1
|
Müller M, Kües U, Budde KB, Gailing O. Applying molecular and genetic methods to trees and their fungal communities. Appl Microbiol Biotechnol 2023; 107:2783-2830. [PMID: 36988668 PMCID: PMC10106355 DOI: 10.1007/s00253-023-12480-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023]
Abstract
Forests provide invaluable economic, ecological, and social services. At the same time, they are exposed to several threats, such as fragmentation, changing climatic conditions, or increasingly destructive pests and pathogens. Trees, the inherent species of forests, cannot be viewed as isolated organisms. Manifold (micro)organisms are associated with trees playing a pivotal role in forest ecosystems. Of these organisms, fungi may have the greatest impact on the life of trees. A multitude of molecular and genetic methods are now available to investigate tree species and their associated organisms. Due to their smaller genome sizes compared to tree species, whole genomes of different fungi are routinely compared. Such studies have only recently started in forest tree species. Here, we summarize the application of molecular and genetic methods in forest conservation genetics, tree breeding, and association genetics as well as for the investigation of fungal communities and their interrelated ecological functions. These techniques provide valuable insights into the molecular basis of adaptive traits, the impacts of forest management, and changing environmental conditions on tree species and fungal communities and can enhance tree-breeding cycles due to reduced time for field testing. It becomes clear that there are multifaceted interactions among microbial species as well as between these organisms and trees. We demonstrate the versatility of the different approaches based on case studies on trees and fungi. KEY POINTS: • Current knowledge of genetic methods applied to forest trees and associated fungi. • Genomic methods are essential in conservation, breeding, management, and research. • Important role of phytobiomes for trees and their ecosystems.
Collapse
Affiliation(s)
- Markus Müller
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany.
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073, Göttingen, Germany.
| | - Ursula Kües
- Molecular Wood Biotechnology and Technical Mycology, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Katharina B Budde
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| |
Collapse
|
2
|
Holton KM, Giadone RM, Lang BJ, Calderwood SK. A Workflow Guide to RNA-Seq Analysis of Chaperone Function and Beyond. Methods Mol Biol 2023; 2693:39-60. [PMID: 37540425 DOI: 10.1007/978-1-0716-3342-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
RNA sequencing (RNA-seq) is a powerful method of transcriptional analysis that allows for the sequence identification and quantification of cellular transcripts. RNA-seq can be used for differential gene expression (DGE) analysis, gene fusion detection, allele-specific expression, isoform and splice variant quantification, and identification of novel genes. These applications can be used for downstream systems biology analyses such as gene ontology or pathway analysis to provide insight into processes altered between biological conditions. Given the wide range of signaling pathways subject to chaperone activity as well as numerous chaperone functions in RNA metabolism, RNA-seq may provide a valuable tool for the study of chaperone proteins in biology and disease. This chapter outlines an example RNA-seq workflow to determine differentially expressed (DE) genes between two or more sample conditions and provides some considerations for RNA-seq experimental design.
Collapse
Affiliation(s)
- Kristina M Holton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Richard M Giadone
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Benjamin J Lang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Stuart K Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
3
|
Amas J, Anderson R, Edwards D, Cowling W, Batley J. Status and advances in mining for blackleg (Leptosphaeria maculans) quantitative resistance (QR) in oilseed rape (Brassica napus). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3123-3145. [PMID: 34104999 PMCID: PMC8440254 DOI: 10.1007/s00122-021-03877-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/29/2021] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE Quantitative resistance (QR) loci discovered through genetic and genomic analyses are abundant in the Brassica napus genome, providing an opportunity for their utilization in enhancing blackleg resistance. Quantitative resistance (QR) has long been utilized to manage blackleg in Brassica napus (canola, oilseed rape), even before major resistance genes (R-genes) were extensively explored in breeding programmes. In contrast to R-gene-mediated qualitative resistance, QR reduces blackleg symptoms rather than completely eliminating the disease. As a polygenic trait, QR is controlled by numerous genes with modest effects, which exerts less pressure on the pathogen to evolve; hence, its effectiveness is more durable compared to R-gene-mediated resistance. Furthermore, combining QR with major R-genes has been shown to enhance resistance against diseases in important crops, including oilseed rape. For these reasons, there has been a renewed interest among breeders in utilizing QR in crop improvement. However, the mechanisms governing QR are largely unknown, limiting its deployment. Advances in genomics are facilitating the dissection of the genetic and molecular underpinnings of QR, resulting in the discovery of several loci and genes that can be potentially deployed to enhance blackleg resistance. Here, we summarize the efforts undertaken to identify blackleg QR loci in oilseed rape using linkage and association analysis. We update the knowledge on the possible mechanisms governing QR and the advances in searching for the underlying genes. Lastly, we lay out strategies to accelerate the genetic improvement of blackleg QR in oilseed rape using improved phenotyping approaches and genomic prediction tools.
