1
|
Yang Z, Wang C, Zhu T, He J, Wang Y, Yang S, Liu Y, Zhao B, Zhu C, Ye S, Chen L, Liu S, Qin F. An LRR-RLK protein modulates drought- and salt-stress responses in maize. J Genet Genomics 2025; 52:388-399. [PMID: 39547547 DOI: 10.1016/j.jgg.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
Maize (Zea mays), which is a vital source of food, feed, and energy feedstock globally, has significant potential for higher yields. However, environmental stress conditions, including drought and salt stress, severely restrict maize plant growth and development, leading to great yield losses. Leucine-rich repeat receptor-like kinases (LRR-RLKs) function in biotic and abiotic stress responses in the model plant Arabidopsis (Arabidopsis thaliana), but their roles in abiotic stress responses in maize are not entirely understood. In this study, we determine that the LRR-RLK ZmMIK2, a homolog of the Arabidopsis LRR-RK MALE DISCOVERER 1 (MDIS1)-INTERACTING RECEPTOR LIKE KINASE 2 (MIK2), functions in resistance to both drought and salt stress in maize. Zmmik2 plants exhibit enhanced resistance to both stresses, whereas overexpressing ZmMIK2 confers the opposite phenotypes. Furthermore, we identify C2-DOMAIN-CONTAINING PROTEIN 1 (ZmC2DP1), which interacts with the intracellular region of ZmMIK2. Notably, that region of ZmMIK2 mediates the phosphorylation of ZmC2DP1, likely by increasing its stability. Both ZmMIK2 and ZmC2DP1 are mainly expressed in roots. As with ZmMIK2, knockout of ZmC2DP1 enhances resistance to both drought and salt stress. We conclude that ZmMIK2-ZmC2DP1 acts as a negative regulatory module in maize drought- and salt-stress responses.
Collapse
Affiliation(s)
- Zhirui Yang
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chen Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tengfei Zhu
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiafan He
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yijie Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shiping Yang
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yu Liu
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Bochen Zhao
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chaohui Zhu
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuqing Ye
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Limei Chen
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shengxue Liu
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Feng Qin
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Lizzio A, Battaglia V, Lahoz E, Reverberi M, Petriccione M. Selection of stable reference genes in prunus persica fruit infected with monilinia laxa for normalisation of RT-qPCR gene expression data. Sci Rep 2025; 15:6731. [PMID: 40000833 PMCID: PMC11861962 DOI: 10.1038/s41598-025-90506-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Reverse transcription-quantitative PCR (RT-qPCR) is a powerful tool for quantifying gene expression. However, reference genes (RGs) for gene expression analysis in peach (Prunus persica) during interactions with Monilinia laxa, a major fungal pathogen that causes brown rot, have not been established. In this study, we analysed 12 candidate RGs in this pathosystem by analysing samples from 12 to 144 HAI. The stability of the RGs was evaluated using the ΔCq method and BestKeeper, NormFinder, and geNorm algorithms. Our results identified AKT3, RNA pol II (RPII) and SNARE (using geNorm), RPII, AKT3 and TEF2 (using NormFinder), AKT3, SNARE and RPII (using BestKeeper) and RPII, MUB6 and AKT3 (using the ΔCq method) as the most stable RGs for mRNA normalisation in this pathosystem across all tested samples. The geNorm algorithm was used to determine the optimal number of suitable RGs required for proper normalisation under these experimental conditions, indicating that the three RGs were sufficient for normalisation. Analysis of the results obtained using different algorithms showed that AKT3, RPII, and SNARE were the three most stable RGs. Furthermore, to confirm the validity of the reference genes, the expression levels of six genes of interest, involved in different metabolic pathways, were normalized in inoculated and uninoculated peach fruit. These findings provide a set of RGs for accurate RT-qPCR analysis in studies involving peach and M. laxa interactions, facilitating deeper insights into the molecular mechanisms underlying this important plant-pathogen relationship.
Collapse
Affiliation(s)
- Agata Lizzio
- CREA Council for Agricultural Research and Economics, Fruit and Citrus Crops (CREA-OFA), Olive, Caserta, Italy.
- CREA Council for Agricultural Research and Economics, Cereal and Industrial Crops (CREA-CI), Caserta, Italy.
- Department of Environmental Biology, "Sapienza" University of Rome, Rome, RM, Italy.
| | - Valerio Battaglia
- CREA Council for Agricultural Research and Economics, Cereal and Industrial Crops (CREA-CI), Caserta, Italy
| | - Ernesto Lahoz
- CREA Council for Agricultural Research and Economics, Cereal and Industrial Crops (CREA-CI), Caserta, Italy
| | - Massimo Reverberi
- Department of Environmental Biology, "Sapienza" University of Rome, Rome, RM, Italy
| | - Milena Petriccione
- CREA Council for Agricultural Research and Economics, Fruit and Citrus Crops (CREA-OFA), Olive, Caserta, Italy
| |
Collapse
|
3
|
Li GJ, Chen K, Sun S, Zhao Y. Osmotic signaling releases PP2C-mediated inhibition of Arabidopsis SnRK2s via the receptor-like cytoplasmic kinase BIK1. EMBO J 2024; 43:6076-6103. [PMID: 39433899 PMCID: PMC11612456 DOI: 10.1038/s44318-024-00277-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024] Open
Abstract
Osmotic stress and abscisic acid (ABA) signaling are important for plant growth and abiotic stress resistance. Activation of osmotic and ABA signaling downstream of the PYL-type ABA receptors requires the release of SnRK2 protein kinases from the inhibition imposed by PP2Cs. PP2Cs are core negative regulators that constantly interact with and inhibit SnRK2s, but how osmotic signaling breaks the PP2C inhibition of SnRK2s remains unclear. Here, we report that an Arabidopsis receptor-like cytoplasmic kinase, BIK1, releases PP2C-mediated inhibition of SnRK2.6 via phosphorylation regulation. The dominant abi1-1 ABA-signaling mutation (G180D) disrupts PYL-PP2C interactions and disables PYL-initiated release of SnRK2s; in contrast, BIK1 releases abi1-1-mediated inhibition of SnRK2.6. BIK1 interacts with and phosphorylates SnRK2.6 at two tyrosine residues, which are critical for SnRK2.6 activation and function. Phosphorylation of the two tyrosine residues may affect the docking of the tryptophan "lock" of PP2C into SnRK2.6. Moreover, the bik1 mutant is defective in SnRK2 activation, stress-responsive gene expression, ABA accumulation, growth maintenance, and water loss under osmotic stress. Our findings uncover the critical role of BIK1 in releasing PP2C-mediated inhibition of SnRK2s under osmotic stress.
Collapse
Affiliation(s)
- Guo-Jun Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Kong Chen
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China
| | - Shujing Sun
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Yang Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, 200032, Shanghai, China.
| |
Collapse
|
4
|
Nichols RA, Ide AD, Morrison CT, Anger AL, Buccilli MJ, Damer CK. Copine C plays a role in adhesion and streaming in Dictyostelium. Cell Adh Migr 2024; 18:1-19. [PMID: 38378453 PMCID: PMC10880500 DOI: 10.1080/19336918.2024.2315629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/02/2024] [Indexed: 02/22/2024] Open
Abstract
Copines are a family of calcium-dependent membrane-binding proteins. To study these proteins, anull mutant for cpnC was created in Dictyostelium, which has six copines genes (cpnA-cpnF). During development, cpnC- cells were able to aggregate, but did not form streams. Once aggregated into mounds, they formed large ring structures. cpnC- cells were less adherent to plastic substrates, but more adherent to other cells. These phenotypes correlated with changes in adhesion protein expression with decreased expression of SibA and increased expression of CsaA in developing cpnC- cells. We also measured the expression of RegA, a cAMP phosphodiesterase, and found that cpnC- cells have reduced RegA expression. The reduced RegA expression in cpnC- cells is most likely responsible for the observed phenotypes.
Collapse
Affiliation(s)
- Rodney A. Nichols
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| | - Amber D. Ide
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| | - Cody T. Morrison
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| | - Amber L. Anger
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| | | | - Cynthia K. Damer
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| |
Collapse
|
5
|
Weralupitiya C, Eccersall S, Meisrimler CN. Shared signals, different fates: Calcium and ROS in plant PRR and NLR immunity. Cell Rep 2024; 43:114910. [PMID: 39471173 DOI: 10.1016/j.celrep.2024.114910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/04/2024] [Accepted: 10/09/2024] [Indexed: 11/01/2024] Open
Abstract
Lacking an adaptive immune system, plants rely on innate immunity comprising two main layers: PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI), both utilizing Ca2+ influx and reactive oxygen species (ROS) for signaling. PTI, mediated by pattern-recognition receptors (PRRs), responds to conserved pathogen- or damage-associated molecular patterns. Some pathogens evade PTI using effectors, triggering plants to activate ETI. At the heart of ETI are nucleotide-binding leucine-rich repeat receptors (NLRs), which detect specific pathogen effectors and initiate a robust immune response. NLRs, equipped with a nucleotide-binding domain and leucine-rich repeats, drive a potent immune reaction starting with pronounced, prolonged cytosolic Ca2+ influx, followed by increased ROS levels. This sequence of events triggers the hypersensitive response-a localized cell death designed to limit pathogen spread. This intricate use of Ca2+ and ROS highlights the crucial role of NLRs in supplementing the absence of an adaptive immune system in plant innate immunity.
