1
|
Monfort M, Buitink J, Roeber F, Nogué F. Genome editing, an opportunity to revive soybean cultivation in Europe. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17266. [PMID: 39968624 PMCID: PMC11836770 DOI: 10.1111/tpj.17266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/29/2024] [Accepted: 01/03/2025] [Indexed: 02/20/2025]
Abstract
Soybean (Glycine max Merr.) is the world's most important oilseed crop and its ability to fix atmospheric nitrogen makes it a cornerstone of sustainable agriculture. Despite its importance, Europe relies heavily on imports, leading to environmental and economic vulnerabilities. To address these challenges, the European Union has implemented policies to boost local soybean production, emphasizing sustainable practices and reduced dependency on imports. However, conventional breeding methods are time-consuming and may not keep pace with the rapid environmental and consumer habit changes. Genome-editing technologies, such as CRISPR-Cas, offer precise and efficient tools for developing soybean varieties tailored to European conditions. These technologies can enhance traits related to precocity, stress responses, yield and quality that are essential for adapting to climate change and promoting ecological sustainability. This review explores the integration of genome editing (GE) in soybean breeding, highlighting its potential in advancing the agroecological transition in Europe. By having a clear regulation and enhancing breeding efforts, GE can significantly contribute to developing resilient and sustainable soybean varieties, fostering a competitive and environmentally friendly European agriculture.
Collapse
Affiliation(s)
- Manon Monfort
- Institut Jean‐Pierre Bourgin, INRAEAgroParisTech, Université Paris‐SaclayVersailles78000France
- Corteva Agriscience1 Bis, avenue du 8 mai 1945Guyancourt78280France
| | - Julia Buitink
- INRAE, Institut Agro, Univ Angers, IRHS, SFR QUASAVAngersF‐49000France
| | - Frank Roeber
- Corteva Agriscience Germany GmbHRiedenburgerstr. 7Munich81677Germany
| | - Fabien Nogué
- Institut Jean‐Pierre Bourgin, INRAEAgroParisTech, Université Paris‐SaclayVersailles78000France
| |
Collapse
|
2
|
da Silva AC, Gregorio da Silva DC, Ferreira EGC, Abdelnoor RV, Borém A, Arias CA, Oliveira MF, de Oliveira MEF, Marcelino-Guimarães FC. Genetic diversity, population structure in a historical panel of Brazilian soybean cultivars. PLoS One 2025; 20:e0313151. [PMID: 39883624 PMCID: PMC11781709 DOI: 10.1371/journal.pone.0313151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/18/2024] [Indexed: 02/01/2025] Open
Abstract
Soybean [Glycine max (L.) Merrill] is one of the most widely grown legumes in the world, with Brazil being its largest producer and exporter. Breeding programs in Brazil have resulted from multiple cycles of selection and recombination starting from a small number of USA cultivar ancestors in the 1950s and 1960s years. This process has led to the successful adaptation of this crop to tropical conditions, a phenomenon known as tropicalization. Many studies describe a narrow genetic background in Brazilian soybean cultivars. Various factors can affect the genetic diversity in species, especially in cultivated crops, such as the reproduction type, artificial selection, and the number and sources of variability in the breeding programs. In turns, the genetic diversity can affect the linkage disequilibrium blocks (LD) patterns and, consequently, molecular breeding strategies for selection of target loci for agronomic traits. We used high-throughput genotyping with SoySNP50K Illumina SNP markers to assess a collection of 370 Brazilian soybean accessions covering more than 60 years of soybean breeding in Brazil. Our goal was to investigate population structure and genetic diversity in the Brazilian germplasm, detect patterns of LD blocks, and identify regions presenting signals of selective swaps linked with quantitative trait loci (QTLs) of agronomic interest. Population structure analysis revealed two major groups among all genotypes, primarily differentiated by the year of release, separating old and new cultivars (before and after 2000´s years), and by growth habit (stem termination type-SST). The group I comprises about 75% of the panel and includes cultivars release before 2000`s years, including the oldest cultivars released in Brazil, most of which exhibit a determinate growth habit and maturity groups VI and VII. Group II includes only 83 materials, but shows higher levels of diversity than group I, representing most recent introductions in Brazilian germplasm. Further analysis of substructure within Group I, identified seven subgroups with no clear trend for segregation based on maturity group, STT or year of release. Instead, these subgroups were based on the contribution of key donors of disease resistance and adaptability, as soybean cultivation expanded from the South to Central region of Brazil. This finding is consistent with the history of soybean expansion in Brazil. We identified 123 genomic regions under selection among the groups of Brazilian cultivars associated with 440 quantitative trait loci (QTLs), revealing regions fixed across the breeding process associated with yield, disease resistance, water efficiency use, and others.
Collapse
Affiliation(s)
- Adriel Carlos da Silva
- Centro de Ciências Biológicas, Programa de Pós-Graduação em Genética Melhoramento, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Danielle C. Gregorio da Silva
- Empresa Brasileira de Pesquisa e Agropecuária-Embrapa Soja, Laboratório de Biotecnologia Vegetal e Bioinformática, Londrina, Paraná, Brazil
| | | | - Ricardo V. Abdelnoor
- Empresa Brasileira de Pesquisa e Agropecuária-Embrapa Soja, Laboratório de Biotecnologia Vegetal e Bioinformática, Londrina, Paraná, Brazil
| | - Aluízio Borém
- Centro de Ciências Biológicas, Programa de Pós-Graduação em Genética Melhoramento, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Carlos Arrabal Arias
- The Sainsbury Laboratory—TSL, University of East Anglia, Norwich, United Kingdom
| | - Marcelo F. Oliveira
- The Sainsbury Laboratory—TSL, University of East Anglia, Norwich, United Kingdom
| | | | | |
Collapse
|
3
|
Perfil`ev R, Shcherban A, Potapov D, Maksimenko K, Kiryukhin S, Gurinovich S, Panarina V, Polyudina R, Salina E. Genome-wide association study revealed some new candidate genes associated with flowering and maturity time of soybean in Central and West Siberian regions of Russia. FRONTIERS IN PLANT SCIENCE 2024; 15:1463121. [PMID: 39464279 PMCID: PMC11502416 DOI: 10.3389/fpls.2024.1463121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024]
Abstract
The duration of flowering and maturity is an important agricultural trait determining the suitability of a variety for cultivation in the target region. In the present study, we used genome-wide association analysis (GWAS) to search for loci associated with soybean flowering and maturity in the Central and West Siberian regions of Russia. A field experiment was conducted in 2021/2022 at two locations (Orel and Novosibirsk). A germplasm collection of 180 accessions was genotyped using SoySNP50K Illumina Infinium Bead-Chip. From the initial collection, we selected 129 unrelated accessions and conducted GWAS on this dataset using two multi-locus models: FarmCPU and BLINK. As a result, we identified 13 loci previously reported to be associated with duration of soybean development, and 17 new loci. 33 candidate genes were detected in these loci using analysis of co-expression, gene ontology, and literature data, with the best candidates being Glyma.03G177500, Glyma.13G177400, and Glyma.06G213100. These candidate genes code the Arabidopis orthologs TOE1 (TARGET OF EAT 1), SPL3 (SQUAMOSA PROMOTER BINDING PROTEIN LIKE 3), the DELLA protein, respectively. In these three genes, we found haplotypes which may be associated with the length of soybean flowering and maturity, providing soybean adaptation to a northern latitudes.
Collapse
Affiliation(s)
- Roman Perfil`ev
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Andrey Shcherban
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
- Kurchatov Center for Genome Research of ICG SB RAS, Novosibirsk, Russia
| | - Dmitriy Potapov
- Siberian Federal Scientific Centre of Agro-BioTechnologies RAS, Novosibirsk, Russia
| | | | - Sergey Kiryukhin
- FSBSI Federal Scientific Center of Legumes and Groat Crops, Orel, Russia
| | - Sergey Gurinovich
- FSBSI Federal Scientific Center of Legumes and Groat Crops, Orel, Russia
| | - Veronika Panarina
- FSBSI Federal Scientific Center of Legumes and Groat Crops, Orel, Russia
| | - Revmira Polyudina
- FSBSI Federal Scientific Center of Legumes and Groat Crops, Orel, Russia
| | - Elena Salina
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
- Kurchatov Center for Genome Research of ICG SB RAS, Novosibirsk, Russia
| |
Collapse
|
4
|
Gao Y, Zhang Y, Ma C, Chen Y, Liu C, Wang Y, Wang S, Chen X. Editing the nuclear localization signals of E1 and E1Lb enables the production of tropical soybean in temperate growing regions. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2145-2156. [PMID: 38511622 PMCID: PMC11258983 DOI: 10.1111/pbi.14335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/05/2024] [Accepted: 03/03/2024] [Indexed: 03/22/2024]
Abstract
Soybean is a typical short-day crop, and most commercial soybean cultivars are restricted to a relatively narrow range of latitudes due to photoperiod sensitivity. Photoperiod sensitivity hinders the utilization of soybean germplasms across geographical regions. When grown in temperate regions, tropical soybean responds to prolonged day length by increasing the vegetative growth phase and delaying flowering and maturity, which often pushes the harvest window past the first frost date. In this study, we used CRISPR/LbCas12a to edit a North American subtropical soybean cultivar named 06KG218440 that belongs to maturity group 5.5. By designing one gRNA to edit the nuclear localization signal (NLS) regions of both E1 and E1Lb, we created a series of new germplasms with shortened flowering time and time to maturity and determined their favourable latitudinal zone for cultivation. The novel partial function alleles successfully achieve yield and early maturity trade-offs and exhibit good agronomic traits and high yields in temperate regions. This work offers a straightforward editing strategy to modify subtropical and tropical soybean cultivars for temperate growing regions, a strategy that could be used to enrich genetic diversity in temperate breeding programmes and facilitate the introduction of important crop traits such as disease tolerance or high yield.
Collapse
Affiliation(s)
- Yang Gao
- State Key Laboratory of Crop Germplasm Innovation and Molecular BreedingSyngenta Biotechnology (China) Co., LtdBeijingChina
| | - Yuguo Zhang
- State Key Laboratory of Crop Germplasm Innovation and Molecular BreedingSyngenta Biotechnology (China) Co., LtdBeijingChina
| | - Chuanyu Ma
- State Key Laboratory of Crop Germplasm Innovation and Molecular BreedingSyngenta Biotechnology (China) Co., LtdBeijingChina
| | - Yanhui Chen
- State Key Laboratory of Crop Germplasm Innovation and Molecular BreedingSyngenta Biotechnology (China) Co., LtdBeijingChina
| | - Chunxia Liu
- State Key Laboratory of Crop Germplasm Innovation and Molecular BreedingSyngenta Seed Technology China Co., Ltd.YanglingChina
| | - Yanli Wang
- State Key Laboratory of Crop Germplasm Innovation and Molecular BreedingSyngenta Biotechnology (China) Co., LtdBeijingChina
| | - Songyuan Wang
- State Key Laboratory of Crop Germplasm Innovation and Molecular BreedingSyngenta Biotechnology (China) Co., LtdBeijingChina
| | - Xi Chen
- State Key Laboratory of Crop Germplasm Innovation and Molecular BreedingSyngenta Biotechnology (China) Co., LtdBeijingChina
| |
Collapse
|
5
|
Sun J, Liu Y, Zheng Y, Xue Y, Fan Y, Ma X, Ji Y, Liu G, Zhang X, Li Y, Wang S, Tian Z, Zhao L. The MADS-box transcription factor GmFULc promotes GmZTL4 gene transcription to modulate maturity in soybean. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1603-1619. [PMID: 38869305 DOI: 10.1111/jipb.13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/26/2024] [Accepted: 05/04/2024] [Indexed: 06/14/2024]
Abstract
Flowering time and maturity are crucial agronomic traits that affect the regional adaptability of soybean plants. The development of soybean cultivars with early maturity adapted to longer days and colder climates of high latitudes is very important for ensuring normal ripening before frost begins. FUL belongs to the MADS-box transcription factor family and has several duplicated members in soybeans. In this study, we observed that overexpression of GmFULc in the Dongnong 50 cultivar promoted soybean maturity, while GmFULc knockout mutants exhibited late maturity. Chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) revealed that GmFULc could bind to the CArG, bHLH and homeobox motifs. Further investigation revealed that GmFULc could directly bind to the CArG motif in the promoters of the GmZTL3 and GmZTL4 genes. Overexpression of GmZTL4 promoted soybean maturity, whereas the ztl4 mutants exhibited delayed maturity. Moreover, we found that the cis element box 4 motif of the GmZTL4 promoter, a motif of light response elements, played an important role in controlling the growth period. Deletion of this motif shortened the growth period by increasing the expression levels of GmZTL4. Functional investigations revealed that short-day treatment promoted the binding of GmFULc to the promoter of GmZTL4 and inhibited the expression of E1 and E1Lb, ultimately resulting in the promotion of flowering and early maturation. Taken together, these findings suggest a novel photoperiod regulatory pathway in which GmFULc directly activates GmZTL4 to promote earlier maturity in soybean.
