1
|
Redmond EJ, Ronald J, Davis SJ, Ezer D. Stable and dynamic gene expression patterns over diurnal and developmental timescales in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2025; 246:1147-1162. [PMID: 40114416 PMCID: PMC11982781 DOI: 10.1111/nph.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/24/2025] [Indexed: 03/22/2025]
Abstract
Developmental processes are known to be circadian-regulated in plants. For instance, the circadian clock regulates genes involved in the photoperiodic flowering pathway and the initiation of leaf senescence. Furthermore, signals that entrain the circadian clock, such as energy availability, are known to vary in strength over plant development. However, diel oscillations of the Arabidopsis transcriptome have typically been measured in seedlings. We collected RNA sequencing (RNA-seq) data from Arabidopsis leaves over developmental and diel timescales, concurrently: every 4 h d-1, on three separate days after a synchronised vegetative-to-reproductive transition. Gene expression varied more over the developmental timescale than on the diel timescale, including genes related to a key energy sensor: the sucrose nonfermenting-1-related protein kinase complex. Moreover, regulatory targets of core clock genes displayed changes in rhythmicity and amplitude of expression over development. Cell-type-specific expression showed diel patterns that varied in amplitude, but not phase, over development. Some previously identified reverse transcription quantitative polymerase chain reaction housekeeping genes display undesirable levels of variation over both timescales. We identify which common reverse transcription quantitative polymerase chain reaction housekeeping genes are most stable across developmental and diel timescales. In summary, we establish the patterns of circadian transcriptional regulation over plant development, demonstrating how diel patterns of expression change over developmental timescales.
Collapse
Affiliation(s)
- Ethan J. Redmond
- Department of BiologyUniversity of YorkWentworth Way, HeslingtonYorkYO10 5DDUK
| | - James Ronald
- Department of BiologyUniversity of YorkWentworth Way, HeslingtonYorkYO10 5DDUK
| | - Seth J. Davis
- Department of BiologyUniversity of YorkWentworth Way, HeslingtonYorkYO10 5DDUK
| | - Daphne Ezer
- Department of BiologyUniversity of YorkWentworth Way, HeslingtonYorkYO10 5DDUK
| |
Collapse
|
2
|
Cao L, Chen Y, Xiao K, Chen L. FaNAC047-FaNAC058 module coordinately promotes chlorophyll degradation and reactive oxygen species production during heat-induced leaf senescence in tall fescue. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1009-1027. [PMID: 40152208 DOI: 10.1111/jipb.13897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 02/28/2025] [Indexed: 03/29/2025]
Abstract
Leaf senescence can be triggered by various abiotic stresses. Among these, heat stress emerges as a pivotal environmental factor, particularly in light of the predicted rise in global temperatures. However, the molecular mechanism underlying heat-induced leaf senescence remains largely unexplored. As a cool-season grass species, tall fescue (Festuca arundinacea) is an ideal and imperative material for investigating heat-induced leaf senescence because heat stress easily triggers leaf senescence to influence its forage yield and turf quality. Here, we investigated the role of FaNAC047 in heat-induced leaf senescence. Overexpression of FaNAC047 promoted heat-induced leaf senescence in transgenic tall fescue that was evidenced by a more seriously destructive photosystem and higher accumulation of reactive oxygen species (ROS), whereas knockdown of FaNAC047 delayed leaf senescence. Further protein-DNA interaction assays indicated that FaNAC047 directly activated the transcriptions of NON-YELLOW COLORING 1 (FaNYC1), NYC1-like (FaNOL), and STAY-GREEN (FaSGR) but directly inhibited Catalases 2 (FaCAT2) expression, thereby promoting chlorophyll degradation and ROS accumulation. Subsequently, protein-protein interaction assays revealed that FaNAC047 physically interacted with FaNAC058 to enhance its regulatory effect on FaNYC1, FaNOL, FaSGR, and FaCAT2. Additionally, FaNAC047 could transcriptionally activate FaNAC058 expression to form a regulatory cascade, driving senescence progression. Consistently, the knockdown of FaNAC058 significantly delayed heat-induced leaf senescence. Collectively, our results reveal that FaNAC047-FaNAC058 module coordinately mediates chlorophyll degradation and ROS production to positively regulate heat-induced leaf senescence. The findings illustrate the molecular network of heat-induced leaf senescence for breeding heat-resistant plants.
Collapse
Affiliation(s)
- Liwen Cao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yao Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Kai Xiao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Liang Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Science, Beijing, 100049, China
- Academician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| |
Collapse
|
3
|
Hussain MA, Huang Y, Luo D, Mehmood SS, Raza A, Zhang X, Cheng Y, Cheng H, Zou X, Ding X, Zeng L, Duan L, Wu B, Hu K, Lv Y. Integrative analyses reveal Bna-miR397a-BnaLAC2 as a potential modulator of low-temperature adaptability in Brassica napus L. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40035175 DOI: 10.1111/pbi.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/02/2024] [Accepted: 02/12/2025] [Indexed: 03/05/2025]
Abstract
Brassica napus L. (B. napus) is a major edible oil crop grown around the southern part of China, which often faces cold stress, posing potential damage to vegetative tissues. To sustain growth and reproduction, a detailed understanding of fundamental regulatory processes in B. napus against long-term low temperature (LT) stress is necessary for breeders to adjust the level of LT adaption in a given region and is therefore of great economic importance. Till now, studies on microRNAs (miRNAs) in coping with LT adaption in B. napus are limited. Here, we performed an in-depth analysis on two B. napus varieties with distinct adaptability to LT stress. Through integration of RNA sequencing (RNA-seq) and small RNA-sequencing (sRNA-seq), we identified 106 modules comprising differentially expressed miRNAs and corresponding potential targets based on strong negative correlations between their dynamic expression patterns. Specifically, we demonstrated that Bna-miR397a post-transcriptionally regulates a LACCASE (LAC) gene, BnaLAC2, to enhance the adaption to LT stresses in B. napus by reducing the total lignin remodelling and ROS homeostasis. In addition, the miR397-LAC2 module was also proved to improve freezing tolerance of Arabidopsis, indicating a conserved role of miR397-LAC2 in Cruciferae plants. Overall, this work provides the first description of a miRNA-mediated-module signature for LT adaption and highlights the prominent role of laccase in future breeding programme of LT tolerant B. napus.
Collapse
Affiliation(s)
- Muhammad Azhar Hussain
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Yong Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Dan Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Sundas Saher Mehmood
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Ali Raza
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | | | - Yong Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Hongtao Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Xiling Zou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Xiaoyu Ding
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Liu Zeng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Liu Duan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Bian Wu
- Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Keming Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Yan Lv
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| |
Collapse
|
4
|
Lee J, Kang MH, Choi DM, Marmagne A, Park J, Lee H, Gwak E, Lee JC, Kim JI, Masclaux-Daubresse C, Lim PO. Phytochrome-interacting factors PIF4 and PIF5 directly regulate autophagy during leaf senescence in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1068-1084. [PMID: 39549273 DOI: 10.1093/jxb/erae469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/15/2024] [Indexed: 11/18/2024]
Abstract
During leaf senescence, autophagy plays a critical role by removing damaged cellular components and participating in nutrient remobilization to sink organs. However, how AUTOPHAGY (ATG) genes are regulated during natural leaf senescence remains largely unknown. In this study, we attempted to identify upstream transcriptional regulator(s) of ATG genes and their molecular basis during leaf senescence in Arabidopsis through the combined analyses of promoter binding, autophagy flux, and genetic interactions. We found that PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and PIF5 directly bind to the promoters of ATG5, ATG12a, ATG12b, ATG8a, ATG8e, ATG8f, and ATG8g, inducing their transcription. These target ATG genes are down-regulated in pif4, pif5, and pif4pif5 mutants, resulting in decreased autophagic activity and slower degradation of chloroplast proteins and chlorophyll. Conversely, overexpression of ATG8 genes accelerated protein degradation with early leaf senescence. Moreover, our data suggested partial suppression of the pif4pif5 phenotype by ATG8a overexpression. PIF4/PIF5 also influence senescence induced by nutrient starvation, another hallmark of the autophagy pathway. Furthermore, we observed that the PIF4/PIF5-ATG regulatory module may contribute to seed maturation. Our study not only unveils transcriptional regulators of autophagy in natural leaf senescence but also underscores the potential role of PIF4/PIF5 as functional regulators in leaf senescence and nutrient remobilization.
Collapse
Affiliation(s)
- Juhyeon Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Myeong Hoon Kang
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Da-Min Choi
- Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju 61186, Republic of Korea
| | - Anne Marmagne
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Jeehye Park
- School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Heeho Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Eunha Gwak
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jong-Chan Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jeong-Il Kim
- Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju 61186, Republic of Korea
| | - Céline Masclaux-Daubresse
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Pyung Ok Lim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
5
|
Huang J, Du J, Liu Y, Lu L, Xu Y, Shi J, Liu Q, Li Q, Liu Y, Chen Y, Du M, Zhao Y, Huo L, Wang W, Ding C, Wei L, Wu J, Yuan YW, Chen J, Li R, Cui F, Zhang X. RH3 enhances antiviral defense by facilitating small RNA loading into Argonaute 2 at endoplasmic reticulum-chloroplast membrane contact sites. Nat Commun 2025; 16:1953. [PMID: 40000658 PMCID: PMC11862194 DOI: 10.1038/s41467-025-57296-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
While RNA silencing is crucial for plant resistance against viruses, the cellular connections between RNA silencing and antiviral responses in plants remain poorly understood. In this study, we aim to investigate this relationship by examining the subcellular localization of small RNA loading and viral replication in Arabidopsis. Our findings reveal that Argonaute 2 (AGO2), a key component of RNA silencing, loads small RNAs at the endoplasmic reticulum (ER)-chloroplast membrane contact sites (MCSs). We identify a chloroplast-localized protein, RNA helicase 3 (RH3), which interacts with AGO2 and facilitates the loading of small RNAs into AGO2 at these MCSs. Furthermore, we discover that MCSs serve as replication sites for certain plant viruses. RH3 also promotes the loading of viral-derived small RNAs into AGO2, thereby enhancing plant antiviral resistance. Overall, our study sheds light on the roles of RH3 in RNA silencing and plant antiviral defenses, providing valuable insights into the cytobiological connections between RNA silencing, viral replication, and antiviral immunity.
Collapse
Affiliation(s)
- Juan Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Du
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Lu Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanzhuo Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianfei Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yang Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaqiu Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Meng Du
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yiming Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangxiao Huo
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Weiran Wang
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Chenxi Ding
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Liya Wei
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Jianguo Wu
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Unit 3043, Storrs, CT, 06269, USA
| | - Jinfeng Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ruixi Li
- SUSTech-PKU Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Hainan Seed Industry Laboratory, Sanya, 572025, China.
| |
Collapse
|
6
|
Doan PPT, Vuong HH, Kim J. Genetic Foundation of Leaf Senescence: Insights from Natural and Cultivated Plant Diversity. PLANTS (BASEL, SWITZERLAND) 2024; 13:3405. [PMID: 39683197 DOI: 10.3390/plants13233405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Leaf senescence, the final stage of leaf development, is crucial for plant fitness as it enhances nutrient reutilization, supporting reproductive success and overall plant adaptation. Understanding its molecular and genetic regulation is essential to improve crop resilience and productivity, particularly in the face of global climate change. This review explores the significant contributions of natural genetic diversity to our understanding of leaf senescence, focusing on insights from model plants and major crops. We discuss the physiological and adaptive significance of senescence in plant development, environmental adaptation, and agricultural productivity. The review emphasizes the importance of natural genetic variation, including studies on natural accessions, landraces, cultivars, and artificial recombinant lines to unravel the genetic basis of senescence. Various approaches, from quantitative trait loci mapping to genome-wide association analysis and in planta functional analysis, have advanced our knowledge of senescence regulation. Current studies focusing on key regulatory genes and pathways underlying natural senescence, identified from natural or recombinant accession and cultivar populations, are highlighted. We also address the adaptive implications of abiotic and biotic stress factors triggering senescence and the genetic mechanisms underlying these responses. Finally, we discuss the challenges in translating these genetic insights into crop improvement. We propose future research directions, such as expanding studies on under-researched crops, investigating multiple stress combinations, and utilizing advanced technologies, including multiomics and gene editing, to harness natural genetic diversity for crop resilience.
