1
|
Wang C, Xuan X, Wang W, Sadeghnezhad E, Luo L, Gong P, Wu Q, Chao R, Chen X, Yu M, Qi Z, Zhang X, Wang F, Dong T, Ren Y, Meng L, Fang J. Gibberellin Mediates VvmiR397a-VvLAC4 via VvSLR1-VvWRKY26 Cascade Signal to Repress the Seed-Stone Development During GA-Induced Grape Parthenocarpy. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40269609 DOI: 10.1111/pce.15570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 04/25/2025]
Abstract
Exogenous gibberellin (GA) effectively inhibits the development of lignified seed-stone in grapes by inducing parthenocarpic seedless berries and significantly improving berry quality. However, the molecular mechanisms underlying this process remain elusive. Here, we uncovered the roles of miR397a in GA signalling-mediated grape seed-stone development through VvSLR1-VvWRKY26 cascade modulation in grapes, indicating 'VvSLR1-VvWRKY26-VvmiR397a-VvLAC4' is the key signalling regulatory module in lignin synthesis of seed-stone in GA-induced grape parthenocarpic berries. VvSLR1 inhibits VvmiR397a expression through interaction with VvWRKY26 and promotes the laccase-mediated lignin synthesis, while GA depresses lignin synthesis by overcoming VvSLR1-mediated multi-level cascade signals. We identified GA responsive cis-element of VvMIR397a promoter bound by VvWRKY26, which activated VvmiR397a expression, whereby inhibiting VvLAC4 level. The expression patterns and cleavage roles' variation of VvmiR397a-VvLAC4 during the seed stones of grape stone-hardening stage indicated that this pair is the one main regulatory module from VvLACs family in this process. Overexpression of VvMIR397a in tobacco and short tandem target mimic (STTM) assays of VvmiR397a/FvmiR397 in grape/strawberry highlighted the function of miR397a-LACs module during modulation of lignin synthesis. Our findings shed novel insights into the GA-responsive roles of VvmiR397a through multi-level cascade signals during modulation of grape seed-stone development, which has important implications for the molecular breeding of high-quality seedless grape berries.
Collapse
Affiliation(s)
- Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xuxian Xuan
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Wenran Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ehsan Sadeghnezhad
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Linjia Luo
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Peijie Gong
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Qiqi Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ruiqiang Chao
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xinpeng Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Mucheng Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ziyang Qi
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xiaowen Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fei Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Tianyu Dong
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yanhua Ren
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Laisheng Meng
- College of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Tipu MMH, Sherif SM. Ethylene and its crosstalk with hormonal pathways in fruit ripening: mechanisms, modulation, and commercial exploitation. FRONTIERS IN PLANT SCIENCE 2024; 15:1475496. [PMID: 39574438 PMCID: PMC11579711 DOI: 10.3389/fpls.2024.1475496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/10/2024] [Indexed: 11/24/2024]
Abstract
Ethylene is an important phytohormone that orchestrates a multitude of physiological and biochemical processes regulating fruit ripening, from early maturation to post-harvest. This review offers a comprehensive analysis of ethylene's multifaceted roles in climacteric fruit ripening, characterized by a pronounced increase in ethylene production and respiration rates. It explores potential genetic and molecular mechanisms underlying ethylene's action, focusing on key transcription factors, biosynthetic pathway genes, and signal transduction elements crucial for the expression of ripening-related genes. The varied sensitivity and dependency of ripening traits on ethylene are elucidated through studies employing genetic mutations and ethylene inhibitors such as AVG and 1-MCP. Additionally, the modulation of ripening traits by ethylene is influenced by its interaction with other phytohormones, including auxins, abscisic acid, gibberellins, jasmonates, brassinosteroids, and salicylic acid. Pre-harvest fruit drop is intricately linked to ethylene, which triggers enzyme activity in the abscission zone, leading to cell wall degradation and fruit detachment. This review also highlights the potential for applying ethylene-related knowledge in commercial contexts to enhance fruit quality, control pre-harvest drop, and extend shelf life. Future research directions are proposed, advocating for the integration of physiological, genetic, biochemical, and transcriptional insights to further elucidate ethylene's role in fruit ripening and its interaction with other hormonal pathways.