Collapse
Affiliation(s)
- Jingzhe Sun
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, 150030, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, The Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuhong Zheng
- Jilin Academy of Agricultural Sciences, China Agricultural Science and Technology Northeast Innovation Center, Changchun, 130033, China
| | - Yongguo Xue
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Yuhuan Fan
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaofei Ma
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, 150030, China
| | - Yujia Ji
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, 150030, China
| | - Gaoyuan Liu
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoming Zhang
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, 150030, China
| | - Yang Li
- Depatment of Environmental and Plant Biology, Ohio University, Athens, 45701, Ohio, USA
| | - Shuming Wang
- Jilin Academy of Agricultural Sciences, China Agricultural Science and Technology Northeast Innovation Center, Changchun, 130033, China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Lin Zhao
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
6
|
Fang C, Sun Z, Li S, Su T, Wang L, Dong L, Li H, Li L, Kong L, Yang Z, Lin X, Zatybekov A, Liu B, Kong F, Lu S. Subfunctionalisation and self-repression of duplicated E1 homologues finetunes soybean flowering and adaptation. Nat Commun 2024; 15:6184. [PMID: 39039090 PMCID: PMC11263555 DOI: 10.1038/s41467-024-50623-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/17/2024] [Indexed: 07/24/2024] Open
Abstract
Soybean is a photoperiod-sensitive staple crop. Its photoperiodic flowering has major consequences for latitudinal adaptation and grain yield. Here, we identify and characterise a flowering locus named Time of flower 4b (Tof4b), which encodes E1-Like b (E1Lb), a homologue of the key soybean floral repressor E1. Tof4b protein physically associates with the promoters of two FLOWERING LOCUS T (FT) genes to repress their transcription and delay flowering to impart soybean adaptation to high latitudes. Three E1 homologues undergo subfunctionalisation and show differential subcellular localisation. Moreover, they all possess self-repression capability and each suppresses the two homologous counterparts. Subfunctionalisation and the transcriptional regulation of E1 genes collectively finetune flowering time and high-latitude adaptation in soybean. We propose a model for the functional fate of the three E1 genes after the soybean whole-genome duplication events, refine the molecular mechanisms underlying high-latitude adaption, and provide a potential molecular-breeding resource.
Collapse
Affiliation(s)
- Chao Fang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhihui Sun
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Shichen Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Tong Su
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Lingshuang Wang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Lidong Dong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Haiyang Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Lanxin Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Lingping Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Zhiquan Yang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Xiaoya Lin
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Alibek Zatybekov
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - Baohui Liu
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China.
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China.
| | - Fanjiang Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China.
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China.
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
| | - Sijia Lu
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China.
| |
Collapse
|
7
|
Li J, Li Y, Agyenim-Boateng KG, Shaibu AS, Liu Y, Feng Y, Qi J, Li B, Zhang S, Sun J. Natural variation of domestication-related genes contributed to latitudinal expansion and adaptation in soybean. BMC PLANT BIOLOGY 2024; 24:651. [PMID: 38977969 PMCID: PMC11232268 DOI: 10.1186/s12870-024-05382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Soybean is a major source of protein and edible oil worldwide. Originating from the Huang-Huai-Hai region, which has a temperate climate, soybean has adapted to a wide latitudinal gradient across China. However, the genetic mechanisms responsible for the widespread latitudinal adaptation in soybean, as well as the genetic basis, adaptive differentiation, and evolutionary implications of theses natural alleles, are currently lacking in comprehensive understanding. In this study, we examined the genetic variations of fourteen major gene loci controlling flowering and maturity in 103 wild species, 1048 landraces, and 1747 cultivated species. We found that E1, E3, FT2a, J, Tof11, Tof16, and Tof18 were favoured during soybean improvement and selection, which explained 75.5% of the flowering time phenotypic variation. These genetic variation was significantly associated with differences in latitude via the LFMM algorithm. Haplotype network and geographic distribution analysis suggested that gene combinations were associated with flowering time diversity contributed to the expansion of soybean, with more HapA clustering together when soybean moved to latitudes beyond 35°N. The geographical evolution model was developed to accurately predict the suitable planting zone for soybean varieties. Collectively, by integrating knowledge from genomics and haplotype classification, it was revealed that distinct gene combinations improve the adaptation of cultivated soybeans to different latitudes. This study provides insight into the genetic basis underlying the environmental adaptation of soybean accessions, which could contribute to a better understanding of the domestication history of soybean and facilitate soybean climate-smart molecular breeding for various environments.
Collapse
Affiliation(s)
- Jing Li
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yecheng Li
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | | | | | - Yitian Liu
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yue Feng
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Jie Qi
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Bin Li
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Shengrui Zhang
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Junming Sun
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
8
|
Zhao X, Li H, Wang L, Wang J, Huang Z, Du H, Li Y, Yang J, He M, Cheng Q, Lin X, Liu B, Kong F. A critical suppression feedback loop determines soybean photoperiod sensitivity. Dev Cell 2024; 59:1750-1763.e4. [PMID: 38688276 DOI: 10.1016/j.devcel.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/07/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
Photoperiod sensitivity is crucial for soybean flowering, adaptation, and yield. In soybean, photoperiod sensitivity centers around the evening complex (EC) that regulates the transcriptional level of the core transcription factor E1, thereby regulating flowering. However, little is known about the regulation of the activity of EC. Our study identifies how E2/GIGANTEA (GI) and its homologs modulate photoperiod sensitivity through interactions with the EC. During long days, E2 interacts with the blue-light receptor flavin-binding, kelch repeat, F box 1 (FKF1), leading to the degradation of J/ELF3, an EC component. EC also suppresses E2 expression by binding to its promoter. This interplay forms a photoperiod regulatory loop, maintaining sensitivity to photoperiod. Disruption of this loop leads to losing sensitivity, affecting soybean's adaptability and yield. Understanding this loop's dynamics is vital for molecular breeding to reduce soybean's photoperiod sensitivity and develop cultivars with better adaptability and higher yields, potentially leading to the creation of photoperiod-insensitive varieties for broader agricultural applications.
Collapse
Affiliation(s)
- Xiaohui Zhao
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Haiyang Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Lingshuang Wang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jianhao Wang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zerong Huang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Haiping Du
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yaru Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jiahui Yang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Milan He
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Qun Cheng
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Xiaoya Lin
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| | - Baohui Liu
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| | - Fanjiang Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
9
|
Nishimura K, Kokaji H, Motoki K, Yamazaki A, Nagasaka K, Mori T, Takisawa R, Yasui Y, Kawai T, Ushijima K, Yamasaki M, Saito H, Nakano R, Nakazaki T. Degenerate oligonucleotide primer MIG-seq: an effective PCR-based method for high-throughput genotyping. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2296-2317. [PMID: 38459738 DOI: 10.1111/tpj.16708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/14/2024] [Accepted: 02/14/2024] [Indexed: 03/10/2024]
Abstract
Next-generation sequencing (NGS) library construction often involves using restriction enzymes to decrease genome complexity, enabling versatile polymorphism detection in plants. However, plant leaves frequently contain impurities, such as polyphenols, necessitating DNA purification before enzymatic reactions. To overcome this problem, we developed a PCR-based method for expeditious NGS library preparation, offering flexibility in number of detected polymorphisms. By substituting a segment of the simple sequence repeat sequence in the MIG-seq primer set (MIG-seq being a PCR method enabling library construction with low-quality DNA) with degenerate oligonucleotides, we introduced variability in detectable polymorphisms across various crops. This innovation, named degenerate oligonucleotide primer MIG-seq (dpMIG-seq), enabled a streamlined protocol for constructing dpMIG-seq libraries from unpurified DNA, which was implemented stably in several crop species, including fruit trees. Furthermore, dpMIG-seq facilitated efficient lineage selection in wheat and enabled linkage map construction and quantitative trait loci analysis in tomato, rice, and soybean without necessitating DNA concentration adjustments. These findings underscore the potential of the dpMIG-seq protocol for advancing genetic analyses across diverse plant species.
Collapse
Affiliation(s)
- Kazusa Nishimura
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa City, Kyoto, 619-0218, Japan
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama City, 700-8530, Okayama, Japan
| | - Hiroyuki Kokaji
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa City, Kyoto, 619-0218, Japan
| | - Ko Motoki
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa City, Kyoto, 619-0218, Japan
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama City, 700-8530, Okayama, Japan
| | - Akira Yamazaki
- Faculty of Agriculture, Kindai University, 3327-204, Nakamachi, Nara City, Nara, 631-8505, Japan
| | - Kyoka Nagasaka
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa City, Kyoto, 619-0218, Japan
| | - Takashi Mori
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa City, Kyoto, 619-0218, Japan
| | - Rihito Takisawa
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu City, Shiga, 520-2194, Japan
| | - Yasuo Yasui
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa City, Kyoto, 619-0218, Japan
| | - Takashi Kawai
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama City, 700-8530, Okayama, Japan
| | - Koichiro Ushijima
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama City, 700-8530, Okayama, Japan
| | - Masanori Yamasaki
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2 no-cho, Nishi-ku, Niigata City, Niigata, 950-2181, Japan
| | - Hiroki Saito
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences, 1091-1 Maezato-Kawarabaru, Ishigaki, Okinawa, 907-0002, Japan
| | - Ryohei Nakano
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa City, Kyoto, 619-0218, Japan
| | - Tetsuya Nakazaki
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa City, Kyoto, 619-0218, Japan
| |
Collapse
|
10
|
Li Y, Zhang L, Wang J, Wang X, Guo S, Xu Z, Li D, Liu Z, Li Y, Liu B, Qiu L. Flowering time regulator qFT13-3 involved in soybean adaptation to high latitudes. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1164-1176. [PMID: 38070185 PMCID: PMC11022795 DOI: 10.1111/pbi.14254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/22/2023] [Accepted: 11/17/2023] [Indexed: 04/18/2024]
Abstract
Soybean is a short-day plant that typically flowers earlier when exposed to short-day conditions. However, the identification of genes associated with earlier flowering time but without a yield penalty is rare. In this study, we conducted genome-wide association studies (GWAS) using two re-sequencing datasets that included 113 wild soybeans (G. soja) and 1192 cultivated soybeans (G. max), respectively, and simultaneously identified a candidate flowering gene, qFT13-3, which encodes a protein homologous to the pseudo-response regulator (PRR) transcription factor. We identified four major haplotypes of qFT13-3 in the natural population, with haplotype H4 (qFT13-3H4) being lost during domestication, while qFT13-3H1 underwent natural and artificial selection, increasing in proportion from 4.5% in G. soja to 43.8% in landrace and to 81.9% in improve cultivars. Notably, most cultivars harbouring qFT13-3H1 were located in high-latitude regions. Knockout of qFT13-3 accelerated flowering and maturity time under long-day conditions, indicating that qFT13-3 functions as a flowering inhibitor. Our results also showed that qFT13-3 directly downregulates the expression of GmELF3b-2 which is a component of the circadian clock evening complex. Field trials revealed that the qft13-3 mutants shorten the maturity period by 11 days without a concomitant penalty on yield. Collectively, qFT13-3 can be utilized for the breeding of high-yield cultivars with a short maturity time suitable for high latitudes.
Collapse
Affiliation(s)
- Yan‐fei Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA)/Key Laboratory of Soybean Biology (Beijing) (MOA)Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- Key Lab of Chinese Medicine Resources ConservationState Administration of Traditional Chinese Medicine of the People's Republic of ChinaInstitute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Liya Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Jun Wang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co‐construction by Ministry and Province)JingzhouChina
| | - Xing Wang
- Xuzhou Institute of Agricultural Sciences of Xu‐huai Region of JiangsuXuzhouChina
| | - Shiyu Guo
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA)/Key Laboratory of Soybean Biology (Beijing) (MOA)Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Ze‐jun Xu
- Xuzhou Institute of Agricultural Sciences of Xu‐huai Region of JiangsuXuzhouChina
| | - Delin Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA)/Key Laboratory of Soybean Biology (Beijing) (MOA)Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Zhangxiong Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA)/Key Laboratory of Soybean Biology (Beijing) (MOA)Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Ying‐hui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA)/Key Laboratory of Soybean Biology (Beijing) (MOA)Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Bin Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA)/Key Laboratory of Soybean Biology (Beijing) (MOA)Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Li‐juan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA)/Key Laboratory of Soybean Biology (Beijing) (MOA)Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
11
|
Zhang L, Wang P, Wang M, Xu X, Jia H, Wu T, Yuan S, Jiang B, Sun S, Han T, Wang L, Chen F. GmTCP40 Promotes Soybean Flowering under Long-Day Conditions by Binding to the GmAP1a Promoter and Upregulating Its Expression. Biomolecules 2024; 14:465. [PMID: 38672481 PMCID: PMC11047976 DOI: 10.3390/biom14040465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Soybean [Glycine max (L.) Merr.] is a short-day (SD) plant that is sensitive to photoperiod, which influences flowering, maturity, and even adaptation. TEOSINTE-BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors have been shown to regulate photoperiodic flowering. However, the roles of TCPs in SD plants such as soybean, rice, and maize remain largely unknown. In this study, we cloned the GmTCP40 gene from soybean and investigated its expression pattern and function. Compared with wild-type (WT) plants, GmTCP40-overexpression plants flowered earlier under long-day (LD) conditions but not under SD conditions. Consistent with this, the overexpression lines showed upregulation of the flowering-related genes GmFT2a, GmFT2b, GmFT5a, GmFT6, GmAP1a, GmAP1b, GmAP1c, GmSOC1a, GmSOC1b, GmFULa, and GmAG under LD conditions. Further investigation revealed that GmTCP40 binds to the GmAP1a promoter and promotes its expression. Analysis of the GmTCP40 haplotypes and phenotypes of soybean accessions demonstrated that one GmTCP40 haplotype (Hap6) may contribute to delayed flowering at low latitudes. Taken together, our findings provide preliminary insights into the regulation of flowering time by GmTCP40 while laying a foundation for future research on other members of the GmTCP family and for efforts to enhance soybean adaptability.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Liwei Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (L.Z.); (P.W.); (M.W.); (X.X.); (H.J.); (T.W.); (S.Y.); (B.J.); (S.S.); (T.H.)
| | - Fulu Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (L.Z.); (P.W.); (M.W.); (X.X.); (H.J.); (T.W.); (S.Y.); (B.J.); (S.S.); (T.H.)
| |
Collapse
|
12
|
Chawla S, O’Neill J, Knight MI, He Y, Wang L, Maronde E, Rodríguez SG, van Ooijen G, Garbarino-Pico E, Wolf E, Dkhissi-Benyahya O, Nikhat A, Chakrabarti S, Youngstedt SD, Zi-Ching Mak N, Provencio I, Oster H, Goel N, Caba M, Oosthuizen M, Duffield GE, Chabot C, Davis SJ. Timely Questions Emerging in Chronobiology: The Circadian Clock Keeps on Ticking. J Circadian Rhythms 2024; 22:2. [PMID: 38617710 PMCID: PMC11011957 DOI: 10.5334/jcr.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 04/16/2024] Open
Abstract
Chronobiology investigations have revealed much about cellular and physiological clockworks but we are far from having a complete mechanistic understanding of the physiological and ecological implications. Here we present some unresolved questions in circadian biology research as posed by the editorial staff and guest contributors to the Journal of Circadian Rhythms. This collection of ideas is not meant to be comprehensive but does reveal the breadth of our observations on emerging trends in chronobiology and circadian biology. It is amazing what could be achieved with various expected innovations in technologies, techniques, and mathematical tools that are being developed. We fully expect strengthening mechanistic work will be linked to health care and environmental understandings of circadian function. Now that most clock genes are known, linking these to physiological, metabolic, and developmental traits requires investigations from the single molecule to the terrestrial ecological scales. Real answers are expected for these questions over the next decade. Where are the circadian clocks at a cellular level? How are clocks coupled cellularly to generate organism level outcomes? How do communities of circadian organisms rhythmically interact with each other? In what way does the natural genetic variation in populations sculpt community behaviors? How will methods development for circadian research be used in disparate academic and commercial endeavors? These and other questions make it a very exciting time to be working as a chronobiologist.