Collapse
Affiliation(s)
- Junrey Amas
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001 Australia
| | - Robyn Anderson
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001 Australia
| | - David Edwards
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001 Australia
| | - Wallace Cowling
- School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009 Australia
| | - Jacqueline Batley
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001 Australia
| |
Collapse
|
4
|
Sahu PK, Sao R, Mondal S, Vishwakarma G, Gupta SK, Kumar V, Singh S, Sharma D, Das BK. Next Generation Sequencing Based Forward Genetic Approaches for Identification and Mapping of Causal Mutations in Crop Plants: A Comprehensive Review. PLANTS 2020; 9:plants9101355. [PMID: 33066352 PMCID: PMC7602136 DOI: 10.3390/plants9101355] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022]
Abstract
The recent advancements in forward genetics have expanded the applications of mutation techniques in advanced genetics and genomics, ahead of direct use in breeding programs. The advent of next-generation sequencing (NGS) has enabled easy identification and mapping of causal mutations within a short period and at relatively low cost. Identifying the genetic mutations and genes that underlie phenotypic changes is essential for understanding a wide variety of biological functions. To accelerate the mutation mapping for crop improvement, several high-throughput and novel NGS based forward genetic approaches have been developed and applied in various crops. These techniques are highly efficient in crop plants, as it is relatively easy to grow and screen thousands of individuals. These approaches have improved the resolution in quantitative trait loci (QTL) position/point mutations and assisted in determining the functional causative variations in genes. To be successful in the interpretation of NGS data, bioinformatics computational methods are critical elements in delivering accurate assembly, alignment, and variant detection. Numerous bioinformatics tools/pipelines have been developed for such analysis. This article intends to review the recent advances in NGS based forward genetic approaches to identify and map the causal mutations in the crop genomes. The article also highlights the available bioinformatics tools/pipelines for reducing the complexity of NGS data and delivering the concluding outcomes.
Collapse
Affiliation(s)
- Parmeshwar K. Sahu
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India; (P.K.S.); (R.S.)
| | - Richa Sao
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India; (P.K.S.); (R.S.)
| | - Suvendu Mondal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; (S.M.); (G.V.); (S.K.G.); (S.S.)
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Gautam Vishwakarma
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; (S.M.); (G.V.); (S.K.G.); (S.S.)
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Sudhir Kumar Gupta
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; (S.M.); (G.V.); (S.K.G.); (S.S.)
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Vinay Kumar
- ICAR-National Institute of Biotic Stress Management, Baronda, Raipur 493225, Chhattisgarh, India;
| | - Sudhir Singh
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; (S.M.); (G.V.); (S.K.G.); (S.S.)
| | - Deepak Sharma
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India; (P.K.S.); (R.S.)
- Correspondence: (D.S.); (B.K.D.)
| | - Bikram K. Das
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; (S.M.); (G.V.); (S.K.G.); (S.S.)
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
- Correspondence: (D.S.); (B.K.D.)
| |
Collapse
|
5
|
OneStopRNAseq: A Web Application for Comprehensive and Efficient Analyses of RNA-Seq Data. Genes (Basel) 2020; 11:genes11101165. [PMID: 33023248 PMCID: PMC7650687 DOI: 10.3390/genes11101165] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 01/21/2023] Open
Abstract
Over the past decade, a large amount of RNA sequencing (RNA-seq) data were deposited in public repositories, and more are being produced at an unprecedented rate. However, there are few open source tools with point-and-click interfaces that are versatile and offer streamlined comprehensive analysis of RNA-seq datasets. To maximize the capitalization of these vast public resources and facilitate the analysis of RNA-seq data by biologists, we developed a web application called OneStopRNAseq for the one-stop analysis of RNA-seq data. OneStopRNAseq has user-friendly interfaces and offers workflows for common types of RNA-seq data analyses, such as comprehensive data-quality control, differential analysis of gene expression, exon usage, alternative splicing, transposable element expression, allele-specific gene expression quantification, and gene set enrichment analysis. Users only need to select the desired analyses and genome build, and provide a Gene Expression Omnibus (GEO) accession number or Dropbox links to sequence files, alignment files, gene-expression-count tables, or rank files with the corresponding metadata. Our pipeline facilitates the comprehensive and efficient analysis of private and public RNA-seq data.
