1
|
Zhang L, Chen C, Li Y, Suo C, Zhou W, Liu X, Deng Y, Sohail H, Li Z, Liu F, Chen X, Yang X. Enhancing aphid resistance in horticultural crops: a breeding prospective. HORTICULTURE RESEARCH 2024; 11:uhae275. [PMID: 39712868 PMCID: PMC11659385 DOI: 10.1093/hr/uhae275] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/20/2024] [Indexed: 12/24/2024]
Abstract
Increasing agricultural losses caused by insect infestations are a significant problem, so it is important to generate pest-resistant crop varieties to address this issue. Several reviews have examined aphid-plant interactions from an entomological perspective. However, few have specifically focused on plant resistance mechanisms to aphids and their applications in breeding for aphid resistance. In this review, we first outline the types of resistance to aphids in plants, namely antixenosis, tolerance (cell wall lignification, resistance proteins), and antibiosis, and we discuss strategies based on each of these resistance mechanisms to generate plant varieties with improved resistance. We then outline research on the complex interactions amongst plants, viruses, and aphids, and discuss how aspects of these interactions can be exploited to improve aphid resistance. A deeper understanding of the epigenetic mechanisms related to induced resistance, i.e. the phenomenon where plants become more resistant to a stress they have encountered previously, may allow for its exploitation in breeding for aphid resistance. Wild relatives of crop plants serve as important sources of resistance traits. Genes related to these traits can be introduced into cultivated crop varieties by breeding or genetic modification, and de novo domestication of wild varieties can be used to exploit multiple excellent characteristics, including aphid resistance. Finally, we discuss the use of molecular design breeding, genomic data, and gene editing to generate new aphid-resistant, high-quality crop varieties.
Collapse
Affiliation(s)
- Lili Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Chaoyan Chen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yao Li
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Chunyu Suo
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Wei Zhou
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaowei Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yizhuo Deng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hamza Sohail
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ziyi Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Fang Liu
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xuehao Chen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaodong Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
2
|
van Kleeff PJM, Mastop M, Sun P, Dangol S, van Doore E, Dekker HL, Kramer G, Lee S, Ryu CM, de Vos M, Schuurink RC. Discovery of Three Bemisia tabaci Effectors and Their Effect on Gene Expression in Planta. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:380-395. [PMID: 38114195 DOI: 10.1094/mpmi-04-23-0044-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Bemisia tabaci (whitefly) is a polyphagous agroeconomic pest species complex. Two members of this species complex, Mediterranean (MED) and Middle-East-Asia Minor 1 (MEAM1), have a worldwide distribution and have been shown to manipulate plant defenses through effectors. In this study, we used three different strategies to identify three MEAM1 proteins that can act as effectors. Effector B1 was identified using a bioinformatics-driven effector-mining strategy, whereas effectors S1 and P1 were identified in the saliva of whiteflies collected from artificial diet and in phloem exudate of tomato on which nymphs were feeding, respectively. These three effectors were B. tabaci specific and able to increase whitefly fecundity when transiently expressed in tobacco plants (Nicotiana tabacum). Moreover, they reduced growth of Pseudomonas syringae pv. tabaci in Nicotiana benthamiana. All three effectors changed gene expression in planta, and B1 and S1 also changed phytohormone levels. Gene ontology and KEGG pathway enrichment analysis pinpointed plant-pathogen interaction and photosynthesis as the main enriched pathways for all three effectors. Our data thus show the discovery and validation of three new B. tabaci MEAM1 effectors that increase whitefly fecundity and modulate plant immunity. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Paula J M van Kleeff
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Marieke Mastop
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Pulu Sun
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Sarmina Dangol
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Eva van Doore
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Henk L Dekker
- Laboratory for Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Gertjan Kramer
- Laboratory for Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Soohyun Lee
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141, South Korea
| | | | - Robert C Schuurink
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
3
|