Collapse
Affiliation(s)
| | - Sophie Eccersall
- University of Canterbury, School of Biological Science, Christchurch, New Zealand
| | - Claudia-Nicole Meisrimler
- University of Canterbury, School of Biological Science, Christchurch, New Zealand; Biomolecular Interaction Centre, Christchurch, New Zealand.
| |
Collapse
|
6
|
Zhou J, He Y, Meng X. Phosphorylation of CAX transporters controls Ca 2+ homeostasis. PLANT COMMUNICATIONS 2024; 5:101042. [PMID: 39033324 PMCID: PMC11413362 DOI: 10.1016/j.xplc.2024.101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/25/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Affiliation(s)
- Jinggeng Zhou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Yunxia He
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiangzong Meng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
7
|
Sarkar S, Rhein HS, Pittman JK, Hirschi KD. A dominant-negative Arabidopsis cation exchanger 1 (CAX1): N-terminal autoinhibition and membrane topology. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2982-2999. [PMID: 39175446 DOI: 10.1111/tpj.16966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/20/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
Calcium (Ca2+) is essential for plant growth and cellular homeostasis, with cation exchangers (CAXs) regulating Ca2+ transport into plant vacuoles. In Arabidopsis, multiple CAXs feature a common structural arrangement, comprising an N-terminal autoinhibitory domain followed by two pseudosymmetrical modules. Mutations in CAX1 enhance stress tolerance, notably tolerance to anoxia (a condition marked by oxygen depletion), crucial for flood resilience. Here we engineered a dominant-negative CAX1 variant, named ½N-CAX1, incorporating the autoinhibitory domain and the N-terminal pseudosymmetrical module, which, when expressed in wild-type Arabidopsis plants, phenocopied the anoxia tolerance of cax1. Physiological evaluations, yeast assays, and calcium imaging demonstrated that wild-type plants expressing ½N-CAX1 have phenotypes consistent with inhibition of CAX1, which is likely through direct interaction of ½N-CAX1 with CAX1. Eliminating segments within the N-terminal pseudosymmetrical module, as well as incorporating modules from other plant CAXs and expressing these variants into wild-type plants, failed to produce anoxia tolerance. This underscores the requirement for both the CAX1 autoinhibitory domain and the intact pseudosymmetrical module to produce the dominant-negative phenotype. Our study elucidates the interaction of this ½N-CAX1 variant with CAX1 and its impact on anoxia tolerance, offering insights into further approaches for engineering plant stress tolerance.
Collapse
Affiliation(s)
- Shayan Sarkar
- Pediatrics Nutrition, Children's Nutrition Research, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Hormat Shadgou Rhein
- Pediatrics Nutrition, Children's Nutrition Research, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Jon K Pittman
- Faculty of Science and Engineering, School of Natural Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Kendal D Hirschi
- Pediatrics Nutrition, Children's Nutrition Research, Baylor College of Medicine, Houston, Texas, 77030, USA
| |
Collapse
|
8
|
Jain R, Srivastava H, Kumar K, Sharma S, Singh A, Gaikwad K. Understanding the role of P-type ATPases in regulating pollen fertility and development in pigeonpea. Mol Genet Genomics 2024; 299:68. [PMID: 38980531 DOI: 10.1007/s00438-024-02155-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 06/08/2024] [Indexed: 07/10/2024]
Abstract
The P-type ATPase superfamily genes are the cation and phospholipid pumps that transport ions across the membranes by hydrolyzing ATP. They are involved in a diverse range of functions, including fundamental cellular events that occur during the growth of plants, especially in the reproductive organs. The present work has been undertaken to understand and characterize the P-type ATPases in the pigeonpea genome and their potential role in anther development and pollen fertility. A total of 59 P-type ATPases were predicted in the pigeonpea genome. The phylogenetic analysis classified the ATPases into five subfamilies: eleven P1B, eighteen P2A/B, fourteen P3A, fifteen P4, and one P5. Twenty-three pairs of P-type ATPases were tandemly duplicated, resulting in their expansion in the pigeonpea genome during evolution. The orthologs of the reported anther development-related genes were searched in the pigeonpea genome, and the expression profiling studies of specific genes via qRT-PCR in the pre- and post-meiotic anther stages of AKCMS11A (male sterile), AKCMS11B (maintainer) and AKPR303 (fertility restorer) lines of pigeonpea was done. Compared to the restorer and maintainer lines, the down-regulation of CcP-typeATPase22 in the post-meiotic anthers of the male sterile line might have played a role in pollen sterility. Furthermore, the strong expression of CcP-typeATPase2 in the post-meiotic anthers of restorer line and CcP-typeATPase46, CcP-typeATPase51, and CcP-typeATPase52 in the maintainer lines, respectively, compared to the male sterile line, clearly indicates their potential role in developing male reproductive organs in pigeonpea.
Collapse
Affiliation(s)
- Rishu Jain
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
- Department of Biotechnology, TERI School of Advanced Studies, 10 Institutional Area, Vasant Kunj, New Delhi, 110070, India
| | - Harsha Srivastava
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Kuldeep Kumar
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
- ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, 208024, India
| | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Anandita Singh
- Department of Biotechnology, TERI School of Advanced Studies, 10 Institutional Area, Vasant Kunj, New Delhi, 110070, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
9
|
Chandan K, Gupta M, Ahmad A, Sarwat M. P-type calcium ATPases play important roles in biotic and abiotic stress signaling. PLANTA 2024; 260:37. [PMID: 38922354 DOI: 10.1007/s00425-024-04462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024]
Abstract
MAIN CONCLUSION Knowledge of Ca2+-ATPases is imperative for improving crop quality/ food security, highly threatened due to global warming. Ca2+-ATPases modulates calcium, essential for stress signaling and modulating growth, development, and immune activities. Calcium is considered a versatile secondary messenger and essential for short- and long-term responses to biotic and abiotic stresses in plants. Coordinated transport activities from both calcium influx and efflux channels are required to generate cellular calcium signals. Various extracellular stimuli cause an induction in cytosolic calcium levels. To cope with such stresses, it is important to maintain intracellular Ca2+ levels. Plants need to evolve efficient efflux mechanisms to maintain Ca2+ ion homeostasis. Plant Ca2+-ATPases are members of the P-type ATPase superfamily and localized in the plasma membrane and endoplasmic reticulum (ER). They are required for various cellular processes, including plant growth, development, calcium signaling, and even retorts to environmental stress. These ATPases play an essential role in Ca2+ homeostasis and are actively involved in Ca2+ transport. Plant Ca2+-ATPases are categorized into two major classes: type IIA and type IIB. Although these two classes of ATPases share similarities in protein sequence, they differ in their structure, cellular localization, and sensitivity to inhibitors. Due to the emerging role of Ca2+-ATPase in abiotic and biotic plant stress, members of this family may help promote agricultural improvement under stress conditions. This review provides a comprehensive overview of P-type Ca2+-ATPase, and their role in Ca2+ transport, stress signaling, and cellular homeostasis focusing on their classification, evolution, ion specificities, and catalytic mechanisms. It also describes the main aspects of the role of Ca2+-ATPase in transducing signals during plant biotic and abiotic stress responses and its role in plant development and physiology.
Collapse
Affiliation(s)
- Kumari Chandan
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Meenakshi Gupta
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Altaf Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
10
|
Jing T, Wu Y, Yu Y, Li J, Mu X, Xu L, Wang X, Qi G, Tang J, Wang D, Yang S, Hua J, Gou M. Copine proteins are required for brassinosteroid signaling in maize and Arabidopsis. Nat Commun 2024; 15:2028. [PMID: 38459051 PMCID: PMC10923931 DOI: 10.1038/s41467-024-46289-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 02/21/2024] [Indexed: 03/10/2024] Open
Abstract
Copine proteins are highly conserved and ubiquitously found in eukaryotes, and their indispensable roles in different species were proposed. However, their exact function remains unclear. The phytohormone brassinosteroids (BRs) play vital roles in plant growth, development and environmental responses. A key event in effective BR signaling is the formation of functional BRI1-SERK receptor complex and subsequent transphosphorylation upon ligand binding. Here, we demonstrate that BONZAI (BON) proteins, which are plasma membrane-associated copine proteins, are critical components of BR signaling in both the monocot maize and the dicot Arabidopsis. Biochemical and molecular analyses reveal that BON proteins directly interact with SERK kinases, thereby ensuring effective BRI1-SERK interaction and transphosphorylation. This study advances the knowledge on BR signaling and provides an important target for optimizing valuable agronomic traits, it also opens a way to study steroid hormone signaling and copine proteins of eukaryotes in a broader perspective.
Collapse
Affiliation(s)
- Teng Jing
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yuying Wu
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yanwen Yu
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jiankun Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xiaohuan Mu
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Liping Xu
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| | - Guang Qi
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jihua Tang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
- The Shennong Laboratory, Zhengzhou, Henan, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| | - Jian Hua
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Mingyue Gou
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China.
