1
|
Cui Y, Song J, Tang L, Xu X, Peng X, Fan H, Wang J. Genetic Analysis and Fine Mapping of a New Rice Mutant, Leaf Tip Senescence 2. Int J Mol Sci 2024; 25:7082. [PMID: 39000188 PMCID: PMC11241029 DOI: 10.3390/ijms25137082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Premature leaf senescence significantly reduces rice yields. Despite identifying numerous factors influencing these processes, the intricate genetic regulatory networks governing leaf senescence demand further exploration. We report the characterization of a stably inherited, ethyl methanesulfonate(EMS)-induced rice mutant with wilted leaf tips from seedling till harvesting, designated lts2. This mutant exhibits dwarfism and early senescence at the leaf tips and margins from the seedling stage when compared to the wild type. Furthermore, lts2 displays a substantial decline in both photosynthetic activity and chlorophyll content. Transmission electron microscopy revealed the presence of numerous osmiophilic granules in chloroplast cells near the senescent leaf tips, indicative of advanced cellular senescence. There was also a significant accumulation of H2O2, alongside the up-regulation of senescence-associated genes within the leaf tissues. Genetic mapping situated lts2 between SSR markers Q1 and L12, covering a physical distance of approximately 212 kb in chr.1. No similar genes controlling a premature senescence leaf phenotype have been identified in the region, and subsequent DNA and bulk segregant analysis (BSA) sequencing analyses only identified a single nucleotide substitution (C-T) in the exon of LOC_Os01g35860. These findings position the lts2 mutant as a valuable genetic model for elucidating chlorophyll metabolism and for further functional analysis of the gene in rice.
Collapse
Affiliation(s)
- Yongtao Cui
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jian Song
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liqun Tang
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaozheng Xu
- College of Landscape and Architecture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xinlu Peng
- College of Landscape and Architecture, Zhejiang A&F University, Hangzhou 311300, China
| | - Honghuan Fan
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianjun Wang
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
2
|
Xu J, Wang C, Wang F, Liu Y, Li M, Wang H, Zheng Y, Zhao K, Ji Z. PWL1, a G-type lectin receptor-like kinase, positively regulates leaf senescence and heat tolerance but negatively regulates resistance to Xanthomonas oryzae in rice. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2525-2545. [PMID: 37578160 PMCID: PMC10651159 DOI: 10.1111/pbi.14150] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 08/15/2023]
Abstract
Plant leaf senescence, caused by multiple internal and environmental factors, has an important impact on agricultural production. The lectin receptor-like kinase (LecRLK) family members participate in plant development and responses to biotic and abiotic stresses, but their roles in regulating leaf senescence remain elusive. Here, we identify and characterize a rice premature withered leaf 1 (pwl1) mutant, which exhibits premature leaf senescence throughout the plant life cycle. The pwl1 mutant displayed withered and whitish leaf tips, decreased chlorophyll content, and accelerated chloroplast degradation. Map-based cloning revealed an amino acid substitution (Gly412Arg) in LOC_Os03g62180 (PWL1) was responsible for the phenotypes of pwl1. The expression of PWL1 was detected in all tissues, but predominantly in tillering and mature leaves. PWL1 encodes a G-type LecRLK with active kinase and autophosphorylation activities. PWL1 is localized to the plasma membrane and can self-associate, mainly mediated by the plasminogen-apple-nematode (PAN) domain. Substitution of the PAN domain significantly diminished the self-interaction of PWL1. Moreover, the pwl1 mutant showed enhanced reactive oxygen species (ROS) accumulation, cell death, and severe DNA fragmentation. RNA sequencing analysis revealed that PWL1 was involved in the regulation of multiple biological processes, like carbon metabolism, ribosome, and peroxisome pathways. Meanwhile, interfering of biological processes induced by the PWL1 mutation also enhanced heat sensitivity and resistance to bacterial blight and bacterial leaf streak with excessive accumulation of ROS and impaired chloroplast development in rice. Natural variation analysis indicated more variations in indica varieties, and the vast majority of japonica varieties harbour the PWL1Hap1 allele. Together, our results suggest that PWL1, a member of LecRLKs, exerts multiple roles in regulating plant growth and development, heat-tolerance, and resistance to bacterial pathogens.
Collapse
Affiliation(s)
- Jiangmin Xu
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Chunlian Wang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Fujun Wang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
- Institute of Rice Research, Guangdong Academy of Agricultural SciencesGuangzhouChina
| | - Yapei Liu
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Man Li
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Hongjie Wang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Yuhan Zheng
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Kaijun Zhao
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Zhiyuan Ji
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
3
|
Yang X, Wang J, Mao X, Li C, Li L, Xue Y, He L, Jing R. A Locus Controlling Leaf Rolling Degree in Wheat under Drought Stress Identified by Bulked Segregant Analysis. PLANTS 2022; 11:plants11162076. [PMID: 36015380 PMCID: PMC9414355 DOI: 10.3390/plants11162076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022]
Abstract
Drought stress frequently occurs, which seriously restricts the production of wheat (Triticum aestivum L.). Leaf rolling is a typical physiological phenomenon of plants during drought stress. To understand the genetic mechanism of wheat leaf rolling, we constructed an F2 segregating population by crossing the slight-rolling wheat cultivar “Aikang 58” (AK58) with the serious-rolling wheat cultivar ″Zhongmai 36″ (ZM36). A combination of bulked segregant analysis (BSA) with Wheat 660K SNP Array was used to identify molecular markers linked to leaf rolling degree. A major locus for leaf rolling degree under drought stress was detected on chromosome 7A. We named this locus LEAF ROLLING DEGREE 1 (LERD1), which was ultimately mapped to a region between 717.82 and 720.18 Mb. Twenty-one genes were predicted in this region, among which the basic helix-loop-helix (bHLH) transcription factor TraesCS7A01G543300 was considered to be the most likely candidate gene for LERD1. The TraesCS7A01G543300 is highly homologous to the Arabidopsis ICE1 family proteins ICE/SCREAM, SCREAM2 and bHLH093, which control stomatal initiation and development. Two nucleotide variation sites were detected in the promoter region of TraesCS7A01G543300 between the two wheat cultivars. Gene expression assays indicated that TraesCS7A01G543300 was higher expressed in AK58 seedlings than that of ZM36. This research discovered a candidate gene related to wheat leaf rolling under drought stress, which may be helpful for understanding the leaf rolling mechanism and molecular breeding in wheat.
Collapse
Affiliation(s)
- Xi Yang
- College of Agronomy, Shanxi Agricultural University, Jinzhong 030801, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingyi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yinghong Xue
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liheng He
- College of Agronomy, Shanxi Agricultural University, Jinzhong 030801, China
- Correspondence: (L.H.); (R.J.)
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (L.H.); (R.J.)
| |
Collapse
|
4
|
Xu J, Ji Z, Wang C, Xu F, Wang F, Zheng Y, Tang Y, Wei Z, Zhao T, Zhao K. WATER-SOAKED SPOT1 Controls Chloroplast Development and Leaf Senescence via Regulating Reactive Oxygen Species Homeostasis in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:918673. [PMID: 35693165 PMCID: PMC9178249 DOI: 10.3389/fpls.2022.918673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Transmembrane kinases (TMKs) play important roles in plant growth and signaling cascades of phytohormones. However, its function in the regulation of early leaf senescence (ELS) of plants remains unknown. Here, we report the molecular cloning and functional characterization of the WATER-SOAKED SPOT1 gene which encodes a protein belongs to the TMK family and controls chloroplast development and leaf senescence in rice (Oryza sativa L.). The water-soaked spot1 (oswss1) mutant displays water-soaked spots which subsequently developed into necrotic symptoms at the tillering stage. Moreover, oswss1 exhibits slightly rolled leaves with irregular epidermal cells, decreased chlorophyll contents, and defective stomata and chloroplasts as compared with the wild type. Map-based cloning revealed that OsWSS1 encodes transmembrane kinase TMK1. Genetic complementary experiments verified that a Leu396Pro amino acid substitution, residing in the highly conserved region of leucine-rich repeat (LRR) domain, was responsible for the phenotypes of oswss1. OsWSS1 was constitutively expressed in all tissues and its encoded protein is localized to the plasma membrane. Mutation of OsWSS1 led to hyper-accumulation of reactive oxygen species (ROS), more severe DNA fragmentation, and cell death than that of the wild-type control. In addition, we found that the expression of senescence-associated genes (SAGs) was significantly higher, while the expression of genes associated with chloroplast development and photosynthesis was significantly downregulated in oswss1 as compared with the wild type. Taken together, our results demonstrated that OsWSS1, a member of TMKs, plays a vital role in the regulation of ROS homeostasis, chloroplast development, and leaf senescence in rice.