Zhang L, Liu Y, Wang Q, Wang C, Lv S, Wang Y, Wang J, Wang Y, Yuan J, Zhang H, Kang Z, Ji W. An alternative splicing isoform of wheat TaYRG1 resistance protein activates immunity by interacting with dynamin-related proteins. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5474-5489. [PMID: 35652375 DOI: 10.1093/jxb/erac245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Wheat (Triticum aestivum) is a commercially important crop and its production is seriously threatened by the fungal pathogen Puccinia striiformis f. sp. tritici West (Pst). Resistance (R) genes are critical factors that facilitate plant immune responses. Here, we report a wheat R gene NB-ARC-LRR ortholog, TaYRG1, that is associated with distinct alternative splicing events in wheat infected by Pst. The native splice variant, TaYRG1.6, encodes internal-motif-deleted polypeptides with the same N- and C-termini as TaYRG1.1, resulting in gain of function. Transient expression of protein variants in Nicotiana benthamiana showed that the NB and ARC domains, and TaYRG1.6 (half LRR domain), stimulate robust elicitor-independent cell death based on a signal peptide, although the activity was negatively modulated by the CC and complete LRR domains. Furthermore, molecular genetic analyses indicated that TaYRG1.6 enhanced resistance to Pst in wheat. Moreover, we provide multiple lines of evidence that TaYRG1.6 interacts with a dynamin-related protein, TaDrp1. Proteome profiling suggested that the TaYRG1.6-TaDrp1-DNM complex in the membrane trafficking systems may trigger cell death by mobilizing lipid and kinase signaling in the endocytosis pathway. Our findings reveal a unique mechanism by which TaYRG1 activates cell death and enhances disease resistance by reconfiguring protein structure through alternative splicing.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuanming Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiaohui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Chao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Shikai Lv
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanzhen Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianfeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yajuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Jing Yuan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
4
|
Twayana M, Girija AM, Mohan V, Shah J. Phloem: At the center of action in plant defense against aphids. JOURNAL OF PLANT PHYSIOLOGY 2022; 273:153695. [PMID: 35468314 DOI: 10.1016/j.jplph.2022.153695] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
The location of the phloem deep inside the plant, the high hydrostatic pressure in the phloem, and the composition of phloem sap, which is rich in sugar with a high C:N ratio, allows phloem sap feeding insects to occupy a unique ecological niche. The anatomy and physiology of aphids, a large group of phytophagous insects that use their mouthparts, which are modified into stylets, to consume large amounts of phloem sap, has allowed aphids to successfully exploit this niche, however, to the detriment of agriculture and horticulture. The ability to reproduce asexually, a short generation time, the development of resistance to commonly used insecticides, and their ability to vector viral diseases makes aphids among the most damaging pests of plants. Here we review how plants utilize their ability to occlude sieve elements and accumulate antibiotic and antinutritive factors in the phloem sap to limit aphid infestation. In addition, we summarize progress on understanding how plants perceive aphids to activate defenses in the phloem.
Collapse
Affiliation(s)
- Moon Twayana
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76210, USA.
| | - Anil M Girija
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76210, USA.
| | - Vijee Mohan
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76210, USA.
| | - Jyoti Shah
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76210, USA.
| |
Collapse
|
5
|
Life stage-dependent genetic traits as drivers of plant-herbivore interactions. Curr Opin Biotechnol 2021; 70:234-240. [PMID: 34224938 DOI: 10.1016/j.copbio.2021.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 11/23/2022]
Abstract
In recent decades, we have come to understand in great detail the mechanisms that allow plants and herbivorous arthropods to withstand each other. Research into these interactions often focuses on specific life stages of plants and animals, often for pragmatic reasons. Yet it is well known that the lifecycles of plants and herbivores are accompanied by niche shifts that can change their interactions. The occurrence of changes in the defensive regulatory and metabolic networks of plants during their development as driver of plant-herbivore interactions is mainly inferred from behavioral patterns, but there is increasingly molecular-mechanistic data to support the causality. In particular, understanding the molecular-mechanistic signatures of ontogenetic niche shifts, and their genetic basis, may prove to be critical for the design of knowledge-based crop protection strategies.
Collapse
|
6
|
Santamaria ME, Arnaiz A, Rosa-Diaz I, González-Melendi P, Romero-Hernandez G, Ojeda-Martinez DA, Garcia A, Contreras E, Martinez M, Diaz I. Plant Defenses Against Tetranychus urticae: Mind the Gaps. PLANTS 2020; 9:plants9040464. [PMID: 32272602 PMCID: PMC7238223 DOI: 10.3390/plants9040464] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 01/24/2023]
Abstract
The molecular interactions between a pest and its host plant are the consequence of an evolutionary arms race based on the perception of the phytophagous arthropod by the plant and the different strategies adopted by the pest to overcome plant triggered defenses. The complexity and the different levels of these interactions make it difficult to get a wide knowledge of the whole process. Extensive research in model species is an accurate way to progressively move forward in this direction. The two-spotted spider mite, Tetranychus urticae Koch has become a model species for phytophagous mites due to the development of a great number of genetic tools and a high-quality genome sequence. This review is an update of the current state of the art in the molecular interactions between the generalist pest T. urticae and its host plants. The knowledge of the physical and chemical constitutive defenses of the plant and the mechanisms involved in the induction of plant defenses are summarized. The molecular events produced from plant perception to the synthesis of defense compounds are detailed, with a special focus on the key steps that are little or totally uncovered by previous research.