- The Shennong Laboratory, Zhengzhou, Henan, China.
| |
Collapse
|
11
|
Wang C, Tang RJ, Kou S, Xu X, Lu Y, Rauscher K, Voelker A, Luan S. Mechanisms of calcium homeostasis orchestrate plant growth and immunity. Nature 2024; 627:382-388. [PMID: 38418878 DOI: 10.1038/s41586-024-07100-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
Calcium (Ca2+) is an essential nutrient for plants and a cellular signal, but excessive levels can be toxic and inhibit growth1,2. To thrive in dynamic environments, plants must monitor and maintain cytosolic Ca2+ homeostasis by regulating numerous Ca2+ transporters3. Here we report two signalling pathways in Arabidopsis thaliana that converge on the activation of vacuolar Ca2+/H+ exchangers (CAXs) to scavenge excess cytosolic Ca2+ in plants. One mechanism, activated in response to an elevated external Ca2+ level, entails calcineurin B-like (CBL) Ca2+ sensors and CBL-interacting protein kinases (CIPKs), which activate CAXs by phosphorylating a serine (S) cluster in the auto-inhibitory domain. The second pathway, triggered by molecular patterns associated with microorganisms, engages the immune receptor complex FLS2-BAK1 and the associated cytoplasmic kinases BIK1 and PBL1, which phosphorylate the same S-cluster in CAXs to modulate Ca2+ signals in immunity. These Ca2+-dependent (CBL-CIPK) and Ca2+-independent (FLS2-BAK1-BIK1/PBL1) mechanisms combine to balance plant growth and immunity by regulating cytosolic Ca2+ homeostasis.
Collapse
Affiliation(s)
- Chao Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ren-Jie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Senhao Kou
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Xiaoshu Xu
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Yi Lu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Kenda Rauscher
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Angela Voelker
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
12
|
Yu B, Chao DY, Zhao Y. How plants sense and respond to osmotic stress. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:394-423. [PMID: 38329193 DOI: 10.1111/jipb.13622] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Abstract
Drought is one of the most serious abiotic stresses to land plants. Plants sense and respond to drought stress to survive under water deficiency. Scientists have studied how plants sense drought stress, or osmotic stress caused by drought, ever since Charles Darwin, and gradually obtained clues about osmotic stress sensing and signaling in plants. Osmotic stress is a physical stimulus that triggers many physiological changes at the cellular level, including changes in turgor, cell wall stiffness and integrity, membrane tension, and cell fluid volume, and plants may sense some of these stimuli and trigger downstream responses. In this review, we emphasized water potential and movements in organisms, compared putative signal inputs in cell wall-containing and cell wall-free organisms, prospected how plants sense changes in turgor, membrane tension, and cell fluid volume under osmotic stress according to advances in plants, animals, yeasts, and bacteria, summarized multilevel biochemical and physiological signal outputs, such as plasma membrane nanodomain formation, membrane water permeability, root hydrotropism, root halotropism, Casparian strip and suberin lamellae, and finally proposed a hypothesis that osmotic stress responses are likely to be a cocktail of signaling mediated by multiple osmosensors. We also discussed the core scientific questions, provided perspective about the future directions in this field, and highlighted the importance of robust and smart root systems and efficient source-sink allocations for generating future high-yield stress-resistant crops and plants.
Collapse
Affiliation(s)
- Bo Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Sciences, Shanghai, 200032, China
- Key Laboratory of Plant Carbon Capture, The Chinese Academy of Sciences, Shanghai, 200032, China
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, The Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Sciences, Shanghai, 200032, China
- Key Laboratory of Plant Carbon Capture, The Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
13
|
Wang C, Luan S. Calcium homeostasis and signaling in plant immunity. CURRENT OPINION IN PLANT BIOLOGY 2024; 77:102485. [PMID: 38043138 DOI: 10.1016/j.pbi.2023.102485] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023]
Abstract
Calcium (Ca2+) signaling consists of three steps: (1) initiation of a change in cellular Ca2+ concentration in response to a stimulus, (2) recognition of the change through direct binding of Ca2+ by its sensors, (3) transduction of the signal to elicit downstream responses. Recent studies have uncovered a central role for Ca2+ signaling in both layers of immune responses initiated by plasma membrane (PM) and intracellular receptors, respectively. These advances in our understanding are attributed to several lines of research, including invention of genetically-encoded Ca2+ reporters for the recording of intracellular Ca2+ signals, identification of Ca2+ channels and their gating mechanisms, and functional analysis of Ca2+ binding proteins (Ca2+ sensors). This review analyzes the recent literature that illustrates the importance of Ca2+ homeostasis and signaling in plant innate immunity, featuring intricate Ca2+dependent positive and negative regulations.
Collapse
Affiliation(s)
- Chao Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
14
|
Zeng H, Zhu Q, Yuan P, Yan Y, Yi K, Du L. Calmodulin and calmodulin-like protein-mediated plant responses to biotic stresses. PLANT, CELL & ENVIRONMENT 2023; 46:3680-3703. [PMID: 37575022 DOI: 10.1111/pce.14686] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/10/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023]
Abstract
Plants have evolved a set of finely regulated mechanisms to respond to various biotic stresses. Transient changes in intracellular calcium (Ca2+ ) concentration have been well documented to act as cellular signals in coupling environmental stimuli to appropriate physiological responses with astonishing accuracy and specificity in plants. Calmodulins (CaMs) and calmodulin-like proteins (CMLs) are extensively characterized as important classes of Ca2+ sensors. The spatial-temporal coordination between Ca2+ transients, CaMs/CMLs and their target proteins is critical for plant responses to environmental stresses. Ca2+ -loaded CaMs/CMLs interact with and regulate a broad spectrum of target proteins, such as ion transporters (including channels, pumps, and antiporters), transcription factors, protein kinases, protein phosphatases, metabolic enzymes and proteins with unknown biological functions. This review focuses on mechanisms underlying how CaMs/CMLs are involved in the regulation of plant responses to diverse biotic stresses including pathogen infections and herbivore attacks. Recent discoveries of crucial functions of CaMs/CMLs and their target proteins in biotic stress resistance revealed through physiological, molecular, biochemical, and genetic analyses have been described, and intriguing insights into the CaM/CML-mediated regulatory network are proposed. Perspectives for future directions in understanding CaM/CML-mediated signalling pathways in plant responses to biotic stresses are discussed. The application of accumulated knowledge of CaM/CML-mediated signalling in biotic stress responses into crop cultivation would improve crop resistance to various biotic stresses and safeguard our food production in the future.
Collapse
Affiliation(s)
- Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qiuqing Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Peiguo Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
| | - Yan Yan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liqun Du
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
15
|
Cappetta E, Del Regno C, Conte M, Castro-Hinojosa C, Del Sol-Fernández S, Vergata C, Buti M, Curcio R, Onder A, Mazzei P, Funicello N, De Pasquale S, Terzaghi M, Del Gaudio P, Leone A, Martinelli F, Moros M, Ambrosone A. An Integrated Multilevel Approach Unveils Complex Seed-Nanoparticle Interactions and Their Implications for Seed Priming. ACS NANO 2023; 17:22539-22552. [PMID: 37931310 DOI: 10.1021/acsnano.3c06172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Nanotechnology has the potential to revolutionize agriculture with the introduction of engineered nanomaterials. However, their use is hindered by high cost, marginal knowledge of their interactions with plants, and unpredictable effects related to massive use in crop cultivation. Nanopriming is an innovative seed priming technology able to match economic, agronomic, and environmental needs in agriculture. The present study was focused on unveiling, by a multilevel integrated approach, undisclosed aspects of seed priming mediated by iron oxide magnetic nanoparticles in pepper seeds (Capsicum annuum), one of the most economically important crops worldwide. Inductively coupled plasma atomic emission mass spectrometry and scanning electron microscopy were used to quantify the MNP uptake and assess seed surface changes. Magnetic resonance imaging mapped the distribution of MNPs prevalently in the seed coat. The application of MNPs significantly enhanced the root and vegetative growth of pepper plants, whereas seed priming with equivalent Fe concentrations supplied as FeCl3 did not yield these positive effects. Finally, global gene expression by RNA-sequencing identified more than 2,200 differentially expressed genes, most of them involved in plant developmental processes and defense mechanisms. Collectively, these data provide evidence on the link between structural seed changes and an extensive transcriptional reprogramming, which boosts the plant growth and primes the embryo to cope with environmental challenges that might occur during the subsequent developmental and growth stages.
