] Open
Abstract
Rice varieties with suitable flour-making qualities are required to promote the rice processed-food industry and to boost rice consumption. A rice mutation, Namil(SA)-flo1, produces grains with floury endosperm. Overall, grains with low grain hardness, low starch damage, and fine particle size are more suitable for use in flour processing grains with waxy, dull endosperm with normal grain hardness and a high amylose content. In this study, fine mapping found a C to T single nucleotide polymorphism (SNP) in exon 2 of the gene encoding cytosolic pyruvate phosphate dikinase (cyOsPPDK). The SNP resulted in a change of serine to phenylalanine acid at amino acid position 101. The gene was named FLOURY ENDOSPERM 4-5 (FLO4-5). Co-segregation analysis with the developed cleaved amplified polymorphic sequence (CAPS) markers revealed co-segregation between the floury phenotype and the flo4-5. This CAPS marker could be applied directly for marker-assisted selection. Real-time RT-PCR experiments revealed that PPDK was expressed at considerably higher levels in the flo4-5 mutant than in the wild type during the grain filling stage. Plastid ADP-glucose pyrophosphorylase small subunit (AGPS2a and AGPS2b) and soluble starch synthase (SSIIb and SSIIc) also exhibited enhanced expression in the flo4-5 mutant.
Collapse
Affiliation(s)
- Heng Wang
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (H.W.); (D.-E.I.); (S.M.L.); (S.-G.J.); (S.T.K.)
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tae-Ho Ham
- Department of Applied Bioscience, Konkuk University, Seoul 05029, Korea; (T.-H.H.); (J.L.)
| | - Da-Eun Im
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (H.W.); (D.-E.I.); (S.M.L.); (S.-G.J.); (S.T.K.)
| | - San Mar Lar
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (H.W.); (D.-E.I.); (S.M.L.); (S.-G.J.); (S.T.K.)
| | - Seong-Gyu Jang
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (H.W.); (D.-E.I.); (S.M.L.); (S.-G.J.); (S.T.K.)
| | - Joohyun Lee
- Department of Applied Bioscience, Konkuk University, Seoul 05029, Korea; (T.-H.H.); (J.L.)
| | - Youngjun Mo
- National Institute of Crop Science, Rural Development Administration, Jeonju 54874, Korea; (Y.M.); (J.-U.J.)
| | - Ji-Ung Jeung
- National Institute of Crop Science, Rural Development Administration, Jeonju 54874, Korea; (Y.M.); (J.-U.J.)
| | - Sun Tae Kim
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (H.W.); (D.-E.I.); (S.M.L.); (S.-G.J.); (S.T.K.)
| | - Soon-Wook Kwon
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (H.W.); (D.-E.I.); (S.M.L.); (S.-G.J.); (S.T.K.)
- Correspondence: ; Tel.: +82-55-350-5506
| |
Collapse
|
18
|
Abstract
sugary enhancer1 (se1) is a naturally occurring mutant allele involved in starch metabolism in maize endosperm. It is a recessive modifier of sugary1 (su1) and commercially important in modern sweet corn breeding, but its molecular identity and mode of action remain unknown. Here, we developed a pair of near-isogenic lines, W822Gse (su1-ref/su1-ref se1/se1) and W822GSe (su1-ref/su1-ref Se1/Se1), that Mendelize the se1 phenotype in an su1-ref background. W822Gse kernels have lower starch and higher water soluble polysaccharide and sugars than W822GSe kernels. Using high-resolution genetic mapping, we found that wild-type Se1 is a gene Zm00001d007657 on chromosome 2 and a deletion of this gene causes the se1 phenotype. Comparative metabolic profiling of seed tissue between these 2 isolines revealed the remarkable difference in carbohydrate metabolism, with sucrose and maltose highly accumulated in the mutant. Se1 is predominantly expressed in the endosperm, with low expression in leaf and root tissues. Differential expression analysis identified genes enriched in both starch biosynthesis and degradation processes, indicating a pleiotropic regulatory effect of se1 Repressed expression of Se1 and Su1 in RNA interference-mediated transgenic maize validates that deletion of the gene identified as Se1 is a true causal gene responsible for the se1 phenotype. The findings contribute to our understanding of starch metabolism in cereal crops.
Collapse
|
19
|
Li E, Hasjim J, Gilding EK, Godwin ID, Li C, Gilbert RG. The Role of Pullulanase in Starch Biosynthesis, Structure, and Thermal Properties by Studying Sorghum with Increased Pullulanase Activity. STARCH-STARKE 2019. [DOI: 10.1002/star.201900072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Enpeng Li
- Key Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genetics and PhysiologyCollege of AgricultureYangzhou UniversityYangzhou225009P. R. China
- Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhou225009P. R. China
- The University of QueenslandCentre for Nutrition and Food SciencesQueensland Alliance for Agriculture and Food InnovationBrisbaneQLD4072Australia
| | - Jovin Hasjim
- The University of QueenslandCentre for Nutrition and Food SciencesQueensland Alliance for Agriculture and Food InnovationBrisbaneQLD4072Australia
| | - Edward K. Gilding
- The University of QueenslandSchool of Agriculture and Food SciencesBrisbaneQLD4072Australia
| | - Ian D. Godwin
- The University of QueenslandSchool of Agriculture and Food SciencesBrisbaneQLD4072Australia
| | - Cheng Li
- Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhou225009P. R. China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of ChinaYangzhou UniversityYangzhou225009Jiangsu ProvinceP. R. China
| | - Robert G. Gilbert
- Key Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genetics and PhysiologyCollege of AgricultureYangzhou UniversityYangzhou225009P. R. China
- Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhou225009P. R. China
- The University of QueenslandCentre for Nutrition and Food SciencesQueensland Alliance for Agriculture and Food InnovationBrisbaneQLD4072Australia
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of ChinaYangzhou UniversityYangzhou225009Jiangsu ProvinceP. R. China
| |
Collapse
|
20
|
The Proteomic Analysis of Maize Endosperm Protein Enriched by Phos-tag tm Reveals the Phosphorylation of Brittle-2 Subunit of ADP-Glc Pyrophosphorylase in Starch Biosynthesis Process. Int J Mol Sci 2019; 20:ijms20040986. [PMID: 30813492 PMCID: PMC6412418 DOI: 10.3390/ijms20040986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 11/17/2022] Open
Abstract
AGPase catalyzes a key rate-limiting step that converts ATP and Glc-1-p into ADP-glucose and diphosphate in maize starch biosynthesis. Previous studies suggest that AGPase is modulated by redox, thermal and allosteric regulation. However, the phosphorylation of AGPase is unclear in the kernel starch biosynthesis process. Phos-tagTM technology is a novel method using phos-tagTM agarose beads for separation, purification, and detection of phosphorylated proteins. Here we identified phos-tagTM agarose binding proteins from maize endosperm. Results showed a total of 1733 proteins identified from 10,678 distinct peptides. Interestingly, a total of 21 unique peptides for AGPase sub-unit Brittle-2 (Bt2) were identified. Bt2 was demonstrated by immunoblot when enriched maize endosperm protein with phos-tagTM agarose was in different pollination stages. In contrast, Bt2 would lose binding to phos-tagTM when samples were treated with alkaline phosphatase (ALP). Furthermore, Bt2 could be detected by Pro-Q diamond staining specifically for phosphorylated protein. We further identified the phosphorylation sites of Bt2 at Ser10, Thr451, and Thr462 by iTRAQ. In addition, dephosphorylation of Bt2 decreased the activity of AGPase in the native gel assay through ALP treatment. Taking together, these results strongly suggest that the phosphorylation of AGPase may be a new model to regulate AGPase activity in the starch biosynthesis process.