Collapse
|
6
|
Renganathan VG, Vanniarajan C, Karthikeyan A, Ramalingam J. Barnyard Millet for Food and Nutritional Security: Current Status and Future Research Direction. Front Genet 2020; 11:500. [PMID: 32655612 PMCID: PMC7325689 DOI: 10.3389/fgene.2020.00500] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/22/2020] [Indexed: 01/09/2023] Open
Abstract
Barnyard millet (Echinochloa species) has become one of the most important minor millet crops in Asia, showing a firm upsurge in world production. The genus Echinochloa comprises of two major species, Echinochloa esculenta and Echinochloa frumentacea, which are predominantly cultivated for human consumption and livestock feed. They are less susceptible to biotic and abiotic stresses. Barnyard millet grain is a good source of protein, carbohydrate, fiber, and, most notably, contains more micronutrients (iron and zinc) than other major cereals. Despite its nutritional and agronomic benefits, barnyard millet has remained an underutilized crop. Over the past decades, very limited attempts have been made to study the features of this crop. Hence, more concerted research efforts are required to characterize germplasm resources, identify trait-specific donors, develop mapping population, and discover QTL/gene (s). The recent release of genome and transcriptome sequences of wild and cultivated Echinochloa species, respectively has facilitated in understanding the genetic architecture and decoding the rapport between genotype and phenotype of micronutrients and agronomic traits in this crop. In this review, we highlight the importance of barnyard millet in the current scenario and discuss the up-to-date status of genetic and genomics research and the research gaps to be worked upon by suggesting directions for future research to make barnyard millet a potential crop in contributing to food and nutritional security.
Collapse
Affiliation(s)
- Vellaichamy Gandhimeyyan Renganathan
- Department of Plant Breeding and Genetics, Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, India
- Department of Biotechnology, Centre of Innovation, Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Chockalingam Vanniarajan
- Department of Plant Breeding and Genetics, Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Adhimoolam Karthikeyan
- Department of Biotechnology, Centre of Innovation, Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Jegadeesan Ramalingam
- Department of Biotechnology, Centre of Innovation, Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, India
| |
Collapse
|
7
|
Balthazart J. How technical progress reshaped behavioral neuroendocrinology during the last 50 years… and some methodological remarks. Horm Behav 2020; 118:104682. [PMID: 31927020 PMCID: PMC7019036 DOI: 10.1016/j.yhbeh.2020.104682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 10/25/2022]
Abstract
The first issue of Hormones and Behavior was published 50 years ago in 1969, a time when most of the techniques we currently use in Behavioral Endocrinology were not available. Researchers have during the last 5 decades developed techniques that allow measuring hormones in small volumes of biological samples, identify the sites where steroids act in the brain to activate sexual behavior, characterize and quantify gene expression correlated with behavior expression, modify this expression in a specific manner, and manipulate the activity of selected neuronal populations by chemogenetic and optogenetic techniques. This technical progress has considerably transformed the field and has been very beneficial for our understanding of the endocrine controls of behavior in general, but it did also come with some caveats. The facilitation of scientific investigations came with some relaxation of methodological exigency. Some critical controls are no longer performed on a regular basis and complex techniques supplied as ready to use kits are implemented without precise knowledge of their limitations. We present here a selective review of the most important of these new techniques, their potential problems and how they changed our view of the hormonal control of behavior. Fortunately, the scientific endeavor is a self-correcting process. The problems have been identified and corrections have been proposed. The next decades will obviously be filled with exciting discoveries in behavioral neuroendocrinology.