Collapse
Affiliation(s)
- Jiangmin Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Zhiyuan Ji
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunlian Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Feifei Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fujun Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yuhan Zheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongchao Tang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zheng Wei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianyong Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Kaijun Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Hu P, Tan Y, Wen Y, Fang Y, Wang Y, Wu H, Wang J, Wu K, Chai B, Zhu L, Zhang G, Gao Z, Ren D, Zeng D, Shen L, Xue D, Qian Q, Hu J. LMPA Regulates Lesion Mimic Leaf and Panicle Development Through ROS-Induced PCD in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:875038. [PMID: 35586211 PMCID: PMC9108926 DOI: 10.3389/fpls.2022.875038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Leaf and panicle are important nutrient and yield organs in rice, respectively. Although several genes controlling lesion mimic leaf and panicle abortion have been identified, a few studies have reported the involvement of a single gene in the production of both the traits. In this study, we characterized a panicle abortion mutant, lesion mimic leaf and panicle apical abortion (lmpa), which exhibits lesions on the leaf and causes degeneration of apical spikelets. Molecular cloning revealed that LMPA encodes a proton pump ATPase protein that is localized in the plasma membrane and is highly expressed in leaves and panicles. The analysis of promoter activity showed that the insertion of a fragment in the promoter of lmpa caused a decrease in the transcription level. Cellular and histochemistry analysis indicated that the ROS accumulated and cell death occurred in lmpa. Moreover, physiological experiments revealed that lmpa was more sensitive to high temperatures and salt stress conditions. These results provide a better understanding of the role of LMPA in panicle development and lesion mimic formation by regulating ROS homeostasis.
Collapse
Affiliation(s)
- Peng Hu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yiqing Tan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yi Wen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Rice Research Institute of Shenyang Agricultural University/Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Shenyang, China
| | - Yunxia Fang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yueying Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Hao Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Junge Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Kaixiong Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Bingze Chai
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Li Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Deyong Ren
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Lan Shen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qian Qian
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
6
|
Han G, Li Y, Qiao Z, Wang C, Zhao Y, Guo J, Chen M, Wang B. Advances in the Regulation of Epidermal Cell Development by C2H2 Zinc Finger Proteins in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:754512. [PMID: 34630497 PMCID: PMC8497795 DOI: 10.3389/fpls.2021.754512] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/31/2021] [Indexed: 05/31/2023]
Abstract
Plant epidermal cells, such as trichomes, root hairs, salt glands, and stomata, play pivotal roles in the growth, development, and environmental adaptation of terrestrial plants. Cell fate determination, differentiation, and the formation of epidermal structures represent basic developmental processes in multicellular organisms. Increasing evidence indicates that C2H2 zinc finger proteins play important roles in regulating the development of epidermal structures in plants and plant adaptation to unfavorable environments. Here, we systematically summarize the molecular mechanism underlying the roles of C2H2 zinc finger proteins in controlling epidermal cell formation in plants, with an emphasis on trichomes, root hairs, and salt glands and their roles in plant adaptation to environmental stress. In addition, we discuss the possible roles of homologous C2H2 zinc finger proteins in trichome development in non-halophytes and salt gland development in halophytes based on bioinformatic analysis. This review provides a foundation for further study of epidermal cell development and abiotic stress responses in plants.
Collapse
|
7
|
Meng B, Wang T, Luo Y, Xu D, Li L, Diao Y, Gao Z, Hu Z, Zheng X. Genome-Wide Association Study Identified Novel Candidate Loci/Genes Affecting Lodging Resistance in Rice. Genes (Basel) 2021; 12:718. [PMID: 34064770 PMCID: PMC8151605 DOI: 10.3390/genes12050718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/30/2021] [Accepted: 05/09/2021] [Indexed: 12/30/2022] Open
Abstract
Lodging reduces rice yield, but increasing lodging resistance (LR) usually limits yield potential. Stem strength and leaf type are major traits related to LR and yield, respectively. Hence, understanding the genetic basis of stem strength and leaf type is of help to reduce lodging and increase yield in LR breeding. Here, we carried out an association analysis to identify quantitative trait locus (QTLs) affecting stem strength-related traits (internode length/IL, stem wall thickness/SWT, stem outer diameter/SOD, and stem inner diameter/SID) and leaf type-associated traits (Flag leaf length/FLL, Flag leaf angle/FLA, Flag leaf width/FLW, leaf-rolling/LFR and SPAD/Soil, and plant analyzer development) using a diverse panel of 550 accessions and evaluated over two years. Genome-wide association study (GWAS) using 4,076,837 high-quality single-nucleotide polymorphisms (SNPs) identified 89 QTLs for the nine traits. Next, through "gene-based association analysis, haplotype analysis, and functional annotation", the scope was narrowed down step by step. Finally, we identified 21 candidate genes in 9 important QTLs that included four reported genes (TUT1, OsCCC1, CFL1, and ACL-D), and seventeen novel candidate genes. Introgression of alleles, which are beneficial for both stem strength and leaf type, or pyramiding stem strength alleles and leaf type alleles, can be employed for LR breeding. All in all, the experimental data and the identified candidate genes in this study provide a useful reference for the genetic improvement of rice LR.
Collapse
Affiliation(s)
- Bingxin Meng
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of life sciences, Wuhan University, Wuhan 430072, China; (B.M.); (T.W.); (Y.L.); (Y.D.); (Z.G.)
| | - Tao Wang
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of life sciences, Wuhan University, Wuhan 430072, China; (B.M.); (T.W.); (Y.L.); (Y.D.); (Z.G.)
| | - Yi Luo
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of life sciences, Wuhan University, Wuhan 430072, China; (B.M.); (T.W.); (Y.L.); (Y.D.); (Z.G.)
| | - Deze Xu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
| | - Lanzhi Li
- Hunan Engineering Technology Research Center, Hunan Agricultural University, Changsha 410128, China;
| | - Ying Diao
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of life sciences, Wuhan University, Wuhan 430072, China; (B.M.); (T.W.); (Y.L.); (Y.D.); (Z.G.)
| | - Zhiyong Gao
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of life sciences, Wuhan University, Wuhan 430072, China; (B.M.); (T.W.); (Y.L.); (Y.D.); (Z.G.)
| | - Zhongli Hu
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of life sciences, Wuhan University, Wuhan 430072, China; (B.M.); (T.W.); (Y.L.); (Y.D.); (Z.G.)
| | - Xingfei Zheng
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
| |
Collapse
|
8
|
Xiong E, Li Z, Zhang C, Zhang J, Liu Y, Peng T, Chen Z, Zhao Q. A study of leaf-senescence genes in rice based on a combination of genomics, proteomics and bioinformatics. Brief Bioinform 2020; 22:5998850. [PMID: 33257942 DOI: 10.1093/bib/bbaa305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/15/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022] Open
Abstract
Leaf senescence is a highly complex, genetically regulated and well-ordered process with multiple layers and pathways. Delaying leaf senescence would help increase grain yields in rice. Over the past 15 years, more than 100 rice leaf-senescence genes have been cloned, greatly improving the understanding of leaf senescence in rice. Systematically elucidating the molecular mechanisms underlying leaf senescence will provide breeders with new tools/options for improving many important agronomic traits. In this study, we summarized recent reports on 125 rice leaf-senescence genes, providing an overview of the research progress in this field by analyzing the subcellular localizations, molecular functions and the relationship of them. These data showed that chlorophyll synthesis and degradation, chloroplast development, abscisic acid pathway, jasmonic acid pathway, nitrogen assimilation and ROS play an important role in regulating the leaf senescence in rice. Furthermore, we predicted and analyzed the proteins that interact with leaf-senescence proteins and achieved a more profound understanding of the molecular principles underlying the regulatory mechanisms by which leaf senescence occurs, thus providing new insights for future investigations of leaf senescence in rice.