Collapse
|
21
|
Goren A, Ashlock D, Tetlow IJ. Starch formation inside plastids of higher plants. PROTOPLASMA 2018; 255:1855-1876. [PMID: 29774409 DOI: 10.1007/s00709-018-1259-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/03/2018] [Indexed: 05/09/2023]
Abstract
Starch is a water-insoluble polyglucan synthesized inside the plastid stroma within plant cells, serving a crucial role in the carbon budget of the whole plant by acting as a short-term and long-term store of energy. The highly complex, hierarchical structure of the starch granule arises from the actions of a large suite of enzyme activities, in addition to physicochemical self-assembly mechanisms. This review outlines current knowledge of the starch biosynthetic pathway operating in plant cells in relation to the micro- and macro-structures of the starch granule. We highlight the gaps in our knowledge, in particular, the relationship between enzyme function and operation at the molecular level and the formation of the final, macroscopic architecture of the granule.
Collapse
Affiliation(s)
- Asena Goren
- Department of Mathematics and Statistics, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Daniel Ashlock
- Department of Mathematics and Statistics, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Ian J Tetlow
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
22
|
Aguirre M, Kiegle E, Leo G, Ezquer I. Carbohydrate reserves and seed development: an overview. PLANT REPRODUCTION 2018; 31:263-290. [PMID: 29728792 DOI: 10.1007/s00497-018-0336-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Seeds are one of the most important food sources, providing humans and animals with essential nutrients. These nutrients include carbohydrates, lipids, proteins, vitamins and minerals. Carbohydrates are one of the main energy sources for both plant and animal cells and play a fundamental role in seed development, human nutrition and the food industry. Many studies have focused on the molecular pathways that control carbohydrate flow during seed development in monocot and dicot species. For this reason, an overview of seed biodiversity focused on the multiple metabolic and physiological mechanisms that govern seed carbohydrate storage function in the plant kingdom is required. A large number of mutants affecting carbohydrate metabolism, which display defective seed development, are currently available for many plant species. The physiological, biochemical and biomolecular study of such mutants has led researchers to understand better how metabolism of carbohydrates works in plants and the critical role that these carbohydrates, and especially starch, play during seed development. In this review, we summarize and analyze the newest findings related to carbohydrate metabolism's effects on seed development, pointing out key regulatory genes and enzymes that influence seed sugar import and metabolism. Our review also aims to provide guidelines for future research in the field and in this way to assist seed quality optimization by targeted genetic engineering and classical breeding programs.
Collapse
Affiliation(s)
- Manuel Aguirre
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy
- FNWI, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Edward Kiegle
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy
| | - Giulia Leo
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy
| | - Ignacio Ezquer
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy.
| |
Collapse
|
23
|
Abstract
The starch-rich endosperms of the Poaceae, which includes wild grasses and their domesticated descendents the cereals, have provided humankind and their livestock with the bulk of their daily calories since the dawn of civilization up to the present day. There are currently unprecedented pressures on global food supplies, largely resulting from population growth, loss of agricultural land that is linked to increased urbanization, and climate change. Since cereal yields essentially underpin world food and feed supply, it is critical that we understand the biological factors contributing to crop yields. In particular, it is important to understand the biochemical pathway that is involved in starch biosynthesis, since this pathway is the major yield determinant in the seeds of six out of the top seven crops grown worldwide. This review outlines the critical stages of growth and development of the endosperm tissue in the Poaceae, including discussion of carbon provision to the growing sink tissue. The main body of the review presents a current view of our understanding of storage starch biosynthesis, which occurs inside the amyloplasts of developing endosperms.
Collapse
|
24
|
Brandenburg JT, Mary-Huard T, Rigaill G, Hearne SJ, Corti H, Joets J, Vitte C, Charcosset A, Nicolas SD, Tenaillon MI. Independent introductions and admixtures have contributed to adaptation of European maize and its American counterparts. PLoS Genet 2017; 13:e1006666. [PMID: 28301472 PMCID: PMC5373671 DOI: 10.1371/journal.pgen.1006666] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 03/30/2017] [Accepted: 03/01/2017] [Indexed: 12/27/2022] Open
Abstract
Through the local selection of landraces, humans have guided the adaptation of crops to a vast range of climatic and ecological conditions. This is particularly true of maize, which was domesticated in a restricted area of Mexico but now displays one of the broadest cultivated ranges worldwide. Here, we sequenced 67 genomes with an average sequencing depth of 18x to document routes of introduction, admixture and selective history of European maize and its American counterparts. To avoid the confounding effects of recent breeding, we targeted germplasm (lines) directly derived from landraces. Among our lines, we discovered 22,294,769 SNPs and between 0.9% to 4.1% residual heterozygosity. Using a segmentation method, we identified 6,978 segments of unexpectedly high rate of heterozygosity. These segments point to genes potentially involved in inbreeding depression, and to a lesser extent to the presence of structural variants. Genetic structuring and inferences of historical splits revealed 5 genetic groups and two independent European introductions, with modest bottleneck signatures. Our results further revealed admixtures between distinct sources that have contributed to the establishment of 3 groups at intermediate latitudes in North America and Europe. We combined differentiation- and diversity-based statistics to identify both genes and gene networks displaying strong signals of selection. These include genes/gene networks involved in flowering time, drought and cold tolerance, plant defense and starch properties. Overall, our results provide novel insights into the evolutionary history of European maize and highlight a major role of admixture in environmental adaptation, paralleling recent findings in humans.
Collapse
Affiliation(s)
- Jean-Tristan Brandenburg
- Génétique Quantitative et Evolution – Le Moulon, Institut National de la Recherche agronomique, Université Paris-Sud, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, France
| | - Tristan Mary-Huard
- Génétique Quantitative et Evolution – Le Moulon, Institut National de la Recherche agronomique, Université Paris-Sud, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, France
- UMR 518 AgroParisTech/INRA, France
| | - Guillem Rigaill
- Institute of Plant Sciences Paris-Saclay, UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Diderot, Sorbonne Paris-Cité, France
| | - Sarah J. Hearne
- CIMMYT (International Maize and Wheat Improvement Centre), El Batan, Texcoco, Edo de Mexico, Mexico
| | - Hélène Corti
- Génétique Quantitative et Evolution – Le Moulon, Institut National de la Recherche agronomique, Université Paris-Sud, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, France
| | - Johann Joets
- Génétique Quantitative et Evolution – Le Moulon, Institut National de la Recherche agronomique, Université Paris-Sud, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, France
| | - Clémentine Vitte
- Génétique Quantitative et Evolution – Le Moulon, Institut National de la Recherche agronomique, Université Paris-Sud, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, France
| | - Alain Charcosset
- Génétique Quantitative et Evolution – Le Moulon, Institut National de la Recherche agronomique, Université Paris-Sud, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, France
| | - Stéphane D. Nicolas
- Génétique Quantitative et Evolution – Le Moulon, Institut National de la Recherche agronomique, Université Paris-Sud, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, France
| | - Maud I. Tenaillon
- Génétique Quantitative et Evolution – Le Moulon, Institut National de la Recherche agronomique, Université Paris-Sud, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, France
| |
Collapse
|
25
|
Gontarek BC, Neelakandan AK, Wu H, Becraft PW. NKD Transcription Factors Are Central Regulators of Maize Endosperm Development. THE PLANT CELL 2016; 28:2916-2936. [PMID: 27895224 PMCID: PMC5240740 DOI: 10.1105/tpc.16.00609] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/26/2016] [Accepted: 11/23/2016] [Indexed: 05/18/2023]
Abstract
NAKED ENDOSPERM1 (NKD1) and NKD2 are duplicate INDETERMINATE DOMAIN (IDD) transcription factors important for maize (Zea mays) endosperm development. RNA-seq analysis of the nkd1 nkd2 mutant endosperm revealed that NKD1 and NKD2 influence 6.4% of the transcriptome in developing aleurone and 6.7% in starchy endosperm. Processes regulated by NKD1 and NKD2 include gene expression, epigenetic functions, cell growth and division, hormone pathways, and resource reserve deposition. The NKD1 and NKD2 proteins bind a consensus DNA sequence of TTGTCGT with slightly different properties. This motif was enriched in the promoters of gene transcripts differentially expressed (DE) in mutant endosperm. DE genes with a NKD binding motif in the 5' promoter region were considered as likely direct targets of NKD1 and NKD2 regulation, and these putative direct target genes were notably enriched for storage proteins. Transcription assays demonstrate that NKD1 and NKD2 can directly regulate gene transcription, including activation of opaque2 and viviparous1 promoters. NKD2 functions as a negative regulator of nkd1 transcription, consistent with previously reported feedback regulation. NKD1 and NKD2 can homo- and heterodimerize through their ID domains. These analyses implicate NKD1 and NKD2 as central regulators of gene expression in developing maize endosperm.