Collapse
|
8
|
Watanabe M, Hoefgen R. Sulphur systems biology-making sense of omics data. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4155-4170. [PMID: 31404467 PMCID: PMC6698701 DOI: 10.1093/jxb/erz260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/24/2019] [Indexed: 05/22/2023]
Abstract
Systems biology approaches have been applied over the last two decades to study plant sulphur metabolism. These 'sulphur-omics' approaches have been developed in parallel with the advancing field of systems biology, which is characterized by permanent improvements of high-throughput methods to obtain system-wide data. The aim is to obtain a holistic view of sulphur metabolism and to generate models that allow predictions of metabolic and physiological responses. Besides known sulphur-responsive genes derived from previous studies, numerous genes have been identified in transcriptomics studies. This has not only increased our knowledge of sulphur metabolism but has also revealed links between metabolic processes, thus indicating a previously unexpected complex interconnectivity. The identification of response and control networks has been supported through metabolomics and proteomics studies. Due to the complex interlacing nature of biological processes, experimental validation using targeted or systems approaches is ongoing. There is still room for improvement in integrating the findings from studies of metabolomes, proteomes, and metabolic fluxes into a single unifying concept and to generate consistent models. We therefore suggest a joint effort of the sulphur research community to standardize data acquisition. Furthermore, focusing on a few different model plant systems would help overcome the problem of fragmented data, and would allow us to provide a standard data set against which future experiments can be designed and compared.
Collapse
Affiliation(s)
- Mutsumi Watanabe
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Nara Institute of Science and Technology, Ikoma, Japan
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| |
Collapse
|
9
|
Weber APM, Bar-Even A. Update: Improving the Efficiency of Photosynthetic Carbon Reactions. PLANT PHYSIOLOGY 2019; 179:803-812. [PMID: 30610109 PMCID: PMC6393813 DOI: 10.1104/pp.18.01521] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 12/16/2018] [Indexed: 05/09/2023]
Abstract
Inefficiencies in photosynthetic carbon assimilation can be overcome by synthetic biology strategies.
Collapse
Affiliation(s)
- Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science, Heinrich Heine University, 40225 Duesseldorf, Germany
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, 14476 Golm-Potsdam, Germany
| |
Collapse
|
10
|
Ueno S, Uchiyama K, Moriguchi Y, Ujino-Ihara T, Matsumoto A, Wei FJ, Saito M, Higuchi Y, Futamura N, Kanamori H, Katayose Y, Tsumura Y. Scanning RNA-Seq and RAD-Seq approach to develop SNP markers closely linked to MALE STERILITY 1 ( MS1) in Cryptomeria japonica D. Don. BREEDING SCIENCE 2019; 69:19-29. [PMID: 31086480 PMCID: PMC6507728 DOI: 10.1270/jsbbs.17149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 10/01/2018] [Indexed: 06/01/2023]
Abstract
Cryptomeria japonica is a major forestry tree species in Japan. Male sterility of the species is caused by a recessive gene, which shows dysfunction of pollen development and results in no dispersed pollen. Because the pollen of C. japonica induces pollinosis, breeding of pollen-free C. japonica is desired. In this study, single nucleotide polymorphism (SNP) markers located at 1.78 and 0.58 cM to a male sterility locus (MS1) were identified from an analysis of RNA-Seq and RAD-Seq, respectively. SNPs closely linked to MS1 were first scanned by a method similar to MutMap, where a type of index was calculated to measure the strength of the linkage between a marker sequence and MS1. Linkage analysis of selected SNP markers confirmed a higher efficiency of the current method to construct a partial map around MS1. Allele-specific PCR primer pair for the most closely linked SNP with MS1 was developed as a codominant marker, and visualization of the PCR products on an agarose gel enabled rapid screening of male sterile C. japonica. The allele-specific primers developed in this study would be useful for establishing the selection of male sterile C. japonica.
