1
|
Guo H, Chen A, Yang Z, Yang W, Wang X, Xu L. Identification of osmotic stress resistance mediated by MdKAI2 in apple. FRONTIERS IN PLANT SCIENCE 2024; 15:1467034. [PMID: 39703549 PMCID: PMC11655239 DOI: 10.3389/fpls.2024.1467034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024]
Abstract
KAR (Karrikin), a novel plant growth regulator, can be recognized specifically by plants and can activate resistance responses. MdKAI2 is the natural receptor of KARs in apple. Here, we report the identification of osmotic stress resistance in MdKAI2 via the method of genetic transformation. The phenotypic traits, resistance indicators, and transcriptional and metabolic regulation of MdKAI2 were identified. KAR1, a highly active form of KAR, markedly promoted the root growth of Gala cultivar tissue culture‒generated plants, possibly through increases in ABA and TZR contents and decreases in the GA3 content. MdKAI2 was markedly upregulated by PEG stress and significantly promoted the growth of apple calli under nonstress conditions, whereas it was significantly inhibited under 20% PEG stress, as was cell death. MdKAI2 significantly increased the content of total flavonoids, the activity of reactive oxygen species (ROS)‒scavenging enzymes (SOD, POD and CAT), and the content of osmoregulatory substances (soluble protein, soluble sugars and proline). It also inhibited the MDA content and conductivity under osmotic stress. Differentially expressed genes (DEGs), including multiple transcription factors (TFs), such as MYB, bHLH and AP2‒EREBP, are significantly regulated by MdKAI2, and genes involved in the mitogen‒activated protein kinase (MAPK) signaling pathway play crucial roles in the regulation of plant resistance. In addition, pathways such as brassinosteroid (BR) biosynthesis and ABC transporters were downregulated, and the MAPK signaling pathway; plant‒pathogen interaction; cutin, suberin and wax biosynthesis; alpha‒linolenic acid metabolism; and phenylpropanoid biosynthesis were upregulated by MdKAI2. MdKAI2 significantly regulates the levels of lipids, amino acids, terpenoids, benzene, organic acids, carbohydrates, and alkaloids and is involved in the metabolic processes of amino acids, carbohydrates, nucleotides, lipids and secondary metabolites. Furthermore, MdKAI2 positively regulates fatty acids, esters, and terpenoids and negatively regulates metabolites of amino acids, amides and alcohols, and the MAPK signaling pathway may mediate this process. The study has provided a new direction for the industrial application of KAR1 in apples and resistance breeding based on the gene of MdKAI2.
Collapse
Affiliation(s)
| | | | | | | | - Xianpu Wang
- Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China
| | - Lili Xu
- Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China
| |
Collapse
|
2
|
Begcy K, Mondragón-Palomino M, Zhou LZ, Seitz PL, Márton ML, Dresselhaus T. Maize stigmas react differently to self- and cross-pollination and fungal invasion. PLANT PHYSIOLOGY 2024; 196:3071-3090. [PMID: 39371027 PMCID: PMC11638485 DOI: 10.1093/plphys/kiae536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/11/2024] [Accepted: 09/15/2024] [Indexed: 10/08/2024]
Abstract
During sexual reproduction in flowering plants, tip-growing pollen tubes travel from the stigma inside the maternal tissues of the pistil toward ovules. In maize (Zea mays L.), the stigma is highly elongated, forming thread-like strands known as silks. Only compatible pollen tubes successfully penetrate and grow through the transmitting tract of the silk to reach the ovules. Like pollen, fungal spores germinate at the surface of silks and generate tube-like structures (hyphae) penetrating silk tissue. To elucidate commonalities and differences between silk responses to these distinctive invading cells, we compared growth behavior of the various invaders as well as the silk transcriptome after self-pollination, cross-pollination, and infection using 2 different fungi. We report that self-pollination triggers mainly senescence genes, whereas incompatible pollen from Tripsacum dactyloides leads to downregulation of rehydration, microtubule, and cell wall-related genes, explaining the slower pollen tube growth and arrest. Invasion by the ascomycete Fusarium graminearum triggers numerous defense responses including the activation of monolignol biosynthesis and NAC as well as WRKY transcription factor genes, whereas responses to the basidiomycete Ustilago maydis are generally much weaker. We present evidence that incompatible pollination and fungal infection trigger transcriptional reprograming of maize silks cell wall. Pathogen invasion also activates the phytoalexin biosynthesis pathway.