Collapse
Affiliation(s)
- Phan Phuong Thao Doan
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Hue Huong Vuong
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Jeongsik Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Republic of Korea
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 63243, Republic of Korea
- Faculty of Science Education, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
7
|
Lin W, Huang D, Li M, Ren Y, Zheng X, Wu B, Miao Y. WHIRLY proteins, multi-layer regulators linking the nucleus and organelles in developmental and stress-induced senescence of plants. ANNALS OF BOTANY 2024; 134:521-536. [PMID: 38845347 PMCID: PMC11523626 DOI: 10.1093/aob/mcae092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/03/2024] [Indexed: 11/01/2024]
Abstract
Plant senescence is an integrated programme of plant development that aims to remobilize nutrients and energy from senescing tissues to developing organs under developmental and stress-induced conditions. Upstream in the regulatory network, a small family of single-stranded DNA/RNA-binding proteins known as WHIRLYs occupy a central node, acting at multiple regulatory levels and via trans-localization between the nucleus and organelles. In this review, we summarize the current progress on the role of WHIRLY members in plant development and stress-induced senescence. WHIRLY proteins can be traced back in evolution to green algae. WHIRLY proteins trade off the balance of plant developmental senescence and stress-induced senescence through maintaining organelle genome stability via R-loop homeostasis, repressing the transcription at a configuration condition, and recruiting RNA to impact organelle RNA editing and splicing, as evidenced in several species. WHIRLY proteins also act as retrograde signal transducers between organelles and the nucleus through protein modification and stromule or vesicle trafficking. In addition, WHIRLY proteins interact with hormones, reactive oxygen species and environmental signals to orchestrate cell fate in an age-dependent manner. Finally, prospects for further research and promotion to improve crop production under environmental constraints are highlighted.
Collapse
Affiliation(s)
- Wenfang Lin
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Dongmei Huang
- Department of Biochemistry and Molecular Biology, Xiamen Medical College, Xiamen 361023, China
| | - Mengsi Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Yujun Ren
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Xiangzi Zheng
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Binghua Wu
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| |
Collapse
|
8
|
Redmond EJ, Ronald J, Davis SJ, Ezer D. Single-plant-omics reveals the cascade of transcriptional changes during the vegetative-to-reproductive transition. THE PLANT CELL 2024; 36:4594-4606. [PMID: 39121073 PMCID: PMC11449079 DOI: 10.1093/plcell/koae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 06/26/2024] [Accepted: 08/02/2024] [Indexed: 08/11/2024]
Abstract
Plants undergo rapid developmental transitions, which occur contemporaneously with gradual changes in physiology. Moreover, individual plants within a population undergo developmental transitions asynchronously. Single-plant-omics has the potential to distinguish between transcriptional events that are associated with these binary and continuous processes. Furthermore, we can use single-plant-omics to order individual plants by their intrinsic biological age, providing a high-resolution transcriptional time series. We performed RNA-seq on leaves from a large population of wild-type Arabidopsis (Arabidopsis thaliana) during the vegetative-to-reproductive transition. Though most transcripts were differentially expressed between bolted and unbolted plants, some regulators were more closely associated with leaf size and biomass. Using a pseudotime inference algorithm, we determined that some senescence-associated processes, such as the reduction in ribosome biogenesis, were evident in the transcriptome before a bolt was visible. Even in this near-isogenic population, some variants are associated with developmental traits. These results support the use of single-plant-omics to uncover rapid transcriptional dynamics by exploiting developmental asynchrony.
Collapse
Affiliation(s)
- Ethan J Redmond
- Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
| | - James Ronald
- Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Seth J Davis
- Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
| | - Daphne Ezer
- Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
| |
Collapse
|
9
|
Zhu GQ, Qu L, Xue HW. Casein kinase 1 AELs promote senescence by enhancing ethylene biosynthesis through phosphorylating WRKY22 transcription factor. THE NEW PHYTOLOGIST 2024; 244:116-130. [PMID: 38702992 DOI: 10.1111/nph.19785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/07/2024] [Indexed: 05/06/2024]
Abstract
Leaf senescence is a complex process regulated by developmental and environmental factors, and plays a pivotal role in the development and life cycle of higher plants. Casein kinase 1 (CK1) is a highly conserved serine/threonine protein kinase in eukaryotes and functions in various cellular processes including cell proliferation, light signaling and hormone effects of plants. However, the biological function of CK1 in plant senescence remains unclear. Through systemic genetic and biochemical studies, we here characterized the function of Arabidopsis EL1-like (AEL), a CK1, in promoting leaf senescence by stimulating ethylene biosynthesis through phosphorylating transcription factor WRKY22. Seedlings lacking or overexpressing AELs presented delayed or accelerated leaf senescence, respectively. AELs interact with and phosphorylate WRKY22 at Thr57, Thr60 and Ser69 residues to enhance whose transactivation activity. Being consistent, increased or suppressed phosphorylation of WRKY22 resulted in the promoted or delayed leaf senescence. WRKY22 directly binds to promoter region and stimulates the transcription of 1-amino-cyclopropane-1-carboxylate synthase 7 gene to promote ethylene level and hence leaf senescence. Our studies demonstrated the crucial role of AEL-mediated phosphorylation in regulating ethylene biosynthesis and promoting leaf senescence by enhancing WRKY22 transactivation activity, which helps to elucidate the fine-controlled ethylene biosynthesis and regulatory network of leaf senescence.
Collapse
Affiliation(s)
- Guo-Qing Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Qu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hong-Wei Xue
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
10
|
Xue H, Zhou W, Yang L, Li S, Lei P, An X, Jia M, Zhang H, Yu F, Meng J, Liu X. Endoplasmic reticulum protein ALTERED MERISTEM PROGRAM 1 negatively regulates senescence in Arabidopsis. PLANT PHYSIOLOGY 2024; 196:273-290. [PMID: 38781292 DOI: 10.1093/plphys/kiae299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
Plant senescence is a highly regulated developmental program crucial for nutrient reallocation and stress adaptation in response to developmental and environmental cues. Stress-induced and age-dependent natural senescence share both overlapping and distinct molecular responses and regulatory schemes. Previously, we have utilized a carbon-deprivation (C-deprivation) senescence assay using Arabidopsis (Arabidopsis thaliana) seedlings to investigate senescence regulation. Here we conducted a comprehensive time-resolved transcriptomic analysis of Arabidopsis wild type seedlings subjected to C-deprivation treatment at multiple time points, unveiling substantial temporal changes and distinct gene expression patterns. Moreover, we identified ALTERED MERISTEM PROGRAM 1 (AMP1), encoding an endoplasmic reticulum protein, as a potential regulator of senescence based on its expression profile. By characterizing loss-of-function alleles and overexpression lines of AMP1, we confirmed its role as a negative regulator of plant senescence. Genetic analyses further revealed a synergistic interaction between AMP1 and the autophagy pathway in regulating senescence. Additionally, we discovered a functional association between AMP1 and the endosome-localized ABNORMAL SHOOT3 (ABS3)-mediated senescence pathway and positioned key senescence-promoting transcription factors downstream of AMP1. Overall, our findings shed light on the molecular intricacies of transcriptome reprogramming during C-deprivation-induced senescence and the functional interplay among endomembrane compartments in controlling plant senescence.
Collapse
Affiliation(s)
- Hui Xue
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenhui Zhou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lan Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuting Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pei Lei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xue An
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Min Jia
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongchang Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Yu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingjing Meng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiayan Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
11
|
Lyu JI, Kim JH, Chuong NN, Doan PPT, Chu H, Baek SH, Lim PO, Kim J. ACCELERATED CELL DEATH 6 is a crucial genetic factor shaping the natural diversity of age- and salicylic acid-induced leaf senescence in Arabidopsis. PHYSIOLOGIA PLANTARUM 2024; 176:e14507. [PMID: 39221491 DOI: 10.1111/ppl.14507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/10/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Leaf senescence is a crucial process throughout evolution, vital for plant fitness as it facilitates the gradual shift of energy allocation between photosynthesis and catabolism overtime. This onset is influenced by a complex interplay of genetic and environmental factors, making senescence a key adaptation mechanism for plants in their natural habitats. Our study investigated the genetic mechanism underlying age-induced leaf senescence in Arabidopsis natural populations. Using a phenome high-throughput investigator, we comprehensively analyzed senescence responses across 234 Arabidopsis accessions and identified that environmental factors (e.g., ambient temperature) and physiological factors (e.g., defense responses) are substantially linked to senescence phenotypes. Through genome-wide association mapping, we identified the ACCELERATED CELL DEATH 6 (ACD6) locus as a potential regulator of senescence variation among natural accessions. Knocking out ACD6 in accessions with early and delayed senescence phenotypes resulted in varying degrees of delay in age-induced senescence, highlighting the accession-dependent regulatory role of ACD6 in leaf senescence. Furthermore, our findings suggest ACD6's involvement in senescence regulation via the salicylic acid signaling pathway. In summary, our study sheds light on the genetic regulation of leaf senescence in Arabidopsis natural populations, with the discovery of ACD6 as a potential candidate for genetic modification to enhance plant adaptation and survival.
Collapse
Affiliation(s)
- Jae Il Lyu
- Gene Engineering Division, National Institute of Agricultural Sciences, Republic of Korea
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| | - Jin Hee Kim
- Subtropical Horticulture Research Institute, Jeju National University, Republic of Korea
| | - Nguyen Nguyen Chuong
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Republic of Korea
| | - Phan Phuong Thao Doan
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Republic of Korea
| | - Hyosub Chu
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| | - Seung Hee Baek
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| | - Pyung Ok Lim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Jeongsik Kim
- Subtropical Horticulture Research Institute, Jeju National University, Republic of Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Republic of Korea
- Faculty of Science Education, Jeju National University, Republic of Korea
| |
Collapse
|
12
|
Zhao Y, Zhang Y, Li S, Tan S, Cao J, Wang HL, Luo J, Guo H, Zhang Z, Li Z. Leaf Senescence Database v5.0: A Comprehensive Repository for Facilitating Plant Senescence Research. J Mol Biol 2024; 436:168530. [PMID: 38462130 DOI: 10.1016/j.jmb.2024.168530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Through an extensive literature survey, we have upgraded the Leaf Senescence Database (LSD v5.0; https://ngdc.cncb.ac.cn/lsd/), a curated repository of comprehensive senescence-associated genes (SAGs) and their corresponding mutants. Since its inception in 2010, LSD undergoes frequent updates to encompass the latest advances in leaf senescence research and its current version comprises a high-quality collection of 31,740 SAGs and 1,209 mutants from 148 species, which were manually searched based on robust experimental evidence and further categorized according to their functions in leaf senescence. Furthermore, LSD was greatly enriched with comprehensive annotations for the SAGs through meticulous curation using both manual and computational methods. In addition, it was equipped with user-friendly web interfaces that facilitate text queries, BLAST searches, and convenient download of SAG sequences for localized analysis. Users can effortlessly navigate the database to access a plethora of information, including literature references, mutants, phenotypes, multi-omics data, miRNA interactions, homologs in other plants, and cross-links to various databases. Taken together, the upgraded version of LSD stands as the most comprehensive and informative plant senescence-related database to date, incorporating the largest collection of SAGs and thus bearing great utility for a wide range of studies related to plant senescence.
Collapse
Affiliation(s)
- Yaning Zhao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yang Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shichun Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shuya Tan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jie Cao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Hou-Ling Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jingchu Luo
- College of Life Sciences, Peking University, Beijing 100871, China; Center for Bioinformatics, Peking University, Beijing 100871, China
| | - Hongwei Guo
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Zhang Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhonghai Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
13
|
Peng X, Li H, Xu W, Yang Q, Li D, Fan T, Li B, Ding J, Ku W, Deng D, Zhu F, Xiao L, Wang R. The AtMINPP Gene, Encoding a Multiple Inositol Polyphosphate Phosphatase, Coordinates a Novel Crosstalk between Phytic Acid Metabolism and Ethylene Signal Transduction in Leaf Senescence. Int J Mol Sci 2024; 25:8969. [PMID: 39201658 PMCID: PMC11354338 DOI: 10.3390/ijms25168969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Plant senescence is a highly coordinated process that is intricately regulated by numerous endogenous and environmental signals. The involvement of phytic acid in various cell signaling and plant processes has been recognized, but the specific roles of phytic acid metabolism in Arabidopsis leaf senescence remain unclear. Here, we demonstrate that in Arabidopsis thaliana the multiple inositol phosphate phosphatase (AtMINPP) gene, encoding an enzyme with phytase activity, plays a crucial role in regulating leaf senescence by coordinating the ethylene signal transduction pathway. Through overexpressing AtMINPP (AtMINPP-OE), we observed early leaf senescence and reduced chlorophyll contents. Conversely, a loss-of-function heterozygous mutant (atminpp/+) exhibited the opposite phenotype. Correspondingly, the expression of senescence-associated genes (SAGs) was significantly upregulated in AtMINPP-OE but markedly decreased in atminpp/+. Yeast one-hybrid and chromatin immunoprecipitation assays indicated that the EIN3 transcription factor directly binds to the promoter of AtMINPP. Genetic analysis further revealed that AtMINPP-OE could accelerate the senescence of ein3-1eil1-3 mutants. These findings elucidate the mechanism by which AtMINPP regulates ethylene-induced leaf senescence in Arabidopsis, providing insights into the genetic manipulation of leaf senescence and plant growth.