Collapse
Affiliation(s)
| | - Sherif M. Sherif
- Virginia Tech School of Plant and Environmental Sciences, Alson H. Smith Jr. Agricultural Research and Extension Center, Winchester, VA, United States
| |
Collapse
|
3
|
Agustí M, Martínez-Fuentes A, Mesejo C, Marzal A, Reig C. Expression of carbohydrate-related genes underlying 3,5,6-TPA-induced fruitlet abscission in citrus. Sci Rep 2024; 14:26482. [PMID: 39489781 PMCID: PMC11532428 DOI: 10.1038/s41598-024-78310-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024] Open
Abstract
In citrus, the synthetic auxin 3,5,6-trichloro-2-pyridyloxyacetic acid (3,5,6-TPA), applied as a foliar spray at a concentration of 15 mg l- 1 during physiological fruitlet abscission, caused additional fruitlet drop and reduced the number of fruits reaching maturity. The effect was much more pronounced at full physiological abscission than after. In this study, this thinning effect was successfully exploited for the first time in sour orange trees grown in an urban environment, reducing harvesting costs by up to almost 40%. This effect is mediated by the leaves, which alter their photosynthetic activity. Our results show a reduction of carbon fixation and sucrose synthesis in the leaf, by 3,5,6-TPA repression of the RbcS, SUS1 and SUSA genes, its transport to the fruit, as shown by the reduced expression of the sucrose transporter genes SUT3 and SUT4, and its hydrolysis in the fruit, mainly by repression of the SUS1 gene expression. Genes involved in auxin homeostasis in the fruit, TRN2 and PIN1, were also repressed. The coordinated repression of all these genes is consistent with the decrease in the fruit cell division rate, as shown by the repression of CYCA1-1 gene, leading to the production of ethylene, which ultimately induces fruitlet abscission.
Collapse
Affiliation(s)
- M Agustí
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Valencia, Spain.
| | - A Martínez-Fuentes
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Valencia, Spain
| | - C Mesejo
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Valencia, Spain
| | - A Marzal
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Valencia, Spain
- Instituto Valenciano de Investigaciones Agrarias, G. Valenciana, Moncada, Valencia, Spain
| | - C Reig
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
4
|
Depaepe T, Prinsen E, Hu Y, Sanchez-Munoz R, Denoo B, Buyst D, Darouez H, Werbrouck S, Hayashi KI, Martins J, Winne J, Van Der Straeten D. Arinole, a novel auxin-stimulating benzoxazole, affects root growth and promotes adventitious root formation. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5681-5702. [PMID: 38920303 DOI: 10.1093/jxb/erae282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
The triple response phenotype is characteristic for seedlings treated with the phytohormone ethylene or its direct precursor 1-aminocyclopropane-carboxylic acid, and is often employed to find novel chemical tools to probe ethylene responses. We identified a benzoxazole-urea derivative (B2) partially mimicking ethylene effects in a triple response bioassay. A phenotypic analysis demonstrated that B2 and its closest analogue arinole (ARI) induced phenotypic responses reminiscent of seedlings with elevated levels of auxin, including impaired hook development and inhibition of seedling growth. Specifically, ARI reduced longitudinal cell elongation in roots, while promoting cell division. In contrast to other natural or synthetic auxins, ARI mostly acts as an inducer of adventitious root development, with only limited effects on lateral root development. Quantification of free auxins and auxin biosynthetic precursors as well as auxin-related gene expression demonstrated that ARI boosts global auxin levels. In addition, analyses of auxin reporter lines and mutants, together with pharmacological assays with auxin-related inhibitors, confirmed that ARI effects are facilitated by TRYPTOPHAN AMINOTRANSFERASE1 (TAA1)-mediated auxin synthesis. ARI treatment in an array of species, including Arabidopsis, pea, tomato, poplar, and lavender, resulted in adventitious root formation, which is a desirable trait in both agriculture and horticulture.