Collapse
Affiliation(s)
- Kevin Begcy
- Environmental Horticulture Department, University of Florida, Gainesville, FL 32611, USA
| | | | - Liang-Zi Zhou
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg 93040, Germany
| | - Patricia-Lena Seitz
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg 93040, Germany
| | - Mihaela-Luiza Márton
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg 93040, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg 93040, Germany
| |
Collapse
|
3
|
Riglet L, Hok S, Kebdani-Minet N, Le Berre J, Gourgues M, Rozier F, Bayle V, Bancel-Vallée L, Allasia V, Keller H, Da Rocha M, Attard A, Fobis-Loisy I. Invasion of the stigma by oomycete pathogenic hyphae or pollen tubes: striking similarities and differences. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6258-6274. [PMID: 39028677 DOI: 10.1093/jxb/erae308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/18/2024] [Indexed: 07/21/2024]
Abstract
Both the pollen tube and hyphae of filamentous pathogens penetrate the outer layer of the host and then grow within host tissues. Early epidermal responses are decisive for the outcome of these two-cell interaction processes. We identified a single cell type, the papilla in the stigma of Arabidospis, as a tool to conduct a comprehensive comparative analysis on how an epidermal cell responds to the invasion of an unwanted pathogen or a welcome pollen tube. We showed that Phytophtora parasitica, a root oomycete, effectively breaches the stigmatic cell wall and develops as a biotroph within the papilla cytoplasm. These invasive features resemble the behaviour exhibited by the pathogen within its natural host cell, but diverge from the manner in which the pollen tube progresses, being engulfed within the papilla cell wall. Quantitative analysis revealed that both invaders trigger reorganization of the stigmatic endomembrane system and the actin cytoskeleton. While some remodelling processes are shared between the two interactions, others appear more specific towards the respective invader. These findings underscore the remarkable ability of an epidermal cell to differentiate between two types of invaders, thereby enabling it to trigger the most suitable response during the onset of invasion.
Collapse
Affiliation(s)
- Lucie Riglet
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon1, CNRS, INRA, F-69342 Lyon, France
| | - Sophie Hok
- INRAE, CNRS, Université Côte d'Azur, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France
| | - Naïma Kebdani-Minet
- INRAE, CNRS, Université Côte d'Azur, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France
| | - Joëlle Le Berre
- INRAE, CNRS, Université Côte d'Azur, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France
| | - Mathieu Gourgues
- INRAE, CNRS, Université Côte d'Azur, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France
| | - Frédérique Rozier
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon1, CNRS, INRA, F-69342 Lyon, France
| | - Vincent Bayle
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon1, CNRS, INRA, F-69342 Lyon, France
| | - Lesli Bancel-Vallée
- Unité de Bordeaux, Bordeaux Imaging Center, 146 rue Lèo Saignat CS 61292, F-33076 Bordeaux, France
| | - Valérie Allasia
- INRAE, CNRS, Université Côte d'Azur, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France
| | - Harald Keller
- INRAE, CNRS, Université Côte d'Azur, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France
| | - Martine Da Rocha
- INRAE, CNRS, Université Côte d'Azur, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France
| | - Agnés Attard
- INRAE, CNRS, Université Côte d'Azur, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France
| | - Isabelle Fobis-Loisy
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon1, CNRS, INRA, F-69342 Lyon, France
| |
Collapse
|
4
|
Lingwan M. Fats influencing flowering: Pistil-derived lipids affect pollen tube growth and fertility in Arabidopsis thaliana. PLANT PHYSIOLOGY 2024; 196:670-671. [PMID: 38875167 PMCID: PMC11444267 DOI: 10.1093/plphys/kiae341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Affiliation(s)
- Maneesh Lingwan
- Plant Physiology, American Society of Plant Biologists
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| |
Collapse
|
5
|
Song J, Mavraganis I, Shen W, Yang H, Patterson N, Wang L, Xiang D, Cui Y, Zou J. Pistil-derived lipids influence pollen tube growth and male fertility in Arabidopsis thaliana. PLANT PHYSIOLOGY 2024; 196:763-772. [PMID: 38917229 DOI: 10.1093/plphys/kiae276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 06/27/2024]
Abstract
Pollen germination and pollen tube elongation require rapid phospholipid production and remodeling in membrane systems that involve both de novo synthesis and turnover. Phosphatidic acid phosphohydrolase (PAH) and lysophosphatidylcholine acyltransferase (LPCAT) are 2 key enzymes in membrane lipid maintenance. PAH generates diacylglycerol (DAG), a necessary precursor for the de novo synthesis of phosphatidylcholine (PC), while LPCAT reacylates lysophosphatidylcholine to PC and plays an essential role in the remodeling of membrane lipids. In this study, we investigated the synthetic defects of pah and lpcat mutations in sexual reproduction of Arabidopsis (Arabidopsis thaliana) and explored the prospect of pistil lipid provision to pollen tube growth. The combined deficiencies of lpcat and pah led to decreased pollen tube growth in the pistil and reduced male transmission. Interestingly, pistils of the lipid mutant dgat1 ameliorated the male transmission deficiencies of pah lpcat pollen. In contrast, pollination with a nonspecific phospholipase C (NPC) mutant exacerbated the fertilization impairment of the pah lpcat pollen. Given the importance of DAG in lipid metabolism and its contrasting changes in the dgat1 and npc mutants, we further investigated whether DAG supplement in synthetic media could influence pollen performance. DAG was incorporated into phospholipids of germinating pollen and stimulated pollen tube growth. Our study provides evidence that pistil-derived lipids contribute to membrane lipid synthesis in pollen tube growth, a hitherto unknown role in synergistic pollen-pistil interactions.