Collapse
Affiliation(s)
- Xiaoyun Peng
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Haiou Li
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Wenzhong Xu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
| | - Qian Yang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Dongming Li
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China;
| | - Tingting Fan
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Bin Li
- Hunan Academy of Agricultural Sciences, Changsha 410125, China;
| | - Junhui Ding
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Wenzhen Ku
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Danyi Deng
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Feiying Zhu
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
- Hunan Academy of Agricultural Sciences, Changsha 410125, China;
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Ruozhong Wang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| |
Collapse
|
14
|
Moreno SR. Decrypting plant tissues: From bulk to cell-type transcriptional profiles. PLANT PHYSIOLOGY 2024; 195:1754-1756. [PMID: 38561987 PMCID: PMC11213241 DOI: 10.1093/plphys/kiae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Affiliation(s)
- Sebastián R Moreno
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| |
Collapse
|
15
|
Vong GYW, McCarthy K, Claydon W, Davis SJ, Redmond EJ, Ezer D. AraLeTA: An Arabidopsis leaf expression atlas across diurnal and developmental scales. PLANT PHYSIOLOGY 2024; 195:1941-1953. [PMID: 38428997 PMCID: PMC11213249 DOI: 10.1093/plphys/kiae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 03/03/2024]
Abstract
Mature plant leaves are a composite of distinct cell types, including epidermal, mesophyll, and vascular cells. Notably, the proportion of these cells and the relative transcript concentrations within different cell types may change over time. While gene expression data at a single-cell level can provide cell-type-specific expression values, it is often too expensive to obtain these data for high-resolution time series. Although bulk RNA-seq can be performed in a high-resolution time series, RNA-seq using whole leaves measures average gene expression values across all cell types in each sample. In this study, we combined single-cell RNA-seq data with time-series data from whole leaves to assemble an atlas of cell-type-specific changes in gene expression over time for Arabidopsis (Arabidopsis thaliana). We inferred how the relative transcript concentrations of different cell types vary across diurnal and developmental timescales. Importantly, this analysis revealed 3 subgroups of mesophyll cells with distinct temporal profiles of expression. Finally, we developed tissue-specific gene networks that form a community resource: an Arabidopsis Leaf Time-dependent Atlas (AraLeTa). This allows users to extract gene networks that are confirmed by transcription factor-binding data and specific to certain cell types at certain times of day and at certain developmental stages. AraLeTa is available at https://regulatorynet.shinyapps.io/araleta/.
Collapse
Affiliation(s)
- Gina Y W Vong
- Department of Biology, University of York, York YO10 5DD, UK
| | - Kayla McCarthy
- Department of Biology, University of York, York YO10 5DD, UK
| | - Will Claydon
- Department of Biology, University of York, York YO10 5DD, UK
| | - Seth J Davis
- Department of Biology, University of York, York YO10 5DD, UK
| | - Ethan J Redmond
- Department of Biology, University of York, York YO10 5DD, UK
| | - Daphne Ezer
- Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
16
|
Zhang X, Shan J, Wang J, Zhang Y, Yang F, Liu B, Zhang L, Li G, Wang R. Comprehensive Proteome and Acetylome Analysis of Needle Senescence in Larix gmelinii. Int J Mol Sci 2024; 25:6824. [PMID: 38999933 PMCID: PMC11241215 DOI: 10.3390/ijms25136824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Leaf senescence is essential for the growth and development of deciduous trees in the next season. Larix gmelinii, a deciduous coniferous tree, exhibits its most distinctive feature by turning yellow in the autumn and eventually shedding its leaves, resulting in significant changes in its appearance during the fall. Lysine acetylation plays an important role in diverse cellular processes; however, limited knowledge is available regarding acetylations in the needle senescence of L. gmelinii. In this study, the proteomics and acetylated modification omics of two phenotypic leaves, yellow and green (senescent and non-senescent) needles, were analyzed before autumn defoliation. In total, 5022 proteins and 4469 unique acetylation sites in 2414 lysine acylated proteins were identified, and this resulted in the discovery of 1335 differentially expressed proteins (DEPs) and 605 differentially expressed acetylated proteins (DAPs) in yellow versus green needles. There are significant differences between the proteome and acetylome; only 269 proteins were found to be DEP and DAP, of which 136 proteins were consistently expressed in both the DEP and DAP, 91 proteins were upregulated, and 45 proteins were down-regulated. The DEPs participate in the metabolism of starch and sucrose, while the DAPs are involved in glycolysis and the tricarboxylic acid cycle. Among them, DEPs underwent significant changes in glycolysis and citric acid cycling. Most of the enzymes involved in glycolysis and the citrate cycle were acetylated. DAPs were down-regulated in glycolysis and up-regulated in the citrate cycle. In all, the results of this study reveal the important role of lysine acetylation in the senescence of L. gmelinii needles and provide a new perspective for understanding the molecular mechanism of leaf senescence and tree seasonal growth.
Collapse
Affiliation(s)
- Xuting Zhang
- Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jinyuan Shan
- Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jiaxiu Wang
- Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yanxia Zhang
- Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Feiyun Yang
- Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bin Liu
- Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lifeng Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Guojing Li
- Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ruigang Wang
- Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
17
|
Chen PY, Nguyen TTT, Lee RH, Hsu TW, Kao MH, Gojobori T, Chiang TY, Huang CL. Genome-wide expression analysis of vegetative organs during developmental and herbicide-induced whole plant senescence in Arabidopsis thaliana. BMC Genomics 2024; 25:621. [PMID: 38898417 PMCID: PMC11188203 DOI: 10.1186/s12864-024-10518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Whole plant senescence represents the final stage in the life cycle of annual plants, characterized by the decomposition of aging organs and transfer of nutrients to seeds, thereby ensuring the survival of next generation. However, the transcriptomic profile of vegetative organs during this death process remains to be fully elucidated, especially regarding the distinctions between natural programmed death and artificial sudden death induced by herbicide. RESULTS Differential genes expression analysis using RNA-seq in leaves and roots of Arabidopsis thaliana revealed that natural senescence commenced in leaves at 45-52 days after planting, followed by roots initiated at 52-60 days. Additionally, both organs exhibited similarities with artificially induced senescence by glyphosate. Transcription factors Rap2.6L and WKRY75 appeared to serve as central mediators of regulatory changes during natural senescence, as indicated by co-expression networks. Furthermore, the upregulation of RRTF1, exclusively observed during natural death, suggested its role as a regulator of jasmonic acid and reactive oxygen species (ROS) responses, potentially triggering nitrogen recycling in leaves, such as the glutamate dehydrogenase (GDH) shunt. Root senescence was characterized by the activation of AMT2;1 and GLN1;3, facilitating ammonium availability for root-to-shoot translocation, likely under the regulation of PDF2.1. CONCLUSIONS Our study offers valuable insights into the transcriptomic interplay between phytohormones and ROS during whole plant senescence. We observed distinct regulatory networks governing nitrogen utilization in leaf and root senescence processes. Furthermore, the efficient allocation of energy from vegetative organs to seeds emerges as a critical determinant of population sustainability of annual Arabidopsis.
Collapse
Affiliation(s)
- Po-Yi Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Thi Thuy Tu Nguyen
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ruey-Hua Lee
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Tsai-Wen Hsu
- Taiwan Biodiversity Research Institute, Nantou, 552, Taiwan
| | - Ming-Hong Kao
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Takashi Gojobori
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan.
- King Abdullah University of Science and Technology, 4700 KAUST, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - Tzen-Yuh Chiang
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan.
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Chao-Li Huang
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, 701, Taiwan.
- Graduate Program in Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, Tainan, 701, Taiwan.
| |
Collapse
|
18
|
Zhen X, Liu C, Guo Y, Yu Z, Han Y, Zhang B, Liang Y. Leaf Senescence Regulation Mechanism Based on Comparative Transcriptome Analysis in Foxtail Millet. Int J Mol Sci 2024; 25:3905. [PMID: 38612713 PMCID: PMC11011800 DOI: 10.3390/ijms25073905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Leaf senescence, a pivotal process in plants, directly influences both crop yield and nutritional quality. Foxtail millet (Setaria italica) is a C4 model crop renowned for its exceptional nutritional value and stress tolerance characteristics. However, there is a lack of research on the identification of senescence-associated genes (SAGs) and the underlying molecular regulatory mechanisms governing this process. In this study, a dark-induced senescence (DIS) experimental system was applied to investigate the extensive physiological and transcriptomic changes in two foxtail millet varieties with different degrees of leaf senescence. The physiological and biochemical indices revealed that the light senescence (LS) variety exhibited a delayed senescence phenotype, whereas the severe senescence (SS) variety exhibited an accelerated senescence phenotype. The most evident differences in gene expression profiles between these two varieties during DIS included photosynthesis, chlorophyll, and lipid metabolism. Comparative transcriptome analysis further revealed a significant up-regulation of genes related to polysaccharide and calcium ion binding, nitrogen utilization, defense response, and malate metabolism in LS. In contrast, the expression of genes associated with redox homeostasis, carbohydrate metabolism, lipid homeostasis, and hormone signaling was significantly altered in SS. Through WGCNA and RT-qPCR analyses, we identified three SAGs that exhibit potential negative regulation towards dark-induced leaf senescence in foxtail millet. This study establishes the foundation for a further comprehensive examination of the regulatory network governing leaf senescence and provides potential genetic resources for manipulating senescence in foxtail millet.
Collapse
Affiliation(s)
| | | | | | | | - Yuanhuai Han
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (X.Z.); (C.L.); (Y.G.); (Z.Y.); (B.Z.)
| | | | - Yinpei Liang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (X.Z.); (C.L.); (Y.G.); (Z.Y.); (B.Z.)
| |
Collapse
|
19
|
Sheikh AH, Tabassum N, Rawat A, Almeida Trapp M, Nawaz K, Hirt H. m6A RNA methylation counteracts dark-induced leaf senescence in Arabidopsis. PLANT PHYSIOLOGY 2024; 194:2663-2678. [PMID: 38084897 PMCID: PMC10980409 DOI: 10.1093/plphys/kiad660] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 04/01/2024]
Abstract
Senescence is an important physiological process which directly affects many agronomic traits in plants. Senescence induces chlorophyll degradation, phytohormone changes, cellular structure damage, and altered gene regulation. Although these physiological outputs are well defined, the molecular mechanisms employed are not known. Using dark-induced leaf senescence (DILS) as the experimental system, we investigated the role of N6-methyladenosine (m6A) mRNA methylation during senescence in Arabidopsis (Arabidopsis thaliana). Plants compromised in m6A machinery components like METHYLTRANSFERASE A (mta mutant) and VIRILIZER1 (vir-1 mutant) showed an enhanced DILS phenotype. This was accompanied by compromised chloroplast and photosynthesis performance in mta as well as accumulation of senescence-promoting camalexin and phytohormone jasmonic acid after dark treatment. m6A levels increased during DILS and destabilized senescence-related transcripts thereby preventing premature aging. Due to inefficient decay, senescence-related transcripts like ORESARA1 (ORE1), SENESCENCE-ASSOCIATED GENE 21 (SAG21), NAC-like, activated by AP3/PI (NAP), and NONYELLOWING 1 (NYE1) over-accumulated in mta thereby causing accelerated senescence during DILS. Overall, our data propose that m6A modification is involved in regulating the biological response to senescence in plants, providing targets for engineering stress tolerance of crops.
Collapse
Affiliation(s)
- Arsheed H Sheikh
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Naheed Tabassum
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Anamika Rawat
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Marilia Almeida Trapp
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Kashif Nawaz
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Heribert Hirt
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
20
|
Gao Y, Shi X, Chang Y, Li Y, Xiong X, Liu H, Li M, Li W, Zhang X, Fu Z, Xue Y, Tang J. Mapping the gene of a maize leaf senescence mutant and understanding the senescence pathways by expression analysis. PLANT CELL REPORTS 2023; 42:1651-1663. [PMID: 37498331 DOI: 10.1007/s00299-023-03051-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
KEY MESSAGES Narrowing down to a single putative target gene behind a leaf senescence mutant and constructing the regulation network by proteomic method. Leaf senescence mutant is an important resource for exploring molecular mechanism of aging. To dig for potential modulation networks during maize leaf aging process, we delimited the gene responsible for a premature leaf senescence mutant els5 to a 1.1 Mb interval in the B73 reference genome using a BC1F1 population with 40,000 plants, and analyzed the leaf proteomics of the mutant and its near-isogenic wild type line. A total of 1355 differentially accumulated proteins (DAP) were mainly enriched in regulation pathways such as "photosynthesis", "ribosome", and "porphyrin and chlorophyll metabolism" by the KEGG pathway analysis. The interaction networks constructed by incorporation of transcriptome data showed that ZmELS5 likely repaired several key factors in the photosynthesis system. The putative candidate proteins for els5 were proposed based on DAPs in the fined QTL mapping interval. These results provide fundamental basis for cloning and functional research of the els5 gene, and new insights into the molecular mechanism of leaf senescence in maize.