Collapse
Affiliation(s)
- Saneyoshi Ueno
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization,
1 Matsunosato, Tsukuba, Ibaraki 305-8687,
Japan
| | - Kentaro Uchiyama
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization,
1 Matsunosato, Tsukuba, Ibaraki 305-8687,
Japan
| | - Yoshinari Moriguchi
- Graduate School of Science and Technology, Niigata University,
8050, Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181,
Japan
| | - Tokuko Ujino-Ihara
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization,
1 Matsunosato, Tsukuba, Ibaraki 305-8687,
Japan
| | - Asako Matsumoto
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization,
1 Matsunosato, Tsukuba, Ibaraki 305-8687,
Japan
| | - Fu-Jin Wei
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization,
1 Matsunosato, Tsukuba, Ibaraki 305-8687,
Japan
| | - Maki Saito
- Toyama Prefectural Agricultural Forestry and Fisheries Research Center, Forestry Research Institute,
Yoshimine 3, Tateyama-cho, Nakashinkawagun, Toyama 930-1362,
Japan
| | - Yumi Higuchi
- Niigata Prefectural Forest Research Institute,
2249-5 Unotoro, Murakami, Niigata 958-0264,
Japan (retired)
| | - Norihiro Futamura
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization,
1 Matsunosato, Tsukuba, Ibaraki 305-8687,
Japan
| | - Hiroyuki Kanamori
- National Institute of Agrobiological Sciences,
Owashi, Tsukuba, Ibaraki 305-8634,
Japan
| | - Yuichi Katayose
- National Institute of Agrobiological Sciences,
Owashi, Tsukuba, Ibaraki 305-8634,
Japan
| | - Yoshihiko Tsumura
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization,
1 Matsunosato, Tsukuba, Ibaraki 305-8687,
Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba,
1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572,
Japan
| |
Collapse
|
11
|
Lang BJ, Holton KM, Gong J, Calderwood SK. A Workflow Guide to RNA-seq Analysis of Chaperone Function and Beyond. Methods Mol Biol 2018; 1709:233-252. [PMID: 29177664 PMCID: PMC7336811 DOI: 10.1007/978-1-4939-7477-1_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
RNA sequencing (RNA-seq) is a powerful method of transcript analysis that allows for the sequence identification and quantification of cellular transcripts. RNA-seq has many applications including differential gene expression (DE) analysis, gene fusion detection, allele-specific expression, isoform and splice variant quantification, and identification of novel genes. These applications can be used for downstream systems biology analyses such as gene ontology analysis to provide insights into cellular processes altered between biological conditions. Given the wide range of signaling pathways subject to chaperone activity as well as numerous chaperone functions in RNA metabolism, RNA-seq may provide a valuable tool for the study of chaperone proteins in biology and disease. This chapter outlines an example RNA-seq workflow to determine differentially expressed (DE) genes between two or more sample conditions and provides some considerations for RNA-seq experimental design.
Collapse
Affiliation(s)
- Benjamin J Lang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.
| | | | - Jianlin Gong
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Stuart K Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| |
Collapse
|
12
|
Tomé F, Jansseune K, Saey B, Grundy J, Vandenbroucke K, Hannah MA, Redestig H. rosettR: protocol and software for seedling area and growth analysis. PLANT METHODS 2017; 13:13. [PMID: 28331535 PMCID: PMC5353781 DOI: 10.1186/s13007-017-0163-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 03/05/2017] [Indexed: 05/04/2023]
Abstract
BACKGROUND Growth is an important parameter to consider when studying the impact of treatments or mutations on plant physiology. Leaf area and growth rates can be estimated efficiently from images of plants, but the experiment setup, image analysis, and statistical evaluation can be laborious, often requiring substantial manual effort and programming skills. RESULTS Here we present rosettR, a non-destructive and high-throughput phenotyping protocol for the measurement of total rosette area of seedlings grown in plates in sterile conditions. We demonstrate that our protocol can be used to accurately detect growth differences among different genotypes and in response to light regimes and osmotic stress. rosettR is implemented as a package for the statistical computing software R and provides easy to use functions to design an experiment, analyze the images, and generate reports on quality control as well as a final comparison across genotypes and applied treatments. Experiment procedures are included as part of the package documentation. CONCLUSIONS Using rosettR it is straight-forward to perform accurate, reproducible measurements of rosette area and relative growth rate with high-throughput using inexpensive equipment. Suitable applications include screening mutant populations for growth phenotypes visible at early growth stages and profiling different genotypes in a wide variety of treatments.
Collapse
Affiliation(s)
- Filipa Tomé
- Bayer CropScience NV, Technologiepark 38, 9052 Ghent, Belgium
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Cluster of Excellence on Plant Sciences “From Complex Traits towards Synthetic Modules”, 40225 Düsseldorf, Germany
| | - Karel Jansseune
- Bayer CropScience NV, Technologiepark 38, 9052 Ghent, Belgium
| | - Bernadette Saey
- Bayer CropScience NV, Technologiepark 38, 9052 Ghent, Belgium
| | - Jack Grundy
- Bayer CropScience NV, Technologiepark 38, 9052 Ghent, Belgium
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL UK
| | | | | | - Henning Redestig
- Bayer CropScience NV, Technologiepark 38, 9052 Ghent, Belgium
- DTU Biosustain, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
13
|
Fankhauser N, Aubry S. Post-transcriptional regulation of photosynthetic genes is a key driver of C4 leaf ontogeny. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:137-146. [PMID: 27756806 PMCID: PMC5853474 DOI: 10.1093/jxb/erw386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
C4 photosynthesis allows highly efficient carbon fixation that originates from tightly regulated anatomical and biochemical modifications of leaf architecture. Recent studies showed that leaf transcriptome modifications during leaf ontogeny of closely related C3 (Tarenaya hassleriana) and C4 (Gynandropsis gynandra) species within the Cleomaceae family existed but they did not identify any dedicated transcriptional networks or factors specifically driving C4 leaf ontogeny. RNAseq analysis provides a steady-state quantification of whole-cell mRNAs but does not allow any discrimination between transcriptional and post-transcriptional processes that may occur simultaneously during leaf ontogeny. Here we use exon-intron split analysis (EISA) to determine the extent to which transcriptional and post-transcriptional processes are involved in the regulation of gene expression between young and expanded leaves in both species. C4-specific changes in post-transcriptional regulation were observed for genes involved in the Calvin-Benson cycle and some photosystem components but not for C4 core-cycle genes. Overall, this study provides an unbiased genome-wide insight into the post-transcriptional mechanisms that regulate gene expression through the control of mRNA levels and could be central to the onset of C4 photosynthesis. This mechanism is cytosolic which implies cell-specific modifications of mRNA stability. Understanding this mechanism may be crucial when aiming to transform C3 crops into C4 crops.