Collapse
Affiliation(s)
- Jingpu Song
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada S7N 0W9
| | - Ioannis Mavraganis
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada S7N 0W9
| | - Wenyun Shen
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada S7N 0W9
| | - Hui Yang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada S7N 0W9
| | - Nii Patterson
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada S7N 0W9
| | - Liping Wang
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Daoquan Xiang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada S7N 0W9
| | - Yuhai Cui
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada N5V 4T3
- Department of Biology, Western University, London, ON, Canada N6A 5B7
| | - Jitao Zou
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada S7N 0W9
| |
Collapse
|
6
|
Dutta AK, Sultana MM, Tanaka A, Suzuki T, Hachiya T, Nakagawa T. Expression analysis of genes encoding extracellular leucine-rich repeat proteins in Arabidopsis thaliana. Biosci Biotechnol Biochem 2024; 88:154-167. [PMID: 38040489 DOI: 10.1093/bbb/zbad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Leucine-rich repeat (LRR)-containing proteins have been identified in diverse species, including plants. The diverse intracellular and extracellular LRR variants are responsible for numerous biological processes. We analyzed the expression patterns of Arabidopsis thaliana extracellular LRR (AtExLRR) genes, 10 receptor-like proteins, and 4 additional genes expressing the LRR-containing protein by a promoter: β-glucuronidase (GUS) study. According to in silico expression studies, several AtExLRR genes were expressed in a tissue- or stage-specific and abiotic/hormone stress-responsive manner, indicating their potential participation in specific biological processes. Based on the promoter: GUS assay, AtExLRRs were expressed in different cells and organs. A quantitative real-time PCR investigation revealed that the expressions of AtExLRR3 and AtExLRR9 were distinct under various abiotic stress conditions. This study investigated the potential roles of extracellular LRR proteins in plant growth, development, and response to various abiotic stresses.
Collapse
Affiliation(s)
- Amit Kumar Dutta
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
- Department of Microbiology, University of Rajshahi, Rajshahi, Bangladesh
| | - Mst Momtaz Sultana
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
- Department of Agricultural Extension (DAE), Ministry of Agriculture, Dhaka, Bangladesh
| | - Ai Tanaka
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Takushi Hachiya
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
| | - Tsuyoshi Nakagawa
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
- Science of Natural Environment Systems Course, Graduate School of Natural Science and Technology, Shimane University, Matsue, Japan
| |
Collapse
|
7
|
Pollen Coat Proteomes of Arabidopsis thaliana, Arabidopsis lyrata, and Brassica oleracea Reveal Remarkable Diversity of Small Cysteine-Rich Proteins at the Pollen-Stigma Interface. Biomolecules 2023; 13:biom13010157. [PMID: 36671543 PMCID: PMC9856046 DOI: 10.3390/biom13010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The pollen coat is the outermost domain of the pollen grain and is largely derived from the anther tapetum, which is a secretory tissue that degenerates late in pollen development. By being localised at the interface of the pollen-stigma interaction, the pollen coat plays a central role in mediating early pollination events, including molecular recognition. Amongst species of the Brassicaceae, a growing body of data has revealed that the pollen coat carries a range of proteins, with a number of small cysteine-rich proteins (CRPs) being identified as important regulators of the pollen-stigma interaction. By utilising a state-of-the-art liquid chromatography/tandem mass spectrometry (LC-MS/MS) approach, rich pollen coat proteomic profiles were obtained for Arabidopsis thaliana, Arabidopsis lyrata, and Brassica oleracea, which greatly extended previous datasets. All three proteomes revealed a strikingly large number of small CRPs that were not previously reported as pollen coat components. The profiling also uncovered a wide range of other protein families, many of which were enriched in the pollen coat proteomes and had functions associated with signal transduction, cell walls, lipid metabolism and defence. These proteomes provide an excellent source of molecular targets for future investigations into the pollen-stigma interaction and its potential evolutionary links to plant-pathogen interactions.