Collapse
Affiliation(s)
- Erhui Xiong
- College of Agriculture, Henan Agricultural University (HAU), China
| | - Zhiyong Li
- Academy for Advanced Interdisciplinary Studies, South University of Science and Technology, Shenzhen, China
| | - Chen Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | | | - Ye Liu
- College of Agriculture, HAU
| | | | | | | |
Collapse
|
9
|
Formyl tetrahydrofolate deformylase affects hydrogen peroxide accumulation and leaf senescence by regulating the folate status and redox homeostasis in rice. SCIENCE CHINA-LIFE SCIENCES 2020; 64:720-738. [DOI: 10.1007/s11427-020-1773-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
|
10
|
Gavrin A, Rey T, Torode TA, Toulotte J, Chatterjee A, Kaplan JL, Evangelisti E, Takagi H, Charoensawan V, Rengel D, Journet EP, Debellé F, de Carvalho-Niebel F, Terauchi R, Braybrook S, Schornack S. Developmental Modulation of Root Cell Wall Architecture Confers Resistance to an Oomycete Pathogen. Curr Biol 2020; 30:4165-4176.e5. [PMID: 32888486 PMCID: PMC7658807 DOI: 10.1016/j.cub.2020.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 08/04/2020] [Indexed: 11/26/2022]
Abstract
The cell wall is the primary interface between plant cells and their immediate environment and must balance multiple functionalities, including the regulation of growth, the entry of beneficial microbes, and protection against pathogens. Here, we demonstrate how API, a SCAR2 protein component of the SCAR/WAVE complex, controls the root cell wall architecture important for pathogenic oomycete and symbiotic bacterial interactions in legumes. A mutation in API results in root resistance to the pathogen Phytophthora palmivora and colonization defects by symbiotic rhizobia. Although api mutant plants do not exhibit significant overall growth and development defects, their root cells display delayed actin and endomembrane trafficking dynamics and selectively secrete less of the cell wall polysaccharide xyloglucan. Changes associated with a loss of API establish a cell wall architecture with altered biochemical properties that hinder P. palmivora infection progress. Thus, developmental stage-dependent modifications of the cell wall, driven by SCAR/WAVE, are important in balancing cell wall developmental functions and microbial invasion. The SCAR protein API controls actin and endomembrane trafficking dynamics SCAR proteins of several plant species can support symbiosis and pathogen infection A mutation in API affects specific biochemical properties of plant cell walls An altered wall architecture results in root resistance to Phytophthora palmivora
Collapse
Affiliation(s)
- Aleksandr Gavrin
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Thomas Rey
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Thomas A Torode
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Justine Toulotte
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Abhishek Chatterjee
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Jonathan Louis Kaplan
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Edouard Evangelisti
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Hiroki Takagi
- Iwate Biotechnology Institute, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Varodom Charoensawan
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK; Department of Biochemistry, Faculty of Science, and Integrative Computational BioScience (ICBS) Center, Mahidol University, Bangkok 10400, Thailand
| | - David Rengel
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan 31326, France; GeT-PlaGe, Genotoul, INRA US1426, Castanet-Tolosan Cedex, France
| | - Etienne-Pascal Journet
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan 31326, France; AGIR, Université de Toulouse, INRA, ENSFEA, Castanet-Tolosan 31326, France
| | - Frédéric Debellé
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan 31326, France
| | | | - Ryohei Terauchi
- Iwate Biotechnology Institute, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Siobhan Braybrook
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK; Department of Molecular, Cell, and Developmental Biology, 610 Charles E Young Drive South, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sebastian Schornack
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK.
| |
Collapse
|
11
|
Yang S, Fang G, Zhang A, Ruan B, Jiang H, Ding S, Liu C, Zhang Y, Jaha N, Hu P, Xu Z, Gao Z, Wang J, Qian Q. Rice EARLY SENESCENCE 2, encoding an inositol polyphosphate kinase, is involved in leaf senescence. BMC PLANT BIOLOGY 2020; 20:393. [PMID: 32847519 PMCID: PMC7449006 DOI: 10.1186/s12870-020-02610-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 08/17/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Early leaf senescence influences yield and yield quality by affecting plant growth and development. A series of leaf senescence-associated molecular mechanisms have been reported in rice. However, the complex genetic regulatory networks that control leaf senescence need to be elucidated. RESULTS In this study, an early senescence 2 (es2) mutant was obtained from ethyl methanesulfonate mutagenesis (EMS)-induced mutational library for the Japonica rice cultivar Wuyugeng 7 (WYG7). Leaves of es2 showed early senescence at the seedling stage and became severe at the tillering stage. The contents of reactive oxygen species (ROS) significantly increased, while chlorophyll content, photosynthetic rate, catalase (CAT) activity significantly decreased in the es2 mutant. Moreover, genes which related to senescence, ROS and chlorophyll degradation were up-regulated, while those associated with photosynthesis and chlorophyll synthesis were down-regulated in es2 mutant compared to WYG7. The ES2 gene, which encodes an inositol polyphosphate kinase (OsIPK2), was fine mapped to a 116.73-kb region on chromosome 2. DNA sequencing of ES2 in the mutant revealed a missense mutation, ES2 was localized to nucleus and plasma membrane of cells, and expressed in various tissues of rice. Complementation test and overexpression experiment confirmed that ES2 completely restored the normal phenotype, with chlorophyll contents and photosynthetic rate increased comparable with the wild type. These results reveal the new role of OsIPK2 in regulating leaf senescence in rice and therefore will provide additional genetic evidence on the molecular mechanisms controlling early leaf senescence. CONCLUSIONS The ES2 gene, encoding an inositol polyphosphate kinase localized in the nucleus and plasma membrane of cells, is essential for leaf senescence in rice. Further study of ES2 will facilitate the dissection of the genetic mechanisms underlying early leaf senescence and plant growth.
Collapse
Affiliation(s)
- Shenglong Yang
- Key Laboratory of Northeast Rice Biology and Breeding, Ministry of Agriculture/Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Guonan Fang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Anpeng Zhang
- Key Laboratory of Northeast Rice Biology and Breeding, Ministry of Agriculture/Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Banpu Ruan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Hongzhen Jiang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Shilin Ding
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Chaolei Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Yu Zhang
- Key Laboratory of Northeast Rice Biology and Breeding, Ministry of Agriculture/Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Noushin Jaha
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Peng Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Zhengjin Xu
- Key Laboratory of Northeast Rice Biology and Breeding, Ministry of Agriculture/Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China.
| | - Jiayu Wang
- Key Laboratory of Northeast Rice Biology and Breeding, Ministry of Agriculture/Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China.
| |
Collapse
|
12
|
Xu Q, Yu H, Xia S, Cui Y, Yu X, Liu H, Zeng D, Hu J, Zhang Q, Gao Z, Zhang G, Zhu L, Shen L, Guo L, Rao Y, Qian Q, Ren D. The C2H2 zinc-finger protein LACKING RUDIMENTARY GLUME 1 regulates spikelet development in rice. Sci Bull (Beijing) 2020; 65:753-764. [PMID: 36659109 DOI: 10.1016/j.scib.2020.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 01/21/2023]
Abstract
Rice (Oryza sativa) spikelets are a unique inflorescence structure and their development directly determines grain size and yield. Although many genes related to spikelet development have been reported, the molecular mechanisms underlying this process have not been fully elucidated. In this study, we identified a new recessive rice mutant, lacking rudimentary glume 1 (lrg1). The lrg1 spikelets only formed one rudimentary glume, which, along with the sterile lemmas, was homeotically transformed into lemma-like organs and acquired lemma identity. The transition from the spikelet to the floral meristem was delayed in the lrg1 mutant, resulting in the formation of an ectopic lemma-like organ between the sterile lemma and the terminal floret. In addition, we found that the abnormal lrg1 grain phenotype resulted from the alteration of cell numbers and the hull size. LRG1 encodes a ZOS4-06-C2H2 zinc-finger protein with the typical EAR motifs, and is expressed in all organs and tissues. LRG1 localizes to the nucleus and can interact with the TOPLESS-RELATED PROTEINs (TPRs) to repress the expressions of their downstream target genes. Taken together, our results reveal that LRG1 plays an important role in the regulation of spikelet organ identity and grain size.