Collapse
Affiliation(s)
- Nicklaus Fankhauser
- Clinical Trials Unit, University of Bern, Finkenhubelweg 11, 3012 Bern, Switzerland
| | - Sylvain Aubry
- Institute of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland
| |
Collapse
|
14
|
Liu X, Lu Y, Yan M, Sun D, Hu X, Liu S, Chen S, Guan C, Liu Z. Genome-Wide Identification, Localization, and Expression Analysis of Proanthocyanidin-Associated Genes in Brassica. FRONTIERS IN PLANT SCIENCE 2016; 7:1831. [PMID: 28018375 PMCID: PMC5145881 DOI: 10.3389/fpls.2016.01831] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 11/21/2016] [Indexed: 05/29/2023]
Abstract
Proanthocyanidins (PA) is a type of prominent flavonoid compound deposited in seed coats which controls the pigmentation in all Brassica species. Annotation of Brassica juncea genome survey sequences showed 72 PA genes; however, a functional description of these genes, especially how their interactions regulate seed pigmentation, remains elusive. In the present study, we designed 19 primer pairs to screen a bacterial artificial chromosome (BAC) library of B. juncea. A total of 284 BAC clones were identified and sequenced. Alignment of the sequences confirmed that 55 genes were cloned, with every Arabidopsis PA gene having 2-7 homologs in B. juncea. BLAST analysis using the recently released B. rapa or B. napus genome database identified 31 and 58 homologous genes, respectively. Mapping and phylogenetic analysis indicated that 30 B. juncea PA genes are located in the A-genome chromosomes except A04, whereas the remaining 25 genes are mapped to the B-genome chromosomes except B05 and B07. RNA-seq data and Fragments Per Kilobase of a transcript per Million mapped reads (FPKM) analysis showed that most of the PA genes were expressed in the seed coat of B. juncea and B. napus, and that BjuTT3, BjuTT18, BjuANR, BjuTT4-2, BjuTT4-3, BjuTT19-1, and BjuTT19-3 are transcriptionally regulated, and not expressed or downregulated in yellow-seeded testa. Importantly, our study facilitates in better understanding of the molecular mechanism underlying Brassica PA profiles and accumulation, as well as in further characterization of PA genes.