Collapse
Affiliation(s)
| | - John O’Neill
- MRC Laboratory of Molecular Biology Cambridge, UK
| | | | - Yuqing He
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, China National Botanical Garden, Beijing 100093, CN
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, China National Botanical Garden, Beijing 100093, CN
| | - Erik Maronde
- Institut für Anatomie II, Dr. Senckenbergische Anatomie, Goethe-Universität Frankfurt, Theodor-Stern-Kai-7, 60590 Frankfurt, DE
| | - Sergio Gil Rodríguez
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Gerben van Ooijen
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Eduardo Garbarino-Pico
- Universidad Nacional de Córdoba (UNC), Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, AR
- CONICET-UNC, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, AR
| | - Eva Wolf
- Institute of Molecular Physiology (IMP), Johannes Gutenberg-University Mainz, Hanns-Dieter-Hüsch- Weg 17, 55128 Mainz, DE
| | - Ouria Dkhissi-Benyahya
- Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, UniversitéClaude Bernard Lyon 1, 18 Avenue du Doyen Lépine, 69500, Bron, FR
| | - Anjoom Nikhat
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Bangalore, Karnataka 560065, IN
| | - Shaon Chakrabarti
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Bangalore, Karnataka 560065, IN
| | - Shawn D. Youngstedt
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, US
- Department of Medicine, University of Arizona, Tucson, AZ, US
| | | | - Ignacio Provencio
- Department of Biology and Department of Ophthalmology, University of Virginia, Charlottesville, VA, US
| | - Henrik Oster
- Institute of Neurobiology, Center for Brain, Behavior & Metabolism (CBBM), University of Luebeck, 23562 Luebeck, DE
| | - Namni Goel
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, US
| | - Mario Caba
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Ver., MX
| | - Maria Oosthuizen
- Department of Zoology and Entomology, University of Pretoria, Pretoria, ZA
- Mammal Research Institute, University of Pretoria, Hatfield, ZA
| | - Giles E. Duffield
- Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, US
| | - Christopher Chabot
- Department of Biological Sciences, Plymouth State University, Plymouth, NH 03264, US
| | - Seth J. Davis
- Department of Biology, University of York, York YO105DD, UK
- State Key Laboratory of Crop Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, CN
| |
Collapse
|
13
|
Fang C, Du H, Wang L, Liu B, Kong F. Mechanisms underlying key agronomic traits and implications for molecular breeding in soybean. J Genet Genomics 2024; 51:379-393. [PMID: 37717820 DOI: 10.1016/j.jgg.2023.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Soybean (Glycine max [L.] Merr.) is an important crop that provides protein and vegetable oil for human consumption. As soybean is a photoperiod-sensitive crop, its cultivation and yield are limited by the photoperiodic conditions in the field. In contrast to other major crops, soybean has a special plant architecture and a special symbiotic nitrogen fixation system, representing two unique breeding directions. Thus, flowering time, plant architecture, and symbiotic nitrogen fixation are three critical or unique yield-determining factors. This review summarizes the progress made in our understanding of these three critical yield-determining factors in soybean. Meanwhile, we propose potential research directions to increase soybean production, discuss the application of genomics and genomic-assisted breeding, and explore research directions to address future challenges, particularly those posed by global climate changes.
Collapse
Affiliation(s)
- Chao Fang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Haiping Du
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Lingshuang Wang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
14
|
Gélinas Bélanger J, Copley TR, Hoyos-Villegas V, O'Donoughue L. Dissection of the E8 locus in two early maturing Canadian soybean populations. FRONTIERS IN PLANT SCIENCE 2024; 15:1329065. [PMID: 38390301 PMCID: PMC10881665 DOI: 10.3389/fpls.2024.1329065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/15/2024] [Indexed: 02/24/2024]
Abstract
Soybean [Glycine max (L.) Merr.] is a short-day crop for which breeders want to expand the cultivation range to more northern agro-environments by introgressing alleles involved in early reproductive traits. To do so, we investigated quantitative trait loci (QTL) and expression quantitative trait loci (eQTL) regions comprised within the E8 locus, a large undeciphered region (~7.0 Mbp to 44.5 Mbp) associated with early maturity located on chromosome GM04. We used a combination of two mapping algorithms, (i) inclusive composite interval mapping (ICIM) and (ii) genome-wide composite interval mapping (GCIM), to identify major and minor regions in two soybean populations (QS15524F2:F3 and QS15544RIL) having fixed E1, E2, E3, and E4 alleles. Using this approach, we identified three main QTL regions with high logarithm of the odds (LODs), phenotypic variation explained (PVE), and additive effects for maturity and pod-filling within the E8 region: GM04:16,974,874-17,152,230 (E8-r1); GM04:35,168,111-37,664,017 (E8-r2); and GM04:41,808,599-42,376,237 (E8-r3). Using a five-step variant analysis pipeline, we identified Protein far-red elongated hypocotyl 3 (Glyma.04G124300; E8-r1), E1-like-a (Glyma.04G156400; E8-r2), Light-harvesting chlorophyll-protein complex I subunit A4 (Glyma.04G167900; E8-r3), and Cycling dof factor 3 (Glyma.04G168300; E8-r3) as the most promising candidate genes for these regions. A combinatorial eQTL mapping approach identified significant regulatory interactions for 13 expression traits (e-traits), including Glyma.04G050200 (Early flowering 3/E6 locus), with the E8-r3 region. Four other important QTL regions close to or encompassing major flowering genes were also detected on chromosomes GM07, GM08, and GM16. In GM07:5,256,305-5,404,971, a missense polymorphism was detected in the candidate gene Glyma.07G058200 (Protein suppressor of PHYA-105). These findings demonstrate that the locus known as E8 is regulated by at least three distinct genomic regions, all of which comprise major flowering genes.
Collapse
Affiliation(s)
- Jérôme Gélinas Bélanger
- Centre de recherche sur les grains (CÉROM) Inc., St-Mathieu-de-Beloeil, QC, Canada
- Department of Plant Science, McGill University, Montréal, QC, Canada
| | - Tanya Rose Copley
- Centre de recherche sur les grains (CÉROM) Inc., St-Mathieu-de-Beloeil, QC, Canada
| | | | - Louise O'Donoughue
- Centre de recherche sur les grains (CÉROM) Inc., St-Mathieu-de-Beloeil, QC, Canada
| |
Collapse
|
15
|
Escamilla DM, Dietz N, Bilyeu K, Hudson K, Rainey KM. Genome-wide association study reveals GmFulb as candidate gene for maturity time and reproductive length in soybeans (Glycine max). PLoS One 2024; 19:e0294123. [PMID: 38241340 PMCID: PMC10798547 DOI: 10.1371/journal.pone.0294123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/25/2023] [Indexed: 01/21/2024] Open
Abstract
The ability of soybean [Glycine max (L.) Merr.] to adapt to different latitudes is attributed to genetic variation in major E genes and quantitative trait loci (QTLs) determining flowering time (R1), maturity (R8), and reproductive length (RL). Fully revealing the genetic basis of R1, R8, and RL in soybeans is necessary to enhance genetic gains in soybean yield improvement. Here, we performed a genome-wide association analysis (GWA) with 31,689 single nucleotide polymorphisms (SNPs) to detect novel loci for R1, R8, and RL using a soybean panel of 329 accessions with the same genotype for three major E genes (e1-as/E2/E3). The studied accessions were grown in nine environments and observed for R1, R8 and RL in all environments. This study identified two stable peaks on Chr 4, simultaneously controlling R8 and RL. In addition, we identified a third peak on Chr 10 controlling R1. Association peaks overlap with previously reported QTLs for R1, R8, and RL. Considering the alternative alleles, significant SNPs caused RL to be two days shorter, R1 two days later and R8 two days earlier, respectively. We identified association peaks acting independently over R1 and R8, suggesting that trait-specific minor effect loci are also involved in controlling R1 and R8. From the 111 genes highly associated with the three peaks detected in this study, we selected six candidate genes as the most likely cause of R1, R8, and RL variation. High correspondence was observed between a modifying variant SNP at position 04:39294836 in GmFulb and an association peak on Chr 4. Further studies using map-based cloning and fine mapping are necessary to elucidate the role of the candidates we identified for soybean maturity and adaptation to different latitudes and to be effectively used in the marker-assisted breeding of cultivars with optimal yield-related traits.
Collapse
Affiliation(s)
- Diana M. Escamilla
- Department of Agronomy, Purdue University, West Lafayette, Indiana, United States of America
| | - Nicholas Dietz
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, United States of America
| | - Kristin Bilyeu
- Plant Genetics Research Unit, United States Department of Agriculture (USDA)−Agricultural Research Service (ARS), Columbia, Missouri, United States of America
| | - Karen Hudson
- USDA-ARS Crop Production and Pest Control Research Unit, West Lafayette, Indiana, United States of America
| | - Katy Martin Rainey
- Department of Agronomy, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
16
|
Wang Z, Xing S, Li M, Zhang Q, Yang Q, Xu P, Song B, Shang P, Yang M, Du C, Chen J, Liu S, Zhang S. Soybean WRINKLED1 protein GmWRI1a promotes flowering under long-day conditions via regulating expressions of flowering-related genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111865. [PMID: 37696474 DOI: 10.1016/j.plantsci.2023.111865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Flowering time is an important agronomic character that influences the adaptability and yield of soybean [Glycine max (L.) Merrill]. WRINKLED 1 (WRI1) plays an important regulatory role in plant growth and development. In this study, we found that the expression of GmWIR1a could be induced by long days. Compared with the wild type, transgenic soybean overexpressing GmWRI1a showed earlier flowering and maturity under long days but no significant changes under short days. Overexpression of GmWRI1a led to up-regulated expression of genes involved in the regulation of flowering time. The GmWRI1a protein was able to directly bind to the promoter regions of GmAP1, GmFUL1a, GmFUL2 and up-regulated their expression. GmCOL3 was identified by yeast one-hybrid library screening using the GmWRI1a promoter as bait. GmCOL3 was revealed to be a nucleus-localized protein that represses the transcription of GmWRI1a. Expression of GmCOL3 was induced by short days. Taken together, the results show that overexpression of GmWRI1a promotes flowering under long days by promoting the transcriptional activity of flowering-related genes in soybean, and that GmCOL3 binds to the GmWRI1a promoter and directly down-regulates its transcription. This discovery reveals a new function for GmWRI1a, which regulates flowering and maturity in soybean.