Collapse
Affiliation(s)
- Qiankun Xu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Haiping Yu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Saisai Xia
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Yuanjiang Cui
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Xiaoqi Yu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - He Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Dali Zeng
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Jiang Hu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Qiang Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhenyu Gao
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Guangheng Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Li Zhu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Lan Shen
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Longbiao Guo
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Yuchun Rao
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Qian Qian
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Deyong Ren
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
13
|
Zheng C, Zhou J, Zhang F, Yin J, Zhou G, Li Y, Chen F, Xie X. OsABAR1, a novel GRAM domain-containing protein, confers drought and salt tolerance via an ABA-dependent pathway in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 152:138-146. [PMID: 32416343 DOI: 10.1016/j.plaphy.2020.04.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/12/2020] [Accepted: 04/22/2020] [Indexed: 05/05/2023]
Abstract
Glucosyltransferases-like GTPase activators and Myotubularin (GRAM) domain-containing proteins are important for plant development and responses to biotic stresses. However, the effects of GRAM proteins on abiotic stress responses remain unclear. In this study, we identified a novel GRAM protein-encoding gene, OsABAR1, and characterized its regulatory functions related to rice drought and salt tolerance. The OsABAR1 protein was localized in the cytoplasm and nucleus. Among all examined organs, the OsABAR1 transcript level was highest in the roots. Moreover, OsABAR1 expression was up-regulated by drought and salinity stresses. The OsABAR1-overexpressing (OsABAR1-OX) lines exhibited enhanced tolerance to drought and salinity, whereas the knock-out lines (Osabar1) had the opposite phenotypes. We further analyzed the involvement of OsABAR1 in the abscisic acid (ABA) signaling pathway. The OsABAR1 expression level was up-regulated by ABA. In turn, OsABAR1 regulated the expression of ABA metabolic genes and responsive genes. Furthermore, OsABAR1-OX seedlings were hypersensitive to exogenous ABA, whereas Osabar1 seedlings were hyposensitive. These results imply that OsABAR1 is a positive regulator of the ABA pathway and confirm that OsABAR1 improves rice drought and salt tolerance via an ABA-dependent pathway. This study is the first to clarify the regulatory roles of GRAM proteins in rice responses to abiotic stresses.
Collapse
Affiliation(s)
- Chongke Zheng
- Shandong Rice Engineering Technology Research Center, Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China.
| | - Jinjun Zhou
- Shandong Rice Engineering Technology Research Center, Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China.
| | - Fang Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Jingjing Yin
- Shandong Rice Engineering Technology Research Center, Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China.
| | - Guanhua Zhou
- Shandong Rice Engineering Technology Research Center, Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China.
| | - Yaping Li
- Shandong Rice Engineering Technology Research Center, Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China; College of Life Science, Shandong Normal University, Jinan 250014, PR China.
| | - Fan Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Xianzhi Xie
- Shandong Rice Engineering Technology Research Center, Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China.
| |
Collapse
|
14
|
Sun H, Zhao W, Liu H, Su C, Qian Y, Jiao F. MaCDSP32 From Mulberry Enhances Resilience Post-drought by Regulating Antioxidant Activity and the Osmotic Content in Transgenic Tobacco. FRONTIERS IN PLANT SCIENCE 2020; 11:419. [PMID: 32373141 PMCID: PMC7177052 DOI: 10.3389/fpls.2020.00419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Desiccation tolerance is a complex phenomenon that depends on the regulated expression of numerous genes during dehydration and subsequent rehydration. Our previous study identified a chloroplast drought-induced stress protein (MaCDSP32) in mulberry, a thioredoxin (Trx) that is upregulated under drought conditions and is likely to confer drought tolerance to transgenic plants. Mulberry (Morus spp.) is an ecologically and economically important perennial woody plant that is widely used in forest management to combat desertification. However, its stress tolerance physiology is not well understood. In this study, the functions of MaCDSP32 gene were investigated. The expression of MaCDSP32 exhibited a circadian rhythm and was induced by mild and severe water deficits. Under abiotic stress, MaCDSP32-overexpressing plants exhibited increased stress sensitivity with lower water retention capacity and more severe lipid peroxidation than the wild-type (WT) plants. Furthermore, the activity of superoxide dismutase (SOD), the contents of proline and soluble sugars and the expression of stress-related transcription factors were lower in the MaCDSP32-overexpressing plants than in the WT plants. However, the MaCDSP32-overexpressing lines exhibited stronger recovery capability after rewatering post-drought. Moreover, the SOD enzyme activity, proline content, and soluble sugar content were higher in the transgenic plants after rewatering than in the WT plants. The production of the reactive oxygen species (ROS) H2O2 and O2 - was significantly lower in the transgenic plants than in the WT plants. In addition, under abiotic stress, the MaCDSP32-overexpressing lines exhibited improved seed germination and seedling growth, these effects were regulated by a positive redox reaction involving MaCDSP32 and one of its targets. In summary, this study indicated that MaCDSP32 from mulberry regulates plant drought tolerance and ROS homeostasis mainly by controlling SOD enzyme activity and proline and soluble sugar concentrations and that this control might trigger the stress response during seed germination and plant growth. Overall, MaCDSP32 exerts pleiotropic effects on the stress response and stress recovery in plants.
Collapse
|
15
|
Li X, Sha J, Xia Y, Sheng K, Liu Y, He Y. Quantitative visualization of subcellular lignocellulose revealing the mechanism of alkali pretreatment to promote methane production of rice straw. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:8. [PMID: 31988660 PMCID: PMC6966900 DOI: 10.1186/s13068-020-1648-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/02/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND As a renewable carbon source, biomass energy not only helps in resolving the management problems of lignocellulosic wastes, but also helps to alleviate the global climate change by controlling environmental pollution raised by their generation on a large scale. However, the bottleneck problem of extensive production of biofuels lies in the filamentous crystal structure of cellulose and the embedded connection with lignin in biomass that leads to poor accessibility, weak degradation and digestion by microorganisms. Some pretreatment methods have shown significant improvement of methane yield and production rate, but the promotion mechanism has not been thoroughly studied. Revealing the temporal and spatial effects of pretreatment on lignocellulose will greatly help deepen our understanding of the optimization mechanism of pretreatment, and promote efficient utilization of lignocellulosic biomass. Here, we propose an approach for qualitative, quantitative, and location analysis of subcellular lignocellulosic changes induced by alkali treatment based on label-free Raman microspectroscopy combined with chemometrics. RESULTS Firstly, the variations of rice straw induced by alkali treatment were characterized by the Raman spectra, and the Raman fingerprint characteristics for classification of rice straw were captured. Then, a label-free Raman chemical imaging strategy was executed to obtain subcellular distribution of the lignocellulose, in the strategy a serious interference of plant tissues' fluorescence background was effectively removed. Finally, the effects of alkali pretreatment on the subcellular spatial distribution of lignocellulose in different types of cells were discovered. CONCLUSIONS The results demonstrated the mechanism of alkali treatment that promotes methane production in rice straw through anaerobic digestion by means of a systemic study of the evidence from the macroscopic measurement and Raman microscopic quantitative and localization two-angle views. Raman chemical imaging combined with chemometrics could nondestructively realize qualitative, quantitative, and location analysis of the lignocellulose of rice straw at a subcellular level in a label-free way, which was beneficial to optimize pretreatment for the improvement of biomass conversion efficiency and promote extensive utilization of biofuel.