Collapse
Affiliation(s)
- Xianjun Liu
- Oilseed Crops Institute, Hunan Agricultural UniversityChangsha, Hunan, China
- College of Life Sciences, Resources and Environment Sciences, Yichun UniversityYichun, China
| | - Ying Lu
- Oilseed Crops Institute, Hunan Agricultural UniversityChangsha, Hunan, China
| | - Mingli Yan
- School of Biology, Hunan University of Science and TechnologyXiangtan, China
| | - Donghong Sun
- Oilseed Crops Institute, Hunan Agricultural UniversityChangsha, Hunan, China
| | | | - Shuyan Liu
- Oilseed Crops Institute, Hunan Agricultural UniversityChangsha, Hunan, China
| | - Sheyuan Chen
- Oilseed Crops Institute, Hunan Agricultural UniversityChangsha, Hunan, China
| | - Chunyun Guan
- Oilseed Crops Institute, Hunan Agricultural UniversityChangsha, Hunan, China
| | - Zhongsong Liu
- Oilseed Crops Institute, Hunan Agricultural UniversityChangsha, Hunan, China
| |
Collapse
|
15
|
Arun-Chinnappa KS, McCurdy DW. Identification of Candidate Transcriptional Regulators of Epidermal Transfer Cell Development in Vicia faba Cotyledons. FRONTIERS IN PLANT SCIENCE 2016; 7:717. [PMID: 27252730 PMCID: PMC4879131 DOI: 10.3389/fpls.2016.00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/10/2016] [Indexed: 05/08/2023]
Abstract
Transfer cells (TCs) are anatomically-specialized cells formed at apoplasmic-symplasmic bottlenecks in nutrient transport pathways in plants. TCs form invaginated wall ingrowths which provide a scaffold to amplify plasma membrane surface area and thus increase the density of nutrient transporters required to achieve enhanced nutrient flow across these bottlenecks. Despite their importance to nutrient transport in plants, little is known of the transcriptional regulation of wall ingrowth formation. Here, we used RNA-Seq to identify transcription factors putatively involved in regulating epidermal TC development in cotyledons of Vicia faba. Comparing cotyledons cultured for 0, 3, 9, and 24 h to induce trans-differentiation of epidermal TCs identified 43 transcription factors that showed either epidermal-specific or epidermal-enhanced expression, and 10 that showed epidermal-specific down regulation. Members of the WRKY and ethylene-responsive families were prominent in the cohort of transcription factors showing epidermal-specific or epidermal-enhanced expression, consistent with the initiation of TC development often representing a response to stress. Members of the MYB family were also prominent in these categories, including orthologs of MYB genes involved in localized secondary wall deposition in Arabidopsis thaliana. Among the group of transcription factors showing down regulation were various homeobox genes and members of the MADs-box and zinc-finger families of poorly defined functions. Collectively, this study identified several transcription factors showing expression characteristics and orthologous functions that indicate likely participation in transcriptional regulation of epidermal TC development in V. faba cotyledons.
Collapse
Affiliation(s)
| | - David W. McCurdy
- Centre for Plant Science, School of Environmental and Life Sciences, The University of NewcastleCallaghan, NSW, Australia
| |
Collapse
|
16
|
Schlüter U, Weber APM. The Road to C4 Photosynthesis: Evolution of a Complex Trait via Intermediary States. PLANT & CELL PHYSIOLOGY 2016; 57:881-9. [PMID: 26893471 DOI: 10.1093/pcp/pcw009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/05/2016] [Indexed: 05/09/2023]
Abstract
C4 photosynthesis enables high photosynthetic energy conversion efficiency as well as high nitrogen and water use efficiencies. Given the multitude of biochemical, structural and molecular changes in comparison with C3 photosynthesis, it appears unlikely that such a complex trait would evolve in a single step. C4 photosynthesis is therefore believed to have evolved from the ancestral C3 state via intermediary stages. Consequently, the identification and detailed characterization of plant species representing transitory states between C3 and C4 is important for the reconstruction of the sequence of evolutionary events, especially since C4 evolution occurred in very different phylogenetic backgrounds. There is also significant interest in engineering of C4 or at least C4-like elements into C3 crop plants. A detailed and mechanistic understanding of C3-C4 intermediates is likely to provide guidance for the experimental design of such approaches. Here we provide an overview on the most relevant results obtained on C3-C4 intermediates to date. Recent knowledge gains in this field will be described in more detail. We thereby concentrate especially on biochemical and physiological work. Finally, we will provide a perspective and outlook on the continued importance of research on C3-C4 intermediates.