Collapse
Affiliation(s)
- Zhikun Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education/Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture, Soybean Science Research Institute, Northeast Agricultural University, Harbin, China
| | - Siqi Xing
- Key Laboratory of Soybean Biology in Chinese Ministry of Education/Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture, Soybean Science Research Institute, Northeast Agricultural University, Harbin, China
| | - Meng Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education/Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture, Soybean Science Research Institute, Northeast Agricultural University, Harbin, China
| | - Qingyan Zhang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education/Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture, Soybean Science Research Institute, Northeast Agricultural University, Harbin, China
| | - Qiang Yang
- Center for Agricultural Technology, Northeast Institute of Geography and Agroecology, CAS, Harbin, China
| | - Pengfei Xu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education/Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture, Soybean Science Research Institute, Northeast Agricultural University, Harbin, China
| | - Bo Song
- Key Laboratory of Soybean Biology in Chinese Ministry of Education/Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture, Soybean Science Research Institute, Northeast Agricultural University, Harbin, China
| | - Ping Shang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education/Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture, Soybean Science Research Institute, Northeast Agricultural University, Harbin, China
| | - Mingming Yang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education/Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture, Soybean Science Research Institute, Northeast Agricultural University, Harbin, China
| | - Changhuan Du
- Key Laboratory of Soybean Biology in Chinese Ministry of Education/Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture, Soybean Science Research Institute, Northeast Agricultural University, Harbin, China
| | - Jihan Chen
- Key Laboratory of Soybean Biology in Chinese Ministry of Education/Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture, Soybean Science Research Institute, Northeast Agricultural University, Harbin, China
| | - Shanshan Liu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education/Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture, Soybean Science Research Institute, Northeast Agricultural University, Harbin, China.
| | - Shuzhen Zhang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education/Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture, Soybean Science Research Institute, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
17
|
Rehman S, Bahadur S, Xia W. An overview of floral regulatory genes in annual and perennial plants. Gene 2023; 885:147699. [PMID: 37567454 DOI: 10.1016/j.gene.2023.147699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
The floral initiation in angiosperms is a complex process influenced by endogenous and exogenous signals. With this approach, we aim to provide a comprehensive review to integrate this complex floral regulatory process and summarize the regulatory genes and their functions in annuals and perennials. Seven primary paths leading to flowering have been discovered in Arabidopsis under several growth condition that include; photoperiod, ambient temperature, vernalization, gibberellins, autonomous, aging and carbohydrates. These pathways involve a series of interlinked signaling pathways that respond to both internal and external signals, such as light, temperature, hormones, and developmental cues, to coordinate the expression of genes that are involved in flower development. Among them, the photoperiodic pathway was the most important and conserved as some of the fundamental loci and mechanisms are shared even by closely related plant species. The activation of floral regulatory genes such as FLC, FT, LFY, and SOC1 that determine floral meristem identity and the transition to the flowering stage result from the merging of these pathways. Recent studies confirmed that alternative splicing, antisense RNA and epigenetic modification play crucial roles by regulating the expression of genes related to blooming. In this review, we documented recent progress in the floral transition time in annuals and perennials, with emphasis on the specific regulatory mechanisms along with the application of various molecular approaches including overexpression studies, RNA interference and Virus-induced flowering. Furthermore, the similarities and differences between annual and perennial flowering will aid significant contributions to the field by elucidating the mechanisms of perennial plant development and floral initiation regulation.
Collapse
Affiliation(s)
- Shazia Rehman
- Sanya Nanfan Research Institution, Hainan University, Haikou 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Saraj Bahadur
- College of Forestry, Hainan University, Haikou 570228 China
| | - Wei Xia
- Sanya Nanfan Research Institution, Hainan University, Haikou 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China.
| |
Collapse
|
18
|
Fang C, Yang M, Tang Y, Zhang L, Zhao H, Ni H, Chen Q, Meng F, Jiang J. Dynamics of cis-regulatory sequences and transcriptional divergence of duplicated genes in soybean. Proc Natl Acad Sci U S A 2023; 120:e2303836120. [PMID: 37871213 PMCID: PMC10622917 DOI: 10.1073/pnas.2303836120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023] Open
Abstract
Transcriptional divergence of duplicated genes after whole genome duplication (WGD) has been described in many plant lineages and is often associated with subgenome dominance, a genome-wide mechanism. However, it is unknown what underlies the transcriptional divergence of duplicated genes in polyploid species that lack subgenome dominance. Soybean is a paleotetraploid with a WGD that occurred 5 to 13 Mya. Approximately 50% of the duplicated genes retained from this WGD exhibit transcriptional divergence. We developed accessible chromatin region (ACR) datasets from leaf, flower, and seed tissues using MNase-hypersensitivity sequencing. We validated enhancer function of several ACRs associated with known genes using CRISPR/Cas9-mediated genome editing. The ACR datasets were used to examine and correlate the transcriptional patterns of 17,111 pairs of duplicated genes in different tissues. We demonstrate that ACR dynamics are correlated with divergence of both expression level and tissue specificity of individual gene pairs. Gain or loss of flanking ACRs and mutation of cis-regulatory elements (CREs) within the ACRs can change the balance of the expression level and/or tissue specificity of the duplicated genes. Analysis of DNA sequences associated with ACRs revealed that the extensive sequence rearrangement after the WGD reshaped the CRE landscape, which appears to play a key role in the transcriptional divergence of duplicated genes in soybean. This may represent a general mechanism for transcriptional divergence of duplicated genes in polyploids that lack subgenome dominance.
Collapse
Affiliation(s)
- Chao Fang
- Department of Plant Biology, Michigan State University, East Lansing, MI48824
| | - Mingyu Yang
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin150081, China
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin150030, China
| | - Yuecheng Tang
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin150081, China
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin150030, China
| | - Ling Zhang
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, Changchun130033, China
| | - Hainan Zhao
- Department of Plant Biology, Michigan State University, East Lansing, MI48824
| | - Hejia Ni
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin150030, China
| | - Qingshan Chen
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin150030, China
| | - Fanli Meng
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin150081, China
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI48824
- Department of Horticulture, Michigan State University, East Lansing, MI48824
- Michigan State University AgBioResearch, East Lansing, MI48824
| |
Collapse
|
19
|
Wu T, Lu S, Cai Y, Xu X, Zhang L, Chen F, Jiang B, Zhang H, Sun S, Zhai H, Zhao L, Xia Z, Hou W, Kong F, Han T. Molecular breeding for improvement of photothermal adaptability in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:60. [PMID: 37496825 PMCID: PMC10366068 DOI: 10.1007/s11032-023-01406-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/08/2023] [Indexed: 07/28/2023]
Abstract
Soybean (Glycine max (L.) Merr.) is a typical short-day and temperate crop that is sensitive to photoperiod and temperature. Responses of soybean to photothermal conditions determine plant growth and development, which affect its architecture, yield formation, and capacity for geographic adaptation. Flowering time, maturity, and other traits associated with photothermal adaptability are controlled by multiple major-effect and minor-effect genes and genotype-by-environment interactions. Genetic studies have identified at least 11 loci (E1-E4, E6-E11, and J) that participate in photoperiodic regulation of flowering time and maturity in soybean. Molecular cloning and characterization of major-effect flowering genes have clarified the photoperiod-dependent flowering pathway, in which the photoreceptor gene phytochrome A, circadian evening complex (EC) components, central flowering repressor E1, and FLOWERING LOCUS T family genes play key roles in regulation of flowering time, maturity, and adaptability to photothermal conditions. Here, we provide an overview of recent progress in genetic and molecular analysis of traits associated with photothermal adaptability, summarizing advances in molecular breeding practices and tools for improving these traits. Furthermore, we discuss methods for breeding soybean varieties with better adaptability to specific ecological regions, with emphasis on a novel strategy, the Potalaization model, which allows breeding of widely adapted soybean varieties through the use of multiple molecular tools in existing elite widely adapted varieties. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01406-z.
Collapse
Affiliation(s)
- Tingting Wu
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Sijia Lu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Yupeng Cai
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xin Xu
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Lixin Zhang
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Fulu Chen
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Bingjun Jiang
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Honglei Zhang
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Shi Sun
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Hong Zhai
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081 China
| | - Lin Zhao
- Key Laboratory of Soybean Biology of Ministry of Education of China, Northeast Agricultural University, Harbin, 150030 China
| | - Zhengjun Xia
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081 China
| | - Wensheng Hou
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Tianfu Han
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
20
|
Lee N, Ozaki Y, Hempton AK, Takagi H, Purusuwashi S, Song YH, Endo M, Kubota A, Imaizumi T. The FLOWERING LOCUS T gene expression is controlled by high-irradiance response and external coincidence mechanism in long days in Arabidopsis. THE NEW PHYTOLOGIST 2023; 239:208-221. [PMID: 37084001 PMCID: PMC10244125 DOI: 10.1111/nph.18932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
In natural long days, the florigen gene FLOWERING LOCUS T (FT) shows a bimodal expression pattern with morning and dusk peaks in Arabidopsis. This pattern differs from the one observed in the laboratory, and little is known about underlying mechanisms. A red : far-red (R : FR) ratio difference between sunlight and fluorescent light causes this FT pattern mismatch. We showed that bimodal FT expression patterns were induced in a day longer than 14 h with sunlight R : FR (= c. 1) conditions. By circadian gating experiments, we found that cumulative exposure of R : FR-adjusted light (R : FR ratio was adjusted to 1 with FR supplement) spanning from the afternoon to the next morning required full induction of FT in the morning. Conversely, only 2 h of R : FR adjustment in the late afternoon was sufficient for FT induction at dusk. We identified that phytochrome A (phyA) is required for the morning FT expression in response to the R : FR adjustment on the previous day. As a part of this mechanism, we showed that PHYTOCHROME-INTERACTING FACTOR 7 contributes to FT regulation. Our results suggest that phyA-mediated high-irradiance response and the external coincidence mechanism contribute to morning FT induction under natural long-day conditions.
Collapse
Affiliation(s)
- Nayoung Lee
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Yusuke Ozaki
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Andrew K. Hempton
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
| | - Hiroshi Takagi
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
- Center for Gene Research, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Savita Purusuwashi
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
| | - Young Hun Song
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Motomu Endo
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Akane Kubota
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
- Center for Gene Research, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| |
Collapse
|
21
|
Wang C, Hao X, Liu X, Su Y, Pan Y, Zong C, Wang W, Xing G, He J, Gai J. An Improved Genome-Wide Association Procedure Explores Gene-Allele Constitutions and Evolutionary Drives of Growth Period Traits in the Global Soybean Germplasm Population. Int J Mol Sci 2023; 24:ijms24119570. [PMID: 37298521 DOI: 10.3390/ijms24119570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
In soybeans (Glycine max (L.) Merr.), their growth periods, DSF (days of sowing-to-flowering), and DFM (days of flowering-to-maturity) are determined by their required accumulative day-length (ADL) and active temperature (AAT). A sample of 354 soybean varieties from five world eco-regions was tested in four seasons in Nanjing, China. The ADL and AAT of DSF and DFM were calculated from daily day-lengths and temperatures provided by the Nanjing Meteorological Bureau. The improved restricted two-stage multi-locus genome-wide association study using gene-allele sequences as markers (coded GASM-RTM-GWAS) was performed. (i) For DSF and its related ADLDSF and AATDSF, 130-141 genes with 384-406 alleles were explored, and for DFM and its related ADLDFM and AATDFM, 124-135 genes with 362-384 alleles were explored, in a total of six gene-allele systems. DSF shared more ADL and AAT contributions than DFM. (ii) Comparisons between the eco-region gene-allele submatrices indicated that the genetic adaptation from the origin to the geographic sub-regions was characterized by allele emergence (mutation), while genetic expansion from primary maturity group (MG)-sets to early/late MG-sets featured allele exclusion (selection) without allele emergence in addition to inheritance (migration). (iii) Optimal crosses with transgressive segregations in both directions were predicted and recommended for breeding purposes, indicating that allele recombination in soybean is an important evolutionary drive. (iv) Genes of the six traits were mostly trait-specific involved in four categories of 10 groups of biological functions. GASM-RTM-GWAS showed potential in detecting directly causal genes with their alleles, identifying differential trait evolutionary drives, predicting recombination breeding potentials, and revealing population gene networks.
Collapse
Affiliation(s)
- Can Wang
- Soybean Research Institute, MARA National Center for Soybean Improvement, MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory for Crop Genetics and Germplasm Enhancement, State Innovation Platform for Integrated Production and Education in Soybean Bio-breeding, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoshuai Hao
- Soybean Research Institute, MARA National Center for Soybean Improvement, MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory for Crop Genetics and Germplasm Enhancement, State Innovation Platform for Integrated Production and Education in Soybean Bio-breeding, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Xueqin Liu
- Soybean Research Institute, MARA National Center for Soybean Improvement, MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory for Crop Genetics and Germplasm Enhancement, State Innovation Platform for Integrated Production and Education in Soybean Bio-breeding, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanzhu Su
- Soybean Research Institute, MARA National Center for Soybean Improvement, MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory for Crop Genetics and Germplasm Enhancement, State Innovation Platform for Integrated Production and Education in Soybean Bio-breeding, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongpeng Pan
- Soybean Research Institute, MARA National Center for Soybean Improvement, MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory for Crop Genetics and Germplasm Enhancement, State Innovation Platform for Integrated Production and Education in Soybean Bio-breeding, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunmei Zong
- Soybean Research Institute, MARA National Center for Soybean Improvement, MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory for Crop Genetics and Germplasm Enhancement, State Innovation Platform for Integrated Production and Education in Soybean Bio-breeding, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Wubin Wang
- Soybean Research Institute, MARA National Center for Soybean Improvement, MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory for Crop Genetics and Germplasm Enhancement, State Innovation Platform for Integrated Production and Education in Soybean Bio-breeding, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangnan Xing
- Soybean Research Institute, MARA National Center for Soybean Improvement, MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory for Crop Genetics and Germplasm Enhancement, State Innovation Platform for Integrated Production and Education in Soybean Bio-breeding, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianbo He
- Soybean Research Institute, MARA National Center for Soybean Improvement, MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory for Crop Genetics and Germplasm Enhancement, State Innovation Platform for Integrated Production and Education in Soybean Bio-breeding, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Junyi Gai
- Soybean Research Institute, MARA National Center for Soybean Improvement, MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory for Crop Genetics and Germplasm Enhancement, State Innovation Platform for Integrated Production and Education in Soybean Bio-breeding, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
22
|
Li H, Du H, He M, Wang J, Wang F, Yuan W, Huang Z, Cheng Q, Gou C, Chen Z, Liu B, Kong F, Fang C, Zhao X, Yu D. Natural variation of FKF1 controls flowering and adaptation during soybean domestication and improvement. THE NEW PHYTOLOGIST 2023; 238:1671-1684. [PMID: 36811193 DOI: 10.1111/nph.18826] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Soybean (Glycine max) is a major source of protein and edible oil world-wide and is cultivated in a wide range of latitudes. However, it is extremely sensitive to photoperiod, which influences flowering time, maturity, and yield, and severely limits soybean latitude adaptation. In this study, a genome-wide association study (GWAS) identified a novel locus in accessions harboring the E1 allele, called Time of flowering 8 (Tof8), which promotes flowering and enhances adaptation to high latitude in cultivated soybean. Gene functional analyses showed that Tof8 is an ortholog of Arabidopsis FKF1. We identified two FKF1 homologs in the soybean genome. Both FKF1 homologs are genetically dependent on E1 by binding to E1 promoter to activate E1 transcription, thus repressing FLOWERING LOCUS T 2a (FT2a) and FT5a transcription, which modulate flowering and maturity through the E1 pathway. We also demonstrate that the natural allele FKF1bH3 facilitated adaptation of soybean to high-latitude environments and was selected during domestication and improvement, leading to its rapid expansion in cultivated soybean. These findings provide novel insights into the roles of FKF1 in controlling flowering time and maturity in soybean and offer new means to fine-tune adaptation to high latitudes and increase grain yield.