Collapse
Affiliation(s)
- Thomas Depaepe
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Els Prinsen
- Laboratory of Integrated Molecular Plant Physiological Research (IMPRES), Department of Biology, Faculty of Sciences, University of Antwerp, Antwerp, Belgium
| | - Yuming Hu
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Raul Sanchez-Munoz
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Bram Denoo
- Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Dieter Buyst
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Hajer Darouez
- Laboratory for Applied In Vitro Plant Biotechnology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Stefaan Werbrouck
- Laboratory for Applied In Vitro Plant Biotechnology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Ken-Ichiro Hayashi
- Natural Products Chemistry Lab, Department of Biochemistry, Okayama University of Science, Okayama, Japan
| | - José Martins
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Johan Winne
- Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Han S, Zhang J, Wang W, Zhang S, Qin Z, Pei H. Reactive Oxygen and Related Regulatory Factors Involved in Ethylene-Induced Petal Abscission in Roses. PLANTS (BASEL, SWITZERLAND) 2024; 13:1718. [PMID: 38999558 PMCID: PMC11244382 DOI: 10.3390/plants13131718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024]
Abstract
Petal abscission affects the growth, development, and economic value of plants, but the mechanism of ethylene-ROS-induced petal abscission is not clear. Therefore, we treated roses with different treatments (MOCK, ETH, STS, and ETH + STS), and phenotypic characteristics of petal abscission, changed ratio of fresh weight, morphology of cells in AZ and the expression of RhSUC2 were analyzed. On this basis, we measured reactive oxygen species (ROS) content in petals and AZ cells of roses, and analyzed the expression levels of some genes related to ROS production and ROS scavenging. Ethylene promoted the petal abscission of rose through decreasing the fresh weight of the flower, promoting the stacking and stratification of AZ cells, and repressing the expression of RhSUC2. During this process, ethylene induced the ROS accumulation of AZ cells and petals mainly through increasing the expressions of some genes (RhRHS17, RhIDH1, RhIDH-III, RhERS, RhPBL32, RhFRS5, RhRAC5, RhRBOHD, RhRBOHC, and RhPLATZ9) related to ROS production and repressing those genes (RhCCR4, RhUBC30, RhSOD1, RhAPX6.1, and RhCATA) related to ROS scavenging. In summary, ROS and related regulatory factors involved in ethylene induced petal abscission in roses.
Collapse
Affiliation(s)
| | | | | | | | | | - Haixia Pei
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China; (S.H.); (J.Z.); (W.W.); (S.Z.); (Z.Q.)
| |
Collapse
|
6
|
Sun P, Han H, Xia XC, Dai JY, Xu KQ, Zhang WH, Yang XL, Xie MH. Towards an E-nose: Metal-organic frameworks based quartz crystal microbalance array for fruit ripeness indexing. Talanta 2024; 269:125484. [PMID: 38043338 DOI: 10.1016/j.talanta.2023.125484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/12/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
Ethylene is a hormone for fruit ripening control, and for the purpose of maintaining plant quality, ethylene monitoring is crucial. Due to the simple structure and limited functionality, the technical realization of ethylene detection by an artificial sensor remains a challenge. In this paper, we present a metal-organic frameworks (MOFs) array based electronic nose (e-nose) for rapid and accurate determination of ethylene. Six zirconium-based MOFs with systematically modified pore sizes and π-π binding sites have been prepared and fabricated into a sensor array using quartz crystal microbalance (QCM) technology. By virtue of the synergistic features of six MOF sensors, selectivity detection of ethylene has been achieved. The detection limit reaches to 0.27 ± 0.02 ppm, and high selectivity and stability (98.29 % ± 0.88 %) could also be confirmed. By submitting data to machine learning algorithm, an e-nose system could be established for discriminating ethylene from mixtures with a qualitative accuracy of 90.30 % and quantitative accuracy of 98.89 %. Practical evaluation suggests that the e-nose could index the fruit quality based on the accurate detection of ethylene released during fruit ripeness. This work demonstrates the promising potential of fabricating MOFs based e-nose systems for practical monitoring applications by selectively detecting challengeable target molecules.
Collapse
Affiliation(s)
- Peng Sun
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Hao Han
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Xu-Chao Xia
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Jin-Yu Dai
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Ke-Qiang Xu
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Wen-Hui Zhang
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Xiu-Li Yang
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, PR China.
| | - Ming-Hua Xie
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, PR China.
| |
Collapse
|
7
|
Li R, Yan D, Tan C, Li C, Song M, Zhao Q, Yang Y, Yin W, Liu Z, Ren X, Liu C. Transcriptome and Metabolomics Integrated Analysis Reveals MdMYB94 Associated with Esters Biosynthesis in Apple ( Malus × domestica). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7904-7920. [PMID: 37167631 DOI: 10.1021/acs.jafc.2c07719] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Volatile esters are major aromas contributing to the organoleptic quality of apple fruit. However, the molecular mechanisms underlying the regulation of volatile ester biosynthesis in apple remain elusive. This study investigated the volatile profiles and transcriptomes of 'Qinguan' (QG) apple fruit during development and/or postharvest storage. Although the constitution of volatiles varied widely between the peel and flesh, the volatile profiles of the peel and flesh of ripening QG fruit were dominated by volatile esters. WGCNA results suggested that 19 genes belonging to ester biosynthesis pathways and 11 hub transcription factor genes potentially participated in the biosynthesis and regulation of esters. To figure out key regulators of ester biosynthesis, correlation network analysis, dual-luciferase assays, and yeast one-hybrid assay were conducted and suggested that MdMYB94 trans-activated the MdAAT2 promoter and participated in the regulation of ester biosynthesis. This study provides a framework for understanding ester biosynthesis and regulation in apple.