Collapse
Affiliation(s)
- Bryan C Gontarek
- Plant Biology Program, Iowa State University, Ames, Iowa 50011
- Genetics, Development, and Cell Biology Department, Iowa State University, Ames, Iowa 50011
| | | | - Hao Wu
- Genetics, Development, and Cell Biology Department, Iowa State University, Ames, Iowa 50011
| | - Philip W Becraft
- Plant Biology Program, Iowa State University, Ames, Iowa 50011
- Genetics, Development, and Cell Biology Department, Iowa State University, Ames, Iowa 50011
- Agronomy Department, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
26
|
Pfister B, Sánchez-Ferrer A, Diaz A, Lu K, Otto C, Holler M, Shaik FR, Meier F, Mezzenga R, Zeeman SC. Recreating the synthesis of starch granules in yeast. eLife 2016; 5:e15552. [PMID: 27871361 PMCID: PMC5119888 DOI: 10.7554/elife.15552] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 10/08/2016] [Indexed: 11/13/2022] Open
Abstract
Starch, as the major nutritional component of our staple crops and a feedstock for industry, is a vital plant product. It is composed of glucose polymers that form massive semi-crystalline granules. Its precise structure and composition determine its functionality and thus applications; however, there is no versatile model system allowing the relationships between the biosynthetic apparatus, glucan structure and properties to be explored. Here, we expressed the core Arabidopsis starch-biosynthesis pathway in Saccharomyces cerevisiae purged of its endogenous glycogen-metabolic enzymes. Systematic variation of the set of biosynthetic enzymes illustrated how each affects glucan structure and solubility. Expression of the complete set resulted in dense, insoluble granules with a starch-like semi-crystalline organization, demonstrating that this system indeed simulates starch biosynthesis. Thus, the yeast system has the potential to accelerate starch research and help create a holistic understanding of starch granule biosynthesis, providing a basis for the targeted biotechnological improvement of crops.
Collapse
Affiliation(s)
| | | | - Ana Diaz
- Paul Scherrer Institut, Villigen, Switzerland
| | - Kuanjen Lu
- Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Caroline Otto
- Department of Biology, ETH Zürich, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
27
|
Sestili F, Sparla F, Botticella E, Janni M, D'Ovidio R, Falini G, Marri L, Cuesta-Seijo JA, Moscatello S, Battistelli A, Trost P, Lafiandra D. The down-regulation of the genes encoding Isoamylase 1 alters the starch composition of the durum wheat grain. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:230-238. [PMID: 27717459 DOI: 10.1016/j.plantsci.2016.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 05/20/2023]
Abstract
In rice, maize and barley, the lack of Isoamylase 1 activity materially affects the composition of endosperm starch. Here, the effect of this deficiency in durum wheat has been characterized, using transgenic lines in which Isa1 was knocked down via RNAi. Transcriptional profiling confirmed the partial down-regulation of Isa1 and revealed a pleiotropic effect on the level of transcription of genes encoding other isoamylases, pullulanase and sucrose synthase. The polysaccharide content of the transgenic endosperms was different from that of the wild type in a number of ways, including a reduction in the content of starch and a moderate enhancement of both phytoglycogen and β-glucan. Some alterations were also induced in the distribution of amylopectin chain length and amylopectin fine structure. The amylopectin present in the transgenic endosperms was more readily hydrolyzable after a treatment with hydrochloric acid, which disrupted its semi-crystalline structure. The conclusion was that in durum wheat, Isoamylase 1 is important for both the synthesis of amylopectin and for determining its internal structure.
Collapse
Affiliation(s)
- Francesco Sestili
- Department of Agricultural and Forestry Sciences DAFNE, University of Tuscia, Via S. Camillo de Lellis, SNC, 01100 Viterbo, Italy.
| | - Francesca Sparla
- Department of Pharmacy and Biotechnology FABIT, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy.
| | - Ermelinda Botticella
- Department of Agricultural and Forestry Sciences DAFNE, University of Tuscia, Via S. Camillo de Lellis, SNC, 01100 Viterbo, Italy.
| | - Michela Janni
- Department of Agricultural and Forestry Sciences DAFNE, University of Tuscia, Via S. Camillo de Lellis, SNC, 01100 Viterbo, Italy; National Research Council CNR-Istituto di Bioscienze e Biorisorse, Via G. Amendola, 165, 70126 Bari, Italy.
| | - Renato D'Ovidio
- Department of Agricultural and Forestry Sciences DAFNE, University of Tuscia, Via S. Camillo de Lellis, SNC, 01100 Viterbo, Italy.
| | - Giuseppe Falini
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Lucia Marri
- Carlsberg Research Laboratory, Gamle Carlsberg Vej 10, Copenhagen, V DK-1799, Denmark.
| | - Jose A Cuesta-Seijo
- Carlsberg Research Laboratory, Gamle Carlsberg Vej 10, Copenhagen, V DK-1799, Denmark.
| | - Stefano Moscatello
- National Research Council CNR-Istituto di Biologia Agroambientale e Forestale, Viale Marconi 2, 05010 Porano, TR, Italy.
| | - Alberto Battistelli
- National Research Council CNR-Istituto di Biologia Agroambientale e Forestale, Viale Marconi 2, 05010 Porano, TR, Italy.
| | - Paolo Trost
- Department of Pharmacy and Biotechnology FABIT, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy.
| | - Domenico Lafiandra
- Department of Agricultural and Forestry Sciences DAFNE, University of Tuscia, Via S. Camillo de Lellis, SNC, 01100 Viterbo, Italy.
| |
Collapse
|
28
|
A Population of Deletion Mutants and an Integrated Mapping and Exome-seq Pipeline for Gene Discovery in Maize. G3-GENES GENOMES GENETICS 2016; 6:2385-95. [PMID: 27261000 PMCID: PMC4978893 DOI: 10.1534/g3.116.030528] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To better understand maize endosperm filling and maturation, we used γ-irradiation of the B73 maize reference line to generate mutants with opaque endosperm and reduced kernel fill phenotypes, and created a population of 1788 lines including 39 Mo17 × F2s showing stable, segregating, and viable kernel phenotypes. For molecular characterization of the mutants, we developed a novel functional genomics platform that combined bulked segregant RNA and exome sequencing (BSREx-seq) to map causative mutations and identify candidate genes within mapping intervals. To exemplify the utility of the mutants and provide proof-of-concept for the bioinformatics platform, we present detailed characterization of line 937, an opaque mutant harboring a 6203 bp in-frame deletion covering six exons within the Opaque-1 gene. In addition, we describe mutant line 146 which contains a 4.8 kb intragene deletion within the Sugary-1 gene and line 916 in which an 8.6 kb deletion knocks out a Cyclin A2 gene. The publically available algorithm developed in this work improves the identification of causative deletions and its corresponding gaps within mapping peaks. This study demonstrates the utility of γ-irradiation for forward genetics in large nondense genomes such as maize since deletions often affect single genes. Furthermore, we show how this classical mutagenesis method becomes applicable for functional genomics when combined with state-of-the-art genomics tools.