Collapse
Affiliation(s)
- Haiyang Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Haiping Du
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Milan He
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Jianhao Wang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Fan Wang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Wenjie Yuan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zerong Huang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Qun Cheng
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Chuanjie Gou
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Zheng Chen
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Chao Fang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Xiaohui Zhao
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Deyue Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
23
|
Hou Z, Fang C, Liu B, Yang H, Kong F. Origin, variation, and selection of natural alleles controlling flowering and adaptation in wild and cultivated soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:36. [PMID: 37309391 PMCID: PMC10248697 DOI: 10.1007/s11032-023-01382-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/12/2023] [Indexed: 06/14/2023]
Abstract
Soybean (Glycine max) is an economically important crop worldwide, serving as a major source of oil and protein for human consumption and animal feed. Cultivated soybean was domesticated from wild soybean (Glycine soja) which both species are highly sensitive to photoperiod and can grow over a wide geographical range. The extensive ecological adaptation of wild and cultivated soybean has been facilitated by a series of genes represented as quantitative trait loci (QTLs) that control photoperiodic flowering and maturation. Here, we review the molecular and genetic basis underlying the regulation of photoperiodic flowering in soybean. Soybean has experienced both natural and artificial selection during adaptation to different latitudes, resulting in differential molecular and evolutionary mechanisms between wild and cultivated soybean. The in-depth study of natural and artificial selection for the photoperiodic adaptability of wild and cultivated soybean provides an important theoretical and practical basis for enhancing soybean adaptability and yield via molecular breeding. In addition, we discuss the possible origin of wild soybean, current challenges, and future research directions in this important topic.
Collapse
Affiliation(s)
- Zhihong Hou
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Chao Fang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Hui Yang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| |
Collapse
|
24
|
Tang Y, Lu S, Fang C, Liu H, Dong L, Li H, Su T, Li S, Wang L, Cheng Q, Liu B, Lin X, Kong F. Diverse flowering responses subjecting to ambient high temperature in soybean under short-day conditions. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:782-791. [PMID: 36578141 PMCID: PMC10037154 DOI: 10.1111/pbi.13996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/06/2022] [Accepted: 12/17/2022] [Indexed: 06/14/2023]
Abstract
Flowering time is one of important agronomic traits determining the crop yield and affected by high temperature. When facing high ambient temperature, plants often initiate early flowering as an adaptive strategy to escape the stress and ensure successful reproduction. However, here we find opposing ways in the short-day crop soybean to respond to different levels of high temperatures, in which flowering accelerates when temperature changes from 25 to 30 °C, but delays when temperature reaches 35 °C under short day. phyA-E1, possibly photoperiodic pathway, is crucial for 35 °C-mediated late flowering, however, does not contribute to promoting flowering at 30 °C. 30 °C-induced up-regulation of FT2a and FT5a leads to early flowering, independent of E1. Therefore, distinct responsive mechanisms are adopted by soybean when facing different levels of high temperatures for successful flowering and reproduction.
Collapse
Affiliation(s)
- Yang Tang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Sijia Lu
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Chao Fang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Huan Liu
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Lidong Dong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Haiyang Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Tong Su
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Shichen Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Lingshuang Wang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Qun Cheng
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Baohui Liu
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design BreedingNortheast Institute of Geography and Agroecology, Chinese Academy of SciencesHarbinChina
| | - Xiaoya Lin
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Fanjiang Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design BreedingNortheast Institute of Geography and Agroecology, Chinese Academy of SciencesHarbinChina
- College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
25
|
Du H, Fang C, Li Y, Kong F, Liu B. Understandings and future challenges in soybean functional genomics and molecular breeding. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:468-495. [PMID: 36511121 DOI: 10.1111/jipb.13433] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Soybean (Glycine max) is a major source of plant protein and oil. Soybean breeding has benefited from advances in functional genomics. In particular, the release of soybean reference genomes has advanced our understanding of soybean adaptation to soil nutrient deficiencies, the molecular mechanism of symbiotic nitrogen (N) fixation, biotic and abiotic stress tolerance, and the roles of flowering time in regional adaptation, plant architecture, and seed yield and quality. Nevertheless, many challenges remain for soybean functional genomics and molecular breeding, mainly related to improving grain yield through high-density planting, maize-soybean intercropping, taking advantage of wild resources, utilization of heterosis, genomic prediction and selection breeding, and precise breeding through genome editing. This review summarizes the current progress in soybean functional genomics and directs future challenges for molecular breeding of soybean.
Collapse
Affiliation(s)
- Haiping Du
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Chao Fang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Yaru Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
26
|
Dong L, Li S, Wang L, Su T, Zhang C, Bi Y, Lai Y, Kong L, Wang F, Pei X, Li H, Hou Z, Du H, Du H, Li T, Cheng Q, Fang C, Kong F, Liu B. The genetic basis of high-latitude adaptation in wild soybean. Curr Biol 2023; 33:252-262.e4. [PMID: 36538932 DOI: 10.1016/j.cub.2022.11.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
In many plants, flowering time is influenced by daylength as an adaptive response. In soybean (Glycine max) cultivars, however, photoperiodic flowering reduces crop yield and quality in high-latitude regions. Understanding the genetic basis of wild soybean (Glycine soja) adaptation to high latitudes could aid breeding of improved cultivars. Here, we identify the Tof4 (Time of flowering 4) locus, which encodes by an E1-like protein, E1La, that represses flowering and enhances adaptation to high latitudes in wild soybean. Moreover, we found that Tof4 physically associates with the promoters of two important FLOWERING LOCUS T (FT2a and FT5a) and with Tof5 to inhibit their transcription under long photoperiods. The effect of Tof4 on flowering and maturity is mediated by FT2a and FT5a proteins. Intriguingly, Tof4 and the key flowering repressor E1 independently but additively regulate flowering time, maturity, and grain yield in soybean. We determined that weak alleles of Tof4 have undergone natural selection, facilitating adaptation to high latitudes in wild soybean. Notably, over 71.5% of wild soybean accessions harbor the mutated alleles of Tof4 or a previously reported gain-of-function allele Tof5H2, suggesting that these two loci are the genetic basis of wild soybean adaptation to high latitudes. Almost no cultivated soybean carries the mutated tof4 allele. Introgression of the tof4-1 and Tof5H2 alleles into modern soybean or editing E1 family genes thus represents promising avenues to obtain early-maturity soybean, thereby improving productivity in high latitudes.
Collapse
Affiliation(s)
- Lidong Dong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Shichen Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Lingshuang Wang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Tong Su
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Chunbao Zhang
- Soybean Research Institute, National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Yingdong Bi
- Institute of Crops Tillage and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Yongcai Lai
- Institute of Crops Tillage and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Lingping Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Fan Wang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Xinxin Pei
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Haiyang Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Zhihong Hou
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Haiping Du
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Hao Du
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Tai Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Qun Cheng
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| | - Chao Fang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| | - Fanjiang Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Baohui Liu
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China.
| |
Collapse
|
27
|
Wang F, Li S, Kong F, Lin X, Lu S. Altered regulation of flowering expands growth ranges and maximizes yields in major crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1094411. [PMID: 36743503 PMCID: PMC9892950 DOI: 10.3389/fpls.2023.1094411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/04/2023] [Indexed: 06/14/2023]
Abstract
Flowering time influences reproductive success in plants and has a significant impact on yield in grain crops. Flowering time is regulated by a variety of environmental factors, with daylength often playing an important role. Crops can be categorized into different types according to their photoperiod requirements for flowering. For instance, long-day crops include wheat (Triticum aestivum), barley (Hordeum vulgare), and pea (Pisum sativum), while short-day crops include rice (Oryza sativa), soybean (Glycine max), and maize (Zea mays). Understanding the molecular regulation of flowering and genotypic variation therein is important for molecular breeding and crop improvement. This paper reviews the regulation of flowering in different crop species with a particular focus on how photoperiod-related genes facilitate adaptation to local environments.
Collapse
Affiliation(s)
| | | | | | - Xiaoya Lin
- *Correspondence: Xiaoya Lin, ; Sijia Lu,
| | - Sijia Lu
- *Correspondence: Xiaoya Lin, ; Sijia Lu,
| |
Collapse
|
28
|
Zhang C, Xu X, Chen F, Yuan S, Wu T, Jiang B, Sapey E, Wu C, Sun S, Guo C, Han T. Establishment of a novel experimental system for studying the photoperiodic response of short-day dicots using soybean 'cotyledon-only plant' as material. FRONTIERS IN PLANT SCIENCE 2023; 13:1101715. [PMID: 36684791 PMCID: PMC9853180 DOI: 10.3389/fpls.2022.1101715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Soybean is an important model crop for photoperiodic response studies in plants and contributes significantly to the study of plant development and physiology in the past century. Because soybean plant is much bigger in size and longer in life cycle than Arabidopsis, it needs much more space for growth and time for investigation, which significantly hamper the efficiency of research. In the current study, we tested the photoperiodic response of a distinctive artificially-made cotyledon-only plant (COP) using a photoperiod-sensitive soybean variety Zigongdongdou (ZGDD) and other varieties with diverse sensitivity to photoperiod. ZGDD COPs flowered 39.4 ± 2.5 d after emergence under short-day conditions but maintained vegetative growth under long-day and night break conditions, which is similar to the case in the intact ZGDD plants. The COPs of early-maturing and medium-maturing soybean varieties also grew and flowered normally under natural day-length conditions. At the molecular level, the key genes in the photoperiodic pathway such as E1, GmFT1a, GmFT2a, and GmFT5a in the COPs also showed the same photoperiod sensitivity as in the intact plants. In addition, a simpler material of COP with only one cotyledon and root was generated and found to be sensitive to photoperiod as well. Notably, the COPs are only one-fifth the height of intact plants and one-third the maximum diameter of the intact plants grown in chambers 30 d after emergence. Based on COPs, we established a novel experimental system characterized by an entire photoperiodic response and longer longevity of cotyledons in addition to small plant size, ensuring the consistency, reliability, and stability of plant materials. COPs have the potential to be a novel model material for studies of the developmental biology of soybean and other dicots.
Collapse
Affiliation(s)
- Chunlei Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin, China
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Xu
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fulu Chen
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shan Yuan
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tingting Wu
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bingjun Jiang
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, Beijing, China
| | - Enoch Sapey
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, Beijing, China
- Council for Scientific and Industrial Research (CSIR)-Oil Palm Research Institute, Kade, Ghana
| | - Cunxiang Wu
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shi Sun
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changhong Guo
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Tianfu Han
- College of Life Science and Technology, Harbin Normal University, Harbin, China
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
29
|
Wang L, Li H, He M, Dong L, Huang Z, Chen L, Nan H, Kong F, Liu B, Zhao X. GIGANTEA orthologs, E2 members, redundantly determine photoperiodic flowering and yield in soybean. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:188-202. [PMID: 36287141 DOI: 10.1111/jipb.13398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Soybean (Glycine max L.) is a typical photoperiod-sensitive crop, such that photoperiod determines its flowering time, maturity, grain yield, and phenological adaptability. During evolution, the soybean genome has undergone two duplication events, resulting in about 75% of all genes being represented by multiple copies, which is associated with rampant gene redundancy. Among duplicated genes, the important soybean maturity gene E2 has two homologs, E2-Like a (E2La) and E2-Like b (E2Lb), which encode orthologs of Arabidopsis GIGANTEA (GI). Although E2 was cloned a decade ago, we still know very little about its contribution to flowering time and even less about the function of its homologs. Here, we generated single and double mutants in E2, E2La, and E2Lb by genome editing and determined that E2 plays major roles in the regulation of flowering time and yield, with the two E2 homologs depending on E2 function. At high latitude regions, e2 single mutants showed earlier flowering and high grain yield. Remarkably, in terms of genetic relationship, genes from the legume-specific transcription factor family E1 were epistatic to E2. We established that E2 and E2-like proteins form homodimers or heterodimers to regulate the transcription of E1 family genes, with the homodimer exerting a greater function than the heterodimers. In addition, we established that the H3 haplotype of E2 is the ancestral allele and is mainly restricted to low latitude regions, from which the loss-of-function alleles of the H1 and H2 haplotypes were derived. Furthermore, we demonstrated that the function of the H3 allele is stronger than that of the H1 haplotype in the regulation of flowering time, which has not been shown before. Our findings provide excellent allelic combinations for classical breeding and targeted gene disruption or editing.