Collapse
Affiliation(s)
- Elisa Cappetta
- Department of Pharmacy, University of Salerno, Fisciano 84084, Italy
| | - Carmine Del Regno
- Department of Pharmacy, University of Salerno, Fisciano 84084, Italy
| | - Marisa Conte
- Department of Pharmacy, University of Salerno, Fisciano 84084, Italy
| | - Christian Castro-Hinojosa
- Instituto de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), Zaragoza 50009, Spain
| | - Susel Del Sol-Fernández
- Instituto de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), Zaragoza 50009, Spain
| | - Chiara Vergata
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| | - Matteo Buti
- Department of Agriculture, Food, Environmental and Forestry Sciences (DAGRI), University of Florence, Firenze 50144, Italy
| | - Rossella Curcio
- Department of Pharmacy, University of Salerno, Fisciano 84084, Italy
| | - Anil Onder
- Department of Pharmacy, University of Salerno, Fisciano 84084, Italy
| | - Pierluigi Mazzei
- Department of Pharmacy, University of Salerno, Fisciano 84084, Italy
| | - Nicola Funicello
- Department of Physics 'E.R. Caianiello', University of Salerno, Fisciano 84084, Italy
| | - Salvatore De Pasquale
- Department of Physics 'E.R. Caianiello', University of Salerno, Fisciano 84084, Italy
| | - Mattia Terzaghi
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70121, Italy
| | | | - Antonietta Leone
- Department of Pharmacy, University of Salerno, Fisciano 84084, Italy
| | - Federico Martinelli
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| | - Maria Moros
- Instituto de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), Zaragoza 50009, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Alfredo Ambrosone
- Department of Pharmacy, University of Salerno, Fisciano 84084, Italy
| |
Collapse
|
16
|
Costa A, Resentini F, Buratti S, Bonza MC. Plant Ca 2+-ATPases: From biochemistry to signalling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119508. [PMID: 37290725 DOI: 10.1016/j.bbamcr.2023.119508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
Calcium (Ca2+)-ATPases are ATP-dependent enzymes that transport Ca2+ ions against their electrochemical gradient playing the fundamental biological function of keeping the free cytosolic Ca2+ concentration in the submicromolar range to prevent cytotoxic effects. In plants, type IIB autoinhibited Ca2+-ATPases (ACAs) are localised both at the plasma membrane and at the endomembranes including endoplasmic reticulum (ER) and tonoplast and their activity is primarily regulated by Ca2+-dependent mechanisms. Instead, type IIA ER-type Ca2+-ATPases (ECAs) are present mainly at the ER and Golgi Apparatus membranes and are active at resting Ca2+. Whereas research in plants has historically focused on the biochemical characterization of these pumps, more recently the attention has been also addressed on the physiological roles played by the different isoforms. This review aims to highlight the main biochemical properties of both type IIB and type IIA Ca2+ pumps and their involvement in the shaping of cellular Ca2+ dynamics induced by different stimuli.
Collapse
Affiliation(s)
- Alex Costa
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milano, Italy; Institute of Biophysics, National Research Council of Italy (CNR), 20133 Milano, Italy.
| | - Francesca Resentini
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milano, Italy
| | - Stefano Buratti
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milano, Italy.
| | - Maria Cristina Bonza
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
17
|
Hao X, Gao S, Luo T, Zhao Z, Shao W, Li J, Hu W, Huang Q. Ca 2+-responsive phospholipid-binding BONZAI genes confer a novel role for cotton resistance to Verticillium wilt. PLANT MOLECULAR BIOLOGY 2023:10.1007/s11103-023-01359-z. [PMID: 37261657 DOI: 10.1007/s11103-023-01359-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 05/04/2023] [Indexed: 06/02/2023]
Abstract
Verticillium wilt which produced by the soil-borne fungus Verticillium dahliae is an important biotic threat that limits cotton (Gossypium hirsutum) growth and agricultural productivity. It is very essential to explore new genes for the generation of V. dahliae resistance or tolerance cotton varieties. Ca2+ signaling as a secondary messenger is involved in pathogen stress response. Despite Ca2+-responsive phospholipid-binding BONZAI (BON) genes have intensively been investigated in Arabidopsis, their function has not still been characterized in cotton. Here, we showed that three copies of GhBON1, two copies of GhBON2 and GhBON3 were found from the genome sequences of upland cotton. The expression of GhBON1 was inducible to V. dahliae. Knocking down of GhBON1, GhBON2 and GhBON3 using virus induced gene silencing (VIGS) each increased up-regulation of defense responses in cotton. These GhBON1, GhBON2 and GhBON3-silenced plants enhanced resistance to V. dahliae accompanied by higher burst of hydrogen peroxide and decreased cell death and had more effect on the up-regulation of defense response genes. Further analysis revealed that GhBON1 could interacts with BAK1-interacting receptor-like kinase 1 (GhBIR1) and pathogen-associated molecular pattern (PAMP) receptor regulator BAK1 (GhBAK1) at plasma membrane. Our study further reveals that plant Ca2+ -responsive phospholipid-binding BONZAI genes negatively regulate Verticillium wilt with the conserved function in response to disease resistance or plant immunity.
Collapse
Affiliation(s)
- Xiaoyan Hao
- Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
- Xinjiang Key Laboratory of Crop Biotechnology/National Key Laboratory of Crop Genetic Improvement and Germplasm Innovation in Arid Desert Areas (Preparation), Urumqi, 830091, China
| | - Shengqi Gao
- Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
- Xinjiang Key Laboratory of Crop Biotechnology/National Key Laboratory of Crop Genetic Improvement and Germplasm Innovation in Arid Desert Areas (Preparation), Urumqi, 830091, China
| | - Tiantian Luo
- Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
- Xinjiang Key Laboratory of Crop Biotechnology/National Key Laboratory of Crop Genetic Improvement and Germplasm Innovation in Arid Desert Areas (Preparation), Urumqi, 830091, China
| | - Zhun Zhao
- Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
- Xinjiang Key Laboratory of Crop Biotechnology/National Key Laboratory of Crop Genetic Improvement and Germplasm Innovation in Arid Desert Areas (Preparation), Urumqi, 830091, China
| | - Wukui Shao
- Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
- Xinjiang Key Laboratory of Crop Biotechnology/National Key Laboratory of Crop Genetic Improvement and Germplasm Innovation in Arid Desert Areas (Preparation), Urumqi, 830091, China
| | - Jianping Li
- Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
- Xinjiang Key Laboratory of Crop Biotechnology/National Key Laboratory of Crop Genetic Improvement and Germplasm Innovation in Arid Desert Areas (Preparation), Urumqi, 830091, China
| | - Wenran Hu
- Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
- Xinjiang Key Laboratory of Crop Biotechnology/National Key Laboratory of Crop Genetic Improvement and Germplasm Innovation in Arid Desert Areas (Preparation), Urumqi, 830091, China.
| | - Quansheng Huang
- Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
- Xinjiang Key Laboratory of Crop Biotechnology/National Key Laboratory of Crop Genetic Improvement and Germplasm Innovation in Arid Desert Areas (Preparation), Urumqi, 830091, China.
| |
Collapse
|
18
|
Li Z, Harper JF, Weigand C, Hua J. Resting cytosol Ca2+ level maintained by Ca2+ pumps affects environmental responses in Arabidopsis. PLANT PHYSIOLOGY 2023; 191:2534-2550. [PMID: 36715402 PMCID: PMC10069881 DOI: 10.1093/plphys/kiad047] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/26/2022] [Indexed: 06/10/2023]
Abstract
Calcium ion transporting systems control cytosol Ca2+ levels ([Ca2+]cyt) and generate transient calcium (Ca2+) signatures that are key to environmental responses. Here, we report an impact of resting [Ca2+]cyt on plants from the functional study of calmodulin-regulated Ca2+ pumps or Ca2+-ATPases in Arabidopsis (Arabidopsis thaliana). The plasma membrane-localized pumps ACA8 (autoinhibited Ca2+-ATPase) and ACA10, as well as the vacuole-localized pumps ACA4 and ACA11, were critical in maintaining low resting [Ca2+]cyt and essential for plant survival under chilling and heat-stress conditions. Their loss-of-function mutants aca8 aca10 and aca4 aca11 had autoimmunity at normal temperatures, and this deregulated immune activation was enhanced by low temperature, leading to chilling lethality. Furthermore, these mutants showed an elevated resting [Ca2+]cyt, and a reduction of external Ca2+ lowered [Ca2+]cyt and repressed their autoimmunity and cold susceptibility. The aca8 aca10 and the aca4 aca11 mutants were also susceptible to heat, likely resulting from more closed stomata and higher leaf surface temperature than the wild type. These observations support a model in which the regulation of resting [Ca2+]cyt is critical to how plants regulate biotic and abiotic responses.
Collapse
Affiliation(s)
- Zhan Li
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY 14853, USA
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Chrystle Weigand
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Jian Hua
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
19
|
Bhar A, Chakraborty A, Roy A. The captivating role of calcium in plant-microbe interaction. FRONTIERS IN PLANT SCIENCE 2023; 14:1138252. [PMID: 36938033 PMCID: PMC10020633 DOI: 10.3389/fpls.2023.1138252] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Plant immune response is fascinating due to the complete absence of a humoral system. The adaptive immune response in plants relies on the intracellular orchestration of signalling molecules or intermediates associated with transcriptional reprogramming. Plant disease response phenomena largely depend on pathogen recognition, signal perception, and intracellular signal transduction. The pathogens possess specific pathogen-associated molecular patterns (PAMP) or microbe-associated molecular patterns (MAMP), which are first identified by pattern recognition receptors (PRRs) of host plants for successful infection. After successful pathogen recognition, the defence response is initiated within plants. The first line of non-specific defence response is called PAMP-triggered immunity (PTI), followed by the specific robust signalling is called effector-triggered immunity (ETI). Calcium plays a crucial role in both PTI and ETI. The biphasic induction of reactive oxygen species (ROS) is inevitable in any plant-microbe interaction. Calcium ions play crucial roles in the initial oxidative burst and ROS induction. Different pathogens can induce calcium accumulation in the cytosol ([Ca2+]Cyt), called calcium signatures. These calcium signatures further control the diverse defence-responsive proteins in the intracellular milieu. These calcium signatures then activate calcium-dependent protein kinases (CDPKs), calcium calmodulins (CaMs), calcineurin B-like proteins (CBLs), etc., to impart intricate defence signalling within the cell. Decoding this calcium ionic map is imperative to unveil any plant microbe interplay and modulate defence-responsive pathways. Hence, the present review is unique in developing concepts of calcium signature in plants and their subsequent decoding mechanism. This review also intends to articulate early sensing of calcium oscillation, signalling events, and comprehensive mechanistic roles of calcium within plants during pathogenic ingression. This will accumulate and summarize the exciting roles of calcium ions in plant immunity and provide the foundation for future research.