Collapse
Affiliation(s)
- Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Areas, 866 Yuhangtang Road, Hangzhou, 310058 China
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Junjing Sha
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Areas, 866 Yuhangtang Road, Hangzhou, 310058 China
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Yihua Xia
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Areas, 866 Yuhangtang Road, Hangzhou, 310058 China
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Kuichuan Sheng
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Areas, 866 Yuhangtang Road, Hangzhou, 310058 China
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Yufei Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Areas, 866 Yuhangtang Road, Hangzhou, 310058 China
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Areas, 866 Yuhangtang Road, Hangzhou, 310058 China
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| |
Collapse
|
16
|
Zhang Z, Wang B, Wang S, Lin T, Yang L, Zhao Z, Zhang Z, Huang S, Yang X. Genome-wide Target Mapping Shows Histone Deacetylase Complex1 Regulates Cell Proliferation in Cucumber Fruit. PLANT PHYSIOLOGY 2020; 182:167-184. [PMID: 31378719 PMCID: PMC6945849 DOI: 10.1104/pp.19.00532] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/22/2019] [Indexed: 05/13/2023]
Abstract
Histone deacetylase (HDAC) proteins participate in diverse and tissue-specific developmental processes by forming various corepressor complexes with different regulatory subunits. An important HDAC machinery hub, the Histone Deacetylase Complex1 (HDC1) protein, participates in multiple protein-protein interactions and regulates organ size in plants. However, the mechanistic basis for this regulation remains unclear. Here, we identified a cucumber (Cucumis sativus) short-fruit mutant (sf2) with a phenotype that includes repressed cell proliferation. SF2 encodes an HDC1 homolog, and its expression is enriched in meristematic tissues, consistent with a role in regulating cell proliferation through the HDAC complex. A weak sf2 allele impairs HDAC targeting to chromatin, resulting in elevated levels of histone acetylation. Genome-wide mapping revealed that SF2 directly targets and promotes histone deacetylation associated with key genes involved in multiple phytohormone pathways and cell cycle regulation, by either directly repressing or activating their expression. We further show that SF2 controls fruit cell proliferation through targeting the biosynthesis and metabolism of cytokinin and polyamines. Our findings reveal a complex regulatory network of fruit cell proliferation mediated by HDC1 and elucidate patterns of HDC1-mediated regulation of gene expression.
Collapse
Affiliation(s)
- Zhen Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Bowen Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Sino-Dutch Joint Lab of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- China Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Shenhao Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Tao Lin
- College of Horticulture, China Agricultural University, Beijing 100094, China
| | - Li Yang
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
| | - Zunlian Zhao
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Zhonghua Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Sino-Dutch Joint Lab of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sanwen Huang
- China Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xueyong Yang
- College of Horticulture, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Sino-Dutch Joint Lab of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
17
|
Kamal NM, Gorafi YSA, Abdelrahman M, Abdellatef E, Tsujimoto H. Stay-Green Trait: A Prospective Approach for Yield Potential, and Drought and Heat Stress Adaptation in Globally Important Cereals. Int J Mol Sci 2019; 20:E5837. [PMID: 31757070 PMCID: PMC6928793 DOI: 10.3390/ijms20235837] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 11/16/2022] Open
Abstract
The yield losses in cereal crops because of abiotic stress and the expected huge losses from climate change indicate our urgent need for useful traits to achieve food security. The stay-green (SG) is a secondary trait that enables crop plants to maintain their green leaves and photosynthesis capacity for a longer time after anthesis, especially under drought and heat stress conditions. Thus, SG plants have longer grain-filling period and subsequently higher yield than non-SG. SG trait was recognized as a superior characteristic for commercially bred cereal selection to overcome the current yield stagnation in alliance with yield adaptability and stability. Breeding for functional SG has contributed in improving crop yields, particularly when it is combined with other useful traits. Thus, elucidating the molecular and physiological mechanisms associated with SG trait is maybe the key to defeating the stagnation in productivity associated with adaptation to environmental stress. This review discusses the recent advances in SG as a crucial trait for genetic improvement of the five major cereal crops, sorghum, wheat, rice, maize, and barley with particular emphasis on the physiological consequences of SG trait. Finally, we provided perspectives on future directions for SG research that addresses present and future global challenges.
Collapse
Affiliation(s)
- Nasrein Mohamed Kamal
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan; (Y.S.A.G.); (M.A.)
- Agricultural Research Corporation, Wad-Medani P.O. Box 126, Sudan
| | - Yasir Serag Alnor Gorafi
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan; (Y.S.A.G.); (M.A.)
- Agricultural Research Corporation, Wad-Medani P.O. Box 126, Sudan
| | - Mostafa Abdelrahman
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan; (Y.S.A.G.); (M.A.)
- Botany Department, Faculty of Science, Aswan University, Aswan 81528, Egypt
| | - Eltayb Abdellatef
- Commission for Biotechnology and Genetic Engineering, National Center for Research, Khartoum P.O. Box 6096, Sudan;
| | - Hisashi Tsujimoto
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan; (Y.S.A.G.); (M.A.)
| |
Collapse
|
18
|
Huang L, Chen L, Wang L, Yang Y, Rao Y, Ren D, Dai L, Gao Y, Zou W, Lu X, Zhang G, Zhu L, Hu J, Chen G, Shen L, Dong G, Gao Z, Guo L, Qian Q, Zeng D. A Nck-associated protein 1-like protein affects drought sensitivity by its involvement in leaf epidermal development and stomatal closure in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:884-897. [PMID: 30771248 PMCID: PMC6849750 DOI: 10.1111/tpj.14288] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/09/2019] [Accepted: 02/13/2019] [Indexed: 05/05/2023]
Abstract
Water deficit is a major environmental threat affecting crop yields worldwide. In this study, a drought stress-sensitive mutant drought sensitive 8 (ds8) was identified in rice (Oryza sativa L.). The DS8 gene was cloned using a map-based approach. Further analysis revealed that DS8 encoded a Nck-associated protein 1 (NAP1)-like protein, a component of the SCAR/WAVE complex, which played a vital role in actin filament nucleation activity. The mutant exhibited changes in leaf cuticle development. Functional analysis revealed that the mutation of DS8 increased stomatal density and impaired stomatal closure activity. The distorted actin filaments in the mutant led to a defect in abscisic acid (ABA)-mediated stomatal closure and increased ABA accumulation. All these resulted in excessive water loss in ds8 leaves. Notably, antisense transgenic lines also exhibited increased drought sensitivity, along with impaired stomatal closure and elevated ABA levels. These findings suggest that DS8 affects drought sensitivity by influencing actin filament activity.
Collapse
Affiliation(s)
- Lichao Huang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Long Chen
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Lan Wang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Yaolong Yang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Yuchun Rao
- College of Chemistry and Life SciencesZhejiang Normal UniversityJinhua321004China
| | - Deyong Ren
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Liping Dai
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Yihong Gao
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Weiwei Zou
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Xueli Lu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Guangheng Zhang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Li Zhu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Jiang Hu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Guang Chen
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Lan Shen
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Guojun Dong
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Zhenyu Gao
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Longbiao Guo
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Qian Qian
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Dali Zeng
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| |
Collapse
|
19
|
Zhao C, Liu C, Zhang Y, Cui Y, Hu H, Jahan N, Lv Y, Qian Q, Guo L. A 3-bp deletion of WLS5 gene leads to weak growth and early leaf senescence in rice. RICE (NEW YORK, N.Y.) 2019; 12:26. [PMID: 31037442 PMCID: PMC6488631 DOI: 10.1186/s12284-019-0288-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/09/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND In rice (Oryza sativa) and other grains, weak growth (dwarfism, short panicle length, and low seed-setting rate) and early senescence lead to reduced yield. The molecular mechanisms behind these processes have been widely studied; however, the complex genetic regulatory networks controlling growth and senescence require further elucidation. RESULTS We isolated a mutant exhibiting weak growth throughout development and early senescence of leaf tips, and designated this mutant weakness and leaf senescence5 (wls5). Histological analysis showed that the poor growth of wls5 plants involved a reduction in cell length and number. Physiological analysis and transmission electron microscopy revealed that the wls5 cells had abnormal chloroplasts, and the mutants underwent chlorophyll degradation triggered by accumulation of reactive oxygen species. Consistent with this, RNA sequencing revealed changes in senescence-related gene expression in wls5 plants. The wls5 mutants also exhibited significantly higher stomatal density and altered phytohormone contents compared with wild-type plants. Fine mapping delimited WLS5 to a 29-kb region on chromosome 5. DNA sequencing of wls5 identified a 3-bp deletion in the first exon of LOC_Os05g04900, resulting in a deletion of a lysine in the predicted protein. Knockout of LOC_Os05g04900 in Nipponbare plants caused leaf senescence, confirming this locus as the causal gene for WLS5. CONCLUSIONS We identified a novel mutant (wls5) that affects plant development and leaf senescence in rice. LOC_Os05g04900, encoding a protein of unknown function, is the causal gene for wls5. Further molecular study of WLS5 will uncover the roles of this gene in plant growth and leaf senescence.