Collapse
Affiliation(s)
- Yong Gao
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xia Shi
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yongyuan Chang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yingbo Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xuehang Xiong
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hongmei Liu
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Mengyuan Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Weihua Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xuehai Zhang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhiyuan Fu
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yadong Xue
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Jihua Tang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
21
|
Du K, Jiang S, Chen H, Xia Y, Guo R, Ling A, Liao T, Wu W, Kang X. Spatiotemporal miRNA and transcriptomic network dynamically regulate the developmental and senescence processes of poplar leaves. HORTICULTURE RESEARCH 2023; 10:uhad186. [PMID: 37899951 PMCID: PMC10611553 DOI: 10.1093/hr/uhad186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/07/2023] [Indexed: 10/31/2023]
Abstract
Poplar is an important afforestation and urban greening species. Poplar leaf development occurs in stages, from young to mature and then from mature to senescent; these are accompanied by various phenotypic and physiological changes. However, the associated transcriptional regulatory network is relatively unexplored. We first used principal component analysis to classify poplar leaves at different leaf positions into two stages: developmental maturity (the stage of maximum photosynthetic capacity); and the stage when photosynthetic capacity started to decline and gradually changed to senescence. The two stages were then further subdivided into five intervals by gene expression clustering analysis: young leaves, the period of cell genesis and functional differentiation (L1); young leaves, the period of development and initial formation of photosynthetic capacity (L3-L7); the period of maximum photosynthetic capacity of functional leaves (L9-L13); the period of decreasing photosynthetic capacity of functional leaves (L15-L27); and the period of senescent leaves (L29). Using a weighted co-expression gene network analysis of regulatory genes, high-resolution spatiotemporal transcriptional regulatory networks were constructed to reveal the core regulators that regulate leaf development. Spatiotemporal transcriptome data of poplar leaves revealed dynamic changes in genes and miRNAs during leaf development and identified several core regulators of leaf development, such as GRF5 and MYB5. This in-depth analysis of transcriptional regulation during leaf development provides a theoretical basis for exploring the biological basis of the transcriptional regulation of leaf development and the molecular design of breeding for delaying leaf senescence.
Collapse
Affiliation(s)
- Kang Du
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Shenxiu Jiang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hao Chen
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yufei Xia
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Ruihua Guo
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Aoyu Ling
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Ting Liao
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
| | - Wenqi Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiangyang Kang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
22
|
Lei P, Yu F, Liu X. Recent advances in cellular degradation and nuclear control of leaf senescence. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5472-5486. [PMID: 37453102 DOI: 10.1093/jxb/erad273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Senescence is the final stage of plant growth and development, and is a highly regulated process at the molecular, cellular, and organismal levels. When triggered by age, hormonal, or environmental cues, plants actively adjust their metabolism and gene expression to execute the progression of senescence. Regulation of senescence is vital for the reallocation of nutrients to sink organs, to ensure reproductive success and adaptations to stresses. Identification and characterization of hallmarks of leaf senescence are of great importance for understanding the molecular regulatory mechanisms of plant senescence, and breeding future crops with more desirable senescence traits. Tremendous progress has been made in elucidating the genetic network underpinning the metabolic and cellular changes in leaf senescence. In this review, we focus on three hallmarks of leaf senescence - chlorophyll and chloroplast degradation, loss of proteostasis, and activation of senescence-associated genes (SAGs), and discuss recent findings of the molecular players and the crosstalk of senescence pathways.
Collapse
Affiliation(s)
- Pei Lei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiayan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
23
|
Ren Y, Sun X, Nie J, Guo P, Wu X, Zhang Y, Gao M, Niaz M, Yang X, Sun C, Zhang N, Chen F. Mapping QTL conferring flag leaf senescence in durum wheat cultivars. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:66. [PMID: 37564974 PMCID: PMC10409934 DOI: 10.1007/s11032-023-01410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023]
Abstract
Flag leaf senescence is a critical factor affecting the yield and quality of wheat. The aim of this study was to identify QTLs associated with flag leaf senescence in an F10 recombinant inbred line population derived from durum wheats UC1113 and Kofa. Bulked segregant analysis using the wheat 660K SNP array identified 3225 SNPs between extreme-phenotype bulks, and the differential SNPs were mainly clustered on chromosomes 1A, 1B, 3B, 5A, 5B, and 7A. BSR-Seq indicated that the significant SNPs were mainly located in two intervals of 354.0-389.0 Mb and 8.0-15.0 Mb on 1B and 3B, respectively. Based on the distribution of significant SNPs on chromosomes 1B and 3B, a total of 109 insertion/deletion (InDel) markers were developed, and 8 of them were finally used to map QTL in UC1113/Kofa population for flag leaf senescence. Inclusive composite interval mapping identified two major QTL in marker intervals Mar2005-Mar2116 and Mar207-Mar289, explaining 14.2-15.4% and 31.4-68.6% of the phenotypic variances across environments, respectively. Using BSR-Seq, gene expression and sequence analysis, the TraesCS1B02G211600 and TraesCS3B02G023000 were identified as candidate senescence-associated genes. This study has potential to be used in cloning key genes for flag leaf senescence and provides available molecular markers for genotyping and marker-assisted selection breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01410-3.
Collapse
Affiliation(s)
- Yan Ren
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College/CIMMYT-China Wheat and Maize Joint Research Center, Henan Agricultural University, Zhengzhou, 450046 China
| | - Xiaonan Sun
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College/CIMMYT-China Wheat and Maize Joint Research Center, Henan Agricultural University, Zhengzhou, 450046 China
| | - Jingyun Nie
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College/CIMMYT-China Wheat and Maize Joint Research Center, Henan Agricultural University, Zhengzhou, 450046 China
| | - Peng Guo
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College/CIMMYT-China Wheat and Maize Joint Research Center, Henan Agricultural University, Zhengzhou, 450046 China
| | - Xiaohui Wu
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College/CIMMYT-China Wheat and Maize Joint Research Center, Henan Agricultural University, Zhengzhou, 450046 China
| | - Yixiao Zhang
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College/CIMMYT-China Wheat and Maize Joint Research Center, Henan Agricultural University, Zhengzhou, 450046 China
| | - Mengjuan Gao
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College/CIMMYT-China Wheat and Maize Joint Research Center, Henan Agricultural University, Zhengzhou, 450046 China
| | - Mohsin Niaz
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College/CIMMYT-China Wheat and Maize Joint Research Center, Henan Agricultural University, Zhengzhou, 450046 China
| | - Xia Yang
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College/CIMMYT-China Wheat and Maize Joint Research Center, Henan Agricultural University, Zhengzhou, 450046 China
| | - Congwei Sun
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College/CIMMYT-China Wheat and Maize Joint Research Center, Henan Agricultural University, Zhengzhou, 450046 China
| | - Ning Zhang
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College/CIMMYT-China Wheat and Maize Joint Research Center, Henan Agricultural University, Zhengzhou, 450046 China
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College/CIMMYT-China Wheat and Maize Joint Research Center, Henan Agricultural University, Zhengzhou, 450046 China
| |
Collapse
|
24
|
Wang L, Doan PPT, Chuong NN, Lee HY, Kim JH, Kim J. Comprehensive transcriptomic analysis of age-, dark-, and salt-induced senescence reveals underlying mechanisms and key regulators of leaf senescence in Zoysia japonica. FRONTIERS IN PLANT SCIENCE 2023; 14:1170808. [PMID: 37324695 PMCID: PMC10265201 DOI: 10.3389/fpls.2023.1170808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/27/2023] [Indexed: 06/17/2023]
Abstract
The lawn grass Zoysia japonica is widely cultivated for its ornamental and recreational value. However, its green period is subject to shortening, which significantly decreases the economic value of Z. japonica, especially for large cultivations. Leaf senescence is a crucial biological and developmental process that significantly influences the lifespan of plants. Moreover, manipulation of this process can improve the economic value of Z. japonica by extending its greening period. In this study, we conducted a comparative transcriptomic analysis using high-throughput RNA sequencing (RNA-seq) to investigate early senescence responses triggered by age, dark, and salt. Gene set enrichment analysis results indicated that while distinct biological processes were involved in each type of senescence response, common processes were also enriched across all senescence responses. The identification and validation of differentially expressed genes (DEGs) via RNA-seq and quantitative real-time PCR provided up- and down-regulated senescence markers for each senescence and putative senescence regulators that trigger common senescence pathways. Our findings revealed that the NAC, WRKY, bHLH, and ARF transcription factor (TF) groups are major senescence-associated TF families that may be required for the transcriptional regulation of DEGs during leaf senescence. In addition, we experimentally validated the senescence regulatory function of seven TFs including ZjNAP, ZjWRKY75, ZjARF2, ZjNAC1, ZjNAC083, ZjARF1, and ZjPIL5 using a protoplast-based senescence assay. This study provides new insight into the molecular mechanisms underlying Z. japonica leaf senescence and identifies potential genetic resources for enhancing its economic value by prolonging its green period.
Collapse
Affiliation(s)
- Lanshuo Wang
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea
| | - Phan Phuong Thao Doan
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea
| | - Nguyen Nguyen Chuong
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea
| | - Hyo-Yeon Lee
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea
- Department of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Jin Hee Kim
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Jeongsik Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea
- Faculty of Science Education, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
25
|
Masood J, Zhu W, Fu Y, Li Z, Zhou Y, Zhang D, Han H, Yan Y, Wen X, Guo H, Liang J. Scaffold protein RACK1A positively regulates leaf senescence by coordinating the EIN3-miR164-ORE1 transcriptional cascade in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36939002 DOI: 10.1111/jipb.13483] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Plants have adopted versatile scaffold proteins to facilitate the crosstalk between multiple signaling pathways. Leaf senescence is a well-programmed developmental stage that is coordinated by various external and internal signals. However, the functions of plant scaffold proteins in response to senescence signals are not well understood. Here, we report that the scaffold protein RACK1A (RECEPTOR FOR ACTIVATED C KINASE 1A) participates in leaf senescence mediated by ethylene signaling via the coordination of the EIN3-miR164-ORE1 transcriptional regulatory cascade. RACK1A is a novel positive regulator of ethylene-mediated leaf senescence. The rack1a mutant exhibits delayed leaf senescence, while transgenic lines overexpressing RACK1A display early leaf senescence. Moreover, RACK1A promotes EIN3 (ETHYLENE INSENSITIVE 3) protein accumulation, and directly interacts with EIN3 to enhance its DNA-binding activity. Together, they then associate with the miR164 promoter to inhibit its transcription, leading to the release of the inhibition on downstream ORE1 (ORESARA 1) transcription and the promotion of leaf senescence. This study reveals a mechanistic framework by which RACK1A promotes leaf senescence via the EIN3-miR164-ORE1 transcriptional cascade, and provides a paradigm for how scaffold proteins finely tune phytohormone signaling to control plant development.
Collapse
Affiliation(s)
- Jan Masood
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Wei Zhu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yajuan Fu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Zhiyong Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yeling Zhou
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Dong Zhang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Huihui Han
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yan Yan
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Xing Wen
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Hongwei Guo
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Jiansheng Liang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| |
Collapse
|
26
|
Wang HL, Yin W, Xia X, Li Z. Orthologs of Human-Disease-Associated Genes in Plants Are Involved in Regulating Leaf Senescence. Life (Basel) 2023; 13:559. [PMID: 36836919 PMCID: PMC9965218 DOI: 10.3390/life13020559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
As eukaryotes, plants and animals have many commonalities on the genetic level, although they differ greatly in appearance and physiological habits. The primary goal of current plant research is to improve the crop yield and quality. However, plant research has a wider aim, exploiting the evolutionary conservatism similarities between plants and animals, and applying discoveries in the field of botany to promote zoological research that will ultimately serve human health, although very few studies have addressed this aspect. Here, we analyzed 35 human-disease-related gene orthologs in plants and characterized the genes in depth. Thirty-four homologous genes were found to be present in the herbaceous annual plant Arabidopsis thaliana and the woody perennial plant Populus trichocarpa, with most of the genes having more than two exons, including the ATM gene with 78 exons. More surprisingly, 27 (79.4%) of the 34 homologous genes in Arabidopsis were found to be senescence-associated genes (SAGs), further suggesting a close relationship between human diseases and cellular senescence. Protein-protein interaction network analysis revealed that the 34 genes formed two main subnetworks, and genes in the first subnetwork interacted with 15 SAGs. In conclusion, our results show that most of the 34 homologs of human-disease-associated genes in plants are involved in the leaf senescence process, suggesting that leaf senescence may offer a means to study the pathogenesis of human diseases and to screen drugs for the treat of diseases.