Collapse
|
29
|
Ai Y, Jane JL. Macronutrients in Corn and Human Nutrition. Compr Rev Food Sci Food Saf 2016; 15:581-598. [DOI: 10.1111/1541-4337.12192] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/18/2015] [Accepted: 12/21/2015] [Indexed: 01/10/2023]
Affiliation(s)
- Yongfeng Ai
- Dept. of Food Science and Human Nutrition; Michigan State Univ; East Lansing MI 48824 U.S.A
| | - Jay-lin Jane
- Dept. of Food Science and Human Nutrition; Iowa State Univ; Ames IA 50011 U.S.A
| |
Collapse
|
30
|
Shimada S, Makita Y, Kuriyama-Kondou T, Kawashima M, Mochizuki Y, Hirakawa H, Sato S, Toyoda T, Matsui M. Functional and expression analyses of transcripts based on full-length cDNAs of Sorghum bicolor. DNA Res 2015; 22:485-93. [PMID: 26546227 PMCID: PMC4675717 DOI: 10.1093/dnares/dsv030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/09/2015] [Indexed: 11/13/2022] Open
Abstract
Sorghum bicolor is one of the most important crops for food and bioethanol production. Its small diploid genome and resistance to environmental stress make sorghum an attractive model for studying the functional genomics of the Saccharinae and other C4 grasses. We analyzed the domain-based functional annotation of the cDNAs using the gene ontology (GO) categories for molecular function to characterize all the genes cloned in the full-length cDNA library of sorghum. The sorghum cDNA library successfully captured a wide range of cDNA-encoded proteins with various functions. To characterize the protein function of newly identified cDNAs, a search of their deduced domains and comparative analyses in the Oryza sativa and Zea mays genomes were carried out. Furthermore, genes on the sense strand corresponding to antisense transcripts were classified based on the GO of molecular function. To add more information about these genes, we have analyzed the expression profiles using RNA-Seq of three tissues (spikelet, seed and stem) during the starch-filling phase. We performed functional analysis of tissue-specific genes and expression analysis of genes of starch biosynthesis enzymes. This functional analysis of sorghum full-length cDNAs and the transcriptome information will facilitate further analysis of the Saccharinae and grass families.
Collapse
Affiliation(s)
- Setsuko Shimada
- Synthetic Genomics Research Group, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Yuko Makita
- Synthetic Genomics Research Group, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Tomoko Kuriyama-Kondou
- Synthetic Genomics Research Group, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Mika Kawashima
- Synthetic Genomics Research Group, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Yoshiki Mochizuki
- RIKEN Advanced Center for Computing and Communication (ACCC), Wako, Saitama 351-0198, Japan
| | - Hideki Hirakawa
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Shusei Sato
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Tetsuro Toyoda
- RIKEN Advanced Center for Computing and Communication (ACCC), Wako, Saitama 351-0198, Japan
| | - Minami Matsui
- Synthetic Genomics Research Group, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
31
|
Wu H, Clay K, Thompson SS, Hennen-Bierwagen TA, Andrews BJ, Zechmann B, Gibbon BC. Pullulanase and Starch Synthase III Are Associated with Formation of Vitreous Endosperm in Quality Protein Maize. PLoS One 2015; 10:e0130856. [PMID: 26115014 PMCID: PMC4482715 DOI: 10.1371/journal.pone.0130856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/25/2015] [Indexed: 11/25/2022] Open
Abstract
The opaque-2 (o2) mutation of maize increases lysine content, but the low seed density and soft texture of this type of mutant are undesirable. Lines with modifiers of the soft kernel phenotype (mo2) called “Quality Protein Maize” (QPM) have high lysine and kernel phenotypes similar to normal maize. Prior research indicated that the formation of vitreous endosperm in QPM might involve changes in starch granule structure. In this study, we focused on analysis of two starch biosynthetic enzymes that may influence kernel vitreousness. Analysis of recombinant inbred lines derived from a cross of W64Ao2 and K0326Y revealed that pullulanase activity had significant positive correlation with kernel vitreousness. We also found that decreased Starch Synthase III abundance may decrease the pullulanase activity and average glucan chain length given the same Zpu1 genotype. Therefore, Starch Synthase III could indirectly influence the kernel vitreousness by affecting pullulanase activity and coordinating with pullulanase to alter the glucan chain length distribution of amylopectin, resulting in different starch structural properties. The glucan chain length distribution had strong positive correlation with the polydispersity index of glucan chains, which was positively associated with the kernel vitreousness based on nonlinear regression analysis. Therefore, we propose that pullulanase and Starch Synthase III are two important factors responsible for the formation of the vitreous phenotype of QPM endosperms.
Collapse
Affiliation(s)
- Hao Wu
- Department of Biology, Baylor University, Waco, Texas, 76798, United States of America
| | - Kasi Clay
- Department of Biology, Baylor University, Waco, Texas, 76798, United States of America
| | - Stephanie S. Thompson
- Department of Biology, Baylor University, Waco, Texas, 76798, United States of America
| | - Tracie A. Hennen-Bierwagen
- Iowa State University, Department of Biochemistry, Biophysics, and Molecular Biology, Ames, Iowa, 50011, United States of America
| | - Bethany J. Andrews
- Texas A&M University, Department of Soil and Crop Sciences, College Station, Texas, 77843, United States of America
| | - Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, Waco, Texas, 76798, United States of America
| | - Bryan C. Gibbon
- Department of Biological Sciences, Florida A&M University, Tallahassee, Florida, 32307, United States of America
- * E-mail:
| |
Collapse
|
32
|
Chen H, Narsimhan G, Yao Y. Particulate structure of phytoglycogen studied using β-amylolysis. Carbohydr Polym 2015; 132:582-8. [PMID: 26256385 DOI: 10.1016/j.carbpol.2015.06.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/18/2015] [Accepted: 06/20/2015] [Indexed: 10/23/2022]
Abstract
Phytoglycogen (PG), a dendrimer-like glucan particulate, has a much higher dispersed molecular density than amylopectin (AP). In this study, β-amylase was used to investigate the effect of high molecular density of PG on its susceptibility to enzymatic hydrolysis. AP and PG reached the limit of β-amylolysis at 20 and 480 min, respectively, suggesting a much higher resistance of PG to β-amylase. The majority of PG β-amylolysis occurred in the initial 2 min, followed by a slow progression that implied low accessibility of internal particulate portion to enzyme. The chain length profile of PG β-limit dextrin showed only one population of long chains, indicating the absence of branch clusters with PG. At the limit of β-amylolysis, a substantial decrease in the molar mass was observed for both PG and AP, whereas only a slight reduction in the Z-average root mean square radius was observed for PG (from 24.5 to 23.1 nm) compared to that of AP (from 91.1 to 69.6 nm).