Collapse
Affiliation(s)
- Anirban Bhar
- Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| | - Amrita Chakraborty
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| |
Collapse
|
20
|
Yu H, Yang L, Li Z, Sun F, Li B, Guo S, Wang YF, Zhou T, Hua J. In situ deletions reveal regulatory components for expression of an intracellular immune receptor gene and its co-expressed genes in Arabidopsis. PLANT, CELL & ENVIRONMENT 2023; 46:621-634. [PMID: 36368774 DOI: 10.1111/pce.14489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Intracellular immune receptor nucleotide-binding leucine-rich repeats (NLRs) are highly regulated transcriptionally and post-transcriptionally for balanced plant defence and growth. NLR genes often exist in gene clusters and are usually co-expressed under various conditions. Despite of intensive studies of regulation of NLR proteins, cis-acting elements for NLR gene induction, repression or co-expression are largely unknown due to a larger than usual cis-region for their expression regulation. Here we used the CRISPR/Cas9 genome editing technology to generate a series of in situ deletions at the endogenous location of a NLR gene SNC1 residing in the RPP5 gene cluster. These deletions that made in the wild type and the SNC1 constitutive expressing autoimmune mutant bon1 revealed both positive and negative cis-acting elements for SNC1 expression. Two transcription factors that could bind to these elements were found to have an impact on the expression of SNC1. In addition, co-expression of two genes with SNC1 in the same cluster is found to be mostly dependent on the SNC1 function. Therefore, SNC1 expression is under complex local regulation involving multiple cis elements and SNC1 itself is a critical regulator of gene expression of other NLR genes in the same gene cluster.
Collapse
Affiliation(s)
- Huiyun Yu
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Plant Biology Section, School Of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Leiyun Yang
- Plant Biology Section, School Of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Zhan Li
- Plant Biology Section, School Of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Feng Sun
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Bo Li
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Centre for Brain Science, Fudan University, Shanghai, China
| | - Shengsong Guo
- Plant Biology Section, School Of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Yong-Fei Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Tong Zhou
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- International Rice Research Institute and Jiangsu Academy of Agricultural Sciences Joint Laboratory, Nanjing, Jiangsu, China
| | - Jian Hua
- Plant Biology Section, School Of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
21
|
Wang J, Song W, Chai J. Structure, biochemical function, and signaling mechanism of plant NLRs. MOLECULAR PLANT 2023; 16:75-95. [PMID: 36415130 DOI: 10.1016/j.molp.2022.11.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
To counter pathogen invasion, plants have evolved a large number of immune receptors, including membrane-resident pattern recognition receptors (PRRs) and intracellular nucleotide-binding and leucine-rich repeat receptors (NLRs). Our knowledge about PRR and NLR signaling mechanisms has expanded significantly over the past few years. Plant NLRs form multi-protein complexes called resistosomes in response to pathogen effectors, and the signaling mediated by NLR resistosomes converges on Ca2+-permeable channels. Ca2+-permeable channels important for PRR signaling have also been identified. These findings highlight a crucial role of Ca2+ in triggering plant immune signaling. In this review, we first discuss the structural and biochemical mechanisms of non-canonical NLR Ca2+ channels and then summarize our knowledge about immune-related Ca2+-permeable channels and their roles in PRR and NLR signaling. We also discuss the potential role of Ca2+ in the intricate interaction between PRR and NLR signaling.
Collapse
Affiliation(s)
- Jizong Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China.
| | - Wen Song
- Institute of Biochemistry, University of Cologne, 50674 Cologne, Germany; Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany.
| | - Jijie Chai
- Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute of Biochemistry, University of Cologne, 50674 Cologne, Germany; Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany.
| |
Collapse
|
22
|
Jiang Y, Ding P. Calcium signaling in plant immunity: a spatiotemporally controlled symphony. TRENDS IN PLANT SCIENCE 2023; 28:74-89. [PMID: 36504136 DOI: 10.1016/j.tplants.2022.11.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Calcium ions (Ca2+) are prominent intracellular messengers in all eukaryotic cells. Recent studies have emphasized the crucial roles of Ca2+ in plant immunity. Here, we review the latest progress on the spatiotemporal control of Ca2+ function in plant immunity. We discuss discoveries of how Ca2+ influx is triggered upon the activation of immune receptors, how Ca2+-permeable channels are activated, how Ca2+ signals are decoded inside plant cells, and how these signals are switched off. Despite recent advances, many open questions remain and we highlight the existing toolkit and the new technologies to address the outstanding questions of Ca2+ signaling in plant immunity.
Collapse
Affiliation(s)
- Yuxiang Jiang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Pingtao Ding
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, Leiden 2333, BE, The Netherlands.
| |
Collapse
|
23
|
Attri K, Zhang Z, Singh A, Sharrock RA, Xie Z. Rapid sequence and functional diversification of a miRNA superfamily targeting calcium signaling components in seed plants. THE NEW PHYTOLOGIST 2022; 235:1082-1095. [PMID: 35485957 PMCID: PMC9322595 DOI: 10.1111/nph.18185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
MicroRNA (miRNA)-directed posttranscriptional gene silencing (miR-PTGS) is an integral component of gene regulatory networks governing plant development and responses to the environment. The sequence homology between Sly-miR4376, a miRNA common to Solanaceae and reported to target autoinhibited Ca2+ -ATPase 10 (ACA10) messenger RNA (mRNA) in tomato, and Arabidopsis miR391 (Ath-miR391), previously annotated as a nonconserved member of the deeply conserved miR390 family, has prompted us to revisit the function of Ath-miR391, as well as its regulatory conservation. A combination of genetic, molecular, and bioinformatic analyses revealed a hidden conservation for miR-PTGS of ACA10 homologs in spermatophytes. We found that the Arabidopsis ACA10 mRNA undergoes miR391-directed cleavage in vivo. Furthermore, transgenic overexpression of miR391 recapitulated the compact inflorescence (cif) phenotypes characteristic of ACA10 loss-of-function mutants, due to miR391-directed PTGS of ACA10. Significantly, comprehensive data mining revealed robust evidence for widespread PTGS of ACA10 homologs directed by a superfamily of related miRNAs sharing a conserved sequence core. Intriguingly, the ACA-targeting miRNAs in Poaceae also direct PTGS for calmodulin-like proteins which are putative Ca2+ sensors. The PTGS of ACA10 homologs is therefore directed by a miRNA superfamily that is of ancient origin and has undergone rapid sequence diversification associated with functional innovation.
Collapse
Affiliation(s)
- Komal Attri
- Department of Biological SciencesTexas Tech UniversityLubbockTX79409USA
| | - Zijie Zhang
- Department of Biological SciencesTexas Tech UniversityLubbockTX79409USA
| | - Atinder Singh
- Department of Biological SciencesTexas Tech UniversityLubbockTX79409USA
| | - Robert A. Sharrock
- Department of Plant Sciences and Plant PathologyMontana State UniversityBozemanMT59717USA
| | - Zhixin Xie
- Department of Biological SciencesTexas Tech UniversityLubbockTX79409USA
| |
Collapse
|
24
|
Yu H, Yang L, Li Z, Sun F, Li B, Guo S, Wang YF, Zhou T, Hua J. In situ deletions reveal regulatory components for expression of an intracellular immune receptor gene and its co-expressed genes in Arabidopsis. PLANT, CELL & ENVIRONMENT 2022; 45:1862-1875. [PMID: 35150136 DOI: 10.1111/pce.14293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Intracellular immune receptor nucleotide-binding leucine-rich repeats (NLRs) are highly regulated transcriptionally and post-transcriptionally for balanced plant defense and growth. NLR genes often exist in gene clusters and are usually co-expressed under various conditions. Despite intensive studies of the regulation of NLR proteins, cis-acting elements for NLR gene induction, repression or co-expression are largely unknown due to a larger than usual cis-region for their expression regulation. Here we used the CRISPR/Cas9 genome editing technology to generate a series of in situ deletions at the endogenous location of an NLR gene SNC1 residing in the RPP5 gene cluster. These deletions that made in the wild type and the SNC1 constitutive expressing autoimmune mutant bon1 revealed both positive and negative cis-acting elements for SNC1 expression. Two transcription factors that could bind to these elements were found to have an impact on the expression of SNC1. In addition, co-expression of two genes with SNC1 in the same cluster is found to be mostly dependent on the SNC1 function. Therefore, SNC1 expression is under complex local regulation involving multiple cis-elements and SNC1 itself is a critical regulator of gene expression of other NLR genes in the same gene cluster.