Collapse
Affiliation(s)
- Chunyan Zhao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Chaolei Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Yu Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Yongtao Cui
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Haitao Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Noushin Jahan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Yang Lv
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| |
Collapse
|
20
|
Zhang D, Tian C, Yin K, Wang W, Qiu JL. Postinvasive Bacterial Resistance Conferred by Open Stomata in Rice. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:255-266. [PMID: 30124364 DOI: 10.1094/mpmi-06-18-0162-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Stomata are leaf pores that regulate gas exchange and water transpiration in response to environmental cues. They also function in innate immunity by limiting pathogen entry through actively closing in so-called stomatal defense. However, roles of stomata in plant disease resistance are not fully elucidated, especially in monocots. Here, we report that non-race specific resistance of the rice abscisic acid-deficient mutant Osaba1 to Xanthomonas oryzae pv. oryzae is due to increased stomatal conductance. Reducing stomatal conductance in the Osaba1 mutant increases its susceptibility to X. oryzae pv. oryzae. Artificial opening of stomata in wild-type plants leads to enhanced resistance to X. oryzae pv. oryzae. The rice mutant es1-1 with constitutively higher stomatal conductance exhibits strong resistance to X. oryzae pv. oryzae. Additionally, Osaba1 and es1-1 are resistant to X. oryzae pv. oryzicola. The data support that open stomata confer postinvasive resistance against bacterial pathogens in rice, and such resistance probably results from decreased leaf water potential. Our findings reveal a novel role of stomata in plant immunity through modulation of leaf water status, which provides physiological insight into the interactions between plant, pathogen, and environment.
Collapse
Affiliation(s)
- Dandan Zhang
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and
- 2 University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caijuan Tian
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and
| | - Kangquan Yin
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and
| | - Wenyi Wang
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and
| | - Jin-Long Qiu
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and
| |
Collapse
|
21
|
Bhugra S, Mishra D, Anupama A, Chaudhury S, Lall B, Chugh A, Chinnusamy V. Deep Convolutional Neural Networks Based Framework for Estimation of Stomata Density and Structure from Microscopic Images. LECTURE NOTES IN COMPUTER SCIENCE 2019:412-423. [DOI: 10.1007/978-3-030-11024-6_31] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
22
|
Ren D, Hu J, Xu Q, Cui Y, Zhang Y, Zhou T, Rao Y, Xue D, Zeng D, Zhang G, Gao Z, Zhu L, Shen L, Chen G, Guo L, Qian Q. FZP determines grain size and sterile lemma fate in rice. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4853-4866. [PMID: 30032251 PMCID: PMC6137974 DOI: 10.1093/jxb/ery264] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/12/2018] [Indexed: 05/19/2023]
Abstract
In grass, the spikelet is a unique inflorescence structure that directly determines grain yield. Despite a great deal of research, the molecular mechanisms behind spikelet development are not fully understood. In the study, FZP encodes an ERF domain protein, and functions in grain size and sterile lemma identity. Mutation of FZP causes smaller grains and degenerated sterile lemmas. The small fzp-12 grains were caused by a reduction in cell number and size in the hulls. Interestingly, the sterile lemma underwent a homeotic transformation into a rudimentary glume in the fzp-12 and fzp-13 mutants, whereas the sterile lemma underwent a homeotic transformation into a lemma in FZP over-expressing plants, suggesting that FZP specifically determines the sterile lemma identity. We confirmed the function of FZP by complementation, CRISPR-Cas9 gene editing, and cytological and molecular tests. Additionally, FZP interacts specifically with the GCC-box and DRE motifs, and may be involved in regulation of the downstream genes. Our results revealed that FZP plays a vital role in the regulation of grain size, and first provides clear evidence in support of the hypothesis that the lemma, rudimentary glume, and sterile lemma are homologous organs.
Collapse
Affiliation(s)
- Deyong Ren
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Jiang Hu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Qiankun Xu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Yuanjiang Cui
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Yu Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Tingting Zhou
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Yuchun Rao
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, P. R. China
| | - Dali Zeng
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Guangheng Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Zhenyu Gao
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Li Zhu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Lan Shen
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Guang Chen
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Longbiao Guo
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Qian Qian
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
- Correspondence:
| |
Collapse
|
23
|
Yang Y, Wang Y, Jia L, Yang G, Xu X, Zhai H, He S, Li J, Dai X, Qin N, Zhu C, Liu Q. Involvement of an ABI-like protein and a Ca2+-ATPase in drought tolerance as revealed by transcript profiling of a sweetpotato somatic hybrid and its parents Ipomoea batatas (L.) Lam. and I. triloba L. PLoS One 2018; 13:e0193193. [PMID: 29466419 PMCID: PMC5821372 DOI: 10.1371/journal.pone.0193193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 02/06/2018] [Indexed: 12/14/2022] Open
Abstract
Previously, we obtained the sweetpotato somatic hybrid KT1 from a cross between sweetpotato (Ipomoea batatas (L.) Lam.) cv. Kokei No. 14 and its drought-tolerant wild relative I. triloba L. KT1 not only inherited the thick storage root characteristic of Kokei No. 14 but also the drought-tolerance trait of I. triloba L. The aim of this study was to explore the molecular mechanism of the drought tolerance of KT1. Four-week-old in vitro-grown plants of KT1, Kokei No. 14, and I. triloba L. were subjected to a simulated drought stress treatment (30% PEG6000) for 0, 6, 12 and 24 h. Total RNA was extracted from samples at each time point, and then used for transcriptome sequencing. The gene transcript profiles of KT1 and its parents were compared to identify differentially expressed genes, and drought-related modules were screened by a weighted gene co-expression network analysis. The functions of ABI-like protein and Ca2+-ATPase, two proteins screened from the cyan and light yellow modules, were analyzed in terms of their potential roles in drought tolerance in KT1 and its parents. These analyses of the drought responses of KT1 and its somatic donors at the transcriptional level provide new annotations for the molecular mechanism of drought tolerance in the somatic hybrid KT1 and its parents.
Collapse
Affiliation(s)
- Yufeng Yang
- Food Crop Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Yannan Wang
- Food Crop Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Licong Jia
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Guohong Yang
- Food Crop Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xinzhi Xu
- Food Crop Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Hong Zhai
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Shaozhen He
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Junxia Li
- Food Crop Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaodong Dai
- Food Crop Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Na Qin
- Food Crop Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Cancan Zhu
- Food Crop Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Qingchang Liu
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
24
|
Identification and Comparative Analysis of Premature Senescence Leaf Mutants in Rice (Oryza sativa L.). Int J Mol Sci 2018; 19:ijms19010140. [PMID: 29301377 PMCID: PMC5796089 DOI: 10.3390/ijms19010140] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/21/2017] [Accepted: 12/29/2017] [Indexed: 11/17/2022] Open
Abstract
Premature leaf senescence negatively impacts the grain yield in the important monocot rice (Oryza sativa L.); to understand the molecular mechanism we carried out a screen for mutants with premature senescence leaves in a mutant bank generated by ethyl methane sulfonate (EMS) mutagenesis of elite indica rice ZhongJian100. Five premature senescence leaf (psl15, psl50, psl89, psl117 and psl270) mutants were identified with distinct yellowish phenotypes on leaves starting from the tillering stage to final maturation. Moreover, these mutants exhibited significantly increased malonaldehyde content, decreased chlorophyll content, reduced numbers of chloroplast and grana thylakoid, altered photosynthetic ability and expression of photosynthesis-related genes. Furthermore, the expression of senescence-related indicator OsI57 was significantly up-regulated in four mutants. Histochemical analysis indicated that cell death and reactive oxygen species (ROS) accumulation occurred in the mutants with altered activities of ROS scavenging enzymes. Both darkness and abscisic acid (ABA) treatments could induce leaf senescence and resulted in up- or down-regulation of ABA metabolism-related genes in the mutants. Genetic analysis indicated that all the premature senescence leaf mutants were controlled by single non-allelic recessive genes. The data suggested that mechanisms underlying premature leaf senescence are likely different among the mutants. The present study would facilitate us to further fine mapping, cloning and functional characterization of the corresponding genes mediating the premature leaf senescence in rice.