Collapse
Affiliation(s)
- Rui Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dan Yan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunyan Tan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cen Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meijie Song
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiqi Zhao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yaming Yang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weijie Yin
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhande Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaolin Ren
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cuihua Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
8
|
Liao B, Li F, Yi F, Du M, Tian X, Li Z. Comparative Physiological and Transcriptomic Mechanisms of Defoliation in Cotton in Response to Thidiazuron versus Ethephon. Int J Mol Sci 2023; 24:ijms24087590. [PMID: 37108752 PMCID: PMC10143250 DOI: 10.3390/ijms24087590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Thidiazuron (TDZ) is a widely used chemical defoliant in cotton and can stimulate the production of ethylene in leaves, which is believed to be the key factor in inducing leaf abscission. Ethephon (Eth) can also stimulate ethylene production in leaves, but it is less effective in promoting leaf shedding. In this study, the enzyme-linked immunosorbent assays (ELISA) and RNA-seq were used to determine specific changes at hormonal levels as well as transcriptomic mechanisms induced by TDZ compared with Eth. The TDZ significantly reduced the levels of auxin and cytokinin in cotton leaves, but no considerable changes were observed for Eth. In addition, TDZ specifically increased the levels of brassinosteroids and jasmonic acid in the leaves. A total of 13 764 differentially expressed genes that specifically responded to TDZ were identified by RNA-seq. The analysis of KEGG functional categories suggested that the synthesis, metabolism, and signal transduction of auxin, cytokinin, and brassinosteroid were all involved in the TDZ-induced abscission of cotton leaves. Eight auxin transport genes (GhPIN1-c_D, GhPIN3_D, GhPIN8_A, GhABCB19-b_A, GhABCB19-b_D, GhABCB2-b_D, GhLAX6_A, and GhLAX7_D) specifically responded to TDZ. The pro35S::GhPIN3a::YFP transgenic plants showed lower defoliation than the wild type treated with TDZ, and YFP fluorescence in leaves was almost extinguished after treatment with TDZ rather than Eth. This provides direct evidence that GhPIN3a is involved in the leaf abscission induced by TDZ. We found that 959 transcription factors (TFs) specifically responded to TDZ, and a co-expression network analysis (WGCNA) showed five hub TFs (GhNAC72, GhWRKY51, GhWRKY70, GhWRKY50, and GhHSF24) during chemical defoliation with TDZ. Our work sheds light on the molecular basis of TDZ-induced leaf abscission in cotton.
Collapse
Affiliation(s)
- Baopeng Liao
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China
| | - Fangjun Li
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China
| | - Fei Yi
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China
| | - Mingwei Du
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China
| | - Xiaoli Tian
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China
| | - Zhaohu Li
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Botton A, Girardi F, Ruperti B, Brilli M, Tijero V, Eccher G, Populin F, Schievano E, Riello T, Munné-Bosch S, Canton M, Rasori A, Cardillo V, Meggio F. Grape Berry Responses to Sequential Flooding and Heatwave Events: A Physiological, Transcriptional, and Metabolic Overview. PLANTS (BASEL, SWITZERLAND) 2022; 11:3574. [PMID: 36559686 PMCID: PMC9788187 DOI: 10.3390/plants11243574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Grapevine cultivation, such as the whole horticulture, is currently challenged by several factors, among which the extreme weather events occurring under the climate change scenario are the most relevant. Within this context, the present study aims at characterizing at the berry level the physiological response of Vitis vinifera cv. Sauvignon Blanc to sequential stresses simulated under a semi-controlled environment: flooding at bud-break followed by multiple summer stress (drought plus heatwave) occurring at pre-vèraison. Transcriptomic and metabolomic assessments were performed through RNASeq and NMR, respectively. A comprehensive hormone profiling was also carried out. Results pointed out a different response to the heatwave in the two situations. Flooding caused a developmental advance, determining a different physiological background in the berry, thus affecting its response to the summer stress at both transcriptional levels, with the upregulation of genes involved in oxidative stress responses, and metabolic level, with the increase in osmoprotectants, such as proline and other amino acids. In conclusion, sequential stress, including a flooding event at bud-break followed by a summer heatwave, may impact phenological development and berry ripening, with possible consequences on berry and wine quality. A berry physiological model is presented that may support the development of sustainable vineyard management solutions to improve the water use efficiency and adaptation capacity of actual viticultural systems to future scenarios.