Collapse
Affiliation(s)
- Lingshuang Wang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Haiyang Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Milan He
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | | | - Zerong Huang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Liyu Chen
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Haiyang Nan
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Xiaohui Zhao
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
30
|
Wan Z, Liu Y, Guo D, Fan R, Liu Y, Xu K, Zhu J, Quan L, Lu W, Bai X, Zhai H. CRISPR/Cas9-mediated targeted mutation of the E1 decreases photoperiod sensitivity, alters stem growth habits, and decreases branch number in soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:1066820. [PMID: 36589055 PMCID: PMC9794841 DOI: 10.3389/fpls.2022.1066820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The distribution of elite soybean (Glycine max) cultivars is limited due to their highly sensitive to photoperiod, which affects the flowering time and plant architecture. The recent emergence of CRISPR/Cas9 technology has uncovered new opportunities for genetic manipulation of soybean. The major maturity gene E1 of soybean plays a critical role in soybean photoperiod response. Here, we performed CRISPR/Cas9-mediated targeted mutation of E1 gene in soybean cultivar Tianlong1 carrying the dominant E1 to investigate its precise function in photoperiod regulation, especially in plant architecture regulation. Four types of mutations in the E1 coding region were generated. No off-target effects were observed, and homozygous trans-clean mutants without T-DNA were obtained. The photoperiod sensitivity of e1 mutants decreased relative to the wild type plants; however, e1 mutants still responded to photoperiod. Further analysis revealed that the homologs of E1, E1-La, and E1-Lb, were up-regulated in the e1 mutants, indicating a genetic compensation response of E1 and its homologs. The e1 mutants exhibited significant changes in the architecture, including initiation of terminal flowering, formation of determinate stems, and decreased branch numbers. To identify E1-regulated genes related to plant architecture, transcriptome deep sequencing (RNA-seq) was used to compare the gene expression profiles in the stem tip of the wild-type soybean cultivar and the e1 mutants. The expression of shoot identity gene Dt1 was significantly decreased, while Dt2 was significantly upregulated. Also, a set of MADS-box genes was up-regulated in the stem tip of e1 mutants which might contribute to the determinate stem growth habit.
Collapse
Affiliation(s)
- Zhao Wan
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yingxiang Liu
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Dandan Guo
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Rong Fan
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Yang Liu
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Kun Xu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Jinlong Zhu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Le Quan
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Wentian Lu
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Xi Bai
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Hong Zhai
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| |
Collapse
|
31
|
Zhang Z, Yang S, Wang Q, Yu H, Zhao B, Wu T, Tang K, Ma J, Yang X, Feng X. Soybean GmHY2a encodes a phytochromobilin synthase that regulates internode length and flowering time. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6646-6662. [PMID: 35946571 PMCID: PMC9629791 DOI: 10.1093/jxb/erac318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Plant height and flowering time are important agronomic traits that directly affect soybean [Glycine max (L.) Merr.] adaptability and yield. Here, the Glycine max long internode 1 (Gmlin1) mutant was selected from an ethyl methyl sulfonate (EMS)-mutated Williams 82 population due to its long internodes and early flowering. Using bulked segregant analysis (BSA), the Gmlin1 locus was mapped to Glyma.02G304700, a homologue of the Arabidopsis HY2 gene, which encodes a phytochromobilin (PΦB) synthase involved in phytochrome chromophore synthesis. Mutation of GmHY2a results in failure of the de-etiolation response under both red and far-red light. The Gmlin1 mutant exhibits a constitutive shade avoidance response under normal light, and the mutations influence the auxin and gibberellin pathways to promote internode elongation. The Gmlin1 mutant also exhibits decreased photoperiod sensitivity. In addition, the soybean photoperiod repressor gene E1 is down-regulated in the Gmlin1 mutant, resulting in accelerated flowering. The nuclear import of phytochrome A (GmphyA) and GmphyB following light treatment is decreased in Gmlin1 protoplasts, indicating that the weak light response of the Gmlin1 mutant is caused by a decrease in functional phytochrome. Together, these results indicate that GmHY2a plays an important role in soybean phytochrome biosynthesis and provide insights into the adaptability of the soybean plant.
Collapse
Affiliation(s)
- Zhirui Zhang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Qiushi Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
| | - Hui Yu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
| | - Beifang Zhao
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
| | - Tao Wu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuanqiang Tang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
| | - Jingjing Ma
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
| | - Xinjing Yang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Maldonado Dos Santos JV, Sant'Ana GC, Wysmierski PT, Todeschini MH, Garcia A, Meda AR. Genetic relationships and genome selection signatures between soybean cultivars from Brazil and United States after decades of breeding. Sci Rep 2022; 12:10663. [PMID: 35739190 PMCID: PMC9226155 DOI: 10.1038/s41598-022-15022-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/16/2022] [Indexed: 11/21/2022] Open
Abstract
Soybean is one of the most important crops worldwide. Brazil and the United States (US) are the world's two biggest producers of this legume. The increase of publicly available DNA sequencing data as well as high-density genotyping data of multiple soybean germplasms has made it possible to understand the genetic relationships and identify genomics regions that underwent selection pressure during soy domestication and breeding. In this study, we analyzed the genetic relationships between Brazilian (N = 235) and US soybean cultivars (N = 675) released in different decades and screened for genomic signatures between Brazilian and US cultivars. The population structure analysis demonstrated that the Brazilian germplasm has a narrower genetic base than the US germplasm. The US cultivars were grouped according to maturity groups, while Brazilian cultivars were separated according to decade of release. We found 73 SNPs that differentiate Brazilian and US soybean germplasm. Maturity-associated SNPs showed high allelic frequency differences between Brazilian and US accessions. Other important loci were identified separating cultivars released before and after 1996 in Brazil. Our data showed important genomic regions under selection during decades of soybean breeding in Brazil and the US that should be targeted to adapt lines from different origins in these countries.
Collapse
Affiliation(s)
| | | | | | | | - Alexandre Garcia
- Tropical Melhoramento & Genética (TMG), 87 Celso Garcia Road, Cambe, PR, Brazil
| | | |
Collapse
|
33
|
Zhai H, Wan Z, Jiao S, Zhou J, Xu K, Nan H, Liu Y, Xiong S, Fan R, Zhu J, Jiang W, Pang T, Luo X, Wu H, Yang G, Bai X, Kong F, Xia Z. GmMDE genes bridge the maturity gene E1 and florigens in photoperiodic regulation of flowering in soybean. PLANT PHYSIOLOGY 2022; 189:1021-1036. [PMID: 35234946 PMCID: PMC9157081 DOI: 10.1093/plphys/kiac092] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/19/2022] [Indexed: 05/30/2023]
Abstract
Soybean (Glycine max) is highly sensitive to photoperiod, which affects flowering time and plant architecture and thus limits the distribution range of elite soybean cultivars. The major maturity gene E1 confers the most prominent effect on photoperiod sensitivity, but its downstream signaling pathway remains largely unknown. Here, we confirm that the encoded E1 protein is a transcriptional repressor. The expression of seven GmMDE genes (Glycine max MADS-box genes downregulated by E1) was suppressed when E1 was overexpressed and promoted when E1 was knocked out through clustered regularly-interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9)-mediated mutagenesis. These GmMDEs exhibited similar tissue specificity and expression patterns, including in response to photoperiod, E1 expression, and E1 genotype. E1 repressed GmMDE promoter activity. Results for two GmMDEs showed that E1 epigenetically silences their expression by directly binding to their promoters to increase H3K27me3 levels. The overexpression of GmMDE06 promoted flowering and post-flowering termination of stem growth. The late flowering phenotype of E1-overexpressing soybean lines was reversed by the overexpression of GmMDE06, placing GmMDE06 downstream of E1. The overexpression of GmMDE06 increased the expression of the soybean FLOWERING LOCUS T orthologs GmFT2a and GmFT5a, leading to feedback upregulation of GmMDE, indicating that GmMDE and GmFT2a/GmFT5a form a positive regulatory feedback loop promoting flowering. GmMDE06 also promoted post-flowering termination of stem growth by repressing the expression of the shoot identity gene Dt1. The E1-GmMDEs-GmFT2a/5a-Dt1 signaling pathway illustrates how soybean responds to photoperiod by modulating flowering time and post-flowering stem termination.
Collapse
Affiliation(s)
- Hong Zhai
- Key Laboratory of Soybean Molecular Design Breeding (2013DP173244), Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin 150081, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao Wan
- Key Laboratory of Soybean Molecular Design Breeding (2013DP173244), Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin 150081, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang Jiao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jingwen Zhou
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Kun Xu
- Key Laboratory of Soybean Molecular Design Breeding (2013DP173244), Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin 150081, China
| | - Haiyang Nan
- Key Laboratory of Soybean Molecular Design Breeding (2013DP173244), Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin 150081, China
| | - Yingxiang Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Shangshang Xiong
- Key Laboratory of Soybean Molecular Design Breeding (2013DP173244), Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin 150081, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Fan
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jinlong Zhu
- Key Laboratory of Soybean Molecular Design Breeding (2013DP173244), Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin 150081, China
| | - Wenting Jiang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Tian Pang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiao Luo
- Institute of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Hongyan Wu
- Key Laboratory of Soybean Molecular Design Breeding (2013DP173244), Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin 150081, China
| | - Guang Yang
- Cultivation and Crop Tillage Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xi Bai
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Zhengjun Xia
- Key Laboratory of Soybean Molecular Design Breeding (2013DP173244), Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin 150081, China
| |
Collapse
|
34
|
Imoto Y, Yoshikawa S, Horiuchi Y, Iida T, Oka T, Matsuda S, Tokuji Y, Mori M, Kato K. Flowering Date1, a major photoperiod sensitivity gene in adzuki bean, is a soybean floral repressor E1 ortholog. BREEDING SCIENCE 2022; 72:132-140. [PMID: 36275936 PMCID: PMC9522530 DOI: 10.1270/jsbbs.21051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/27/2021] [Indexed: 06/16/2023]
Abstract
Adzuki bean is an important legume crop originating in temperate regions, with photoperiod in sensitivity being a key factor in its latitudinal adaptation. The Flowering Date1 (FD1) gene has a large effect on the photoperiodic response of flowering time, but the molecular basis for the effect of this locus is undetermined. The present study delimited the FD1 locus to a 17.1 kb sequence, containing a single gene, an E1 ortholog (VaE1). A comparison between Vigna angularis 'Shumari' (photoperiod insensitive) and 'Acc2265' (photoperiod sensitive) identified 29 insertions/deletions and 178 SNPs upstream of VaE1 in the FD1 locus. VaE1 expression in 'Acc2265' was greater under long-day than short-day conditions, whereas VaE1 expression in 'Shumari' was lower regardless of day length. These findings suggested that responsible gene of FD1 is a VaE1, which acts as a floral repressor by being upregulated in response to long-day conditions. The inability to upregulate VaE1 under long-day conditions was linked to its ability to flower under these conditions. These results provide greater understanding of the molecular control of a flowering date and clues enabling the breeding of adzuki bean at higher latitudes.
Collapse
Affiliation(s)
- Yusuke Imoto
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Shoko Yoshikawa
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Yuki Horiuchi
- Tokachi Agricultural Experiment Station, Agricultural Research Department, Hokkaido Research Organization, Memuro, Hokkaido 082-0081, Japan
| | - Takumi Iida
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Taisei Oka
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Shuichi Matsuda
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Yoshihiko Tokuji
- Department of Human Sciences, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Masahiko Mori
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Kiyoaki Kato
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
35
|
Dong L, Cheng Q, Fang C, Kong L, Yang H, Hou Z, Li Y, Nan H, Zhang Y, Chen Q, Zhang C, Kou K, Su T, Wang L, Li S, Li H, Lin X, Tang Y, Zhao X, Lu S, Liu B, Kong F. Parallel selection of distinct Tof5 alleles drove the adaptation of cultivated and wild soybean to high latitudes. MOLECULAR PLANT 2022; 15:308-321. [PMID: 34673232 DOI: 10.1016/j.molp.2021.10.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/27/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Photoperiod responsiveness is a key factor limiting the geographic distribution of cultivated soybean and its wild ancestor. In particular, the genetic basis of the adaptation in wild soybean remains poorly understood. In this study, by combining whole-genome resequencing and genome-wide association studies we identified a novel locus, Time of Flowering 5 (Tof5), which promotes flowering and enhances adaptation to high latitudes in both wild and cultivated soybean. By genomic, genetic and transgenic analyses we showed that Tof5 encodes a homolog of Arabidopsis thaliana FRUITFULL (FUL). Importantly, further analyses suggested that different alleles of Tof5 have undergone parallel selection. The Tof5H1 allele was strongly selected by humans after the early domestication of cultivated soybean, while Tof5H2 allele was naturally selected in wild soybean, and in each case facilitating adaptation to high latitudes. Moreover, we found that the key flowering repressor E1 suppresses the transcription of Tof5 by binding to its promoter. In turn, Tof5 physically associates with the promoters of two important FLOWERING LOCUS T (FT), FT2a and FT5a, to upregulate their transcription and promote flowering under long photoperiods. Collectively, our findings provide insights into how wild soybean adapted to high latitudes through natural selection and indicate that cultivated soybean underwent changes in the same gene but evolved a distinct allele that was artificially selected after domestication.
Collapse
Affiliation(s)
- Lidong Dong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China.
| | - Qun Cheng
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Chao Fang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Lingping Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Hui Yang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Zhihong Hou
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China; College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163000, China
| | - Yongli Li
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Haiyang Nan
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Yuhang Zhang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Qingshan Chen
- Department of Agriculture, Northeast Agricultural University, Harbin 150000, China
| | - Chunbao Zhang
- Soybean Research Institute, National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Kun Kou
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Tong Su
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Lingshuang Wang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Shichen Li
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Haiyang Li
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China; National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoya Lin
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Yang Tang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Xiaohui Zhao
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Sijia Lu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China.
| | - Baohui Liu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China; The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China.