Collapse
Affiliation(s)
| | | | - Xinli Xia
- National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhonghai Li
- National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
27
|
Kim JY, Lee J, Kang MH, Trang TTM, Lee J, Lee H, Jeong H, Lim PO. Dynamic landscape of long noncoding RNAs during leaf aging in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:1068163. [PMID: 36531391 PMCID: PMC9753222 DOI: 10.3389/fpls.2022.1068163] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
Leaf senescence, the last stage of leaf development, is essential for whole-plant fitness as it marks the relocation of nutrients from senescing leaves to reproductive or other developing organs. Temporally coordinated physiological and functional changes along leaf aging are fine-tuned by a highly regulated genetic program involving multi-layered regulatory mechanisms. Long noncoding RNAs (lncRNAs) are newly emerging as hidden players in many biological processes; however, their contribution to leaf senescence has been largely unknown. Here, we performed comprehensive analyses of RNA-seq data representing all developmental stages of leaves to determine the genome-wide lncRNA landscape along leaf aging. A total of 771 lncRNAs, including 232 unannotated lncRNAs, were identified. Time-course analysis revealed 446 among 771 developmental age-related lncRNAs (AR-lncRNAs). Intriguingly, the expression of AR-lncRNAs was regulated more dynamically in senescing leaves than in growing leaves, revealing the relevant contribution of these lncRNAs to leaf senescence. Further analyses enabled us to infer the function of lncRNAs, based on their interacting miRNA or mRNA partners. We considered functionally diverse lncRNAs including antisense lncRNAs (which regulate overlapping protein-coding genes), competitive endogenous RNAs (ceRNAs; which regulate paired mRNAs using miRNAs as anchors), and mRNA-interacting lncRNAs (which affect the stability of mRNAs). Furthermore, we experimentally validated the senescence regulatory function of three novel AR-lncRNAs including one antisense lncRNA and two mRNA-interacting lncRNAs through molecular and phenotypic analyses. Our study provides a valuable resource of AR-lncRNAs and potential regulatory networks that link the function of coding mRNA and AR-lncRNAs. Together, our results reveal AR-lncRNAs as important elements in the leaf senescence process.
Collapse
Affiliation(s)
- Jung Yeon Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Juhyeon Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Myeong Hoon Kang
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Tran Thi My Trang
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Jusung Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Heeho Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Hyobin Jeong
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, Heidelberg, Germany
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea
| | - Pyung Ok Lim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| |
Collapse
|
28
|
Liu M, Guo C, Xie K, Chen K, Chen J, Wang Y, Wang X. A cross-species co-functional gene network underlying leaf senescence. HORTICULTURE RESEARCH 2022; 10:uhac251. [PMID: 36643763 PMCID: PMC9832971 DOI: 10.1093/hr/uhac251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
The complex leaf senescence process is governed by various levels of transcriptional and translational regulation. Several features of the leaf senescence process are similar across species, yet the extent to which the molecular mechanisms underlying the process of leaf senescence are conserved remains unclear. Currently used experimental approaches permit the identification of individual pathways that regulate various physiological and biochemical processes; however, the large-scale regulatory network underpinning intricate processes like leaf senescence cannot be built using these methods. Here, we discovered a series of conserved genes involved in leaf senescence in a common horticultural crop (Solanum lycopersicum), a monocot plant (Oryza sativa), and a eudicot plant (Arabidopsis thaliana) through analyses of the evolutionary relationships and expression patterns among genes. Our analyses revealed that the genetic basis of leaf senescence is largely conserved across species. We also created a multi-omics workflow using data from more than 10 000 samples from 85 projects and constructed a leaf senescence-associated co-functional gene network with 2769 conserved, high-confidence functions. Furthermore, we found that the mitochondrial unfolded protein response (UPRmt) is the central biological process underlying leaf senescence. Specifically, UPRmt responds to leaf senescence by maintaining mitostasis through a few cross-species conserved transcription factors (e.g. NAC13) and metabolites (e.g. ornithine). The co-functional network built in our study indicates that UPRmt figures prominently in cross-species conserved mechanisms. Generally, the results of our study provide new insights that will aid future studies of leaf senescence.
Collapse
Affiliation(s)
- Moyang Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chaocheng Guo
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kexuan Xie
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kai Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiahao Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yudong Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
29
|
Xue H, Meng J, Lei P, Cao Y, An X, Jia M, Li Y, Liu H, Sheen J, Liu X, Yu F. ARF2-PIF5 interaction controls transcriptional reprogramming in the ABS3-mediated plant senescence pathway. EMBO J 2022; 41:e110988. [PMID: 35942625 PMCID: PMC9531305 DOI: 10.15252/embj.2022110988] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 11/09/2022] Open
Abstract
One of the hallmarks of plant senescence is the global transcriptional reprogramming coordinated by a plethora of transcription factors (TFs). However, mechanisms underlying the interactions between different TFs in modulating senescence remain obscure. Previously, we discovered that plant ABS3 subfamily MATE transporter genes regulate senescence and senescence-associated transcriptional changes. In a genetic screen for mutants suppressing the accelerated senescence phenotype of the gain-of-function mutant abs3-1D, AUXIN RESPONSE FACTOR 2 (ARF2) and PHYTOCHROME-INTERACTING FACTOR 5 (PIF5) were identified as key TFs responsible for transcriptional regulation in the ABS3-mediated senescence pathway. ARF2 and PIF5 (as well as PIF4) interact directly and function interdependently to promote senescence, and they share common target genes such as key senescence promoting genes ORESARA 1 (ORE1) and STAY-GREEN 1 (SGR1) in the ABS3-mediated senescence pathway. In addition, we discovered reciprocal regulation between ABS3-subfamily MATEs and the ARF2 and PIF5/4 TFs. Taken together, our findings reveal a regulatory paradigm in which the ARF2-PIF5/4 functional module facilitates the transcriptional reprogramming in the ABS3-mediated senescence pathway.
Collapse
Affiliation(s)
- Hui Xue
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Jingjing Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Pei Lei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Yongxin Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Xue An
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Min Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
- Present address:
Department of Plant and Microbial BiologyUniversity of California, BerkeleyBerkeleyCAUSA
| | - Yan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Haofeng Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Jen Sheen
- Department of Molecular Biology and Centre for Computational and Integrative BiologyMassachusetts General HospitalBostonMAUSA
- Department of GeneticsHarvard Medical SchoolBostonMAUSA
| | - Xiayan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
- Department of Molecular Biology and Centre for Computational and Integrative BiologyMassachusetts General HospitalBostonMAUSA
- Department of GeneticsHarvard Medical SchoolBostonMAUSA
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
- Institute of Future AgricultureNorthwest A&F UniversityYanglingChina
| |
Collapse
|
30
|
Yu JC, Lu JZ, Cui XY, Guo L, Wang ZJ, Liu YD, Wang F, Qi MF, Liu YF, Li TL. Melatonin mediates reactive oxygen species homeostasis via SlCV to regulate leaf senescence in tomato plants. J Pineal Res 2022; 73:e12810. [PMID: 35620796 DOI: 10.1111/jpi.12810] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/08/2022] [Accepted: 05/21/2022] [Indexed: 11/28/2022]
Abstract
Melatonin (MT) functions in removing reactive oxygen species (ROS) and delaying plant senescence, thereby acting as an antioxidant; however, the molecular mechanism underlying the specific action of MT is unclear. Herein, we used the mutant plants carrying the MT decomposition gene melatonin 3-hydroxylase (M3H) in tomato to elucidate the specific mechanism of action of MT. SlM3H-OE accelerated senescence by decreasing the content of endogenous MT in plants. SlM3H is a senescence-related gene that positively regulates aging. MT inhibited the expression of the senescence-related gene SlCV to scavenge ROS, induced stable chloroplast structure, and delayed leaf senescence. Simultaneously, MT weakened the interaction between SlCV and SlPsbO/SlCAT3, reduced ROS production in photosystem II, and promoted ROS elimination. In conclusion, MT regulates ROS homeostasis and delays leaf aging in tomato plants through SlCV expression modulation.
Collapse
Affiliation(s)
- Jun-Chi Yu
- College of Horticulture, Shenyang Agricultural University, Shenyang, People's Republic of China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, People's Republic of China
| | - Jia-Zhi Lu
- College of Horticulture, Shenyang Agricultural University, Shenyang, People's Republic of China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, People's Republic of China
| | - Xiao-Yu Cui
- College of Horticulture, Shenyang Agricultural University, Shenyang, People's Republic of China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, People's Republic of China
| | - Lei Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, People's Republic of China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, People's Republic of China
| | - Zhi-Jun Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, People's Republic of China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, People's Republic of China
| | - Yu-Dong Liu
- Agricultural Department, Shihezi University, Shihezi, People's Republic of China
| | - Feng Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, People's Republic of China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, People's Republic of China
| | - Ming-Fang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, People's Republic of China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, People's Republic of China
| | - Yu-Feng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, People's Republic of China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, People's Republic of China
| | - Tian-Lai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, People's Republic of China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, People's Republic of China
| |
Collapse
|
31
|
The Eucalyptus grandis chloroplast proteome: Seasonal variations in leaf development. PLoS One 2022; 17:e0265134. [PMID: 36048873 PMCID: PMC9436043 DOI: 10.1371/journal.pone.0265134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/18/2022] [Indexed: 11/26/2022] Open
Abstract
Chloroplast metabolism is very sensitive to environmental fluctuations and is intimately related to plant leaf development. Characterization of the chloroplast proteome dynamics can contribute to a better understanding on plant adaptation to different climate scenarios and leaf development processes. Herein, we carried out a discovery-driven analysis of the Eucalyptus grandis chloroplast proteome during leaf maturation and throughout different seasons of the year. The chloroplast proteome from young leaves differed the most from all assessed samples. Most upregulated proteins identified in mature and young leaves were those related to catabolic-redox signaling and biogenesis processes, respectively. Seasonal dynamics revealed unique proteome features in the fall and spring periods. The most abundant chloroplast protein in humid (wet) seasons (spring and summer) was a small subunit of RuBisCO, while in the dry periods (fall and winter) the proteins that showed the most pronounced accumulation were associated with photo-oxidative damage, Calvin cycle, shikimate pathway, and detoxification. Our investigation of the chloroplast proteome dynamics during leaf development revealed significant alterations in relation to the maturation event. Our findings also suggest that transition seasons induced the most pronounced chloroplast proteome changes over the year. This study contributes to a more comprehensive understanding on the subcellular mechanisms that lead to plant leaf adaptation and ultimately gives more insights into Eucalyptus grandis phenology.
Collapse
|
32
|
Zhang Y, Tan S, Gao Y, Kan C, Wang HL, Yang Q, Xia X, Ishida T, Sawa S, Guo H, Li Z. CLE42 delays leaf senescence by antagonizing ethylene pathway in Arabidopsis. THE NEW PHYTOLOGIST 2022; 235:550-562. [PMID: 35396726 DOI: 10.1111/nph.18154] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Leaf senescence is the final stage of leaf development and is influenced by numerous internal and environmental factors. CLE family peptides are plant-specific peptide hormones that regulate various developmental processes. However, the role of CLE in regulating Arabidopsis leaf senescence remains unclear. Here, we found that CLE42 is a negative regulator of leaf senescence by using a CRISPR/Cas9-produced CLE mutant collection. The cle42 mutant displayed earlier senescence phenotypes, while overexpression of CLE42 delayed age-dependent and dark-induced leaf senescence. Moreover, application of the synthesized 12-amino-acid peptide (CLE42p) also delayed leaf senescence under natural and dark conditions. CLE42 and CLE41/44 displayed functional redundancy in leaf senescence, and the cle41 cle42 cle44 triple mutant displayed more pronounced earlier senescence phenotypes than any single mutant. Analysis of differentially expressed genes obtained by RNA-Seq methodology revealed that the ethylene pathway was suppressed by overexpressing CLE42. Moreover, CLE42 suppressed ethylene biosynthesis and thus promoted the protein accumulation of EBF, which in turn decreased the function of EIN3. Accordingly, mutation of EIN3/EIL1 or overexpression of EBF1 suppressed the earlier senescence phenotypes of the cle42 mutant. Together, our results reveal that the CLE peptide hormone regulates leaf senescence by communicating with the ethylene pathway.