Collapse
Affiliation(s)
- Alessandro Botton
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
- Interdepartmental Research Centre for Viticulture and Enology—CIRVE, University of Padova, Via XXVIII Aprile 14, Conegliano, 31015 Treviso, Italy
| | - Francesco Girardi
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
| | - Benedetto Ruperti
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
- Interdepartmental Research Centre for Viticulture and Enology—CIRVE, University of Padova, Via XXVIII Aprile 14, Conegliano, 31015 Treviso, Italy
| | - Matteo Brilli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Veronica Tijero
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
| | - Giulia Eccher
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
| | - Francesca Populin
- Unit of Fruit Crop Genetics and Breeding, Research and Innovation Centre—CRI, Edmund Mach Foundation—FEM, Via E. Mach 1, San Michele all’Adige, 38098 Trento, Italy
| | - Elisabetta Schievano
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Tobia Riello
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Diagonal 643, 08017 Barcelona, Spain
| | - Monica Canton
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
| | - Angela Rasori
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
| | - Valerio Cardillo
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
| | - Franco Meggio
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
- Interdepartmental Research Centre for Viticulture and Enology—CIRVE, University of Padova, Via XXVIII Aprile 14, Conegliano, 31015 Treviso, Italy
| |
Collapse
|
10
|
Assembled Reduced Graphene Oxide/Tungsten Diselenide/Pd Heterojunction with Matching Energy Bands for Quick Banana Ripeness Detection. Foods 2022; 11:foods11131879. [PMID: 35804695 PMCID: PMC9265317 DOI: 10.3390/foods11131879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
The monitoring of ethylene is of great importance to fruit and vegetable quality, yet routine techniques rely on manual and complex operation. Herein, a chemiresistive ethylene sensor based on reduced graphene oxide (rGO)/tungsten diselenide (WSe2)/Pd heterojunctions was designed for room-temperature (RT) ethylene detection. The sensor exhibited high sensitivity and quick p-type response/recovery (33/13 s) to 10–100 ppm ethylene at RT, and full reversibility and excellent selectivity to ethylene were also achieved. Such excellent ethylene sensing behaviors could be attributed to the synergistic effects of ethylene adsorption abilities derived from the negative adsorption energy and the promoted electron transfer across the WSe2/Pd and rGO/WSe2 interfaces through band energy alignment. Furthermore, its application feasibility to banana ripeness detection was verified by comparison with routine technique through simulation experiments. This work provides a feasible methodology toward designing and fabricating RT ethylene sensors, and may greatly push forward the development of modernized intelligent agriculture.
Collapse
|
11
|
Comparative Analysis of the Transcriptomes of Persisting and Abscised Fruitlets: Insights into Plant Hormone and Carbohydrate Metabolism Regulated Self-Thinning of Pecan Fruitlets during the Early Stage. Curr Issues Mol Biol 2021; 44:176-193. [PMID: 35723392 PMCID: PMC8929008 DOI: 10.3390/cimb44010013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
Pecan is one of the most popular nut species in the world. The fruit drop rate of the pecan ‘Pawnee’ is more than 57%, with four fruit drop stages, which is very serious. In this study, we conducted transcriptomic profiling of persisting and abscised fruitlets in early fruit development by RNA-seq. A total of 11,976 differentially expressed genes (DEGs) were identified, 3012 upregulated and 8964 downregulated, in a comparison of abscised vs. persisting fruitlets at 35 days after anthesis (DAA). Our transcriptomic data suggest that gene subsets encoding elements involving the biosynthesis, metabolism, perception, signal transduction, and crosstalk of the plant hormones abscisic acid (ABA), auxin, cytokinin, ethylene, and gibberellin (GA) and plant growth regulators jasmonates, salicylic acid, and brassinosteroids were differentially expressed. In addition, the majority of transcriptionally activated genes involved in hormone signaling (except for ethylene and salicylic acid signaling) were downregulated in abscised fruitlets. The differential expression of transcripts coding for enzymes involved in sucrose, glucose, trehalose, starch, galactose, and galactinol metabolism shows that sucrose, galactinol, and glucose synthesis and starch content were reduced as starch biosynthesis was blocked, and retrogradation and degradation intensified. These results suggest that the abscised pecan fruitlets stopped growing and developing for some time before dropping, further indicating that their sugar supply was reduced or stopped. The transcriptome characterization described in this paper contributes to unravelling the molecular mechanisms and pathways involved in the physiological abscission of pecan fruits.