Collapse
Affiliation(s)
- Huiyun Yu
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, New York, USA
| | - Leiyun Yang
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, New York, USA
| | - Zhan Li
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, New York, USA
| | - Feng Sun
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Bo Li
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Shengsong Guo
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, New York, USA
| | - Yong-Fei Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Tong Zhou
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
- International Rice Research Institute and Jiangsu Academy of Agricultural Sciences Joint Laboratory, Nanjing, Jiangsu Province, China
| | - Jian Hua
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, New York, USA
| |
Collapse
|
25
|
Wang J, Fu X, Zhang S, Chen G, Li S, Shangguan T, Zheng Y, Xu F, Chen ZH, Xu S. Evolutionary and Regulatory Pattern Analysis of Soybean Ca 2+ ATPases for Abiotic Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:898256. [PMID: 35665149 PMCID: PMC9161174 DOI: 10.3389/fpls.2022.898256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
P2-type Ca2+ ATPases are responsible for cellular Ca2+ transport, which plays an important role in plant development and tolerance to biotic and abiotic stresses. However, the role of P2-type Ca2+ ATPases in stress response and stomatal regulation is still elusive in soybean. In this study, a total of 12 P2-type Ca2+ ATPases genes (GmACAs and GmECAs) were identified from the genome of Glycine max. We analyzed the evolutionary relationship, conserved motif, functional domain, gene structure and location, and promoter elements of the family. Chlorophyll fluorescence imaging analysis showed that vegetable soybean leaves are damaged to different extents under salt, drought, cold, and shade stresses. Real-time quantitative PCR (RT-qPCR) analysis demonstrated that most of the GmACAs and GmECAs are up-regulated after drought, cold, and NaCl treatment, but are down-regulated after shading stress. Microscopic observation showed that different stresses caused significant stomatal closure. Spatial location and temporal expression analysis suggested that GmACA8, GmACA9, GmACA10, GmACA12, GmACA13, and GmACA11 might promote stomatal closure under drought, cold, and salt stress. GmECA1 might regulate stomatal closure in shading stress. GmACA1 and GmECA3 might have a negative function on cold stress. The results laid an important foundation for further study on the function of P2-type Ca2+ ATPase genes GmACAs and GmECAs for breeding abiotic stress-tolerant vegetable soybean.
Collapse
Affiliation(s)
- Jian Wang
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xujun Fu
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Sheng Zhang
- Taizhou Seed Administration Station, Taizhou, China
| | - Guang Chen
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Sujuan Li
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tengwei Shangguan
- College of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yuanting Zheng
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Fei Xu
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Shengchun Xu
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
26
|
Köster P, DeFalco TA, Zipfel C. Ca 2+ signals in plant immunity. EMBO J 2022; 41:e110741. [PMID: 35560235 PMCID: PMC9194748 DOI: 10.15252/embj.2022110741] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/03/2022] [Accepted: 04/27/2022] [Indexed: 12/22/2022] Open
Abstract
Calcium ions function as a key second messenger ion in eukaryotes. Spatially and temporally defined cytoplasmic Ca2+ signals are shaped through the concerted activity of ion channels, exchangers, and pumps in response to diverse stimuli; these signals are then decoded through the activity of Ca2+ -binding sensor proteins. In plants, Ca2+ signaling is central to both pattern- and effector-triggered immunity, with the generation of characteristic cytoplasmic Ca2+ elevations in response to potential pathogens being common to both. However, despite their importance, and a long history of scientific interest, the transport proteins that shape Ca2+ signals and their integration remain poorly characterized. Here, we discuss recent work that has both shed light on and deepened the mysteries of Ca2+ signaling in plant immunity.
Collapse
Affiliation(s)
- Philipp Köster
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Thomas A DeFalco
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland.,The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| |
Collapse
|
27
|
Abstract
Plant hormones are signalling compounds that regulate crucial aspects of growth, development and environmental stress responses. Abiotic stresses, such as drought, salinity, heat, cold and flooding, have profound effects on plant growth and survival. Adaptation and tolerance to such stresses require sophisticated sensing, signalling and stress response mechanisms. In this Review, we discuss recent advances in understanding how diverse plant hormones control abiotic stress responses in plants and highlight points of hormonal crosstalk during abiotic stress signalling. Control mechanisms and stress responses mediated by plant hormones including abscisic acid, auxin, brassinosteroids, cytokinins, ethylene and gibberellins are discussed. We discuss new insights into osmotic stress sensing and signalling mechanisms, hormonal control of gene regulation and plant development during stress, hormone-regulated submergence tolerance and stomatal movements. We further explore how innovative imaging approaches are providing insights into single-cell and tissue hormone dynamics. Understanding stress tolerance mechanisms opens new opportunities for agricultural applications.
Collapse
|
28
|
Ou X, Li T, Zhao Y, Chang Y, Wu L, Chen G, Day B, Jiang K. Calcium-dependent ABA signaling functions in stomatal immunity by regulating rapid SA responses in guard cells. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153585. [PMID: 34894596 DOI: 10.1016/j.jplph.2021.153585] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Stomatal immunity is mediated by ABA, an osmotic stress-responsive phytohormone that closes stomata via calcium-dependent and -independent signaling pathways. However, the functional involvement of ABA signal transducers in stomatal immunity remains poorly understood. Here, we demonstrate that stomatal immunity was compromised in mutants of the ABA signaling core. We also found that it is a subset of calcium-dependent protein kinases (CPK4/5/6), but not the calcium-independent kinase OST1, that relay the stomatal immune signaling. Surface-inoculated bacteria caused an endogenous ABA-dependent induction of local SA responses, whilst expression of the ABA biosynthetic genes and the ABA levels were not affected in leaf epidermis. Furthermore, flg22-elicited ROS burst was attenuated by mutations in CPK4 and CPK5, and pathogen-induced SA production in leaf epidermis was compromised in cpk4, cpk5, and cpk6 mutants. Our results suggest that CPKs function in stomatal immunity through fine-tuning apoplastic ROS levels as well as reinforcing the localized SA signal in guard cells. It is also envisioned that ABA mediates stomatal responses to biotic and abiotic stresses via two distinct but partially overlapping signaling modules.
Collapse
Affiliation(s)
- Xiaobin Ou
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Life Sciences and Technology, Longdong University, Qingyang, Gansu Province, 745000, China
| | - Tianqi Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yi Zhao
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Yuankai Chang
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, Henan Province, 475004, China
| | - Lihong Wu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Guoqingzi Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA.
| | - Kun Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China.
| |
Collapse
|
29
|
Fuglsang AT, Palmgren M. Proton and calcium pumping P-type ATPases and their regulation of plant responses to the environment. PLANT PHYSIOLOGY 2021; 187:1856-1875. [PMID: 35235671 PMCID: PMC8644242 DOI: 10.1093/plphys/kiab330] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/23/2021] [Indexed: 05/10/2023]
Abstract
Plant plasma membrane H+-ATPases and Ca2+-ATPases maintain low cytoplasmic concentrations of H+ and Ca2+, respectively, and are essential for plant growth and development. These low concentrations allow plasma membrane H+-ATPases to function as electrogenic voltage stats, and Ca2+-ATPases as "off" mechanisms in Ca2+-based signal transduction. Although these pumps are autoregulated by cytoplasmic concentrations of H+ and Ca2+, respectively, they are also subject to exquisite regulation in response to biotic and abiotic events in the environment. A common paradigm for both types of pumps is the presence of terminal regulatory (R) domains that function as autoinhibitors that can be neutralized by multiple means, including phosphorylation. A picture is emerging in which some of the phosphosites in these R domains appear to be highly, nearly constantly phosphorylated, whereas others seem to be subject to dynamic phosphorylation. Thus, some sites might function as major switches, whereas others might simply reduce activity. Here, we provide an overview of the relevant transport systems and discuss recent advances that address their relation to external stimuli and physiological adaptations.
Collapse
Affiliation(s)
- Anja T Fuglsang
- Department for Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Michael Palmgren
- Department for Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Author for communication:
| |
Collapse
|
30
|
Grenzi M, Resentini F, Vanneste S, Zottini M, Bassi A, Costa A. Illuminating the hidden world of calcium ions in plants with a universe of indicators. PLANT PHYSIOLOGY 2021; 187:550-571. [PMID: 35237821 PMCID: PMC8491032 DOI: 10.1093/plphys/kiab339] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/15/2021] [Indexed: 05/20/2023]
Abstract
The tools available to carry out in vivo analysis of Ca2+ dynamics in plants are powerful and mature technologies that still require the proper controls.