Collapse
Affiliation(s)
- Yi Zhang
- National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, Guangdong, China
| | - Shuya Tan
- National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yuhan Gao
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chengcheng Kan
- National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Hou-Ling Wang
- National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Qi Yang
- National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xinli Xia
- National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Takashi Ishida
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, 860-8555, Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan
| | - Hongwei Guo
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, Guangdong, China
| | - Zhonghai Li
- National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
33
|
Huang D, Lan W, Ma W, Huang R, Lin W, Li M, Chen CY, Wu K, Miao Y. WHIRLY1 recruits the histone deacetylase HDA15 repressing leaf senescence and flowering in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1411-1429. [PMID: 35510566 DOI: 10.1111/jipb.13272] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Leaf senescence is controlled by a complex regulatory network in which robustness is ensured by the activity of transcription factors and epigenetic regulators. However, how these coordinate the process of leaf senescence remains poorly understood. We found that WHIRLY1 interacts with Histone Deacetylase (HDA)15, a Reduced Potassium Dependence3 (RPD3)/HDA1-type HDA, by using green fluorescent protein-nanotrap-mass spectrum assays. The development-dependent interaction between WHIRLY1 and HDA15 was further confirmed by bimolecular fluorescence complementation assays and co-immunoprecipitation assays in Arabidopsis. Multi-omics genome-wide transcriptome and H3K9 acetylome enrichment analysis showed that HDA15 delays leaf senescence and flowering by repressing the expression of the positive regulators of leaf senescence and flowering, such as LOX2 and LARP1C, and reducing H3K9ac levels at these loci; WHIRLY1 and HDA15 co-target to the region near the transcription start site of a subset of nutrient recycling-related genes (e.g., Glutathione S-transferases 10, non-coding RNA, and photosystem II protein D1 synthesizer attenuator PDIL1-2), as well as WRKY53 and ELF4, and co-repress their expression by removing H3K9 acetylation. Our study revealed a key transcription regulatory node of nutrient recycling and senescence-associated genes involved in leaf senescence and flowering via the recruitment of HDA15 by the single-stranded DNA/RNA-binding protein WHIRLY1.
Collapse
Affiliation(s)
- Dongmei Huang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei Lan
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weibo Ma
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rulin Huang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenfang Lin
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengsi Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chia-Yang Chen
- Institute of Botany, College of Life Sciences, Taiwan University, Taibei, 106, China
| | - Keqiang Wu
- Institute of Botany, College of Life Sciences, Taiwan University, Taibei, 106, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
34
|
Guo C, Li X, Zhang Z, Wang Q, Zhang Z, Wen L, Liu C, Deng Z, Chu Y, Liu T, Guo Y. The INFLORESCENCE DEFICIENT IN ABSCISSION-LIKE6 Peptide Functions as a Positive Modulator of Leaf Senescence in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:909378. [PMID: 35845701 PMCID: PMC9280484 DOI: 10.3389/fpls.2022.909378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Leaf senescence is a highly coordinated process and has a significant impact on agriculture. Plant peptides are known to act as important cell-to-cell communication signals that are involved in multiple biological processes such as development and stress responses. However, very limited number of peptides has been reported to be associated with leaf senescence. Here, we report the characterization of the INFLORESCENCE DEFICIENT IN ABSCISSION-LIKE6 (IDL6) peptide as a regulator of leaf senescence. The expression of IDL6 was up-regulated in senescing leaves. Exogenous application of synthetic IDL6 peptides accelerated the process of leaf senescence. The idl6 mutant plants showed delayed natural leaf senescence as well as senescence included by darkness, indicating a regulatory role of IDL6 peptides in leaf senescence. The role of IDL6 as a positive regulator of leaf senescence was further supported by the results of overexpression analysis and complementation test. Transcriptome analysis revealed differential expression of phytohormone-responsive genes in idl6 mutant plants. Further analysis indicated that altered expression of IDL6 led to changes in leaf senescence phenotypes induced by ABA and ethylene treatments. The results from this study suggest that the IDL6 peptide positively regulates leaf senescence in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Cun Guo
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoxu Li
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Zenglin Zhang
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
| | - Qi Wang
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
| | - Zhenbiao Zhang
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lichao Wen
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cheng Liu
- QuJing Tobacco Company, Qujing, China
| | - Zhichao Deng
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yumeng Chu
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
| | - Tao Liu
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongfeng Guo
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
| |
Collapse
|
35
|
Sun J, Liang W, Ye S, Chen X, Zhou Y, Lu J, Shen Y, Wang X, Zhou J, Yu C, Yan C, Zheng B, Chen J, Yang Y. Whole-Transcriptome Analysis Reveals Autophagy Is Involved in Early Senescence of zj-es Mutant Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:899054. [PMID: 35720578 PMCID: PMC9204060 DOI: 10.3389/fpls.2022.899054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Senescence is a necessary stage of plant growth and development, and the early senescence of rice will lead to yield reduction and quality decline. However, the mechanisms of rice senescence remain obscure. In this study, we characterized an early-senescence rice mutant, designated zj-es (ZheJing-early senescence), which was derived from the japonica rice cultivar Zhejing22. The mutant zj-es exhibited obvious early-senescence phenotype, such as collapsed chloroplast, lesions in leaves, declined fertility, plant dwarf, and decreased agronomic traits. The ZJ-ES gene was mapped in a 458 kb-interval between the molecular markers RM5992 and RM5813 on Chromosome 3, and analysis suggested that ZJ-ES is a novel gene controlling rice early senescence. Subsequently, whole-transcriptome RNA sequencing was performed on zj-es and its wild-type rice to dissect the underlying molecular mechanism for early senescence. Totally, 10,085 differentially expressed mRNAs (DEmRNAs), 1,253 differentially expressed lncRNAs (DElncRNAs), and 614 differentially expressed miRNAs (DEmiRNAs) were identified, respectively, in different comparison groups. Based on the weighted gene co-expression network analysis (WGCNA), the co-expression turquoise module was found to be the key for the occurrence of rice early senescence. Furthermore, analysis on the competing endogenous RNA (CeRNA) network revealed that 14 lncRNAs possibly regulated 16 co-expressed mRNAs through 8 miRNAs, and enrichment analysis showed that most of the DEmRNAs and the targets of DElncRNAs and DEmiRNAs were involved in reactive oxygen species (ROS)-triggered autophagy-related pathways. Further analysis showed that, in zj-es, ROS-related enzyme activities were markedly changed, ROS were largely accumulated, autophagosomes were obviously observed, cell death was significantly detected, and lesions were notably appeared in leaves. Totally, combining our results here and the remaining research, we infer that ROS-triggered autophagy induces the programmed cell death (PCD) and its coupled early senescence in zj-es mutant rice.
Collapse
Affiliation(s)
- Jia Sun
- College of Life Science, Fujian A&F University, Fuzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Weifang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Shenghai Ye
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xinyu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuhang Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Jianfei Lu
- Zhejiang Plant Protection, Quarantine and Pesticide Management Station, Hangzhou, China
| | - Ying Shen
- Zhejiang Plant Protection, Quarantine and Pesticide Management Station, Hangzhou, China
| | - Xuming Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Jie Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Chulang Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Chengqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Science, Ningbo, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yong Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| |
Collapse
|
36
|
Park SJ, Park S, Kim Y, Hyeon DY, Park H, Jeong J, Jeong U, Yoon YS, You D, Kwak J, Timilsina R, Hwang D, Kim J, Woo HR. Ethylene responsive factor34 mediates stress-induced leaf senescence by regulating salt stress-responsive genes. PLANT, CELL & ENVIRONMENT 2022; 45:1719-1733. [PMID: 35312081 DOI: 10.1111/pce.14317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/29/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Leaf senescence proceeds with age but is modulated by various environmental stresses and hormones. Salt stress is one of the most well-known environmental stresses that accelerate leaf senescence. However, the molecular mechanisms that integrate salt stress signalling with leaf senescence programmes remain elusive. In this study, we characterised the role of ETHYLENE RESPONSIVE FACTOR34 (ERF34), an Arabidopsis APETALA2 (AP2)/ERF family transcription factor, in leaf senescence. ERF34 was differentially expressed under various leaf senescence-inducing conditions, and negatively regulated leaf senescence induced by age, dark, and salt stress. ERF34 also promoted salt stress tolerance at different stages of the plant life cycle such as seed germination and vegetative growth. Transcriptome analysis revealed that the overexpression of ERF34 increased the transcript levels of salt stress-responsive genes including COLD-REGULATED15A (COR15A), EARLY RESPONSIVE TO DEHYDRATION10 (ERD10), and RESPONSIVE TO DESICCATION29A (RD29A). Moreover, ERF34 directly bound to ERD10 and RD29A promoters and activated their expression. Our findings indicate that ERF34 plays a key role in the convergence of the salt stress response with the leaf senescence programmes, and is a potential candidate for crop improvement, particularly by enhancing salt stress tolerance.
Collapse
Affiliation(s)
- Sung-Jin Park
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Korea
| | - Sanghoon Park
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Yongmin Kim
- Department of Biological Sciences, Chungnam National University, Daejeon, Korea
| | - Do Young Hyeon
- School of Biological Science, Seoul National University, Seoul, Korea
| | - Hyunsoo Park
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Junyong Jeong
- Department of Biological Sciences, Chungnam National University, Daejeon, Korea
| | - Ukcheol Jeong
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Yeong Seon Yoon
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Daesang You
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Junmin Kwak
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Rupak Timilsina
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Daehee Hwang
- School of Biological Science, Seoul National University, Seoul, Korea
| | - Jeongsik Kim
- Faculty of Science Education and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, Korea
| | - Hye Ryun Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| |
Collapse
|
37
|
Wu H, Si Q, Liu J, Yang L, Zhang S, Xu J. Regulation of Arabidopsis Matrix Metalloproteinases by Mitogen-Activated Protein Kinases and Their Function in Leaf Senescence. FRONTIERS IN PLANT SCIENCE 2022; 13:864986. [PMID: 35463412 PMCID: PMC9024413 DOI: 10.3389/fpls.2022.864986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Leaf senescence is a developmentally programmed cell death process that is influenced by a variety of endogenous signals and environmental factors. Here, we report that MPK3 and MPK6, two Arabidopsis mitogen-activated protein kinases (MAPKs or MPKs), and their two upstream MAPK kinases (MAPKKs or MKKs), MKK4 and MKK5, are key regulators of leaf senescence. Weak induction of constitutively active MAPKKs driven by steroid-inducible promoter, which activates endogenous MPK3 and MPK6, induces leaf senescence. This gain-of-function phenotype requires functional endogenous MPK3 and MPK6. Furthermore, loss of function of both MKK4 and MKK5 delays leaf senescence. Expression profiling leads to the identification of matrix metalloproteinases (MMPs), a family of zinc- and calcium-dependent endopeptidases, as the downstream target genes of MPK3/MPK6 cascade. MPK3/MPK6 activation-triggered leaf senescence is associated with rapid and strong induction of At3-MMP and At2-MMP. Expression of Arabidopsis MMP genes is strongly induced during leaf senescence, qualifying them as senescence-associated genes (SAGs). In addition, either constitutive or inducible overexpression of At3-MMP is sufficient to trigger leaf senescence. Based on these findings, we conclude that MPK3/MPK6 MAPK cascade and MMP target genes further downstream are involved in regulating leaf senescence in Arabidopsis.
Collapse
Affiliation(s)
- Hongjiao Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Qi Si
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jianmin Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Liuyi Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shuqun Zhang
- Interdisciplinary Plant Group, Division of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Juan Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
Nagano S, Mori N, Tomari Y, Mitsugi N, Deguchi A, Kashima M, Tezuka A, Nagano AJ, Usami H, Tanabata T, Watanabe H. Effect of differences in light source environment on transcriptome of leaf lettuce (Lactuca sativa L.) to optimize cultivation conditions. PLoS One 2022; 17:e0265994. [PMID: 35349601 PMCID: PMC8963549 DOI: 10.1371/journal.pone.0265994] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/11/2022] [Indexed: 11/18/2022] Open
Abstract
When used in closed-type plant factories, light-emitting diode (LED) illumination systems have the particular advantages of low heat emission and high luminous efficiency. The effects of illumination quality and intensity on the growth and morphogenesis of many plant species have been examined, but improvements are needed to optimize the illumination systems for better plant products with lower resource investments. In particular, new strategies are needed to reduce the wastage of plant products related to leaf senescence, and to better control the ingredients and appearance of leafy vegetables. Although the quality of light is often altered to change the characteristics of plant products, the transcriptional status underlying the physiological responses of plants to light has not been established. Herein, we performed a comprehensive gene expression analysis using RNA-sequencing to determine how red, blue, and red/blue LEDs and fluorescent light sources affect transcriptome involved in the leaf aging of leaf lettuce. The RNA-sequencing profiling revealed clear differences in the transcriptome between young and old leaves. Red LED light caused large variation between the two age classes, while a pure or mixed blue LED light spectrum induced fewer transcriptome differences between young and old leaves. Collectively, the expression levels of genes that showed homology with those of other model organisms provide a detailed physiological overview, incorporating such characteristics as the senescence, nutrient deficiency, and anthocyanin synthesis of the leaf lettuce plants. Our findings suggest that transcriptome profiles of leaf lettuce grown under different light sources provide helpful information to achieve better growth conditions for marketable and efficient green-vegetable production, with improved wastage control and efficient nutrient inputs.