Collapse
|
12
|
KÜÇÜKER E, AĞLAR E. The Effect of Aminoethoxyvinylglycine (AVG) on Pre-harvest Fruit Drop and Fruit Quality in Red Chief and Braeburn Apple Cultivars. ULUSLARARASI TARIM VE YABAN HAYATI BILIMLERI DERGISI 2021. [DOI: 10.24180/ijaws.920613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
13
|
Zhao M, Li C, Ma X, Xia R, Chen J, Liu X, Ying P, Peng M, Wang J, Shi CL, Li J. KNOX protein KNAT1 regulates fruitlet abscission in litchi by repressing ethylene biosynthetic genes. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4069-4082. [PMID: 32227110 DOI: 10.1093/jxb/eraa162] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/27/2020] [Indexed: 05/25/2023]
Abstract
Abscission is triggered by multiple environmental and developmental cues, including endogenous plant hormones. KNOTTED-LIKE HOMEOBOX (KNOX) transcription factors (TFs) play an important role in controlling abscission in plants. However, the underlying molecular mechanism of KNOX TFs in abscission is largely unknown. Here, we identified LcKNAT1, a KNOTTED-LIKE FROM ARABIDOPSIS THALIANA1 (KNAT1)-like protein from litchi, which regulates abscission by modulating ethylene biosynthesis. LcKNAT1 is expressed in the fruit abscission zone and its expression decreases during fruitlet abscission. Furthermore, the expression of the ethylene biosynthetic genes LcACS1, LcACS7, and LcACO2 increases in the fruit abscission zone, in parallel with the emission of ethylene in fruitlets. In vitro and in vivo assays revealed that LcKNAT1 inhibits the expression of LcACS/ACO genes by directly binding to their promoters. Moreover, ectopic expression of LcKNAT1 represses flower abscission in tomatoes. Transgenic plants expressing LcKNAT1 also showed consistently decreased expression of ACS/ACO genes. Collectively, these results indicate that LcKNAT1 represses abscission via the negative regulation of ethylene biosynthesis.
Collapse
Affiliation(s)
- Minglei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Caiqin Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xingshuai Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jianye Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xuncheng Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Peiyuan Ying
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Manjun Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Chun-Lin Shi
- Section of Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
14
|
Hong CP, Wang MC, Yang CY. NADPH Oxidase RbohD and Ethylene Signaling are Involved in Modulating Seedling Growth and Survival Under Submergence Stress. PLANTS 2020; 9:plants9040471. [PMID: 32276372 PMCID: PMC7238110 DOI: 10.3390/plants9040471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
Abstract
In higher plants under low oxygen or hypoxic conditions, the phytohormone ethylene and hydrogen peroxide (H2O2) are involved in complex regulatory mechanisms in hypoxia signaling pathways. The respiratory burst oxidase homolog D (RbohD), an NADPH oxidase, is involved in the primary stages of hypoxia signaling, modulating the expression of downstream hypoxia-inducible genes under hypoxic stress. In this study, our data revealed that under normoxic conditions, seed germination was delayed in the rbohD/ein2-5 double mutant, whereas postgermination stage root growth was promoted. Under submergence, the rbohD/ein2-5 double mutant line had an inhibited root growth phenotype. Furthermore, chlorophyll content and leaf survival were reduced in the rbohD/ein2-5 double mutant compared with wild-type plants under submerged conditions. In quantitative RT-PCR analysis, the induction of Ethylene-responsive factor 73/hypoxia responsive 1 (AtERF73/HRE1) and alcohol dehydrogenase 1 (AtADH1) transcripts was lower in the rbohD/ein2-5 double mutant during hypoxic stress than in wild-type plants and in rbohD and ein2-5 mutant lines. Taken together, our results indicate that an interplay of ethylene and RbohD is involved in regulating seed germination and post-germination stages under normoxic conditions. Moreover, ethylene and RbohD are involved in modulating seedling root growth, leaf chlorophyll content, and hypoxia-inducible gene expression under hypoxic conditions.
Collapse
Affiliation(s)
- Chen-Pu Hong
- Department of Agronomy, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Mao-Chang Wang
- Department of Accounting, Chinese Culture University, Taipei 11114, Taiwan;
| | - Chin-Ying Yang
- Department of Agronomy, National Chung Hsing University, Taichung 40227, Taiwan;
- Correspondence: ; Tel.: +886-4-22840777 (ext. 608); Fax: +886-4-22877054
| |
Collapse
|
15
|
Zhao M, Li J. Molecular Events Involved in Fruitlet Abscission in Litchi. PLANTS (BASEL, SWITZERLAND) 2020; 9:E151. [PMID: 31991594 PMCID: PMC7076479 DOI: 10.3390/plants9020151] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 01/23/2023]
Abstract
Abscission in plants is an active and highly coordinated physiological process in which organs abscise from the plant body at the abscission zone (AZ) in responding to either developmental or environmental cues. Litchi (Litchi chinensis Sonn.) is an important economic fruit crop widely grown in Southeast Asia particularly in South China. However, the excessive fruit drop during fruit development is a major limiting factor for litchi production. Thus, it is an important agricultural concern to understand the mechanisms underlying the fruit abscission in litchi. Here, we present a review focusing on the molecular events involved in the fruitlet abscission. We also highlight the recent advances on genes specifically associated with fruit abscission and perspectives for future research.