Collapse
|
8
|
Kodera C, Just J, Da Rocha M, Larrieu A, Riglet L, Legrand J, Rozier F, Gaude T, Fobis-Loisy I. The molecular signatures of compatible and incompatible pollination in Arabidopsis. BMC Genomics 2021; 22:268. [PMID: 33853522 PMCID: PMC8048354 DOI: 10.1186/s12864-021-07503-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/02/2021] [Indexed: 12/30/2022] Open
Abstract
Background Fertilization in flowering plants depends on the early contact and acceptance of pollen grains by the receptive papilla cells of the stigma. Deciphering the specific transcriptomic response of both pollen and stigmatic cells during their interaction constitutes an important challenge to better our understanding of this cell recognition event. Results Here we describe a transcriptomic analysis based on single nucleotide polymorphisms (SNPs) present in two Arabidopsis thaliana accessions, one used as female and the other as male. This strategy allowed us to distinguish 80% of transcripts according to their parental origins. We also developed a tool which predicts male/female specific expression for genes without SNP. We report an unanticipated transcriptional activity triggered in stigma upon incompatible pollination and show that following compatible interaction, components of the pattern-triggered immunity (PTI) pathway are induced on the female side. Conclusions Our work unveils the molecular signatures of compatible and incompatible pollinations both at the male and female side. We provide invaluable resource and tools to identify potential new molecular players involved in pollen-stigma interaction. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07503-7.
Collapse
Affiliation(s)
- Chie Kodera
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France. .,Present Address: Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France.
| | - Jérémy Just
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France
| | - Martine Da Rocha
- INRAE, Université Côte d'Azur, CNRS, ISA 400 route des Chappes BP 167, F-06903, Sophia Antipolis Cedex, France
| | - Antoine Larrieu
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France.,Present Address: Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Lucie Riglet
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France.,Present Address: Sainsbury Laboratory, Cambridge University, Cambridge, CB2 1LR, UK
| | - Jonathan Legrand
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France
| | - Frédérique Rozier
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France
| | - Thierry Gaude
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France
| | - Isabelle Fobis-Loisy
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France.
| |
Collapse
|
9
|
Li K, Wang Y, Qu H. RNA-Seq analysis of compatible and incompatible styles of Pyrus species at the beginning of pollination. PLANT MOLECULAR BIOLOGY 2020; 102:287-306. [PMID: 31872308 DOI: 10.1007/s11103-019-00948-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 12/16/2019] [Indexed: 05/22/2023]
Abstract
At the early stage of pollination, the difference in gene expression between compatibility and incompatibility is highly significant about the pollen-specific expression of the LRR gene, resistance, and defensin genes. In Rosaceae, incompatible pollen can penetrate into the style during the gametophytic self-incompatibility response. It is therefore considered a stylar event rather than a stigmatic event. In this study, we explored the differences in gene expression between compatibility and incompatibility in the early stage of pollination. The self-compatible pear variety "Jinzhuili" is a naturally occurring bud mutant from "Yali", a leading Chinese native cultivar exhibiting typical gametophytic self-incompatibility. We collected the styles of 'Yali' and 'Jinzhuili' at 0.5 and 2 h after self-pollination and then performed high-throughput sequencing. According to the KEGG analysis of the differentially expressed genes, several metabolic pathways, such as "Plant hormone signal transduction", "Plant-pathogen interaction", are the main pathways was the most represented pathway. Quantitative PCR was used to validate these differential genes. The expression levels of genes related to pollen growth and disease inhibition, such as LRR (Leucine-rich repeat extensin), resistance, defensin, and auxin, differed significantly between compatible and incompatible pollination. Interestingly, at 0.5 h, most of these genes were upregulated in the compatible pollination system compared with the incompatible pollination system. Calcium transport, which requires ATPase, also demonstrated upregulated expression. In summary, the self-incompatibility reaction was initiated when the pollen land on the stigma.