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China; The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China.
| |
Collapse
|
36
|
Zhang M, Liu S, Wang Z, Yuan Y, Zhang Z, Liang Q, Yang X, Duan Z, Liu Y, Kong F, Liu B, Ren B, Tian Z. Progress in soybean functional genomics over the past decade. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:256-282. [PMID: 34388296 PMCID: PMC8753368 DOI: 10.1111/pbi.13682] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 05/24/2023]
Abstract
Soybean is one of the most important oilseed and fodder crops. Benefiting from the efforts of soybean breeders and the development of breeding technology, large number of germplasm has been generated over the last 100 years. Nevertheless, soybean breeding needs to be accelerated to meet the needs of a growing world population, to promote sustainable agriculture and to address future environmental changes. The acceleration is highly reliant on the discoveries in gene functional studies. The release of the reference soybean genome in 2010 has significantly facilitated the advance in soybean functional genomics. Here, we review the research progress in soybean omics (genomics, transcriptomics, epigenomics and proteomics), germplasm development (germplasm resources and databases), gene discovery (genes that are responsible for important soybean traits including yield, flowering and maturity, seed quality, stress resistance, nodulation and domestication) and transformation technology during the past decade. At the end, we also briefly discuss current challenges and future directions.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Zhao Wang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yaqin Yuan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhifang Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qianjin Liang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xia Yang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zongbiao Duan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Baohui Liu
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Bo Ren
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
37
|
A Point Mutation in Phytochromobilin synthase Alters the Circadian Clock and Photoperiodic Flowering of Medicago truncatula. PLANTS 2022; 11:plants11030239. [PMID: 35161220 PMCID: PMC8839385 DOI: 10.3390/plants11030239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 11/17/2022]
Abstract
Plants use seasonal cues to initiate flowering at an appropriate time of year to ensure optimal reproductive success. The circadian clock integrates these daily and seasonal cues with internal cues to initiate flowering. The molecular pathways that control the sensitivity of flowering to photoperiods (daylengths) are well described in the model plant Arabidopsis. However, much less is known for crop species, such as legumes. Here, we performed a flowering time screen of a TILLING population of Medicago truncatula and found a line with late-flowering and altered light-sensing phenotypes. Using RNA sequencing, we identified a nonsense mutation in the Phytochromobilin synthase (MtPΦBS) gene, which encodes an enzyme that carries out the final step in the biosynthesis of the chromophore required for phytochrome (phy) activity. The analysis of the circadian clock in the MtpΦbs mutant revealed a shorter circadian period, which was shared with the MtphyA mutant. The MtpΦbs and MtphyA mutants showed downregulation of the FT floral regulators MtFTa1 and MtFTb1/b2 and a change in phase for morning and night core clock genes. Our findings show that phyA is necessary to synchronize the circadian clock and integration of light signalling to precisely control the timing of flowering.
Collapse
|
38
|
Luo X, Yin M, He Y. Molecular Genetic Understanding of Photoperiodic Regulation of Flowering Time in Arabidopsis and Soybean. Int J Mol Sci 2021; 23:466. [PMID: 35008892 PMCID: PMC8745532 DOI: 10.3390/ijms23010466] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/25/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
The developmental switch from a vegetative phase to reproduction (flowering) is essential for reproduction success in flowering plants, and the timing of the floral transition is regulated by various environmental factors, among which seasonal day-length changes play a critical role to induce flowering at a season favorable for seed production. The photoperiod pathways are well known to regulate flowering time in diverse plants. Here, we summarize recent progresses on molecular mechanisms underlying the photoperiod control of flowering in the long-day plant Arabidopsis as well as the short-day plant soybean; furthermore, the conservation and diversification of photoperiodic regulation of flowering in these two species are discussed.
Collapse
Affiliation(s)
- Xiao Luo
- Peking University Institute of Advanced Agricultural Sciences, Weifang 261325, China
| | - Mengnan Yin
- Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai 201602, China;
| | - Yuehui He
- Peking University Institute of Advanced Agricultural Sciences, Weifang 261325, China
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
39
|
Perfil'ev RN, Shcherban AB, Salina EA. Development of a marker panel for genotyping of domestic soybean cultivars for genes controlling the duration of vegetation and response to photoperiod. Vavilovskii Zhurnal Genet Selektsii 2021; 25:761-769. [PMID: 34964019 PMCID: PMC8654678 DOI: 10.18699/vj21.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 11/19/2022] Open
Abstract
Soybean, Glycine max L., is one of the most important agricultural crops grown in a wide range of latitude. In this regard, in soybean breeding, it is necessary to pay attention to the set of genes that control the transition to the f lowering stage, which will make it possible to adapt genotypes to local growing conditions as accurately as possible. The possibilities of soybean breeding for this trait have now signif icantly expanded due to identif ication of the main genes (E1–E4, GmFT2a, GmFT5a) that control the processes of f lowering and maturation in soybean, depending on the day length. The aim of this work was to develop a panel of markers for these genes, which could be used for a rapid and eff icient genotyping of domestic soybean cultivars and selection of plant material based on sensitivity to photoperiod and the duration of vegetation. Combinations of 10 primers, both previously developed and our own, were tested to identify different alleles of the E1–E4, GmFT2a, and GmFT5a genes using 10 soybean cultivars from different maturity groups. As a result, 5 combinations of dominant and recessive alleles for the E1–E4 genes were identif ied: (1) e1-nl(e1-as)/
e2-ns/e3-tr(e3-fs)/e4; (2) e1-as/e2-ns/e3-tr/E4; (3) e1-as/e2-ns/E3-Ha/e4; (4) E1/e2-ns/e3-tr/E4; (5) e1-nl/e2-ns/E3-Ha/E4. The studied cultivars contained the most common alleles of the GmFT2a and GmFT5a genes, with the exception of the ‘Cassidi’ cultivar having a rare dominant allele GmFT5a-H4. The degree of earliness of cultivars positively correlated with the number of recessive genes E1–E4, which is consistent with the data of foreign authors on different sets of cultivars from Japan and North China. Thus, the developed panel of markers can be successfully used in the selection
of soybean for earliness and sensitivity to photoperiod.
Collapse
Affiliation(s)
- R N Perfil'ev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A B Shcherban
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E A Salina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
40
|
Zimmer G, Miller MJ, Steketee CJ, Jackson SA, de Tunes LVM, Li Z. Genetic control and allele variation among soybean maturity groups 000 through IX. THE PLANT GENOME 2021; 14:e20146. [PMID: 34514734 DOI: 10.1002/tpg2.20146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Soybean [Glycinemax (L.) Merr.] maturity determines the growing region of a given soybean variety and is a primary factor in yield and other agronomic traits. The objectives of this research were to identify the quantitative trait loci (QTL) associated with maturity groups (MGs) and determine the genetic control of soybean maturity in each MG. Using data from 16,879 soybean accessions, genome-wide association (GWA) analyses were conducted for each paired MG and across MGs 000 through IX. Genome-wide association analyses were also performed using 184 genotypes (MGs V-IX) with days to flowering (DTF) and maturity (DTM) collected in the field. A total of 58 QTL were identified to be significantly associated with MGs in individual GWAs, which included 12 reported maturity loci and two stem termination genes. Genome-wide associations across MGs 000-IX detected a total of 103 QTL and confirmed 54 QTL identified in the individual GWAs. Of significant loci identified, qMG-5.2 had effects on the highest number (9) of MGs, followed by E2, E3, Dt2, qMG-15.5, E1, qMG-13.1, qMG-7.1, and qMG-16.1, which affected five to seven MGs. A high number of genetic loci (8-25) that affected MGs 0-V were observed. Stem termination genes Dt1 and Dt2 mainly had significant allele variation in MGs II-V. Genome-wide associations for DTF, DTM, and reproductive period (RP) in the diversity panel confirmed 15 QTL, of which seven were observed in MGs V-IX. The results generated can help soybean breeders manipulate the maturity loci for genetic improvement of soybean yield.
Collapse
Affiliation(s)
- Gustavo Zimmer
- Institute of Plant Breeding, Genetics, and Genomics, and Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Crop Production, Federal University of Pelotas, Capão do Leão, RS, 96160-000, Brazil
| | - Mark J Miller
- Institute of Plant Breeding, Genetics, and Genomics, and Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Clinton J Steketee
- Institute of Plant Breeding, Genetics, and Genomics, and Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Scott A Jackson
- Institute of Plant Breeding, Genetics, and Genomics, and Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
| | | | - Zenglu Li
- Institute of Plant Breeding, Genetics, and Genomics, and Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
41
|
Rani A, Kumar V, Shukla S, Manjaya JG. Molecular characterization of a novel mutation in the E1 flowering gene induced by gamma irradiation in soybean. Genome 2021; 64:915-925. [PMID: 33683922 DOI: 10.1139/gen-2020-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Soybean is a typical short-day (SD) plant. It undergoes reproductive growth only when the day length becomes shorter than a critical length. Fourteen major genes/loci affecting soybean flowering and maturity period have been mapped to date. These are E1 and E7 on chr6, E1La, E1Lb, E6, E8, and J on chr4, E2 on chr10, E3 on chr19, E4 on chr20, E9 on chr6, E10 on chr8, Dt1 on chr19, and GmAGL1 on chr14. The functional allele of all these genes, except E6, E9, J, and GmAGL1, delay flowering, while the non-functional counterpart accelerates flowering and maturity. The contribution of the E1 gene in delaying flowering is highest. Four non-functional/dysfunctional allelic variants of the E1 gene are already known, which accelerates the flowering by 20-25 days and are being used in development of early maturing soybean varieties in many parts of the world. In this study, seeds of the late maturing Indian variety NRC 37 were irradiated with gamma rays to develop an early maturing variety. One early maturing variant was obtained. Molecular characterization of the gene responsible for early flowering proved it to be a non-functional variant of the E1 gene with major deletion.
Collapse
Affiliation(s)
- Anita Rani
- ICAR-Indian Institute of Soybean Research, Indore, India
| | - Vineet Kumar
- ICAR-Indian Institute of Soybean Research, Indore, India
| | - Shruti Shukla
- ICAR-Indian Institute of Soybean Research, Indore, India
| | - J G Manjaya
- Bhabha Atomic Research Centre (BARC), Mumbai, India
| |
Collapse
|
42
|
Dietz N, Combs-Giroir R, Cooper G, Stacey M, Miranda C, Bilyeu K. Geographic distribution of the E1 family of genes and their effects on reproductive timing in soybean. BMC PLANT BIOLOGY 2021; 21:441. [PMID: 34587901 PMCID: PMC8480027 DOI: 10.1186/s12870-021-03197-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Soybean is an economically important crop which flowers predominantly in response to photoperiod. Several major loci controlling the quantitative trait for reproductive timing have been identified, of which allelic combinations at three of these loci, E1, E2, and E3, are the dominant factors driving time to flower and reproductive period. However, functional genomics studies have identified additional loci which affect reproductive timing, many of which are less understood. A better characterization of these genes will enable fine-tuning of adaptation to various production environments. Two such genes, E1La and E1Lb, have been implicated in flowering by previous studies, but their effects have yet to be assessed under natural photoperiod regimes. RESULTS Natural and induced variants of E1La and E1Lb were identified and introgressed into lines harboring either E1 or its early flowering variant, e1-as. Lines were evaluated for days to flower and maturity in a Maturity Group (MG) III production environment. These results revealed that variation in E1La and E1Lb promoted earlier flowering and maturity, with stronger effects in e1-as background than in an E1 background. The geographic distribution of E1La alleles among wild and cultivated soybean revealed that natural variation in E1La likely contributed to northern expansion of wild soybean, while breeding programs in North America exploited e1-as to develop cultivars adapted to northern latitudes. CONCLUSION This research identified novel alleles of the E1 paralogues, E1La and E1Lb, which promote flowering and maturity under natural photoperiods. These loci represent sources of genetic variation which have been under-utilized in North American breeding programs to control reproductive timing, and which can be valuable additions to a breeder's molecular toolbox.
Collapse
Affiliation(s)
- Nicholas Dietz
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Rachel Combs-Giroir
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Grace Cooper
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Minviluz Stacey
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Carrie Miranda
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Kristin Bilyeu
- USDA/ARS Plant Genetics Research Unit, Columbia, MO, 65211, USA.
| |
Collapse
|
43
|
Wang Y, Xu C, Sun J, Dong L, Li M, Liu Y, Wang J, Zhang X, Li D, Sun J, Zhang Y, Shan J, Li W, Zhao L. GmRAV confers ecological adaptation through photoperiod control of flowering time and maturity in soybean. PLANT PHYSIOLOGY 2021; 187:361-377. [PMID: 34618136 PMCID: PMC8418415 DOI: 10.1093/plphys/kiab255] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/12/2021] [Indexed: 05/31/2023]
Abstract
Photoperiod strictly controls vegetative and reproductive growth stages in soybean (Glycine max). A soybean GmRAV (Related to ABI3/VP1) transcription factor containing both AP2 and B3 domains was shown to be a key component of this process. We identified six polymorphisms in the GmRAV promoter that showed significant association with flowering time and maturity of soybean in one or multiple environments. Soybean varieties with minor polymorphism exhibited a longer growth period contributing to soybean adaptation to lower latitudes. The cis-acting element GT1CONSENSUS motif of the GmRAV promoter controlled the growth period, and the major allele in this motif shortened duration of late reproductive stages by reducing GmRAV expression levels. Three GmRAV-overexpressing (GmRAV-ox) transgenic lines displayed later flowering time and maturity, shorter height and fewer numbers of leaves compared with control plants, whereas transgenic inhibition of GmRAV expression resulted in earlier flowering time and maturity and increased plant height. Combining DNA affinity purification sequencing and RNA sequencing analyses revealed 154 putative target genes directly bound and transcriptionally regulated by GmRAV. Two GmRAV binding motifs [C(A/G)AACAA(G/T)A(C/T)A(G/T)] and [C(T/A)A(C)C(T/G)CTG] were identified, and acting downstream of E3E4, GmRAV repressed GmFT5a transcriptional activity through binding a CAACA motif, thereby delaying soybean growth and extending both vegetative and reproductive phases.