Collapse
Affiliation(s)
- Soichiro Nagano
- Department of Advanced Food Sciences, Faculty of Agriculture, Tamagawa University, Machida, Tokyo, Japan
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Naoya Mori
- Tamagawa University Research Institute, Machida, Tokyo, Japan
| | - Yukiko Tomari
- Tamagawa University Research Institute, Machida, Tokyo, Japan
| | - Noriko Mitsugi
- Department of Advanced Food Sciences, Faculty of Agriculture, Tamagawa University, Machida, Tokyo, Japan
| | - Ayumi Deguchi
- Research Institute for Food and Agriculture, Ryukoku University, Otsu, Shiga, Japan
| | - Makoto Kashima
- Research Institute for Food and Agriculture, Ryukoku University, Otsu, Shiga, Japan
| | - Ayumi Tezuka
- Research Institute for Food and Agriculture, Ryukoku University, Otsu, Shiga, Japan
| | - Atsushi J. Nagano
- Research Institute for Food and Agriculture, Ryukoku University, Otsu, Shiga, Japan
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Hitohide Usami
- Tamagawa University Research Institute, Machida, Tokyo, Japan
| | - Takanari Tanabata
- Department of Advanced Food Sciences, Faculty of Agriculture, Tamagawa University, Machida, Tokyo, Japan
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Hiroyuki Watanabe
- Department of Advanced Food Sciences, Faculty of Agriculture, Tamagawa University, Machida, Tokyo, Japan
| |
Collapse
|
39
|
Doan PPT, Kim JH, Kim J. Rapid Investigation of Functional Roles of Genes in Regulation of Leaf Senescence Using Arabidopsis Protoplasts. FRONTIERS IN PLANT SCIENCE 2022; 13:818239. [PMID: 35371171 PMCID: PMC8969776 DOI: 10.3389/fpls.2022.818239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Leaf senescence is the final stage of leaf development preceding death, which involves a significant cellular metabolic transition from anabolism to catabolism. Several processes during leaf senescence require coordinated regulation by senescence regulatory genes. In this study, we developed a rapid and systematic cellular approach to dissect the functional roles of genes in senescence regulation through their transient expression in Arabidopsis protoplasts. We established and validated this system by monitoring the differential expression of a luciferase-based reporter that was driven by promoters of SEN4 and SAG12, early and late senescence-responsive genes, depending on effectors of known positive and negative senescence regulators. Overexpression of positive senescence regulators, including ORE1, RPK1, and RAV1, increased the expression of both SEN4- and SAG12-LUC while ORE7, a negative senescence regulator decreased their expression. Consistently with overexpression, knockdown of target genes using amiRNAs resulted in opposite SAG12-LUC expression patterns. The timing and patterns of reporter responses induced by senescence regulators provided molecular evidence for their distinct kinetic involvement in leaf senescence regulation. Remarkably, ORE1 and RPK1 are involved in cell death responses, with more prominent and earlier involvement of ORE1 than RPK1. Consistent with the results in protoplasts, further time series of reactive oxygen species (ROS) and cell death assays using different tobacco transient systems reveal that ORE1 causes acute cell death and RPK1 mediates superoxide-dependent intermediate cell death signaling during leaf senescence. Overall, our results indicated that the luciferase-based reporter system in protoplasts is a reliable experimental system that can be effectively used to examine the regulatory roles of Arabidopsis senescence-associated genes.
Collapse
Affiliation(s)
- Phan Phuong Thao Doan
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, South Korea
| | - Jin Hee Kim
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, South Korea
| | - Jeongsik Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, South Korea
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, South Korea
- Faculty of Science Education, Jeju National University, Jeju, South Korea
| |
Collapse
|
40
|
Lee JH, Park YJ, Kim JY, Park CM. Phytochrome B Conveys Low Ambient Temperature Cues to the Ethylene-Mediated Leaf Senescence in Arabidopsis. PLANT & CELL PHYSIOLOGY 2022; 63:326-339. [PMID: 34950951 DOI: 10.1093/pcp/pcab178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 05/22/2023]
Abstract
Leaf senescence is an active developmental process that is tightly regulated through extensive transcriptional and metabolic reprogramming events, which underlie controlled degradation and relocation of nutrients from aged or metabolically inactive leaves to young organs. The onset of leaf senescence is coordinately modulated by intrinsic aging programs and environmental conditions, such as prolonged darkness and temperature extremes. Seedlings growing under light deprivation, as often experienced in severe shading or night darkening, exhibit an accelerated senescing process, which is mediated by a complex signaling network that includes sugar starvation responses and light signaling events via the phytochrome B (phyB)-PHYTOCHROME-INTERACTING FACTOR (PIF) signaling routes. Notably, recent studies indicate that nonstressful ambient temperatures profoundly influence the onset and progression of leaf senescence in darkness, presumably mediated by the phyB-PIF4 signaling pathways. However, it is not fully understood how temperature signals regulate leaf senescence at the molecular level. Here, we demonstrated that low ambient temperatures repress the nuclear export of phyB and the nuclear phyB suppresses the transcriptional activation activity of ethylene signaling mediator ETHYLENE INSENSITIVE3 (EIN3), thus delaying leaf senescence. Accordingly, leaf senescence was insensitive to low ambient temperatures in transgenic plants overexpressing a constitutively nuclear phyB form, as observed in ein3 eil1 mutants. In contrast, leaf senescence was significantly promoted in phyB-deficient mutants under identical temperature conditions. Our data indicate that phyB coordinately integrates light and temperature cues into the EIN3-mediated ethylene signaling pathway that regulates leaf senescence under light deprivation, which would enhance plant fitness under fluctuating natural environments.
Collapse
Affiliation(s)
- June-Hee Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Young-Joon Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jae Young Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
41
|
Miryeganeh M. Epigenetic Mechanisms of Senescence in Plants. Cells 2022; 11:251. [PMID: 35053367 PMCID: PMC8773728 DOI: 10.3390/cells11020251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/30/2022] Open
Abstract
Senescence is a major developmental transition in plants that requires a massive reprogramming of gene expression and includes various layers of regulations. Senescence is either an age-dependent or a stress-induced process, and is under the control of complex regulatory networks that interact with each other. It has been shown that besides genetic reprogramming, which is an important aspect of plant senescence, transcription factors and higher-level mechanisms, such as epigenetic and small RNA-mediated regulators, are also key factors of senescence-related genes. Epigenetic mechanisms are an important layer of this multilevel regulatory system that change the activity of transcription factors (TFs) and play an important role in modulating the expression of senescence-related gene. They include chromatin remodeling, DNA methylation, histone modification, and the RNA-mediated control of transcription factors and genes. This review provides an overview of the known epigenetic regulation of plant senescence, which has mostly been studied in the form of leaf senescence, and it also covers what has been reported about whole-plant senescence.
Collapse
Affiliation(s)
- Matin Miryeganeh
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0412, Japan
| |
Collapse
|
42
|
Bhakta S, Negi S, Tak H, Singh S, Ganapathi TR. MusaATAF2 like protein, a stress-related transcription factor, induces leaf senescence by regulating chlorophyll catabolism and H 2 O 2 accumulation. PHYSIOLOGIA PLANTARUM 2022; 174:e13593. [PMID: 34761415 DOI: 10.1111/ppl.13593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/09/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
NAC transcription factors are known for their diverse role in plants. In this study, we have demonstrated the role of MusaATAF2, a banana NAC transcription factor, in leaf senescence. Its expression gets strongly up-regulated during the early stress responses of drought and high salinity exposure and down-regulated under ABA application, which suggests MusaATAF2 is a stress-related NAC transcription factor. To study the role of MusaATAF2 in banana, we have transformed the banana embryogenic cells with MusaATAF2 coding region and generated transgenic banana plants. Overexpression of MusaATAF2 in banana plants caused yellow leaf phenotype under control condition, suggesting its role as a senescence-associated transcription factor. Transgenic banana leaves exhibited low chlorophyll content and high H2 O2 accumulation. Hormone analysis of the leaves demonstrated a higher accumulation of ABA in the transgenic plants than the controls. Transgenic plants overexpressing MusaATAF2 have a higher transcript abundance of two chlorophyll catabolic pathway genes (PAO and HCAR) and lower transcript abundance of ROS scavenging enzymes (TDP, THIO, CAT, APX, and PRXDN) than control. Together, all these analyses indicate that MusaATAF2 induces senescence by inducing chlorophyll degradation and H2 O2 accumulation in banana plants and controls its own expression using an ABA-dependent feedback loop.
Collapse
Affiliation(s)
- Subham Bhakta
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Sanjana Negi
- Department of Biotechnology, University of Mumbai, Mumbai, India
| | - Himanshu Tak
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Sudhir Singh
- Homi Bhabha National Institute, Mumbai, India
- Plant Biotechnology & Secondary Metabolites Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Thumbali R Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
43
|
Chen M, Yin Y, Zhang L, Yang X, Fu T, Huo X, Wang Y. Metabolomics and Transcriptomics Integration of Early Response of Populus tomentosa to Reduced Nitrogen Availability. FRONTIERS IN PLANT SCIENCE 2021; 12:769748. [PMID: 34956269 PMCID: PMC8692568 DOI: 10.3389/fpls.2021.769748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) is one of the most crucial elements for plant growth and development. However, little is known about the metabolic regulation of trees under conditions of N deficiency. In this investigation, gas chromatography-mass spectrometry (GC-MS) was used to determine global changes in metabolites and regulatory pathways in Populus tomentosa. Thirty metabolites were found to be changed significantly under conditions of low-N stress. N deficiency resulted in increased levels of carbohydrates and decreases in amino acids and some alcohols, as well as some secondary metabolites. Furthermore, an RNA-sequencing (RNA-Seq) analysis was performed to characterize the transcriptomic profiles, and 1,662 differentially expressed genes were identified in P. tomentosa. Intriguingly, four pathways related to carbohydrate metabolism were enriched. Genes involved in the gibberellic acid and indole-3-acetic acid pathways were found to be responsive to low-N stress, and the contents of hormones were then validated by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Coordinated metabolomics and transcriptomics analysis revealed a pattern of co-expression of five pairs of metabolites and unigenes. Overall, our investigation showed that metabolism directly related to N deficiency was depressed, while some components of energy metabolism were increased. These observations provided insights into the metabolic and molecular mechanisms underlying the interactions of N and carbon in poplar.
Collapse
Affiliation(s)
- Min Chen
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yiyi Yin
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Lichun Zhang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Xiaoqian Yang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Tiantian Fu
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Xiaowei Huo
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Yanwei Wang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| |
Collapse
|
44
|
Zhang Y, Gao Y, Wang HL, Kan C, Li Z, Yang X, Yin W, Xia X, Nam HG, Li Z, Guo H. Verticillium dahliae secretory effector PevD1 induces leaf senescence by promoting ORE1-mediated ethylene biosynthesis. MOLECULAR PLANT 2021; 14:1901-1917. [PMID: 34303024 DOI: 10.1016/j.molp.2021.07.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/01/2021] [Accepted: 07/20/2021] [Indexed: 05/16/2023]
Abstract
Leaf senescence, the final stage of leaf development, is influenced by numerous internal and environmental signals. However, how biotic stresses such as pathogen infection regulate leaf senescence remains largely unclear. In this study, we found that the premature leaf senescence in Arabidopsis caused by the soil-borne vascular fungus Verticillium dahliae was impaired by disruption of a protein elicitor from V. dahliae 1 named PevD1. Constitutive or inducible overexpression of PevD1 accelerated Arabidopsis leaf senescence. Interestingly, a senescence-associated NAC transcription factor, ORE1, was targeted by PevD1. PevD1 could interact with and stabilize ORE1 protein by disrupting its interaction with the RING-type ubiquitin E3 ligase NLA. Mutation of ORE1 suppressed the premature senescence caused by overexpressing PevD1, whereas overexpression of ORE1 or PevD1 led to enhanced ethylene production and thereby leaf senescence. We showed that ORE1 directly binds the promoter of ACS6 and promotes its expression for mediating PevD1-induced ethylene biosynthesis. Loss-of-function of ACSs could suppress V. dahliae-induced leaf senescence in ORE1-overexpressing plants. Furthermore, we found thatPevD1 also interacts with Gossypium hirsutum ORE1 (GhORE1) and that virus-induced gene silencing of GhORE1 delays V. dahliae-triggered leaf senescence in cotton, indicating a possibly conserved mechanism in plants. Taken together, these results suggest that V. dahliae induces leaf senescence by secreting the effector PevD1 to manipulate the ORE1-ACS6 cascade, providing new insights into biotic stress-induced senescence in plants.