Collapse
Affiliation(s)
- Kun Li
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang, Qingdao City, 266109, Shandong, China
| | - Yongzhang Wang
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang, Qingdao City, 266109, Shandong, China
| | - Haiyong Qu
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang, Qingdao City, 266109, Shandong, China.
| |
Collapse
|
10
|
Frank U, Kublik S, Mayer D, Engel M, Schloter M, Durner J, Gaupels F. A T-DNA mutant screen that combines high-throughput phenotyping with the efficient identification of mutated genes by targeted genome sequencing. BMC PLANT BIOLOGY 2019; 19:539. [PMID: 31801481 PMCID: PMC6894221 DOI: 10.1186/s12870-019-2162-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Nitrogen dioxide (NO2) triggers hypersensitive response (HR)-like cell death in Arabidopsis thaliana. A high-throughput mutant screen was established to identify genes involved in this type of programmed cell death. RESULTS Altogether 14,282 lines of SALK T-DNA insertion mutants were screened. Growing 1000 pooled mutant lines per tray and simultaneous NO2 fumigation of 4 trays in parallel facilitated high-throughput screening. Candidate mutants were selected based on visible symptoms. Sensitive mutants showed lesions already after fumigation for 1 h with 10 ppm (ppm) NO2 whereas tolerant mutants were hardly damaged even after treatment with 30 ppm NO2. Identification of T-DNA insertion sites by adapter ligation-mediated PCR turned out to be successful but rather time consuming. Therefore, next generation sequencing after T-DNA-specific target enrichment was tested as an alternative screening method. The targeted genome sequencing was highly efficient due to (1.) combination of the pooled DNA from 124 candidate mutants in only two libraries, (2.) successful target enrichment using T-DNA border-specific 70mer probes, and (3.) stringent filtering of the sequencing reads. Seventy mutated genes were identified by at least 3 sequencing reads. Ten corresponding mutants were re-screened of which 8 mutants exhibited NO2-sensitivity or -tolerance confirming that the screen yielded reliable results. Identified candidate genes had published functions in HR, pathogen resistance, and stomata regulation. CONCLUSIONS The presented NO2 dead-or-alive screen combined with next-generation sequencing after T-DNA-specific target enrichment was highly efficient. Two researchers finished the screen within 3 months. Moreover, the target enrichment approach was cost-saving because of the limited number of DNA libraries and sequencing runs required. The experimental design can be easily adapted to other screening approaches e.g. involving high-throughput treatments with abiotic stressors or phytohormones.
Collapse
Affiliation(s)
- Ulrike Frank
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Susanne Kublik
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, Neuherberg, Germany
| | - Dörte Mayer
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marion Engel
- Scientific Computing Research Unit, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biochemical Plant Pathology, Technische Universität München, Freising, Germany
| | - Frank Gaupels
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
11
|
Hu D, Li W, Gao S, Lei T, Hu J, Shen P, Li Y, Li J. Untargeted metabolomic profiling reveals that different responses to self and cross pollination in each flower morph of the heteromorphic plant Plumbago auriculata. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:413-426. [PMID: 31634809 DOI: 10.1016/j.plaphy.2019.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Heteromorphic self-incompatibility (HetSI), which is regulated by sporophytes, occurs in some species as a strategy to promote cross-pollination. This research aimed to reveal metabolic changes occurring in HetSI. We used fluorescence microscopy as a tool to compare growth behavior in self-incompatible (SI) and self-compatible (SC) pollination in both pin and thrum flowers of Plumbago auriculata and to identify the ideal timepoint for sample collection for subsequent experiments. We also employed scanning electron microscopy (SEM) to evaluate intermorph structural differences in the pollen grains and stigmas in relation to HetSI. Importantly, UPLC-MS/MS was applied in this study to identify metabolites, compare metabolic differences between pin and thrum styles and monitor metabolic changes in SC and SI pollinations in the two types of flowers. The metabolites mainly included amino acids/peptides, flavonoids, glycosides/sugars, phenols, other organic acids, fatty acids (derivatives)/lipids, amines, aldehydes, alkaloids, alcohols and other compounds. Surprisingly, energy-related nutrients such as amino acids/peptides and tricarboxylic acid cycle-related metabolites were found at higher levels in SI pollinations than in SC pollinations. This result indicates that physiological changes in pollen-stigma interactions differ in pin and thrum styles and SC and SI pollinations and that energy deficiency is not one of the reasons for HetSI.