Collapse
Affiliation(s)
- Yuhe Wang
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Chongjing Xu
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Jiafan Sun
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Lidong Dong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Minmin Li
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Ying Liu
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Jianhui Wang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xiaoming Zhang
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Dongmei Li
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Jingzhe Sun
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Yuntong Zhang
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Jinming Shan
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Wenbin Li
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Lin Zhao
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
44
|
Lin X, Liu B, Weller JL, Abe J, Kong F. Molecular mechanisms for the photoperiodic regulation of flowering in soybean. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:981-994. [PMID: 33090664 DOI: 10.1111/jipb.13021] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Photoperiodic flowering is one of the most important factors affecting regional adaptation and yield in soybean (Glycine max). Plant adaptation to long-day conditions at higher latitudes requires early flowering and a reduction or loss of photoperiod sensitivity; adaptation to short-day conditions at lower latitudes involves delayed flowering, which prolongs vegetative growth for maximum yield potential. Due to the influence of numerous major loci and quantitative trait loci (QTLs), soybean has broad adaptability across latitudes. Forward genetic approaches have uncovered the molecular basis for several of these major maturity genes and QTLs. Moreover, the molecular characterization of orthologs of Arabidopsis thaliana flowering genes has enriched our understanding of the photoperiodic flowering pathway in soybean. Building on early insights into the importance of the photoreceptor phytochrome A, several circadian clock components have been integrated into the genetic network controlling flowering in soybean: E1, a repressor of FLOWERING LOCUS T orthologs, plays a central role in this network. Here, we provide an overview of recent progress in elucidating photoperiodic flowering in soybean, how it contributes to our fundamental understanding of flowering time control, and how this information could be used for molecular design and breeding of high-yielding soybean cultivars.
Collapse
Affiliation(s)
- Xiaoya Lin
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510642, China
| | - Baohui Liu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510642, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - James L Weller
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Jun Abe
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510642, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| |
Collapse
|
45
|
Natural variation and artificial selection of photoperiodic flowering genes and their applications in crop adaptation. ABIOTECH 2021; 2:156-169. [PMID: 36304754 PMCID: PMC9590489 DOI: 10.1007/s42994-021-00039-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Flowering links vegetative growth and reproductive growth and involves the coordination of local environmental cues and plant genetic information. Appropriate timing of floral initiation and maturation in both wild and cultivated plants is important to their fitness and productivity in a given growth environment. The domestication of plants into crops, and later crop expansion and improvement, has often involved selection for early flowering. In this review, we analyze the basic rules for photoperiodic adaptation in several economically important and/or well-researched crop species. The ancestors of rice (Oryza sativa), maize (Zea mays), soybean (Glycine max), and tomato (Solanum lycopersicum) are short-day plants whose photosensitivity was reduced or lost during domestication and expansion to high-latitude areas. Wheat (Triticum aestivum) and barley (Hordeum vulgare) are long-day crops whose photosensitivity is influenced by both latitude and vernalization type. Here, we summarize recent studies about where these crops were domesticated, how they adapted to photoperiodic conditions as their growing area expanded from domestication locations to modern cultivating regions, and how allelic variants of photoperiodic flowering genes were selected during this process. A deeper understanding of photoperiodic flowering in each crop will enable better molecular design and breeding of high-yielding cultivars suited to particular local environments. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-021-00039-0.
Collapse
|
46
|
Su T, Wang Y, Li S, Wang L, Kou K, Kong L, Cheng Q, Dong L, Liu B, Kong F, Lu S, Fang C. A flowering time locus dependent on E2 in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:35. [PMID: 37309325 PMCID: PMC10236059 DOI: 10.1007/s11032-021-01224-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/12/2021] [Indexed: 06/14/2023]
Abstract
Soybean [Glycine max (L.) Merrill] is very sensitive to changes in photoperiod as a typical short-day plant. Photoperiodic flowering influences soybean latitudinal adaptability and yield to a considerable degree. Identifying new quantitative trait loci (QTLs) controlling flowering time is a powerful initial approach for elucidating the mechanisms underlying flowering time and adaptation to different latitudes in soybean. In this study, we developed a Recombinant Inbred Lines (RILs) population and recorded flowering time under natural long-day conditions. We also constructed a high-density genetic map by genotyping-by-sequencing and used it for QTL mapping. In total, we detected twelve QTLs, four of which are stable and named by qR1-2, qR1-4, qR1-6.1, and qR1-10, respectively. Among these four QTLs, qR1-4 and qR1-6.1 are novel. QTL mapping in two sub-populations classified by the genotype of the maturity locus E2, genetic interaction evaluation between E2 and qR1-2, and qRT-PCR indicated that E2 has an epistatic effect on qR1-2, and that causal gene of qR1-2 acts upstream of E2. We presumed the most likely candidate genes according to the resequencing data and briefly analyzed the geographic distributions of these genes. These findings will be beneficial for our understanding of the mechanisms underlying photoperiodic flowering in soybean, contribute to further investigate of E2, and provide genetic resources for molecular breeding of soybean. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01224-1.
Collapse
Affiliation(s)
- Tong Su
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanping Wang
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang, China
| | - Shichen Li
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lingshuang Wang
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kun Kou
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lingping Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Qun Cheng
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Lidong Dong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Baohui Liu
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Fanjiang Kong
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Sijia Lu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Chao Fang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
47
|
Xia Z, Zhai H, Wu H, Xu K, Watanabe S, Harada K. The Synchronized Efforts to Decipher the Molecular Basis for Soybean Maturity Loci E1, E2, and E3 That Regulate Flowering and Maturity. FRONTIERS IN PLANT SCIENCE 2021; 12:632754. [PMID: 33995435 PMCID: PMC8113421 DOI: 10.3389/fpls.2021.632754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
The general concept of photoperiodism, i.e., the photoperiodic induction of flowering, was established by Garner and Allard (1920). The genetic factor controlling flowering time, maturity, or photoperiodic responses was observed in soybean soon after the discovery of the photoperiodism. E1, E2, and E3 were named in 1971 and, thereafter, genetically characterized. At the centennial celebration of the discovery of photoperiodism in soybean, we recount our endeavors to successfully decipher the molecular bases for the major maturity loci E1, E2, and E3 in soybean. Through systematic efforts, we successfully cloned the E3 gene in 2009, the E2 gene in 2011, and the E1 gene in 2012. Recently, successful identification of several circadian-related genes such as PRR3a, LUX, and J has enriched the known major E1-FTs pathway. Further research progresses on the identification of new flowering and maturity-related genes as well as coordinated regulation between flowering genes will enable us to understand profoundly flowering gene network and determinants of latitudinal adaptation in soybean.
Collapse
Affiliation(s)
- Zhengjun Xia
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China
| | - Hong Zhai
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China
| | - Hongyan Wu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China
| | - Kun Xu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China
| | | | - Kyuya Harada
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| |
Collapse
|
48
|
Wu Q, Luo Y, Wu X, Bai X, Ye X, Liu C, Wan Y, Xiang D, Li Q, Zou L, Zhao G. Identification of the specific long-noncoding RNAs involved in night-break mediated flowering retardation in Chenopodium quinoa. BMC Genomics 2021; 22:284. [PMID: 33874907 PMCID: PMC8056640 DOI: 10.1186/s12864-021-07605-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/08/2021] [Indexed: 11/10/2022] Open
Abstract
Background Night-break (NB) has been proven to repress flowering of short-day plants (SDPs). Long-noncoding RNAs (lncRNAs) play key roles in plant flowering. However, investigation of the relationship between lncRNAs and NB responses is still limited, especially in Chenopodium quinoa, an important short-day coarse cereal. Results In this study, we performed strand-specific RNA-seq of leaf samples collected from quinoa seedlings treated by SD and NB. A total of 4914 high-confidence lncRNAs were identified, out of which 91 lncRNAs showed specific responses to SD and NB. Based on the expression profiles, we identified 17 positive- and 7 negative-flowering lncRNAs. Co-expression network analysis indicated that 1653 mRNAs were the common targets of both types of flowering lncRNAs. By mapping these targets to the known flowering pathways in model plants, we found some pivotal flowering homologs, including 2 florigen encoding genes (FT (FLOWERING LOCUS T) and TSF (TWIN SISTER of FT) homologs), 3 circadian clock related genes (EARLY FLOWERING 3 (ELF3), LATE ELONGATED HYPOCOTYL (LHY) and ELONGATED HYPOCOTYL 5 (HY5) homologs), 2 photoreceptor genes (PHYTOCHROME A (PHYA) and CRYPTOCHROME1 (CRY1) homologs), 1 B-BOX type CONSTANS (CO) homolog and 1 RELATED TO ABI3/VP1 (RAV1) homolog, were specifically affected by NB and competed by the positive and negative-flowering lncRNAs. We speculated that these potential flowering lncRNAs may mediate quinoa NB responses by modifying the expression of the floral homologous genes. Conclusions Together, the findings in this study will deepen our understanding of the roles of lncRNAs in NB responses, and provide valuable information for functional characterization in future. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07605-2.
Collapse
Affiliation(s)
- Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China.
| | - Yiming Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Xiaoyong Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Xue Bai
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| |
Collapse
|
49
|
McClung CR. Circadian Clock Components Offer Targets for Crop Domestication and Improvement. Genes (Basel) 2021; 12:genes12030374. [PMID: 33800720 PMCID: PMC7999361 DOI: 10.3390/genes12030374] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 12/31/2022] Open
Abstract
During plant domestication and improvement, farmers select for alleles present in wild species that improve performance in new selective environments associated with cultivation and use. The selected alleles become enriched and other alleles depleted in elite cultivars. One important aspect of crop improvement is expansion of the geographic area suitable for cultivation; this frequently includes growth at higher or lower latitudes, requiring the plant to adapt to novel photoperiodic environments. Many crops exhibit photoperiodic control of flowering and altered photoperiodic sensitivity is commonly required for optimal performance at novel latitudes. Alleles of a number of circadian clock genes have been selected for their effects on photoperiodic flowering in multiple crops. The circadian clock coordinates many additional aspects of plant growth, metabolism and physiology, including responses to abiotic and biotic stresses. Many of these clock-regulated processes contribute to plant performance. Examples of selection for altered clock function in tomato demonstrate that with domestication, the phasing of the clock is delayed with respect to the light–dark cycle and the period is lengthened; this modified clock is associated with increased chlorophyll content in long days. These and other data suggest the circadian clock is an attractive target during breeding for crop improvement.
Collapse
Affiliation(s)
- C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
50
|
Bu T, Lu S, Wang K, Dong L, Li S, Xie Q, Xu X, Cheng Q, Chen L, Fang C, Li H, Liu B, Weller JL, Kong F. A critical role of the soybean evening complex in the control of photoperiod sensitivity and adaptation. Proc Natl Acad Sci U S A 2021; 118:e2010241118. [PMID: 33558416 PMCID: PMC7923351 DOI: 10.1073/pnas.2010241118] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Photoperiod sensitivity is a key factor in plant adaptation and crop production. In the short-day plant soybean, adaptation to low latitude environments is provided by mutations at the J locus, which confer extended flowering phase and thereby improve yield. The identity of J as an ortholog of Arabidopsis ELF3, a component of the circadian evening complex (EC), implies that orthologs of other EC components may have similar roles. Here we show that the two soybean homeologs of LUX ARRYTHMO interact with J to form a soybean EC. Characterization of mutants reveals that these genes are highly redundant in function but together are critical for flowering under short day, where the lux1 lux2 double mutant shows extremely late flowering and a massively extended flowering phase. This phenotype exceeds that of any soybean flowering mutant reported to date, and is strongly reminiscent of the "Maryland Mammoth" tobacco mutant that featured in the seminal 1920 study of plant photoperiodism by Garner and Allard [W. W. Garner, H. A. Allard, J. Agric. Res. 18, 553-606 (1920)]. We further demonstrate that the J-LUX complex suppresses transcription of the key flowering repressor E1 and its two homologs via LUX binding sites in their promoters. These results indicate that the EC-E1 interaction has a central role in soybean photoperiod sensitivity, a phenomenon also first described by Garner and Allard. EC and E1 family genes may therefore constitute key targets for customized breeding of soybean varieties with precise flowering time adaptation, either by introgression of natural variation or generation of new mutants by gene editing.
Collapse
Affiliation(s)
- Tiantian Bu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, 510006 Guangzhou, China
| | - Sijia Lu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, 510006 Guangzhou, China
| | - Kai Wang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, 510006 Guangzhou, China
| | - Lidong Dong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, 510006 Guangzhou, China
| | - Shilin Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 475004 Kaifeng, China
| | - Qiguang Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 475004 Kaifeng, China
| | - Xiaodong Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 475004 Kaifeng, China
| | - Qun Cheng
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, 510006 Guangzhou, China
| | - Liyu Chen
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, 510006 Guangzhou, China
| | - Chao Fang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, 510006 Guangzhou, China
| | - Haiyang Li
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, 510006 Guangzhou, China
| | - Baohui Liu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, 510006 Guangzhou, China
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081 Harbin, China
| | - James L Weller
- School of Natural Sciences, University of Tasmania, Hobart, 7001 TAS, Australia
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, 510006 Guangzhou, China;
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081 Harbin, China
| |
Collapse
|