Collapse
Affiliation(s)
- Yi Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuhan Gao
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hou-Ling Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chengcheng Kan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Ze Li
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiufen Yang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weilun Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Hong Gil Nam
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea; New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Zhonghai Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Hongwei Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| |
Collapse
|
45
|
Kanojia A, Shrestha DK, Dijkwel PP. Primary metabolic processes as drivers of leaf ageing. Cell Mol Life Sci 2021; 78:6351-6364. [PMID: 34279698 PMCID: PMC8558203 DOI: 10.1007/s00018-021-03896-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 12/26/2022]
Abstract
Ageing in plants is a highly coordinated and complex process that starts with the birth of the plant or plant organ and ends with its death. A vivid manifestation of the final stage of leaf ageing is exemplified by the autumn colours of deciduous trees. Over the past decades, technological advances have allowed plant ageing to be studied on a systems biology level, by means of multi-omics approaches. Here, we review some of these studies and argue that these provide strong support for basic metabolic processes as drivers for ageing. In particular, core cellular processes that control the metabolism of chlorophyll, amino acids, sugars, DNA and reactive oxygen species correlate with leaf ageing. However, while multi-omics studies excel at identifying correlative processes and pathways, molecular genetic approaches can provide proof that such processes and pathways control ageing, by means of knock-out and ectopic expression of predicted regulatory genes. Therefore, we also review historic and current molecular evidence to directly test the hypotheses unveiled by the systems biology approaches. We found that the molecular genetic approaches, by and large, confirm the multi-omics-derived hypotheses with notable exceptions, where there is scant evidence that chlorophyll and DNA metabolism are important drivers of leaf ageing. We present a model that summarises the core cellular processes that drive leaf ageing and propose that developmental processes are tightly linked to primary metabolism to inevitably lead to ageing and death.
Collapse
Affiliation(s)
- Aakansha Kanojia
- Center of Plant Systems Biology and Biotechnology, Ruski 139 Blvd., Plovdiv, 4000, Bulgaria
| | - Deny K Shrestha
- School of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Paul P Dijkwel
- School of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| |
Collapse
|
46
|
Zhang Y, Zhang Y, Sun Q, Lu S, Chai L, Ye J, Deng X. Citrus transcription factor CsHB5 regulates abscisic acid biosynthetic genes and promotes senescence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:151-168. [PMID: 34414618 DOI: 10.1111/tpj.15431] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Senescence is a gradual physiological process involving the integration of numerous internal and environmental signals. Abscisic acid (ABA) is a well-known inducer of senescence. However, the regulatory mechanisms underlying ABA-mediated senescence remain largely unknown. Here, we report that the citrus homeodomain leucine zipper I (HD-ZIP I) transcription factor CsHB5 functions as a regulator of ABA-triggered senescence. CsHB5 acts as a nucleus-localized transcriptional activator, the expression of which appeared to be closely associated with citrus senescence. Overexpression of CsHB5 in citrus calli upregulated the expression of ABA- and reactive oxygen species (ROS)-related genes, and significantly increased the content of ABA and hydrogen peroxide (H2 O2 ), whereas silencing CsHB5 in citrus calli downregulated the expression of ABA-related genes. Additionally, heterogenous overexpression of CsHB5 in Solanum lycopersicum (tomato) and Arabidopsis thaliana (Arabidopsis) leads to early leaf yellowing under dark-induced senescence conditions. Meanwhile, the levels of ABA and H2 O2 in transgenic tomatoes increased significantly and the lycopene content decreased. Transcriptome analysis of CsHB5-overexpressing citrus calli and tomato showed that CsHB5 was involved in multiple senescence-associated processes, including chlorophyll degradation, nutrient compound biosynthesis and transport, as well as ABA and ROS signal transduction. The results of yeast one-hybrid assays, electrophoretic mobility shift assays and dual luciferase assays indicated that CsHB5 directly binds to the promoters of ABA biosynthetic genes, including β-carotene hydroxylase 1 (BCH1) and 9-cis-epoxycarotenoid dioxygenase 2 (NCED2), thereby activating their transcription. Our findings revealed that CsHB5 participates in senescence, at least partly, by directly controlling ABA accumulation. Our work provides insight into the regulatory mechanisms underlying ABA-mediated senescence.
Collapse
Affiliation(s)
- Yin Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingzi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Quan Sun
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Suwen Lu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lijun Chai
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junli Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
47
|
Chen X, Zhu Q, Nie Y, Han F, Li Y, Wu HX, Niu S. Determination of conifer age biomarker DAL1 interactome using Y2H-seq. FORESTRY RESEARCH 2021; 1:12. [PMID: 39524519 PMCID: PMC11524280 DOI: 10.48130/fr-2021-0012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/27/2021] [Indexed: 11/16/2024]
Abstract
Age is a sophisticated physiological signal that ensures the sequence of different developmental stages in organisms. The regulation of ageing pathways appears to differ between gymnosperms and angiosperms. We previously identified DAL1 as a conserved conifer age biomarker that plays a crucial role in the transition from vegetative to reproductive life-history phases in pines. Therefore, elucidating the specific interaction events related to DAL1 is key to understanding how age drives conifer development. Large-scale yeast two-hybrid (Y2H) analysis followed by next-generation high-throughput sequencing (Y2H-seq) allowed us to identify 135 PtDAL1 interacting proteins in Pinus tabuliformis. Our study found that PtDAL1 interacting proteins showed an ageing-related module, with sophisticated interacting networks composed of transcription factors (TFs), transcriptional regulators (TRs), and kinases. These interacting proteins are produced in response to a variety of phytohormones and environmental signals, and are likely involved in wood formation, needle development, oleoresin terpenoids biosynthesis, and reproductive development. In this study, we propose a novel regulation model of conifer ageing pathways whereby PtDAL1 coordinates different environmental stimuli and interacts with corresponding proteins to regulate appropriate development.
Collapse
Affiliation(s)
- Xi Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Qianya Zhu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yumeng Nie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Fangxu Han
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yue Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Harry X. Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Linnaeus väg 6, SE-901 83, Umeå, Sweden
| | - Shihui Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| |
Collapse
|
48
|
Xue J, Lu D, Wang S, Lu Z, Liu W, Wang X, Fang Z, He X. Integrated transcriptomic and metabolomic analysis provides insight into the regulation of leaf senescence in rice. Sci Rep 2021; 11:14083. [PMID: 34238989 PMCID: PMC8266841 DOI: 10.1038/s41598-021-93532-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/18/2021] [Indexed: 11/21/2022] Open
Abstract
Leaf senescence is one of the most precisely modulated developmental process and affects various agronomic traits of rice. Anti-senescence rice varieties are important for breeding application. However, little is known about the mechanisms underlying the metabolic regulatory process of leaf senescence in rice. In this study, we performed transcriptomic and metabolomic analyses of the flag leaves in Yuenong Simiao (YN) and YB, two indica rice cultivars that differ in terms of their leaf senescence. We found 8524 genes/204 metabolites were differentially expressed/accumulated in YN at 30 days after flowering (DAF) compared to 0 DAF, and 8799 genes/205 metabolites were differentially expressed in YB at 30 DAF compared to 0 DAF. Integrative analyses showed that a set of genes and metabolites involved in flavonoid pathway were significantly enriched. We identified that relative accumulation of PHENYLALANINE AMMONIA-LYASE (PAL), CINNAMATE 4-HYDROXYLASE (C4H), 4-COUMAROYL-COA LIGASE (4CL), CHALCONE SYNTHASE (CHS) and CHALCONE ISOMERASE (CHI) in YN30/0 was higher than that in YB30/0. Three flavonoid derivatives, including phloretin, luteolin and eriodictyol, showed lower abundances in YB than in YN at 30 DAF. We further revealed a MYB transcription factor, which is encoded by OsR498G0101613100 gene, could suppress the expression of CHI and CHS. Our results suggested a comprehensive analysis of leaf senescence in a view of transcriptome and metabolome and would contribute to exploring the molecular mechanism of leaf senescence in rice.
Collapse
Affiliation(s)
- Jiao Xue
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Dongbai Lu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Shiguang Wang
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Zhanhua Lu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Wei Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Xiaofei Wang
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Zhiqiang Fang
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Xiuying He
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China.
| |
Collapse
|
49
|
Wang HL, Zhang Y, Wang T, Yang Q, Yang Y, Li Z, Li B, Wen X, Li W, Yin W, Xia X, Guo H, Li Z. An alternative splicing variant of PtRD26 delays leaf senescence by regulating multiple NAC transcription factors in Populus. THE PLANT CELL 2021; 33:1594-1614. [PMID: 33793897 PMCID: PMC8254505 DOI: 10.1093/plcell/koab046] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/01/2021] [Indexed: 05/05/2023]
Abstract
During leaf senescence, the final stage of leaf development, nutrients are recycled from leaves to other organs, and therefore proper control of senescence is thus critical for plant fitness. Although substantial progress has been achieved in understanding leaf senescence in annual plants, the molecular factors that control leaf senescence in perennial woody plants are largely unknown. Using RNA sequencing, we obtained a high-resolution temporal profile of gene expression during autumn leaf senescence in poplar (Populus tomentosa). Identification of hub transcription factors (TFs) by co-expression network analysis of genes revealed that senescence-associated NAC family TFs (Sen-NAC TFs) regulate autumn leaf senescence. Age-dependent alternative splicing (AS) caused an intron retention (IR) event in the pre-mRNA encoding PtRD26, a NAC-TF. This produced a truncated protein PtRD26IR, which functions as a dominant-negative regulator of senescence by interacting with multiple hub Sen-NAC TFs, thereby repressing their DNA-binding activities. Functional analysis of senescence-associated splicing factors identified two U2 auxiliary factors that are involved in AS of PtRD26IR. Correspondingly, silencing of these factors decreased PtRD26IR transcript abundance and induced early senescence. We propose that an age-dependent increase of IR splice variants derived from Sen-NAC TFs is a regulatory program to fine tune the molecular mechanisms that regulate leaf senescence in trees.
Collapse
Affiliation(s)
- Hou-Ling Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Yi Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Ting Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Qi Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yanli Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Ze Li
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bosheng Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Xing Wen
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Wenyang Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Weilun Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hongwei Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Author for correspondence: (Z.L.), (H.G.)
| | - Zhonghai Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- Author for correspondence: (Z.L.), (H.G.)
| |
Collapse
|
50
|
Guo Y, Ren G, Zhang K, Li Z, Miao Y, Guo H. Leaf senescence: progression, regulation, and application. MOLECULAR HORTICULTURE 2021; 1:5. [PMID: 37789484 PMCID: PMC10509828 DOI: 10.1186/s43897-021-00006-9] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/11/2021] [Indexed: 05/24/2023]
Abstract
Leaf senescence, the last stage of leaf development, is a type of postmitotic senescence and is characterized by the functional transition from nutrient assimilation to nutrient remobilization which is essential for plants' fitness. The initiation and progression of leaf senescence are regulated by a variety of internal and external factors such as age, phytohormones, and environmental stresses. Significant breakthroughs in dissecting the molecular mechanisms underpinning leaf senescence have benefited from the identification of senescence-altered mutants through forward genetic screening and functional assessment of hundreds of senescence-associated genes (SAGs) via reverse genetic research in model plant Arabidopsis thaliana as well as in crop plants. Leaf senescence involves highly complex genetic programs that are tightly tuned by multiple layers of regulation, including chromatin and transcription regulation, post-transcriptional, translational and post-translational regulation. Due to the significant impact of leaf senescence on photosynthesis, nutrient remobilization, stress responses, and productivity, much effort has been made in devising strategies based on known senescence regulatory mechanisms to manipulate the initiation and progression of leaf senescence, aiming for higher yield, better quality, or improved horticultural performance in crop plants. This review aims to provide an overview of leaf senescence and discuss recent advances in multi-dimensional regulation of leaf senescence from genetic and molecular network perspectives. We also put forward the key issues that need to be addressed, including the nature of leaf age, functional stay-green trait, coordination between different regulatory pathways, source-sink relationship and nutrient remobilization, as well as translational researches on leaf senescence.
Collapse
Affiliation(s)
- Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101 Shandong China
| | - Guodong Ren
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Kewei Zhang
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004 Zhejiang China
| | - Zhonghai Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083 China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Hongwei Guo
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, 518055 Guangdong China
| |
Collapse
|