Collapse
Affiliation(s)
- Di Hu
- Landscape Research Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130, China.
| | - Wenji Li
- Landscape Research Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130, China.
| | - Suping Gao
- Landscape Research Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130, China.
| | - Ting Lei
- Landscape Research Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130, China.
| | - Ju Hu
- Landscape Research Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130, China.
| | - Ping Shen
- Landscape Research Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130, China.
| | - Yurong Li
- Landscape Research Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130, China.
| | - Jiani Li
- Landscape Research Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130, China.
| |
Collapse
|
12
|
Almaghrabi B, Ali MA, Zahoor A, Shah KH, Bohlmann H. Arabidopsis thionin-like genes are involved in resistance against the beet-cyst nematode (Heterodera schachtii). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 140:55-67. [PMID: 31082659 DOI: 10.1016/j.plaphy.2019.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
Plants express various antimicrobial peptides including thionins to protect themselves against pathogens. It was recently found that, in addition to four thionin genes, Arabidopsis contains 67 thionin-like (ThiL) genes including six pseudogenes. It is known that thionins have antimicrobial activity and are part of the plant defense system, however, nothing is known about ThiL genes. In this study, we present a bioinformatic analysis of the (ThiL) gene family in Arabidopsis. We identified 15 different motifs which positioned the ThiL peptides in four groups. A comparison of amino acid sequences showed that the ThiL peptides are actually more similar to the acidic domain of thionin proproteins than to the thionin domain. We selected 10 ThiL genes to study the expression and possible function in the Arabidopsis plant. RT-PCR and promoter:GUS fusions showed that most genes were expressed at a very low level but in several organs and at different developmental stages. Some genes were also expressed in syncytia induced by the beet cyst nematode Heterodera schachti in roots while others were downregulated in syncytia. Some overexpression lines supported lower number of nematodes that developed on the roots after inoculation. Two of the genes resulted in a strong hypersensitive response when infiltrated into leaves of Nicotiana benthamiana. These results indicate that ThiL genes might be involved in the response to biotic stress. ThiL genes have been expanded in the Brassicales and specifically the Brassicaceae. The most extreme example is the CRP2460 subfamily that contains 28 very closely related genes from Arabidopsis which are mostly the result of tandem duplications.
Collapse
Affiliation(s)
- Bachar Almaghrabi
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria.
| | - Muhammad Amjad Ali
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria; Department of Plant Pathology, University of Agriculture, 38040, Faisalabad, Pakistan; Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, 38040, Faisalabad, Pakistan.
| | - Adil Zahoor
- Department of Plant Pathology, University of Agriculture, 38040, Faisalabad, Pakistan.
| | - Kausar Hussain Shah
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria.
| | - Holger Bohlmann
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
13
|
Joly V, Tebbji F, Nantel A, Matton DP. Pollination Type Recognition from a Distance by the Ovary Is Revealed Through a Global Transcriptomic Analysis. PLANTS (BASEL, SWITZERLAND) 2019; 8:E185. [PMID: 31238522 PMCID: PMC6630372 DOI: 10.3390/plants8060185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/09/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
Abstract
Sexual reproduction in flowering plants involves intimate contact and continuous interactions between the growing pollen tube and the female reproductive structures. These interactions can trigger responses in distal regions of the flower well ahead of fertilization. While pollination-induced petal senescence has been studied extensively, less is known about how pollination is perceived at a distance in the ovary, and how specific this response is to various pollen genotypes. To address this question, we performed a global transcriptomic analysis in the ovary of a wild potato species, Solanum chacoense, at various time points following compatible, incompatible, and heterospecific pollinations. In all cases, pollen tube penetration in the stigma was initially perceived as a wounding aggression. Then, as the pollen tubes grew in the style, a growing number of genes became specific to each pollen genotype. Functional classification analyses revealed sharp differences in the response to compatible and heterospecific pollinations. For instance, the former induced reactive oxygen species (ROS)-related genes while the latter affected genes associated to ethylene signaling. In contrast, incompatible pollination remained more akin to a wound response. Our analysis reveals that every pollination type produces a specific molecular signature generating diversified and specific responses at a distance in the ovary in preparation for fertilization.
Collapse
Affiliation(s)
- Valentin Joly
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC H1X 2B2, Canada.
| | - Faïza Tebbji
- CRCHU de Québec, Université Laval, Québec, QC G1V 4G2, Canada.
| | - André Nantel
- National Research Council Canada, Montréal, QC H4P 2R2, Canada.
| | - Daniel P Matton
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC H1X 2B2, Canada.