Collapse
Affiliation(s)
- Minglei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou 510642, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou 510642, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
16
|
Botton A, Ruperti B. The Yes and No of the Ethylene Involvement in Abscission. PLANTS 2019; 8:plants8060187. [PMID: 31242577 PMCID: PMC6630578 DOI: 10.3390/plants8060187] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 06/19/2019] [Accepted: 06/22/2019] [Indexed: 02/04/2023]
Abstract
Abscission has significant implications in agriculture and several efforts have been addressed by researchers to understand its regulatory steps in both model and crop species. Among the main players in abscission, ethylene has exhibited some fascinating features, in that it was shown to be involved at different stages of abscission induction and, in some cases, with interesting roles also within the abscising organ at the very early stages of the process. This review summarizes the current knowledge about the role of ethylene both at the level of the abscission zone and within the shedding organ, pointing out the missing pieces of the very complicated puzzle of the abscission process in the different species.
Collapse
Affiliation(s)
- Alessandro Botton
- Department of Agronomy, Food, Natural resources, Animals and Environment-DAFNAE, University of Padova, Agripolis, Legnaro, 35020 Padova, Italy.
| | - Benedetto Ruperti
- Department of Agronomy, Food, Natural resources, Animals and Environment-DAFNAE, University of Padova, Agripolis, Legnaro, 35020 Padova, Italy.
| |
Collapse
|
17
|
Ruperti B, Botton A, Populin F, Eccher G, Brilli M, Quaggiotti S, Trevisan S, Cainelli N, Guarracino P, Schievano E, Meggio F. Flooding Responses on Grapevine: A Physiological, Transcriptional, and Metabolic Perspective. FRONTIERS IN PLANT SCIENCE 2019; 10:339. [PMID: 30972087 PMCID: PMC6443911 DOI: 10.3389/fpls.2019.00339] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/05/2019] [Indexed: 05/20/2023]
Abstract
Studies on model plants have shown that temporary soil flooding exposes roots to a significant hypoxic stress resulting in metabolic re-programming, accumulation of toxic metabolites and hormonal imbalance. To date, physiological and transcriptional responses to flooding in grapevine are poorly characterized. To fill this gap, we aimed to gain insights into the transcriptional and metabolic changes induced by flooding on grapevine roots (K5BB rootstocks), on which cv Sauvignon blanc (Vitis vinifera L.) plants were grafted. A preliminary experiment under hydroponic conditions enabled the identification of transiently and steadily regulated hypoxia-responsive marker genes and drafting a model for response to oxygen deprivation in grapevine roots. Afterward, over two consecutive vegetative seasons, flooding was imposed to potted vines during the late dormancy period, to mimick the most frequent waterlogging events occurring in the field. Untargeted transcriptomic and metabolic profiling approaches were applied to investigate early responses of grapevine roots during exposure to hypoxia and subsequent recovery after stress removal. The initial hypoxic response was marked by a significant increase of the hypoxia-inducible metabolites ethanol, GABA, succinic acid and alanine which remained high also 1 week after recovery from flooding with the exception of ethanol that leveled off. Transcriptomic data supported the metabolic changes by indicating a substantial rearrangement of primary metabolic pathways through enhancement of the glycolytic and fermentative enzymes and of a subset of enzymes involved in the TCA cycle. GO and KEGG pathway analyses of differentially expressed genes showed a general down-regulation of brassinosteroid, auxin and gibberellin biosynthesis in waterlogged plants, suggesting a general inhibition of root growth and lateral expansion. During recovery, transcriptional activation of gibberellin biosynthetic genes and down-regulation of the metabolic ones may support a role for gibberellins in signaling grapevine rootstocks waterlogging metabolic and hormonal changes to the above ground plant. The significant internode elongation measured upon budbreak during recovery in plants that had experienced flooding supported this hypothesis. Overall integration of these data enabled us to draft a first comprehensive view of the molecular and metabolic pathways involved in grapevine's root responses highlighting a deep metabolic and transcriptomic reprogramming during and after exposure to waterlogging.