Collapse
Affiliation(s)
- M. Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, UPM, 28223 Madrid, Spain; (M.E.S.); (A.A.); (I.R.-D.); (P.G.-M.); (G.R.-H.); (D.A.O.-M.); (A.G.); (E.C.); (M.M.)
| | - Ana Arnaiz
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, UPM, 28223 Madrid, Spain; (M.E.S.); (A.A.); (I.R.-D.); (P.G.-M.); (G.R.-H.); (D.A.O.-M.); (A.G.); (E.C.); (M.M.)
| | - Irene Rosa-Diaz
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, UPM, 28223 Madrid, Spain; (M.E.S.); (A.A.); (I.R.-D.); (P.G.-M.); (G.R.-H.); (D.A.O.-M.); (A.G.); (E.C.); (M.M.)
| | - Pablo González-Melendi
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, UPM, 28223 Madrid, Spain; (M.E.S.); (A.A.); (I.R.-D.); (P.G.-M.); (G.R.-H.); (D.A.O.-M.); (A.G.); (E.C.); (M.M.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Gara Romero-Hernandez
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, UPM, 28223 Madrid, Spain; (M.E.S.); (A.A.); (I.R.-D.); (P.G.-M.); (G.R.-H.); (D.A.O.-M.); (A.G.); (E.C.); (M.M.)
| | - Dairon A. Ojeda-Martinez
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, UPM, 28223 Madrid, Spain; (M.E.S.); (A.A.); (I.R.-D.); (P.G.-M.); (G.R.-H.); (D.A.O.-M.); (A.G.); (E.C.); (M.M.)
| | - Alejandro Garcia
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, UPM, 28223 Madrid, Spain; (M.E.S.); (A.A.); (I.R.-D.); (P.G.-M.); (G.R.-H.); (D.A.O.-M.); (A.G.); (E.C.); (M.M.)
| | - Estefania Contreras
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, UPM, 28223 Madrid, Spain; (M.E.S.); (A.A.); (I.R.-D.); (P.G.-M.); (G.R.-H.); (D.A.O.-M.); (A.G.); (E.C.); (M.M.)
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, UPM, 28223 Madrid, Spain; (M.E.S.); (A.A.); (I.R.-D.); (P.G.-M.); (G.R.-H.); (D.A.O.-M.); (A.G.); (E.C.); (M.M.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, UPM, 28223 Madrid, Spain; (M.E.S.); (A.A.); (I.R.-D.); (P.G.-M.); (G.R.-H.); (D.A.O.-M.); (A.G.); (E.C.); (M.M.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-910679180
| |
Collapse
|
7
|
Kaloshian I, Teixeira M. Advances in Plant-Nematode Interactions with Emphasis on the Notorious Nematode Genus Meloidogyne. PHYTOPATHOLOGY 2019; 109:1988-1996. [PMID: 31613704 DOI: 10.1094/phyto-05-19-0163-ia] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plant infections by plant-parasitic nematodes (PPNs) continue to be one of the major limitations in agricultural systems. Root-knot nematodes (RKNs), belonging to the genus Meloidogyne, are one of the most important groups of PPNs worldwide. Their wide host range combined with ubiquitous presence, continues to provide challenges for their control and breeding for resistance. Although resistance to RKNs has been identified, incorporation of these resistances into crops and durability of the resistance remains challenging. In addition, progress in cloning of RKN resistance genes has been dismal. Recent identification of pattern-triggered immunity in roots against nematodes, an ascaroside as a nematode-associated molecular pattern (NAMP) and the discovery of a NAMP plant receptor, provide tools and opportunities to develop durable host resistance against nematodes including RKNs.
Collapse
Affiliation(s)
- Isgouhi Kaloshian
- Department of Nematology, University of California, Riverside, CA 92521
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521
| | - Marcella Teixeira
- Department of Nematology, University of California, Riverside, CA 92521
| |
Collapse
|
8
|
Nalam V, Louis J, Shah J. Plant defense against aphids, the pest extraordinaire. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:96-107. [PMID: 30709498 DOI: 10.1016/j.plantsci.2018.04.027] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/02/2018] [Accepted: 04/30/2018] [Indexed: 05/20/2023]
Abstract
Aphids are amongst the most damaging pests of plants that use their stylets to penetrate the plant tissue to consume large amounts of phloem sap and thus deprive the plant of photoassimilates. In addition, some aphids vector important viral diseases of plants. Plant defenses targeting aphids are broadly classified as antibiosis, which interferes with aphid growth, survival and fecundity, and antixenosis, which influences aphid behavior, including plant choice and feeding from the sieve elements. Here we review the multitude of steps in the infestation process where these defenses can be exerted and highlight the progress made on identifying molecular factors and mechanisms that contribute to host defense, including plant resistance genes and signaling components, as well as aphid-derived effectors that elicit or attenuate host defenses. Also discussed is the impact of aphid-vectored plant viruses on plant-aphid interaction and the concept of tolerance, which allows plant to withstand or recover from damage resulting from the infestation.