| |
Collapse
|
14
|
Transmission of human enteric pathogens from artificially-inoculated flowers to vegetable sprouts/seedlings developed via contaminated seeds. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.12.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Kámán‐Tóth E, Dankó T, Gullner G, Bozsó Z, Palkovics L, Pogány M. Contribution of cell wall peroxidase- and NADPH oxidase-derived reactive oxygen species to Alternaria brassicicola-induced oxidative burst in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2019; 20:485-499. [PMID: 30426643 PMCID: PMC6637864 DOI: 10.1111/mpp.12769] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cell wall peroxidases and plasma membrane-localized NADPH oxidases are considered to be the main sources of the apoplastic oxidative burst in plants attacked by microbial pathogens. In spite of this established doctrine, approaches attempting a comparative, side-by-side analysis of the functions of extracellular reactive oxygen species (ROS) generated by the two enzymatic sources are scarce. Previously, we have reported the role of Arabidopsis NADPH oxidase RBOHD (respiratory burst oxidase homologue D) in plants challenged with the necrotrophic fungus Alternaria brassicicola. Here, we present results on the activity of apoplastic class III peroxidases PRX33 (At3g49110) and PRX34 (At3g49120) investigated in the same Arabidopsis-Alternaria pathosystem. ROS generated by Arabidopsis peroxidases PRX33 and PRX34 increase the necrotic symptoms and colonization success of A. brassicicola. In addition, the knockdown of PRX33 and PRX34 transcript levels leads to a reduced number of host cells showing an extracellular burst of ROS after inoculation with A. brassicicola. Our results also reveal an age-dependent transcript distribution of ROS-producing peroxidase and NADPH oxidase enzymes, and some potential new components of the RBOHD, PRX33 and PRX34 signalling networks.
Collapse
Affiliation(s)
- Evelin Kámán‐Tóth
- Plant Protection Institute, Centre for Agricultural ResearchHungarian Academy of SciencesH‐1022Budapest, Herman Ottó út 15, Hungary
| | - Tamás Dankó
- Plant Protection Institute, Centre for Agricultural ResearchHungarian Academy of SciencesH‐1022Budapest, Herman Ottó út 15, Hungary
| | - Gábor Gullner
- Plant Protection Institute, Centre for Agricultural ResearchHungarian Academy of SciencesH‐1022Budapest, Herman Ottó út 15, Hungary
| | - Zoltán Bozsó
- Plant Protection Institute, Centre for Agricultural ResearchHungarian Academy of SciencesH‐1022Budapest, Herman Ottó út 15, Hungary
| | - László Palkovics
- Szent István UniversityFaculty of Horticultural ScienceH‐1118Budapest, Villányi út 29‐43, Hungary
| | - Miklós Pogány
- Plant Protection Institute, Centre for Agricultural ResearchHungarian Academy of SciencesH‐1022Budapest, Herman Ottó út 15, Hungary
| |
Collapse
|
16
|
Zhou LZ, Dresselhaus T. Friend or foe: Signaling mechanisms during double fertilization in flowering seed plants. Curr Top Dev Biol 2018; 131:453-496. [PMID: 30612627 DOI: 10.1016/bs.ctdb.2018.11.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since the first description of double fertilization 120 years ago, the processes of pollen tube growth and guidance, sperm cell release inside the receptive synergid cell, as well as fusion of two sperm cells to the female gametes (egg and central cell) have been well documented in many flowering plants. Especially microscopic techniques, including live cell imaging, were used to visualize these processes. Molecular as well as genetic methods were applied to identify key players involved. However, compared to the first 11 decades since its discovery, the past decade has seen a tremendous advancement in our understanding of the molecular mechanisms regulating angiosperm fertilization. Whole signaling networks were elucidated including secreted ligands, corresponding receptors, intracellular interaction partners, and further downstream signaling events involved in the cross-talk between pollen tubes and their cargo with female reproductive cells. Biochemical and structural biological approaches are now increasingly contributing to our understanding of the different signaling processes required to distinguish between compatible and incompatible interaction partners. Here, we review the current knowledge about signaling mechanisms during above processes with a focus on the model plants Arabidopsis thaliana and Zea mays (maize). The analogy that many of the identified "reproductive signaling mechanisms" also act partly or fully in defense responses and/or cell death is also discussed.
Collapse
Affiliation(s)
- Liang-Zi Zhou
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
17
|
Schvartzman MS, Corso M, Fataftah N, Scheepers M, Nouet C, Bosman B, Carnol M, Motte P, Verbruggen N, Hanikenne M. Adaptation to high zinc depends on distinct mechanisms in metallicolous populations of Arabidopsis halleri. THE NEW PHYTOLOGIST 2018; 218:269-282. [PMID: 29292833 DOI: 10.1111/nph.14949] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/14/2017] [Indexed: 05/06/2023]
Abstract
Zinc (Zn) hyperaccumulation and hypertolerance are highly variable traits in Arabidopsis halleri. Metallicolous populations have evolved from nearby nonmetallicolous populations in multiple independent adaptation events. To determine whether these events resulted in similar or divergent adaptive strategies to high soil Zn concentrations, we compared two A. halleri metallicolous populations from distant genetic units in Europe (Poland (PL22) and Italy (I16)). The ionomic (Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES)) and transcriptomic (RNA sequencing (RNA-Seq)) responses to growth at 5 and 150 μM Zn were analyzed in root and shoot tissues to examine the contribution of the geographic origin and treatment to variation among populations. These analyses were enabled by the generation of a reference A. halleri transcriptome assembly. The genetic unit accounted for the largest variation in the gene expression profile, whereas the two populations had contrasting Zn accumulation phenotypes and shared little common response to the Zn treatment. The PL22 population displayed an iron deficiency response at high Zn in roots and shoots, which may account for higher Zn accumulation. By contrast, I16, originating from a highly Zn-contaminated soil, strongly responded to control conditions. Our data suggest that distinct mechanisms support adaptation to high Zn in soils among A. halleri metallicolous populations.