Collapse
Affiliation(s)
- Hua Chen
- Department of Food Science, Purdue University, United States
| | - Ganesan Narsimhan
- Department of Agricultural & Biological Engineering, Purdue University, United States
| | - Yuan Yao
- Department of Food Science, Purdue University, United States.
| |
Collapse
|
33
|
da Fonseca RR, Smith BD, Wales N, Cappellini E, Skoglund P, Fumagalli M, Samaniego JA, Carøe C, Ávila-Arcos MC, Hufnagel DE, Korneliussen TS, Vieira FG, Jakobsson M, Arriaza B, Willerslev E, Nielsen R, Hufford MB, Albrechtsen A, Ross-Ibarra J, Gilbert MTP. The origin and evolution of maize in the Southwestern United States. NATURE PLANTS 2015; 1:14003. [PMID: 27246050 DOI: 10.1038/nplants.2014.3] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/08/2014] [Indexed: 05/18/2023]
Abstract
The origin of maize (Zea mays mays) in the US Southwest remains contentious, with conflicting archaeological data supporting either coastal(1-4) or highland(5,6) routes of diffusion of maize into the United States. Furthermore, the genetics of adaptation to the new environmental and cultural context of the Southwest is largely uncharacterized(7). To address these issues, we compared nuclear DNA from 32 archaeological maize samples spanning 6,000 years of evolution to modern landraces. We found that the initial diffusion of maize into the Southwest about 4,000 years ago is likely to have occurred along a highland route, followed by gene flow from a lowland coastal maize beginning at least 2,000 years ago. Our population genetic analysis also enabled us to differentiate selection during domestication for adaptation to the climatic and cultural environment of the Southwest, identifying adaptation loci relevant to drought tolerance and sugar content.
Collapse
Affiliation(s)
- Rute R da Fonseca
- Centre for GeoGenetics, University of Copenhagen, 1350 Copenhagen, Denmark
- The Bioinformatics Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bruce D Smith
- Program in Human Ecology and Archaeobiology, Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington DC 20560, USA
| | - Nathan Wales
- Centre for GeoGenetics, University of Copenhagen, 1350 Copenhagen, Denmark
| | - Enrico Cappellini
- Centre for GeoGenetics, University of Copenhagen, 1350 Copenhagen, Denmark
| | - Pontus Skoglund
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Matteo Fumagalli
- Department of Integrative Biology, University of California, Berkeley, California 94720-3140, USA
| | | | - Christian Carøe
- Centre for GeoGenetics, University of Copenhagen, 1350 Copenhagen, Denmark
| | - María C Ávila-Arcos
- Centre for GeoGenetics, University of Copenhagen, 1350 Copenhagen, Denmark
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - David E Hufnagel
- Department of Ecology, Evolution, &Organismal Biology, Iowa State University, 50011, USA
| | | | - Filipe Garrett Vieira
- Centre for GeoGenetics, University of Copenhagen, 1350 Copenhagen, Denmark
- Department of Integrative Biology, University of California, Berkeley, California 94720-3140, USA
| | - Mattias Jakobsson
- Department of Evolutionary Biology, Uppsala University, Uppsala 752 36, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala 752 36, Sweden
| | - Bernardo Arriaza
- Instituto de Alta Investigación, Universidad de Tarapacá, 15101 Arica, Chile
| | - Eske Willerslev
- Centre for GeoGenetics, University of Copenhagen, 1350 Copenhagen, Denmark
| | - Rasmus Nielsen
- Centre for GeoGenetics, University of Copenhagen, 1350 Copenhagen, Denmark
- Department of Integrative Biology and Statistics, University of California, Berkeley, California 94720-3140, USA
| | - Matthew B Hufford
- Department of Ecology, Evolution, &Organismal Biology, Iowa State University, 50011, USA
| | - Anders Albrechtsen
- The Bioinformatics Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jeffrey Ross-Ibarra
- Department of Plant Sciences, Center for Population Biology and Genome Center, University of California, Davis, California 95616, USA
| | - M Thomas P Gilbert
- Centre for GeoGenetics, University of Copenhagen, 1350 Copenhagen, Denmark
- Trace and Environmental DNA Laboratory, Department of Environment and Agriculture, Curtin University, Perth, Western Australia, 6102, Australia
| |
Collapse
|
34
|
Lin Q, Facon M, Putaux JL, Dinges JR, Wattebled F, D'Hulst C, Hennen-Bierwagen TA, Myers AM. Function of isoamylase-type starch debranching enzymes ISA1 and ISA2 in the Zea mays leaf. THE NEW PHYTOLOGIST 2013; 200:1009-1021. [PMID: 23952574 DOI: 10.1111/nph.12446] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/08/2013] [Indexed: 06/02/2023]
Abstract
Conserved isoamylase-type starch debranching enzymes (ISAs), including the catalytic ISA1 and noncatalytic ISA2, are major starch biosynthesis determinants. Arabidopsis thaliana leaves require ISA1 and ISA2 for physiological function, whereas endosperm starch is near normal with only ISA1. ISA functions were characterized in maize (Zea mays) leaves to determine whether species-specific distinctions in ISA1 primary structure, or metabolic differences in tissues, are responsible for the differing ISA2 requirement. Genetic methods provided lines lacking ISA1 or ISA2. Biochemical analyses characterized ISA activities in mutant tissues. Starch content, granule morphology, and amylopectin fine structure were determined. Three ISA activity forms were observed in leaves, two ISA1/ISA2 heteromultimers and one ISA1 homomultimer. ISA1 homomultimer activity existed in mutants lacking ISA2. Mutants without ISA2 differed in leaf starch content, granule morphology, and amylopectin structure compared with nonmutants or lines lacking both ISA1 and ISA2. The data imply that both the ISA1 homomultimer and ISA1/ISA2 heteromultimer function in the maize leaf. The ISA1 homomultimer is present and functions in the maize leaf. Evolutionary divergence between monocots and dicots probably explains the ability of ISA1 to function as a homomultimer in maize leaves, in contrast to other species where the ISA1/ISA2 heteromultimer is the only active form.
Collapse
Affiliation(s)
- Qiaohui Lin
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Zea mays (L.) P1 locus for cob glume color identified as a post-domestication selection target with an effect on temperate maize genomes. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.cj.2013.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Fujita N, Hanashiro I, Suzuki S, Higuchi T, Toyosawa Y, Utsumi Y, Itoh R, Aihara S, Nakamura Y. Elongated phytoglycogen chain length in transgenic rice endosperm expressing active starch synthase IIa affects the altered solubility and crystallinity of the storage α-glucan. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5859-72. [PMID: 23048127 PMCID: PMC3467298 DOI: 10.1093/jxb/ers235] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The relationship between the solubility, crystallinity, and length of the unit chains of plant storage α-glucan was investigated by manipulating the chain length of α-glucans accumulated in a rice mutant. Transgenic lines were produced by introducing a cDNA for starch synthase IIa (SSIIa) from an indica cultivar (SSIIa (I), coding for active SSIIa) into an isoamylase1 (ISA1)-deficient mutant (isa1) that was derived from a japonica cultivar (bearing inactive SSIIa proteins). The water-soluble fraction accounted for >95% of the total α-glucan in the isa1 mutant, whereas it was only 35-70% in the transgenic SSIIa (I)/isa1 lines. Thus, the α-glucans from the SSIIa (I)/isa1 lines were fractionated into soluble and insoluble fractions prior to the following characterizations. X-ray diffraction analysis revealed a weak B-type crystallinity for the α-glucans of the insoluble fraction, while no crystallinity was confirmed for α-glucans in isa1. Concerning the degree of polymerization (DP) ≤30, the chain lengths of these α-glucans differed significantly in the order of SSIIa (I)/isa1 insoluble > SSIIa (I)/isa1 soluble > α-glucans in isa1. The amount of long chains with DP ≥33 was higher in the insoluble fraction α-glucans than in the other two α-glucans. No difference was observed in the chain length distributions of the β-amylase limit dextrins among these α-glucans. These results suggest that in the SSIIa (I)/isa1 transgenic lines, the unit chains of α-glucans were elongated by SSIIa(I), whereas the expression of SSIIa(I) did not affect the branch positions. Thus, the observed insolubility and crystallinity of the insoluble fraction can be attributed to the elongated length of the outer chains due to SSIIa(I).