Collapse
|
25
|
Wang M, Zhang T, Peng H, Luo S, Tan J, Jiang K, Heng Y, Zhang X, Guo X, Zheng J, Cheng Z. Rice Premature Leaf Senescence 2, Encoding a Glycosyltransferase (GT), Is Involved in Leaf Senescence. FRONTIERS IN PLANT SCIENCE 2018; 9:560. [PMID: 29755498 PMCID: PMC5932172 DOI: 10.3389/fpls.2018.00560] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/10/2018] [Indexed: 05/06/2023]
Abstract
Premature leaf senescence (PLS), which has a significant impact on yield, is caused by various underlying mechanisms. Glycosyltransferases, which function in glycosyl transfer from activated nucleotides to aglycones, are involved in diverse biological processes, but their roles in rice leaf senescence remain elusive. Here, we isolated and characterized a leaf senescence-related gene from the Premature Leaf Senescent mutant (pls2). The mutant phenotype began with leaf yellowing at tillering and resulted in PLS during the reproductive stage. Leaf senescence was associated with an increase in hydrogen peroxide (H2O2) content accompanied with pronounced decreases in net photosynthetic rate, stomatal conductance, and transpiration rate. Map-based cloning revealed that a mutation in LOC_Os03g15840 (PLS2), a putative glycosyltransferase- encoding gene, was responsible for the defective phenotype. PLS2 expression was detected in all tissues surveyed, but predominantly in leaf mesophyll cells. Subcellular localization of the PLS2 was in the endoplasmic reticulum. The pls2 mutant accumulated higher levels of sucrose together with decreased expression of sucrose metabolizing genes compared with wild type. These data suggested that the PLS2 allele is essential for normal leaf senescence and its mutation resulted in PLS.
Collapse
Affiliation(s)
- Min Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Zhang
- Institute of Rice and Sorghum, Sichuan Academy of Agricultural Sciences, Deyang, China
| | - Hao Peng
- Department of Life Science and Engineering, Jining University, Jining, China
| | - Sheng Luo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Juejie Tan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kaifeng Jiang
- Institute of Rice and Sorghum, Sichuan Academy of Agricultural Sciences, Deyang, China
| | - Yueqin Heng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiakui Zheng
- Institute of Rice and Sorghum, Sichuan Academy of Agricultural Sciences, Deyang, China
- *Correspondence: Jiakui Zheng, Zhijun Cheng,
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Jiakui Zheng, Zhijun Cheng,
| |
Collapse
|
26
|
Leng Y, Ye G, Zeng D. Genetic Dissection of Leaf Senescence in Rice. Int J Mol Sci 2017; 18:E2686. [PMID: 29232920 PMCID: PMC5751288 DOI: 10.3390/ijms18122686] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/28/2017] [Accepted: 12/01/2017] [Indexed: 12/04/2022] Open
Abstract
Leaf senescence, the final stage of leaf development, is a complex and highly regulated process that involves a series of coordinated actions at the cellular, tissue, organ, and organism levels under the control of a highly regulated genetic program. In the last decade, the use of mutants with different levels of leaf senescence phenotypes has led to the cloning and functional characterizations of a few genes, which has greatly improved the understanding of genetic mechanisms underlying leaf senescence. In this review, we summarize the recent achievements in the genetic mechanisms in rice leaf senescence.
Collapse
Affiliation(s)
- Yujia Leng
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
- CAAS-IRRI Joint Laboratory for Genomics-assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Guoyou Ye
- CAAS-IRRI Joint Laboratory for Genomics-assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Dali Zeng
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
27
|
Zhou W, Wang Y, Wu Z, Luo L, Liu P, Yan L, Hou S. Homologs of SCAR/WAVE complex components are required for epidermal cell morphogenesis in rice. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4311-23. [PMID: 27252469 PMCID: PMC5301933 DOI: 10.1093/jxb/erw214] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Filamentous actins (F-actins) play a vital role in epidermal cell morphogenesis. However, a limited number of studies have examined actin-dependent leaf epidermal cell morphogenesis events in rice. In this study, two recessive mutants were isolated: less pronounced lobe epidermal cell2-1 (lpl2-1) and lpl3-1, whose leaf and stem epidermis developed a smooth surface, with fewer serrated pavement cell (PC) lobes, and decreased papillae. The lpl2-1 also exhibited irregular stomata patterns, reduced plant height, and short panicles and roots. Molecular genetic studies demonstrated that LPL2 and LPL3 encode the PIROGI/Specifically Rac1-associated protein 1 (PIR/SRA1)-like and NCK-associated protein 1 (NAP1)-like proteins, respectively, two components of the suppressor of cAMP receptor/Wiskott-Aldrich syndrome protein-family verprolin-homologous protein (SCAR/WAVE) regulatory complex involved in actin nucleation and function. Epidermal cells exhibited abnormal arrangement of F-actins in both lpl2 and lpl3 expanding leaves. Moreover, the distorted trichomes of Arabidopsis pir could be partially restored by an overexpression of LPL2 A yeast two-hybrid assay revealed that LPL2 can directly interact with LPL3 in vitro Collectively, the results indicate that LPL2 and LPL3 are two functionally conserved homologs of the SCAR/WAVE complex components, and that they play an important role in controlling epidermal cell morphogenesis in rice by organising F-actin.
Collapse
Affiliation(s)
- Wenqi Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuchuan Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhongliang Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Liang Luo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ping Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Longfeng Yan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Suiwen Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
28
|
Ren D, Rao Y, Leng Y, Li Z, Xu Q, Wu L, Qiu Z, Xue D, Zeng D, Hu J, Zhang G, Zhu L, Gao Z, Chen G, Dong G, Guo L, Qian Q. Regulatory Role of OsMADS34 in the Determination of Glumes Fate, Grain Yield, and Quality in Rice. FRONTIERS IN PLANT SCIENCE 2016; 7:1853. [PMID: 28018389 PMCID: PMC5156729 DOI: 10.3389/fpls.2016.01853] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/23/2016] [Indexed: 05/07/2023]
Abstract
Grasses produce seeds on spikelets, a unique type of inflorescence. Despite the importance of grass crops for food, the genetic mechanisms that control spikelet development remain poorly understood. In this study, we used m34-z, a new mutant allele of the rice (Oryza sativa) E-class gene OsMADS34, to examine OsMADS34 function in determining the identities of glumes (rudimentary glume and sterile lemma) and grain size. In the m34-z mutant, both the rudimentary glume and sterile lemma were homeotically converted to the lemma-like organ and acquired the lemma identity, suggesting that OsMADS34 plays important roles in the development of glumes. In the m34-z mutant, most of the grains from the secondary panicle branches (spb) were decreased in size, compared with grains from wild-type, but no differences were observed in the grains from the primary panicle branches. The amylose content and gel consistency, and a seed-setting rate from the spb were reduced in the m34-z mutant. Interesting, transcriptional activity analysis revealed that OsMADS34 protein was a transcription repressor and it may influence grain yield by suppressing the expressions of BG1, GW8, GW2, and GL7 in the m34-z mutant. These findings revealed that OsMADS34 largely affects grain yield by affecting the size of grains from the secondary branches.