Collapse
Affiliation(s)
- Urte Schlüter
- Institute of Plant Biochemistry and Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry and Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
17
|
Fukushima A, Nakamura M, Suzuki H, Yamazaki M, Knoch E, Mori T, Umemoto N, Morita M, Hirai G, Sodeoka M, Saito K. Comparative Characterization of the Leaf Tissue of Physalis alkekengi and Physalis peruviana Using RNA-seq and Metabolite Profiling. FRONTIERS IN PLANT SCIENCE 2016; 7:1883. [PMID: 28066454 PMCID: PMC5167740 DOI: 10.3389/fpls.2016.01883] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/29/2016] [Indexed: 05/07/2023]
Abstract
The genus Physalis in the Solanaceae family contains several species of benefit to humans. Examples include P. alkekengi (Chinese-lantern plant, hôzuki in Japanese) used for medicinal and for decorative purposes, and P. peruviana, also known as Cape gooseberry, which bears an edible, vitamin-rich fruit. Members of the Physalis genus are a valuable resource for phytochemicals needed for the development of medicines and functional foods. To fully utilize the potential of these phytochemicals we need to understand their biosynthesis, and for this we need genomic data, especially comprehensive transcriptome datasets for gene discovery. We report the de novo assembly of the transcriptome from leaves of P. alkekengi and P. peruviana using Illumina RNA-seq technologies. We identified 75,221 unigenes in P. alkekengi and 54,513 in P. peruviana. All unigenes were annotated with gene ontology (GO), Enzyme Commission (EC) numbers, and pathway information from the Kyoto Encyclopedia of Genes and Genomes (KEGG). We classified unigenes encoding enzyme candidates putatively involved in the secondary metabolism and identified more than one unigenes for each step in terpenoid backbone- and steroid biosynthesis in P. alkekengi and P. peruviana. To measure the variability of the withanolides including physalins and provide insights into their chemical diversity in Physalis, we also analyzed the metabolite content in leaves of P. alkekengi and P. peruviana at five different developmental stages by liquid chromatography-mass spectrometry. We discuss that comprehensive transcriptome approaches within a family can yield a clue for gene discovery in Physalis and provide insights into their complex chemical diversity. The transcriptome information we submit here will serve as an important public resource for further studies of the specialized metabolism of Physalis species.
Collapse
Affiliation(s)
- Atsushi Fukushima
- RIKEN Center for Sustainable Resource ScienceYokohama, Japan
- *Correspondence: Atsushi Fukushima, Kazuki Saito,
| | - Michimi Nakamura
- Graduate School of Pharmaceutical Sciences, Chiba UniversityChiba, Japan
| | - Hideyuki Suzuki
- Department of Biotechnology Research, Kazusa DNA Research InstituteChiba, Japan
| | - Mami Yamazaki
- Graduate School of Pharmaceutical Sciences, Chiba UniversityChiba, Japan
| | - Eva Knoch
- RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Naoyuki Umemoto
- RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Masaki Morita
- Synthetic Organic Chemistry Laboratory, RIKENSaitama, Japan
| | - Go Hirai
- Synthetic Organic Chemistry Laboratory, RIKENSaitama, Japan
- RIKEN Center for Sustainable Resource ScienceSaitama, Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKENSaitama, Japan
- RIKEN Center for Sustainable Resource ScienceSaitama, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource ScienceYokohama, Japan
- Graduate School of Pharmaceutical Sciences, Chiba UniversityChiba, Japan
- *Correspondence: Atsushi Fukushima, Kazuki Saito,
| |
Collapse
|
18
|
Fernie AR, Pichersky E. Focus Issue on Metabolism: Metabolites, Metabolites Everywhere. PLANT PHYSIOLOGY 2015; 169:1421-3. [PMID: 26531677 PMCID: PMC4634105 DOI: 10.1104/pp.15.01499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Alisdair R Fernie
- Max-Planck-Institute of MolecularPlant Physiology14476 Potsdam-GolmGermany
| | - Eran Pichersky
- Department of Molecular, Cellular, andDevelopmental BiologyUniversity of MichiganAnn Arbor, MI 48109
| |
Collapse
|
19
|
Kim J, Buell CR. A Revolution in Plant Metabolism: Genome-Enabled Pathway Discovery. PLANT PHYSIOLOGY 2015; 169:1532-1539. [PMID: 26224805 PMCID: PMC4634072 DOI: 10.1104/pp.15.00976] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/27/2015] [Indexed: 05/20/2023]
Abstract
Genome-enabled discoveries are the hallmark of 21st century biology, including major discoveries in the biosynthesis and regulation of plant metabolic pathways. Access to next generation sequencing technologies has enabled research on the biosynthesis of diverse plant metabolites, especially secondary metabolites, resulting in a broader understanding of not only the structural and regulatory genes involved in metabolite biosynthesis but also in the evolution of chemical diversity in the plant kingdom. Several paradigms that govern secondary metabolism have emerged, including that (1) gene family expansion and diversification contribute to the chemical diversity found in the plant kingdom, (2) genes encoding biochemical pathway components are frequently transcriptionally coregulated, and (3) physical clustering of nonhomologous genes that encode components of secondary metabolic pathways can occur. With an increasing knowledge base that is coupled with user-friendly and inexpensive technologies, biochemists are poised to accelerate the annotation of biochemical pathways relevant to human health, agriculture, and the environment.
Collapse
Affiliation(s)
- Jeongwoon Kim
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|