Collapse
Affiliation(s)
- Naoko Fujita
- Department of Biological Production, Akita Prefectural University, Akita City, Akita, 010-0195 Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kim YJ, Yeu SY, Park BS, Koh HJ, Song JT, Seo HS. Protein disulfide isomerase-like protein 1-1 controls endosperm development through regulation of the amount and composition of seed proteins in rice. PLoS One 2012; 7:e44493. [PMID: 22970232 PMCID: PMC3435311 DOI: 10.1371/journal.pone.0044493] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 08/03/2012] [Indexed: 01/04/2023] Open
Abstract
Protein disulfide isomerase (PDI) is a chaperone protein involved in oxidative protein folding by acting as a catalyst and assisting folding in the endoplasmic reticulum (ER). A genome database search showed that rice contains 19 PDI-like genes. However, their functions are not clearly identified. This paper shows possible functions of rice PDI-like protein 1-1 (PDIL1-1) during seed development. Seeds of the T-DNA insertion PDIL1-1 mutant, PDIL1-1Δ, identified by genomic DNA PCR and western blot analysis, display a chalky phenotype and a thick aleurone layer. Protein content per seed was significantly lower and free sugar content higher in PDIL1-1Δ mutant seeds than in the wild type. Proteomic analysis of PDIL1-1Δ mutant seeds showed that PDIL1-1 is post-translationally regulated, and its loss causes accumulation of many types of seed proteins including glucose/starch metabolism- and ROS (reactive oxygen species) scavenging-related proteins. In addition, PDIL1-1 strongly interacts with the cysteine protease OsCP1. Our data indicate that the opaque phenotype of PDIL1-1Δ mutant seeds results from production of irregular starch granules and protein body through loss of regulatory activity for various proteins involved in the synthesis of seed components.
Collapse
Affiliation(s)
- Yeon Jeong Kim
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Song Yion Yeu
- School of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Bong Soo Park
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Hee-Jong Koh
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| | - Jong Tae Song
- School of Applied Biosciences, Kyungpook National University, Daegu, Korea
| | - Hak Soo Seo
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
- Bio-MAX Institute, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
38
|
Lin Q, Huang B, Zhang M, Zhang X, Rivenbark J, Lappe RL, James MG, Myers AM, Hennen-Bierwagen TA. Functional interactions between starch synthase III and isoamylase-type starch-debranching enzyme in maize endosperm. PLANT PHYSIOLOGY 2012; 158:679-92. [PMID: 22193705 PMCID: PMC3271759 DOI: 10.1104/pp.111.189704] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 12/20/2011] [Indexed: 05/09/2023]
Abstract
This study characterized genetic interactions between the maize (Zea mays) genes dull1 (du1), encoding starch synthase III (SSIII), and isa2, encoding a noncatalytic subunit of heteromeric isoamylase-type starch-debranching enzyme (ISA1/ISA2 heteromer). Mutants lacking ISA2 still possess the ISA1 homomeric enzyme. Eight du1(-) mutations were characterized, and structural changes in amylopectin resulting from each were measured. In every instance, the same complex pattern of alterations in discontinuous spans of chain lengths was observed, which cannot be explained solely by a discrete range of substrates preferred by SSIII. Homozygous double mutants were constructed containing the null mutation isa2-339 and either du1-Ref, encoding a truncated SSIII protein lacking the catalytic domain, or the null allele du1-R4059. In contrast to the single mutant parents, double mutant endosperms affected in both SSIII and ISA2 were starch deficient and accumulated phytoglycogen. This phenotype was previously observed only in maize sugary1 mutants impaired for the catalytic subunit ISA1. ISA1 homomeric enzyme complexes assembled in both double mutants and were enzymatically active in vitro. Thus, SSIII is required for normal starch crystallization and the prevention of phytoglycogen accumulation when the only isoamylase-type debranching activity present is ISA1 homomer, but not in the wild-type condition, when both ISA1 homomer and ISA1/ISA2 heteromer are present. Previous genetic and biochemical analyses showed that SSIII also is required for normal glucan accumulation when the only isoamylase-type debranching enzyme activity present is ISA1/ISA heteromer. These data indicate that isoamylase-type debranching enzyme and SSIII work in a coordinated fashion to repress phytoglycogen accumulation.
Collapse
|
39
|
Yun MS, Umemoto T, Kawagoe Y. Rice debranching enzyme isoamylase3 facilitates starch metabolism and affects plastid morphogenesis. PLANT & CELL PHYSIOLOGY 2011; 52:1068-82. [PMID: 21551159 PMCID: PMC3110883 DOI: 10.1093/pcp/pcr058] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 04/25/2011] [Indexed: 05/04/2023]
Abstract
Debranching enzymes, which hydrolyze α-1 and 6-glucosidic linkages in α-polyglucans, play a dual role in the synthesis and degradation of starch in plants. A transposon-inserted rice mutant of isoamylase3 (isa3) contained an increased amount of starch in the leaf blade at the end of the night, indicating that ISA3 plays a role in the degradation of transitory starch during the night. An epitope-tagged ISA3 expressed in Escherichia coli exhibited hydrolytic activity on β-limit dextrin and amylopectin. We investigated whether ISA3 plays a role in amyloplast development and starch metabolism in the developing endosperm. ISA3-green fluorescent protein (GFP) fusion protein expressed under the control of the rice ISA3 promoter was targeted to the amyloplast stroma in the endosperm. Overexpression of ISA3 in the sugary1 mutant, which is deficient in ISA1 activity, did not convert water-soluble phytoglycogen to starch granules, indicating that ISA1 and ISA3 are not functionally redundant. Both overexpression and loss of function of ISA3 in the endosperm generated pleomorphic amyloplasts and starch granules. Furthermore, chloroplasts in the leaf blade of isa3 seedlings were large and pleomorphic. These results suggest that ISA3 facilitates starch metabolism and affects morphological characteristics of plastids in rice.