Collapse
Affiliation(s)
- Deyong Ren
- State Key Laboratory of Rice Biology, China National Rice Research InstituteZhejiang, China
| | - Yuchun Rao
- State Key Laboratory of Rice Biology, China National Rice Research InstituteZhejiang, China
- College of Chemistry and Life Sciences, Zhejiang Normal UniversityZhejiang, China
| | - Yujia Leng
- State Key Laboratory of Rice Biology, China National Rice Research InstituteZhejiang, China
| | - Zizhuang Li
- State Key Laboratory of Rice Biology, China National Rice Research InstituteZhejiang, China
- College of Life and Environmental Sciences, Hangzhou Normal UniversityZhejiang, China
| | - Qiankun Xu
- State Key Laboratory of Rice Biology, China National Rice Research InstituteZhejiang, China
| | - Liwen Wu
- State Key Laboratory of Rice Biology, China National Rice Research InstituteZhejiang, China
| | - Zhennan Qiu
- State Key Laboratory of Rice Biology, China National Rice Research InstituteZhejiang, China
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal UniversityZhejiang, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research InstituteZhejiang, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research InstituteZhejiang, China
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research InstituteZhejiang, China
| | - Li Zhu
- State Key Laboratory of Rice Biology, China National Rice Research InstituteZhejiang, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research InstituteZhejiang, China
| | - Guang Chen
- State Key Laboratory of Rice Biology, China National Rice Research InstituteZhejiang, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology, China National Rice Research InstituteZhejiang, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research InstituteZhejiang, China
- *Correspondence: Qian Qian, Longbiao Guo,
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research InstituteZhejiang, China
- *Correspondence: Qian Qian, Longbiao Guo,
| |
Collapse
|
29
|
Bai J, Zhu X, Wang Q, Zhang J, Chen H, Dong G, Zhu L, Zheng H, Xie Q, Nian J, Chen F, Fu Y, Qian Q, Zuo J. Rice TUTOU1 Encodes a Suppressor of cAMP Receptor-Like Protein That Is Important for Actin Organization and Panicle Development. PLANT PHYSIOLOGY 2015; 169:1179-91. [PMID: 26243616 PMCID: PMC4587440 DOI: 10.1104/pp.15.00229] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 07/27/2015] [Indexed: 05/12/2023]
Abstract
Panicle development, a key event in rice (Oryza sativa) reproduction and a critical determinant of grain yield, forms a branched structure containing multiple spikelets. Genetic and environmental factors can perturb panicle development, causing panicles to degenerate and producing characteristic whitish, small spikelets with severely reduced fertility and yield; however, little is known about the molecular basis of the formation of degenerating panicles in rice. Here, we report the identification and characterization of the rice panicle degenerative mutant tutou1 (tut1), which shows severe defects in panicle development. The tut1 also shows a pleiotropic phenotype, characterized by short roots, reduced plant height, and abnormal development of anthers and pollen grains. Molecular genetic studies revealed that TUT1 encodes a suppressor of cAMP receptor/Wiskott-Aldrich syndrome protein family verprolin-homologous (SCAR/WAVE)-like protein. We found that TUT1 contains conserved functional domains found in eukaryotic SCAR/WAVE proteins, and was able to activate Actin-related protein2/3 to promote actin nucleation and polymerization in vitro. Consistently, tut1 mutants show defects in the arrangement of actin filaments in trichome. These results indicate that TUT1 is a functional SCAR/WAVE protein and plays an important role in panicle development.
Collapse
Affiliation(s)
- Jiaoteng Bai
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.B., Q.W., J.Zh., H.Z., Q.X., J.N., J.Zu.) and State Key Laboratory of Molecular Developmental Biology and National Plant Gene Research Center (F.C.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100049, China (J.B., Q.W., H.Z., Q.X.);State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (X.Z., H.C., G.D., Q.Q.); andState Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China (L.Z., Y.F.)
| | - Xudong Zhu
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.B., Q.W., J.Zh., H.Z., Q.X., J.N., J.Zu.) and State Key Laboratory of Molecular Developmental Biology and National Plant Gene Research Center (F.C.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100049, China (J.B., Q.W., H.Z., Q.X.);State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (X.Z., H.C., G.D., Q.Q.); andState Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China (L.Z., Y.F.)
| | - Qing Wang
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.B., Q.W., J.Zh., H.Z., Q.X., J.N., J.Zu.) and State Key Laboratory of Molecular Developmental Biology and National Plant Gene Research Center (F.C.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100049, China (J.B., Q.W., H.Z., Q.X.);State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (X.Z., H.C., G.D., Q.Q.); andState Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China (L.Z., Y.F.)
| | - Jian Zhang
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.B., Q.W., J.Zh., H.Z., Q.X., J.N., J.Zu.) and State Key Laboratory of Molecular Developmental Biology and National Plant Gene Research Center (F.C.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100049, China (J.B., Q.W., H.Z., Q.X.);State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (X.Z., H.C., G.D., Q.Q.); andState Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China (L.Z., Y.F.)
| | - Hongqi Chen
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.B., Q.W., J.Zh., H.Z., Q.X., J.N., J.Zu.) and State Key Laboratory of Molecular Developmental Biology and National Plant Gene Research Center (F.C.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100049, China (J.B., Q.W., H.Z., Q.X.);State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (X.Z., H.C., G.D., Q.Q.); andState Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China (L.Z., Y.F.)
| | - Guojun Dong
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.B., Q.W., J.Zh., H.Z., Q.X., J.N., J.Zu.) and State Key Laboratory of Molecular Developmental Biology and National Plant Gene Research Center (F.C.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100049, China (J.B., Q.W., H.Z., Q.X.);State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (X.Z., H.C., G.D., Q.Q.); andState Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China (L.Z., Y.F.)
| | - Lei Zhu
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.B., Q.W., J.Zh., H.Z., Q.X., J.N., J.Zu.) and State Key Laboratory of Molecular Developmental Biology and National Plant Gene Research Center (F.C.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100049, China (J.B., Q.W., H.Z., Q.X.);State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (X.Z., H.C., G.D., Q.Q.); andState Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China (L.Z., Y.F.)
| | - Huakun Zheng
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.B., Q.W., J.Zh., H.Z., Q.X., J.N., J.Zu.) and State Key Laboratory of Molecular Developmental Biology and National Plant Gene Research Center (F.C.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100049, China (J.B., Q.W., H.Z., Q.X.);State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (X.Z., H.C., G.D., Q.Q.); andState Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China (L.Z., Y.F.)
| | - Qingjun Xie
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.B., Q.W., J.Zh., H.Z., Q.X., J.N., J.Zu.) and State Key Laboratory of Molecular Developmental Biology and National Plant Gene Research Center (F.C.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100049, China (J.B., Q.W., H.Z., Q.X.);State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (X.Z., H.C., G.D., Q.Q.); andState Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China (L.Z., Y.F.)
| | - Jinqiang Nian
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.B., Q.W., J.Zh., H.Z., Q.X., J.N., J.Zu.) and State Key Laboratory of Molecular Developmental Biology and National Plant Gene Research Center (F.C.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100049, China (J.B., Q.W., H.Z., Q.X.);State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (X.Z., H.C., G.D., Q.Q.); andState Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China (L.Z., Y.F.)
| | - Fan Chen
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.B., Q.W., J.Zh., H.Z., Q.X., J.N., J.Zu.) and State Key Laboratory of Molecular Developmental Biology and National Plant Gene Research Center (F.C.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100049, China (J.B., Q.W., H.Z., Q.X.);State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (X.Z., H.C., G.D., Q.Q.); andState Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China (L.Z., Y.F.)
| | - Ying Fu
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.B., Q.W., J.Zh., H.Z., Q.X., J.N., J.Zu.) and State Key Laboratory of Molecular Developmental Biology and National Plant Gene Research Center (F.C.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100049, China (J.B., Q.W., H.Z., Q.X.);State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (X.Z., H.C., G.D., Q.Q.); andState Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China (L.Z., Y.F.)
| | - Qian Qian
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.B., Q.W., J.Zh., H.Z., Q.X., J.N., J.Zu.) and State Key Laboratory of Molecular Developmental Biology and National Plant Gene Research Center (F.C.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100049, China (J.B., Q.W., H.Z., Q.X.);State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (X.Z., H.C., G.D., Q.Q.); andState Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China (L.Z., Y.F.)
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.B., Q.W., J.Zh., H.Z., Q.X., J.N., J.Zu.) and State Key Laboratory of Molecular Developmental Biology and National Plant Gene Research Center (F.C.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100049, China (J.B., Q.W., H.Z., Q.X.);State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China (X.Z., H.C., G.D., Q.Q.); andState Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China (L.Z., Y.F.)
| |
Collapse
|