Collapse
Affiliation(s)
- Vamsi Nalam
- Department of Biology, Indiana University-Purdue University, Fort Wayne, Indiana, 46805, USA.
| | - Joe Louis
- Department of Entomology and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| | - Jyoti Shah
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA.
| |
Collapse
|
9
|
Gao X, Ruan X, Sun Y, Wang X, Feng B. BAKing up to Survive a Battle: Functional Dynamics of BAK1 in Plant Programmed Cell Death. FRONTIERS IN PLANT SCIENCE 2019; 9:1913. [PMID: 30671069 PMCID: PMC6331536 DOI: 10.3389/fpls.2018.01913] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 12/10/2018] [Indexed: 05/12/2023]
Abstract
In plants, programmed cell death (PCD) has diverse, essential roles in vegetative and reproductive development, and in the responses to abiotic and biotic stresses. Despite the rapid progress in understanding the occurrence and functions of the diverse forms of PCD in plants, the signaling components and molecular mechanisms underlying the core PCD machinery remain a mystery. The roles of BAK1 (BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1), an essential co-receptor of multiple receptor complexes, in the regulation of immunity and development- and defense-related PCD have been well characterized. However, the ways in which BAK1 functions in mediating PCD need to be further explored. In this review, different forms of PCD in both plants and mammals are discussed. Moreover, we mainly summarize recent advances in elucidating the functions and possible mechanisms of BAK1 in controlling diverse forms of PCD. We also highlight the involvement of post-translational modifications (PTMs) of multiple signaling component proteins in BAK1-mediated PCD.
Collapse
Affiliation(s)
- Xiquan Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Xinsen Ruan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Yali Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Xiue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Baomin Feng
- Haixia Institute of Science and Technology, Fujian Agricultural and Forestry University, Fuzhou, China
| |
Collapse
|
10
|
Lee HR, Lee S, Park S, van Kleeff PJM, Schuurink RC, Ryu CM. Transient Expression of Whitefly Effectors in Nicotiana benthamiana Leaves Activates Systemic Immunity Against the Leaf Pathogen Pseudomonas syringae and Soil-Borne Pathogen Ralstonia solanacearum. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
11
|
Santamaria ME, Arnaiz A, Gonzalez-Melendi P, Martinez M, Diaz I. Plant Perception and Short-Term Responses to Phytophagous Insects and Mites. Int J Mol Sci 2018; 19:E1356. [PMID: 29751577 PMCID: PMC5983831 DOI: 10.3390/ijms19051356] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/19/2018] [Accepted: 04/25/2018] [Indexed: 12/03/2022] Open
Abstract
Plant⁻pest relationships involve complex processes encompassing a network of molecules, signals, and regulators for overcoming defenses they develop against each other. Phytophagous arthropods identify plants mainly as a source of food. In turn, plants develop a variety of strategies to avoid damage and survive. The success of plant defenses depends on rapid and specific recognition of the phytophagous threat. Subsequently, plants trigger a cascade of short-term responses that eventually result in the production of a wide range of compounds with defense properties. This review deals with the main features involved in the interaction between plants and phytophagous insects and acari, focusing on early responses from the plant side. A general landscape of the diverse strategies employed by plants within the first hours after pest perception to block the capability of phytophagous insects to develop mechanisms of resistance is presented, with the potential of providing alternatives for pest control.
Collapse
Affiliation(s)
- M Estrella Santamaria
- Centro de Biotecnologia y Genomica de Plantas, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo, Universidad Politecnica de Madrid (UPM), Pozuelo de Alarcon, 28223 Madrid, Spain.
- Departamento de Biotecnologia-Biologia Vegetal, Escuela Tecnica Superior de Ingenieria Agronomica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain.
| | - Ana Arnaiz
- Centro de Biotecnologia y Genomica de Plantas, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo, Universidad Politecnica de Madrid (UPM), Pozuelo de Alarcon, 28223 Madrid, Spain.