Collapse
Affiliation(s)
- M Sol Schvartzman
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, B-4000, Belgium
| | - Massimiliano Corso
- Physiology and Plant Molecular Genetics, Free University of Brussels, Brussels, 1050, Belgium
| | - Nazeer Fataftah
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, B-4000, Belgium
| | - Maxime Scheepers
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, B-4000, Belgium
| | - Cécile Nouet
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, B-4000, Belgium
| | - Bernard Bosman
- Laboratory of Plant and Microbial Ecology, Department of Biology, Ecology and Evolution, University of Liège, Liège, B-4000, Belgium
| | - Monique Carnol
- Laboratory of Plant and Microbial Ecology, Department of Biology, Ecology and Evolution, University of Liège, Liège, B-4000, Belgium
| | - Patrick Motte
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, B-4000, Belgium
| | - Nathalie Verbruggen
- Physiology and Plant Molecular Genetics, Free University of Brussels, Brussels, 1050, Belgium
| | - Marc Hanikenne
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, B-4000, Belgium
| |
Collapse
|
18
|
Mondragón-Palomino M, Stam R, John-Arputharaj A, Dresselhaus T. Diversification of defensins and NLRs in Arabidopsis species by different evolutionary mechanisms. BMC Evol Biol 2017; 17:255. [PMID: 29246101 PMCID: PMC5731061 DOI: 10.1186/s12862-017-1099-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/24/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Genes encoding proteins underlying host-pathogen co-evolution and which are selected for new resistance specificities frequently are under positive selection, a process that maintains diversity. Here, we tested the contribution of natural selection, recombination and transcriptional divergence to the evolutionary diversification of the plant defensins superfamily in three Arabidopsis species. The intracellular NOD-like receptor (NLR) family was used for comparison because positive selection has been well documented in its members. Similar to defensins, NLRs are encoded by a large and polymorphic gene family and many of their members are involved in the immune response. RESULTS Gene trees of Arabidopsis defensins (DEFLs) show a high prevalence of clades containing orthologs. This indicates that their diversity dates back to a common ancestor and species-specific duplications did not significantly contribute to gene family expansion. DEFLs are characterized by a pervasive pattern of neutral evolution with infrequent positive and negative selection as well as recombination. In comparison, most NLR alignment groups are characterized by frequent occurrence of positive selection and recombination in their leucine-rich repeat (LRR) domain as well negative selection in their nucleotide-binding (NB-ARC) domain. While major NLR subgroups are expressed in pistils and leaves both in presence or absence of pathogen infection, the members of DEFL alignment groups are predominantly transcribed in pistils. Furthermore, conserved groups of NLRs and DEFLs are differentially expressed in response to Fusarium graminearum regardless of whether these genes are under positive selection or not. CONCLUSIONS The present analyses of NLRs expands previous studies in Arabidopsis thaliana and highlights contrasting patterns of purifying and diversifying selection affecting different gene regions. DEFL genes show a different evolutionary trend, with fewer recombination events and significantly fewer instances of natural selection. Their heterogeneous expression pattern suggests that transcriptional divergence probably made the major contribution to functional diversification. In comparison to smaller families encoding pathogenesis-related (PR) proteins under positive selection, DEFLs are involved in a wide variety of processes that altogether might pose structural and functional trade-offs to their family-wide pattern of evolution.
Collapse
Affiliation(s)
- Mariana Mondragón-Palomino
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätstraße 31, 93053, Regensburg, Germany.
| | - Remco Stam
- Chair of Phytopathology, Technical University of Munich, School of Life Sciences Weihenstephan, Emil-Ramann-Str. 2, 85354, Freising, Germany
| | - Ajay John-Arputharaj
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätstraße 31, 93053, Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätstraße 31, 93053, Regensburg, Germany
| |
Collapse
|