Collapse
Affiliation(s)
- Matteo Grenzi
- Department of Biosciences, University of Milan, 20133 Milano, Italy
| | | | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon 21985, South Korea
| | - Michela Zottini
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - Andrea Bassi
- Department of Physics, Politecnico di Milano, 20133 Milano, Italy
- Institute of Photonics and Nanotechnologies, National Research Council of Italy (CNR), 20133 Milano, Italy
| | - Alex Costa
- Department of Biosciences, University of Milan, 20133 Milano, Italy
- Institute of Biophysics, National Research Council of Italy (CNR), 20133 Milano, Italy
- Author for communication:
| |
Collapse
|
31
|
Xu R, Guo Y, Peng S, Liu J, Li P, Jia W, Zhao J. Molecular Targets and Biological Functions of cAMP Signaling in Arabidopsis. Biomolecules 2021; 11:biom11050688. [PMID: 34063698 PMCID: PMC8147800 DOI: 10.3390/biom11050688] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 01/11/2023] Open
Abstract
Cyclic AMP (cAMP) is a pivotal signaling molecule existing in almost all living organisms. However, the mechanism of cAMP signaling in plants remains very poorly understood. Here, we employ the engineered activity of soluble adenylate cyclase to induce cellular cAMP elevation in Arabidopsis thaliana plants and identify 427 cAMP-responsive genes (CRGs) through RNA-seq analysis. Induction of cellular cAMP elevation inhibits seed germination, disturbs phytohormone contents, promotes leaf senescence, impairs ethylene response, and compromises salt stress tolerance and pathogen resistance. A set of 62 transcription factors are among the CRGs, supporting a prominent role of cAMP in transcriptional regulation. The CRGs are significantly overrepresented in the pathways of plant hormone signal transduction, MAPK signaling, and diterpenoid biosynthesis, but they are also implicated in lipid, sugar, K+, nitrate signaling, and beyond. Our results provide a basic framework of cAMP signaling for the community to explore. The regulatory roles of cAMP signaling in plant plasticity are discussed.
Collapse
Affiliation(s)
- Ruqiang Xu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: ; Tel.: +86-0371-6778-5095
| | - Yanhui Guo
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Song Peng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Jinrui Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Panyu Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Wenjing Jia
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Junheng Zhao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| |
Collapse
|
32
|
Dindas J, Dreyer I, Huang S, Hedrich R, Roelfsema MRG. A voltage-dependent Ca 2+ homeostat operates in the plant vacuolar membrane. THE NEW PHYTOLOGIST 2021; 230:1449-1460. [PMID: 33577135 DOI: 10.1111/nph.17272] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Cytosolic calcium signals are evoked by a large variety of biotic and abiotic stimuli and play an important role in cellular and long distance signalling in plants. While the function of the plasma membrane in cytosolic Ca2+ signalling has been intensively studied, the role of the vacuolar membrane remains elusive. A newly developed vacuolar voltage clamp technique was used in combination with live-cell imaging, to study the role of the vacuolar membrane in Ca2+ and pH homeostasis of bulging root hair cells of Arabidopsis. Depolarisation of the vacuolar membrane caused a rapid increase in the Ca2+ concentration and alkalised the cytosol, while hyperpolarisation led to the opposite responses. The relationship between the vacuolar membrane potential, the cytosolic pH and Ca2+ concentration suggests that a vacuolar H+ /Ca2+ exchange mechanism plays a central role in cytosolic Ca2+ homeostasis. Mathematical modelling further suggests that the voltage-dependent vacuolar Ca2+ homeostat could contribute to calcium signalling when coupled to a recently discovered K+ channel-dependent module for electrical excitability of the vacuolar membrane.
Collapse
Affiliation(s)
- Julian Dindas
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, Würzburg University, Würzburg, D-97082, Germany
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, Zürich, CH-8008, Switzerland
| | - Ingo Dreyer
- Center of Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, 2 Norte 685, Talca, 3460000, Chile
| | - Shouguang Huang
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, Würzburg University, Würzburg, D-97082, Germany
| | - Rainer Hedrich
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, Würzburg University, Würzburg, D-97082, Germany
| | - M Rob G Roelfsema
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, Würzburg University, Würzburg, D-97082, Germany
| |
Collapse
|
33
|
Rahmati Ishka M, Brown E, Rosenberg A, Romanowsky S, Davis JA, Choi WG, Harper JF. Arabidopsis Ca2+-ATPases 1, 2, and 7 in the endoplasmic reticulum contribute to growth and pollen fitness. PLANT PHYSIOLOGY 2021; 185:1966-1985. [PMID: 33575795 PMCID: PMC8133587 DOI: 10.1093/plphys/kiab021] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/23/2020] [Indexed: 05/18/2023]
Abstract
Generating cellular Ca2+ signals requires coordinated transport activities from both Ca2+ influx and efflux pathways. In Arabidopsis (Arabidopsis thaliana), multiple efflux pathways exist, some of which involve Ca2+-pumps belonging to the Autoinhibited Ca2+-ATPase (ACA) family. Here, we show that ACA1, 2, and 7 localize to the endoplasmic reticulum (ER) and are important for plant growth and pollen fertility. While phenotypes for plants harboring single-gene knockouts (KOs) were weak or undetected, a triple KO of aca1/2/7 displayed a 2.6-fold decrease in pollen transmission efficiency, whereas inheritance through female gametes was normal. The triple KO also resulted in smaller rosettes showing a high frequency of lesions. Both vegetative and reproductive phenotypes were rescued by transgenes encoding either ACA1, 2, or 7, suggesting that all three isoforms are biochemically redundant. Lesions were suppressed by expression of a transgene encoding NahG, an enzyme that degrades salicylic acid (SA). Triple KO mutants showed elevated mRNA expression for two SA-inducible marker genes, Pathogenesis-related1 (PR1) and PR2. The aca1/2/7 lesion phenotype was similar but less severe than SA-dependent lesions associated with a double KO of vacuolar pumps aca4 and 11. Imaging of Ca2+ dynamics triggered by blue light or the pathogen elicitor flg22 revealed that aca1/2/7 mutants display Ca2+ transients with increased magnitudes and durations. Together, these results indicate that ER-localized ACAs play important roles in regulating Ca2+ signals, and that the loss of these pumps results in male fertility and vegetative growth deficiencies.
Collapse
Affiliation(s)
- Maryam Rahmati Ishka
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Elizabeth Brown
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Alexa Rosenberg
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Shawn Romanowsky
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - James A Davis
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Won-Gyu Choi
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| |
Collapse
|
34
|
Iqbal Z, Iqbal MS, Hashem A, Abd_Allah EF, Ansari MI. Plant Defense Responses to Biotic Stress and Its Interplay With Fluctuating Dark/Light Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:631810. [PMID: 33763093 PMCID: PMC7982811 DOI: 10.3389/fpls.2021.631810] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/08/2021] [Indexed: 05/24/2023]
Abstract
Plants are subjected to a plethora of environmental cues that cause extreme losses to crop productivity. Due to fluctuating environmental conditions, plants encounter difficulties in attaining full genetic potential for growth and reproduction. One such environmental condition is the recurrent attack on plants by herbivores and microbial pathogens. To surmount such attacks, plants have developed a complex array of defense mechanisms. The defense mechanism can be either preformed, where toxic secondary metabolites are stored; or can be inducible, where defense is activated upon detection of an attack. Plants sense biotic stress conditions, activate the regulatory or transcriptional machinery, and eventually generate an appropriate response. Plant defense against pathogen attack is well understood, but the interplay and impact of different signals to generate defense responses against biotic stress still remain elusive. The impact of light and dark signals on biotic stress response is one such area to comprehend. Light and dark alterations not only regulate defense mechanisms impacting plant development and biochemistry but also bestow resistance against invading pathogens. The interaction between plant defense and dark/light environment activates a signaling cascade. This signaling cascade acts as a connecting link between perception of biotic stress, dark/light environment, and generation of an appropriate physiological or biochemical response. The present review highlights molecular responses arising from dark/light fluctuations vis-à-vis elicitation of defense mechanisms in plants.
Collapse
Affiliation(s)
- Zahra Iqbal
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | | | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Giza, Egypt
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
35
|
Pottosin I, Olivas-Aguirre M, Dobrovinskaya O, Zepeda-Jazo I, Shabala S. Modulation of Ion Transport Across Plant Membranes by Polyamines: Understanding Specific Modes of Action Under Stress. FRONTIERS IN PLANT SCIENCE 2021; 11:616077. [PMID: 33574826 PMCID: PMC7870501 DOI: 10.3389/fpls.2020.616077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/14/2020] [Indexed: 05/20/2023]
Abstract
This work critically discusses the direct and indirect effects of natural polyamines and their catabolites such as reactive oxygen species and γ-aminobutyric acid on the activity of key plant ion-transporting proteins such as plasma membrane H+ and Ca2+ ATPases and K+-selective and cation channels in the plasma membrane and tonoplast, in the context of their involvement in stress responses. Docking analysis predicts a distinct binding for putrescine and longer polyamines within the pore of the vacuolar TPC1/SV channel, one of the key determinants of the cell ionic homeostasis and signaling under stress conditions, and an additional site for spermine, which overlaps with the cytosolic regulatory Ca2+-binding site. Several unresolved problems are summarized, including the correct estimates of the subcellular levels of polyamines and their catabolites, their unexplored effects on nucleotide-gated and glutamate receptor channels of cell membranes and Ca2+-permeable and K+-selective channels in the membranes of plant mitochondria and chloroplasts, and pleiotropic mechanisms of polyamines' action on H+ and Ca2+ pumps.