- Departamento de Biotecnologia-Biologia Vegetal, Escuela Tecnica Superior de Ingenieria Agronomica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain.
| | - Pablo Gonzalez-Melendi
- Centro de Biotecnologia y Genomica de Plantas, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo, Universidad Politecnica de Madrid (UPM), Pozuelo de Alarcon, 28223 Madrid, Spain.
- Departamento de Biotecnologia-Biologia Vegetal, Escuela Tecnica Superior de Ingenieria Agronomica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain.
| | - Manuel Martinez
- Centro de Biotecnologia y Genomica de Plantas, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo, Universidad Politecnica de Madrid (UPM), Pozuelo de Alarcon, 28223 Madrid, Spain.
- Departamento de Biotecnologia-Biologia Vegetal, Escuela Tecnica Superior de Ingenieria Agronomica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain.
| | - Isabel Diaz
- Centro de Biotecnologia y Genomica de Plantas, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo, Universidad Politecnica de Madrid (UPM), Pozuelo de Alarcon, 28223 Madrid, Spain.
- Departamento de Biotecnologia-Biologia Vegetal, Escuela Tecnica Superior de Ingenieria Agronomica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain.
| |
Collapse
|
12
|
Stahl E, Hilfiker O, Reymond P. Plant-arthropod interactions: who is the winner? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:703-728. [PMID: 29160609 DOI: 10.1111/tpj.13773] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 05/17/2023]
Abstract
Herbivorous arthropods have interacted with plants for millions of years. During feeding they release chemical cues that allow plants to detect the attack and mount an efficient defense response. A signaling cascade triggers the expression of hundreds of genes, which encode defensive proteins and enzymes for synthesis of toxic metabolites. This direct defense is often complemented by emission of volatiles that attract beneficial parasitoids. In return, arthropods have evolved strategies to interfere with plant defenses, either by producing effectors to inhibit detection and downstream signaling steps, or by adapting to their detrimental effect. In this review, we address the current knowledge on the molecular and chemical dialog between plants and herbivores, with an emphasis on co-evolutionary aspects.
Collapse
Affiliation(s)
- Elia Stahl
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Olivier Hilfiker
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| |
Collapse
|
13
|
Engineering resistance to virus transmission. Curr Opin Virol 2017; 26:20-27. [PMID: 28750351 DOI: 10.1016/j.coviro.2017.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 11/22/2022]
Abstract
Engineering plants for resistance to virus transmission by invertebrate vectors has lagged behind other forms of plant protection. Vectors typically transmit more than one virus. Thus, vector resistance could provide a wider range of protection than defenses directed solely against one virus or virus group. We discuss current knowledge of vector-host-virus interactions, the roles of viral gene products in host and vector manipulation, and the effects of semiochemicals on host-vector interactions, and how this knowledge could be employed to disrupt transmission dynamics. We also discuss how resistance to vectors could be generated through genetic engineering or gene editing or indirectly through use of biocontrol using plant-resident viruses that infect vectors.
Collapse
|
14
|
van Kleeff PJM, Galland M, Schuurink RC, Bleeker PM. Small RNAs from Bemisia tabaci Are Transferred to Solanum lycopersicum Phloem during Feeding. FRONTIERS IN PLANT SCIENCE 2016; 7:1759. [PMID: 27933079 PMCID: PMC5121246 DOI: 10.3389/fpls.2016.01759] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 11/08/2016] [Indexed: 05/09/2023]
Abstract
The phloem-feeding whitefly Bemisia tabaci is a serious pest to a broad range of host plants, including many economically important crops such as tomato. These insects serve as a vector for various devastating plant viruses. It is known that whiteflies are capable of manipulating host-defense responses, potentially mediated by effector molecules in the whitefly saliva. We hypothesized that, beside putative effector proteins, small RNAs (sRNA) are delivered by B. tabaci into the phloem, where they may play a role in manipulating host plant defenses. There is already evidence to suggest that sRNAs can mediate the host-pathogen dialogue. It has been shown that Botrytis cinerea, the causal agent of gray mold disease, takes advantage of the plant sRNA machinery to selectively silence host genes involved in defense signaling. Here we identified sRNAs originating from B. tabaci in the phloem of tomato plants on which they are feeding. sRNAs were isolated and sequenced from tomato phloem of whitefly-infested and control plants as well as from the nymphs themselves, control leaflets, and from the infested leaflets. Using stem-loop RT-PCR, three whitefly sRNAs have been verified to be present in whitefly-infested leaflets that were also present in the whitefly-infested phloem sample. Our results show that whitefly sRNAs are indeed present in tomato tissues upon feeding, and they appear to be mobile in the phloem. Their role in the host-insect interaction can now be investigated.
Collapse
|