Collapse
Affiliation(s)
- Min-Soo Yun
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, 305-8602 Japan
- Present address: Food Resource Division, National Food Research Institute, 2-1-12 Kannondai, Tsukuba, 305-8642 Japan
| | - Takayuki Umemoto
- Rice Quality Research Team, National Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, 305-8518, Japan
- Present address: National Agricultural Research Center for Hokkaido Region, 1 Hitsujigaoka, Toyohira, Sapporo, 062-8555 Japan
| | - Yasushi Kawagoe
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, 305-8602 Japan
| |
Collapse
|
40
|
Myers AM, James MG, Lin Q, Yi G, Stinard PS, Hennen-Bierwagen TA, Becraft PW. Maize opaque5 encodes monogalactosyldiacylglycerol synthase and specifically affects galactolipids necessary for amyloplast and chloroplast function. THE PLANT CELL 2011; 23:2331-47. [PMID: 21685260 PMCID: PMC3160020 DOI: 10.1105/tpc.111.087205] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The maize (Zea mays) opaque5 (o5) locus was shown to encode the monogalactosyldiacylglycerol synthase MGD1. Null and point mutations of o5 that affect the vitreous nature of mature endosperm engendered an allelic series of lines with stepwise reductions in gene function. C(18:3)/C(18:2) galactolipid abundance in seedling leaves was reduced proportionally, without significant effects on total galactolipid content. This alteration in polar lipid composition disrupted the organization of thylakoid membranes into granal stacks. Total galactolipid abundance in endosperm was strongly reduced in o5(-) mutants, causing developmental defects and changes in starch production such that the normal simple granules were replaced with compound granules separated by amyloplast membrane. Complete loss of MGD1 function in a null mutant caused kernel lethality owing to failure in both endosperm and embryo development. The data demonstrate that low-abundance galactolipids with five double bonds serve functions in plastid membranes that are not replaced by the predominant species with six double bonds. Furthermore, the data identify a function of amyloplast membranes in the development of starch granules. Finally, the specific changes in lipid composition suggest that MGD1 can distinguish the constituency of acyl groups on its diacylglycerol substrate based upon the degree of desaturation.
Collapse
Affiliation(s)
- Alan M. Myers
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Martha G. James
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Qiaohui Lin
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Gibum Yi
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Philip S. Stinard
- U.S. Department of Agriculture/Agricultural Research Service, Maize Genetics Cooperation Stock Center, Urbana, Illinois 61801
| | | | - Philip W. Becraft
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
- Address correspondence to
| |
Collapse
|
41
|
Yandeau-Nelson MD, Laurens L, Shi Z, Xia H, Smith AM, Guiltinan MJ. Starch-branching enzyme IIa is required for proper diurnal cycling of starch in leaves of maize. PLANT PHYSIOLOGY 2011; 156:479-90. [PMID: 21508184 PMCID: PMC3177252 DOI: 10.1104/pp.111.174094] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 04/13/2011] [Indexed: 05/23/2023]
Abstract
Starch-branching enzyme (SBE), a glucosyl transferase, is required for the highly regular pattern of α-1,6 bonds in the amylopectin component of starch. In the absence of SBEIIa, as shown previously in the sbe2a mutant of maize (Zea mays), leaf starch has drastically reduced branching and the leaves exhibit a severe senescence-like phenotype. Detailed characterization of the maize sbe2a mutant revealed that SBEIIa is the primary active branching enzyme in the leaf and that in its absence plant growth is affected. Both seedling and mature sbe2a mutant leaves do not properly degrade starch during the night, resulting in hyperaccumulation. In mature sbe2a leaves, starch hyperaccumulation is greatest in visibly senescing regions but also observed in green tissue and is correlated to a drastic reduction in photosynthesis within the leaf. Starch granules from sbe2a leaves observed via scanning electron microscopy and transmission electron microscopy analyses are larger, irregular, and amorphous as compared with the highly regular, discoid starch granules observed in wild-type leaves. This appears to trigger premature senescence, as shown by an increased expression of genes encoding proteins known to be involved in senescence and programmed cell death processes. Together, these results indicate that SBEIIa is required for the proper diurnal cycling of transitory starch within the leaf and suggest that SBEIIa is necessary in producing an amylopectin structure amenable to degradation by starch metabolism enzymes.
Collapse
Affiliation(s)
| | | | | | | | | | - Mark J. Guiltinan
- Department of Horticulture (M.D.Y.-N., Z.S., M.J.G.) and Department of Food Science (H.X.), Pennsylvania State University, University Park, Pennsylvania 16802; John Innes Centre, Norwich NR4 7UH, United Kingdom (L.L., A.M.S.)
| |
Collapse
|
42
|
Xia H, Yandeau-Nelson M, Thompson DB, Guiltinan MJ. Deficiency of maize starch-branching enzyme I results in altered starch fine structure, decreased digestibility and reduced coleoptile growth during germination. BMC PLANT BIOLOGY 2011; 11:95. [PMID: 21599988 PMCID: PMC3245629 DOI: 10.1186/1471-2229-11-95] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 05/21/2011] [Indexed: 05/17/2023]
Abstract
BACKGROUND Two distinct starch branching enzyme (SBE) isoforms predate the divergence of monocots and dicots and have been conserved in plants since then. This strongly suggests that both SBEI and SBEII provide unique selective advantages to plants. However, no phenotype for the SBEI mutation, sbe1a, had been previously observed. To explore this incongruity the objective of the present work was to characterize functional and molecular phenotypes of both sbe1a and wild-type (Wt) in the W64A maize inbred line. RESULTS Endosperm starch granules from the sbe1a mutant were more resistant to digestion by pancreatic α-amylase, and the sbe1a mutant starch had an altered branching pattern for amylopectin and amylose. When kernels were germinated, the sbe1a mutant was associated with shorter coleoptile length and higher residual starch content, suggesting that less efficient starch utilization may have impaired growth during germination. CONCLUSIONS The present report documents for the first time a molecular phenotype due to the absence of SBEI, and suggests strongly that it is associated with altered physiological function of the starch in vivo. We believe that these results provide a plausible rationale for the conservation of SBEI in plants in both monocots and dicots, as greater seedling vigor would provide an important survival advantage when resources are limited.
Collapse
Affiliation(s)
- Huan Xia
- MARS Petcare US, 315 Cool Springs Boulevard, Franklin, Tennessee 37067, USA
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania 16802-2504, USA
| | - Marna Yandeau-Nelson
- Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa 50011-3260, USA
- Department of Horticulture, The Pennsylvania State University, University Park, Pennsylvania 16802-5807, USA
| | - Donald B Thompson
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania 16802-2504, USA
| | - Mark J Guiltinan
- Department of Horticulture, The Pennsylvania State University, University Park, Pennsylvania 16802-5807, USA
| |
Collapse
|
43
|
Yao Y, Janaswamy S. Gene dosage effect on starch structure studied using maize polygenic model containing ae and su1 mutant alleles. Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.09.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Cuevas RP, Gilbert RG, Fitzgerald MA. Structural differences between hot-water-soluble and hot-water-insoluble fractions of starch in waxy rice (Oryza sativa L.). Carbohydr Polym 2010. [DOI: 10.1016/j.carbpol.2010.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Kubo A, Colleoni C, Dinges JR, Lin Q, Lappe RR, Rivenbark JG, Meyer AJ, Ball SG, James MG, Hennen-Bierwagen TA, Myers AM. Functions of heteromeric and homomeric isoamylase-type starch-debranching enzymes in developing maize endosperm. PLANT PHYSIOLOGY 2010; 153:956-69. [PMID: 20448101 PMCID: PMC2899900 DOI: 10.1104/pp.110.155259] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 05/05/2010] [Indexed: 05/03/2023]
Abstract
Functions of isoamylase-type starch-debranching enzyme (ISA) proteins and complexes in maize (Zea mays) endosperm were characterized. Wild-type endosperm contained three high molecular mass ISA complexes resolved by gel permeation chromatography and native-polyacrylamide gel electrophoresis. Two complexes of approximately 400 kD contained both ISA1 and ISA2, and an approximately 300-kD complex contained ISA1 but not ISA2. Novel mutations of sugary1 (su1) and isa2, coding for ISA1 and ISA2, respectively, were used to develop one maize line with ISA1 homomer but lacking heteromeric ISA and a second line with one form of ISA1/ISA2 heteromer but no homomeric enzyme. The mutations were su1-P, which caused an amino acid substitution in ISA1, and isa2-339, which was caused by transposon insertion and conditioned loss of ISA2. In agreement with the protein compositions, all three ISA complexes were missing in an ISA1-null line, whereas only the two higher molecular mass forms were absent in the ISA2-null line. Both su1-P and isa2-339 conditioned near-normal starch characteristics, in contrast to ISA-null lines, indicating that either homomeric or heteromeric ISA is competent for starch biosynthesis. The homomer-only line had smaller, more numerous granules. Thus, a function of heteromeric ISA not compensated for by homomeric enzyme affects granule initiation or growth, which may explain evolutionary selection for ISA2. ISA1 was required for the accumulation of ISA2, which is regulated posttranscriptionally. Quantitative polymerase chain reaction showed that the ISA1 transcript level was elevated in tissues where starch is synthesized and low during starch degradation, whereas ISA2 transcript was relatively abundant during periods of either starch biosynthesis or catabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Alan M. Myers
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011 (A.K., C.C., J.R.D., Q.L., R.R.L., J.G.R., A.J.M., S.G.B., M.G.J., T.A.H.-B., A.M.M.); Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 CNRS, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq cedex 59655, France (S.G.B.)