Collapse
Affiliation(s)
- Benedetto Ruperti
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
- Interdepartmental Research Centre for Viticulture and Enology, University of Padova, Conegliano, Italy
- CRIBI Biotechnology Centre, University of Padova, Padova, Italy
| | - Alessandro Botton
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
- Interdepartmental Research Centre for Viticulture and Enology, University of Padova, Conegliano, Italy
- CRIBI Biotechnology Centre, University of Padova, Padova, Italy
| | - Francesca Populin
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Giulia Eccher
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Matteo Brilli
- Department of Biosciences, University of Milan, Milan, Italy
| | - Silvia Quaggiotti
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
- CRIBI Biotechnology Centre, University of Padova, Padova, Italy
| | - Sara Trevisan
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Nadia Cainelli
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Paola Guarracino
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | | | - Franco Meggio
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
- Interdepartmental Research Centre for Viticulture and Enology, University of Padova, Conegliano, Italy
| |
Collapse
|
18
|
Vegro M, Eccher G, Populin F, Sorgato C, Savazzini F, Pagliarani G, Tartarini S, Pasini G, Curioni A, Antico A, Botton A. Old Apple (Malus domestica L. Borkh) Varieties with Hypoallergenic Properties: An Integrated Approach for Studying Apple Allergenicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9224-9236. [PMID: 27933989 DOI: 10.1021/acs.jafc.6b03976] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Freshly consumed apples (Malus domestica L. Borkh) can cause allergic reactions because of the presence of four classes of allergens. Knowledge of the genetic factors affecting the allergenic potential of apples would provide important information for the selection of hypoallergenic genotypes, which can be combined with the adoption of new agronomical practices to produce fruits with a reduced amount of allergens. In the present research, a multiple analytical approach was adopted to characterize the allergenic potential of 24 apple varieties released at different ages (pre- and post-green revolution). A specific workflow was set up including protein quantification by means of polyclonal antibodies, immunological analyses with sera of allergic subjects, enzymatic assays, clinical assessments on allergic patients, and gene expression assays on fruit samples. Taken as a whole, the results indicate that most of the less allergenic genotypes were found among those deriving from selection processes carried out prior to the so-called "green revolution".
Collapse
Affiliation(s)
- Mara Vegro
- Department of Agronomy, Food, Natural Resources, Animals and Environment - DAFNAE - Agripolis, University of Padova , Viale dell'università 16, 35020 Legnaro (Padova), Italy
| | - Giulia Eccher
- Department of Agronomy, Food, Natural Resources, Animals and Environment - DAFNAE - Agripolis, University of Padova , Viale dell'università 16, 35020 Legnaro (Padova), Italy
| | - Francesca Populin
- Department of Agronomy, Food, Natural Resources, Animals and Environment - DAFNAE - Agripolis, University of Padova , Viale dell'università 16, 35020 Legnaro (Padova), Italy
| | - Chiara Sorgato
- Department of Agronomy, Food, Natural Resources, Animals and Environment - DAFNAE - Agripolis, University of Padova , Viale dell'università 16, 35020 Legnaro (Padova), Italy
| | - Federica Savazzini
- Department of Agricultural Science, University of Bologna , Viale Fanin 46, 40127 Bologna, Italy
| | - Giulia Pagliarani
- Department of Agricultural Science, University of Bologna , Viale Fanin 46, 40127 Bologna, Italy
| | - Stefano Tartarini
- Department of Agricultural Science, University of Bologna , Viale Fanin 46, 40127 Bologna, Italy
| | - Gabriella Pasini
- Department of Agronomy, Food, Natural Resources, Animals and Environment - DAFNAE - Agripolis, University of Padova , Viale dell'università 16, 35020 Legnaro (Padova), Italy
| | - Andrea Curioni
- Department of Agronomy, Food, Natural Resources, Animals and Environment - DAFNAE - Agripolis, University of Padova , Viale dell'università 16, 35020 Legnaro (Padova), Italy
| | - Andrea Antico
- Allergy Unit, Ospedale Civile Srl , Via Guido Tonello 5, 46049 Volta Mantovana (Mantova), Italy
| | - Alessandro Botton
- Department of Agronomy, Food, Natural Resources, Animals and Environment - DAFNAE - Agripolis, University of Padova , Viale dell'università 16, 35020 Legnaro (Padova), Italy
| |
Collapse
|
19
|
Affiliation(s)
- G Eric Schaller
- Department of Biological Sciences Dartmouth College Hanover, NH 03755
| | - Laurentius A C J Voesenek
- Plant Ecophysiology Institute of Environmental Biology Utrecht University Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|