| |
Collapse
|
46
|
Affiliation(s)
- Peter L. Keeling
- NSF Engineering Research Center for Biorenewable Chemicals and Iowa State University, Ames, Iowa 50011;
| | - Alan M. Myers
- NSF Engineering Research Center for Biorenewable Chemicals and Iowa State University, Ames, Iowa 50011;
| |
Collapse
|
47
|
Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proc Natl Acad Sci U S A 2009; 106:21760-5. [PMID: 20018713 DOI: 10.1073/pnas.0912396106] [Citation(s) in RCA: 333] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
More than half of the world's population uses rice as a source of carbon intake every day. Improving grain quality is thus essential to rice consumers. The three main properties that determine rice eating and cooking quality--amylose content, gel consistency, and gelatinization temperature--correlate with one another, but the underlying mechanism of these properties remains unclear. Through an association analysis approach, we found that genes related to starch synthesis cooperate with each other to form a fine regulating network that controls the eating and cooking quality and defines the correlation among these three properties. Genetic transformation results verified the association findings and also suggested the possibility of developing elite cultivars through modification with selected major and/or minor starch synthesis-related genes.
Collapse
|
48
|
Fan L, Bao J, Wang Y, Yao J, Gui Y, Hu W, Zhu J, Zeng M, Li Y, Xu Y. Post-domestication selection in the maize starch pathway. PLoS One 2009; 4:e7612. [PMID: 19859548 PMCID: PMC2762603 DOI: 10.1371/journal.pone.0007612] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 10/08/2009] [Indexed: 11/18/2022] Open
Abstract
Modern crops have usually experienced domestication selection and subsequent genetic improvement (post-domestication selection). Chinese waxy maize, which originated from non-glutinous domesticated maize (Zea mays ssp. mays), provides a unique model for investigating the post-domestication selection of maize. In this study, the genetic diversity of six key genes in the starch pathway was investigated in a glutinous population that included 55 Chinese waxy accessions, and a selective bottleneck that resulted in apparent reductions in diversity in Chinese waxy maize was observed. Significant positive selection in waxy (wx) but not amylose extender1 (ae1) was detected in the glutinous population, in complete contrast to the findings in non-glutinous maize, which indicated a shift in the selection target from ae1 to wx during the improvement of Chinese waxy maize. Our results suggest that an agronomic trait can be quickly improved into a target trait with changes in the selection target among genes in a crop pathway.
Collapse
Affiliation(s)
- Longjiang Fan
- Institute of Crop Science and Institute of Bioinformatics, Department of Agronomy, Zhejiang University, Hangzhou, China
- * E-mail:
| | - Jiandong Bao
- Institute of Crop Science and Institute of Bioinformatics, Department of Agronomy, Zhejiang University, Hangzhou, China
| | - Yu Wang
- Institute of Crop Science and Institute of Bioinformatics, Department of Agronomy, Zhejiang University, Hangzhou, China
| | - Jianqiang Yao
- Institute of Crop Science and Institute of Bioinformatics, Department of Agronomy, Zhejiang University, Hangzhou, China
- Institute of Crop Science, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Yijie Gui
- Institute of Crop Science and Institute of Bioinformatics, Department of Agronomy, Zhejiang University, Hangzhou, China
| | - Weiming Hu
- Institute of Crop Science and Institute of Bioinformatics, Department of Agronomy, Zhejiang University, Hangzhou, China
| | - Jinqing Zhu
- Institute of Crop Science, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Mengqian Zeng
- Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing, China
| | - Yu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunbi Xu
- International Maize and Wheat Improvement Center (CIMMYT), Mexico, D.F., Mexico
| |
Collapse
|
49
|
Abstract
Mutator (Mu) is by far the most mutagenic plant transposon. The high frequency of transposition and the tendency to insert into low copy sequences for such transposon have made it the primary means by which genes are mutagenized in maize (Zea mays L.). Mus like elements (MULEs) are widespread among angiosperms and multiple-diverged functional variants can be present in a single genome. MULEs often capture genetic sequences. These Pack-MuLEs can mobilize thousands of gene fragments, which may have had a significant impact on host genome evolution. There is also evidence that MULEs can move between reproductively isolated species. Here we present an overview of the discovery, features and utility of Mu transposon. Classification of Mu elements and future directions of related research are also discussed. Understanding Mu will help us elucidate the dynamic genome.
Collapse
Affiliation(s)
- Xian-Min Diao
- National Millet Improvement Center of China, Institute of Millet Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang.
| | | |
Collapse
|
50
|
Ma Y, Slewinski TL, Baker RF, Braun DM. Tie-dyed1 encodes a novel, phloem-expressed transmembrane protein that functions in carbohydrate partitioning. PLANT PHYSIOLOGY 2009; 149:181-94. [PMID: 18923021 PMCID: PMC2613742 DOI: 10.1104/pp.108.130971] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 10/10/2008] [Indexed: 05/18/2023]
Abstract
Carbon is partitioned between export from the leaf and retention within the leaf, and this process is essential for all aspects of plant growth and development. In most plants, sucrose is loaded into the phloem of carbon-exporting leaves (sources), transported through the veins, and unloaded into carbon-importing tissues (sinks). We have taken a genetic approach to identify genes regulating carbon partitioning in maize (Zea mays). We identified a collection of mutants, called the tie-dyed (tdy) loci, that hyperaccumulate carbohydrates in regions of their leaves. To understand the molecular function of Tdy1, we cloned the gene. Tdy1 encodes a novel transmembrane protein present only in grasses, although two protein domains are conserved across angiosperms. We found that Tdy1 is expressed exclusively in phloem cells of both source and sink tissues, suggesting that Tdy1 may play a role in phloem loading and unloading processes. In addition, Tdy1 RNA accumulates in protophloem cells upon differentiation, suggesting that Tdy1 may function as soon as phloem cells become competent to transport assimilates. Monitoring the movement of a fluorescent, soluble dye showed that tdy1 leaves have retarded phloem loading. However, once the dye entered into the phloem, solute transport appeared equal in wild-type and tdy1 mutant plants, suggesting that tdy1 plants are not defective in phloem unloading. Therefore, even though Tdy1 RNA accumulates in source and sink tissues, we propose that TDY1 functions in carbon partitioning by promoting phloem loading. Possible roles for TDY1 are discussed.
Collapse
Affiliation(s)
- Yi Ma
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|