Collapse
Affiliation(s)
- Igor Pottosin
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
- Biomedical Center, University of Colima, Colima, Mexico
| | | | | | - Isaac Zepeda-Jazo
- Food Genomics Department, Universidad de La Ciénega del Estado de Michoacán de Ocampo, Sahuayo, Mexico
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
36
|
Modareszadeh M, Bahmani R, Kim D, Hwang S. CAX3 (cation/proton exchanger) mediates a Cd tolerance by decreasing ROS through Ca elevation in Arabidopsis. PLANT MOLECULAR BIOLOGY 2021; 105:115-132. [PMID: 32926249 DOI: 10.1007/s11103-020-01072-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE Over-expression of CAX3 encoding a cation/proton exchanger enhances Cd tolerance by decreasing ROS (Reactive Oxygen Species) through activating anti-oxidative enzymes via elevation of Ca level in Arabidopsis CAXs (cation/proton exchangers) are involved in the sequestration of cations such as Mn, Li, and Cd, as well as Ca, from cytosol into the vacuole using proton gradients. In addition, it has been reported that CAX1, 2 and 4 are involved in Cd tolerance. Interestingly, it has been reported that CAX3 expressions were enhanced by Cd in Cd-tolerant transgenic plants expressing Hb1 (hemoglobin 1) or UBC1 (Ub-conjugating enzyme 1). Therefore, to investigate whether CAX3 plays a role in increasing Cd tolerance, CAX3 of Arabidopsis and tobacco were over-expressed in Arabidopsis thaliana. Compared to control plants, both transgenic plants displayed an increase in Cd tolerance, no change in Cd accumulation, and enhanced Ca levels. In support of these, AtCAX3-Arabidopsis showed no change in expressions of Cd transporters, but reduced expressions of Ca exporters and lower rate of Ca efflux. By contrast, atcax3 knockout Arabidopsis exhibited a reduced Cd tolerance, while the Cd level was not altered. The expression of Δ90-AtCAX3 (deletion of autoinhibitory domain) increased Cd and Ca tolerance in yeast, while AtCAX3 expression did not. Interestingly, less accumulation of ROS (H2O2 and O2-) was observed in CAX3-expressing transgenic plants and was accompanied with higher antioxidant enzyme activities (SOD, CAT, GR). Taken together, CAX3 over-expression may enhance Cd tolerance by decreasing Cd-induced ROS production by activating antioxidant enzymes and by intervening the positive feedback circuit between ROS generation and Cd-induced spikes of cytoplasmic Ca.
Collapse
Affiliation(s)
- Mahsa Modareszadeh
- Department of Molecular Biology, Sejong University, Seoul, 143-747, Republic of Korea
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 143-747, Republic of Korea
- Plant Engineering Research Institute, Sejong University, Seoul, 143-747, Republic of Korea
| | - Ramin Bahmani
- Department of Molecular Biology, Sejong University, Seoul, 143-747, Republic of Korea
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 143-747, Republic of Korea
- Plant Engineering Research Institute, Sejong University, Seoul, 143-747, Republic of Korea
| | - DongGwan Kim
- Department of Molecular Biology, Sejong University, Seoul, 143-747, Republic of Korea
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 143-747, Republic of Korea
- Plant Engineering Research Institute, Sejong University, Seoul, 143-747, Republic of Korea
| | - Seongbin Hwang
- Department of Molecular Biology, Sejong University, Seoul, 143-747, Republic of Korea.
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 143-747, Republic of Korea.
- Plant Engineering Research Institute, Sejong University, Seoul, 143-747, Republic of Korea.
| |
Collapse
|
37
|
Bomblies K. When everything changes at once: finding a new normal after genome duplication. Proc Biol Sci 2020; 287:20202154. [PMID: 33203329 PMCID: PMC7739491 DOI: 10.1098/rspb.2020.2154] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Whole-genome duplication (WGD), which leads to polyploidy, is implicated in adaptation and speciation. But what are the immediate effects of WGD and how do newly polyploid lineages adapt to them? With many studies of new and evolved polyploids now available, along with studies of genes under selection in polyploids, we are in an increasingly good position to understand how polyploidy generates novelty. Here, I will review consistent effects of WGD on the biology of plants, such as an increase in cell size, increased stress tolerance and more. I will discuss how a change in something as fundamental as cell size can challenge the function of some cell types in particular. I will also discuss what we have learned about the short- to medium-term evolutionary response to WGD. It is now clear that some of this evolutionary response may 'lock in' traits that happen to be beneficial, while in other cases, it might be more of an 'emergency response' to work around physiological changes that are either deleterious, or cannot be undone in the polyploid context. Yet, other traits may return rapidly to a diploid-like state. Polyploids may, by re-jigging many inter-related processes, find a new, conditionally adaptive, normal.
Collapse
Affiliation(s)
- Kirsten Bomblies
- Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
38
|
Distinct Molecular Pattern-Induced Calcium Signatures Lead to Different Downstream Transcriptional Regulations via AtSR1/CAMTA3. Int J Mol Sci 2020; 21:ijms21218163. [PMID: 33142885 PMCID: PMC7662696 DOI: 10.3390/ijms21218163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022] Open
Abstract
Plants encrypt the perception of different pathogenic stimuli into specific intracellular calcium (Ca2+) signatures and subsequently decrypt the signatures into appropriate downstream responses through various Ca2+ sensors. Two microbe-associated molecular patterns (MAMPs), bacterial flg22 and fungal chitin, and one damage-associated molecular pattern (DAMP), AtPep1, were used to study the differential Ca2+ signatures in Arabidopsis leaves. The results revealed that flg22, chitin, and AtPep1 induced distinct changes in Ca2+ dynamics in both the cytosol and nucleus. In addition, Flg22 and chitin upregulated the expression of salicylic acid-related genes, ICS1 and EDS1, whereas AtPep1 upregulated the expression of jasmonic acid-related genes, JAZ1 and PDF1.2, in addition to ICS1 and EDS1. These data demonstrated that distinct Ca2+ signatures caused by different molecular patterns in leaf cells lead to specific downstream events. Furthermore, these changes in the expression of defense-related genes were disrupted in a knockout mutant of the AtSR1/CAMTA3 gene, encoding a calmodulin-binding transcription factor, in which a calmodulin-binding domain on AtSR1 was required for deciphering the Ca2+ signatures into downstream transcription events. These observations extend our knowledge regarding unique and intrinsic roles for Ca2+ signaling in launching and fine-tuning plant immune response, which are mediated by the AtSR1/CAMTA3 transcription factor.
Collapse
|
39
|
Chen K, Gao J, Sun S, Zhang Z, Yu B, Li J, Xie C, Li G, Wang P, Song CP, Bressan RA, Hua J, Zhu JK, Zhao Y. BONZAI Proteins Control Global Osmotic Stress Responses in Plants. Curr Biol 2020; 30:4815-4825.e4. [PMID: 33035480 DOI: 10.1016/j.cub.2020.09.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/27/2020] [Accepted: 09/07/2020] [Indexed: 12/31/2022]
Abstract
Hyperosmotic stress caused by drought and salinity is a significant environmental threat that limits plant growth and agricultural productivity. Osmotic stress induces diverse responses in plants including Ca2+ signaling, accumulation of the stress hormone abscisic acid (ABA), reprogramming of gene expression, and altering of growth. Despite intensive investigation, no global regulators of all of these responses have been identified. Here, we show that the Ca2+-responsive phospholipid-binding BONZAI (BON) proteins are critical for all of these osmotic stress responses. A Ca2+-imaging-based forward genetic screen identified a loss-of-function bon1 mutant with a reduced cytosolic Ca2+ signal in response to hyperosmotic stress. The loss-of-function mutants of the BON1 gene family, bon1bon2bon3, are impaired in the induction of gene expression and ABA accumulation in response to osmotic stress. In addition, the bon mutants are hypersensitive to osmotic stress in growth inhibition. BON genes have been shown to negatively regulate plant immune responses mediated by intracellular immune receptor NLR genes including SNC1. We found that the defects of the bon mutants in osmotic stress responses were suppressed by mutations in the NLR gene SNC1 or the immunity regulator PAD4. Our findings indicate that NLR signaling represses osmotic stress responses and that BON proteins suppress NLR signaling to enable global osmotic stress responses in plants.
Collapse
Affiliation(s)
- Kong Chen
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinghui Gao
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaan'xi 712100, China
| | - Shujing Sun
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhengjing Zhang
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Bo Yu
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Li
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changgen Xie
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Guojun Li
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengcheng Wang
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Ray A Bressan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Jian Hua
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY 14853, USA
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA.
| | - Yang Zhao
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China.
| |
Collapse
|
40
|
García-Gómez P, Bahaji A, Gámez-Arcas S, Muñoz FJ, Sánchez-López ÁM, Almagro G, Baroja-Fernández E, Ameztoy K, De Diego N, Ugena L, Spíchal L, Doležal K, Hajirezaei MR, Romero LC, García I, Pozueta-Romero J. Volatiles from the fungal phytopathogen Penicillium aurantiogriseum modulate root metabolism and architecture through proteome resetting. PLANT, CELL & ENVIRONMENT 2020; 43:2551-2570. [PMID: 32515071 DOI: 10.1111/pce.13817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 05/19/2023]
Abstract
Volatile compounds (VCs) emitted by the fungal phytopathogen Penicillium aurantiogriseum promote root growth and developmental changes in Arabidopsis. Here we characterised the metabolic and molecular responses of roots to fungal volatiles. Proteomic analyses revealed that these compounds reduce the levels of aquaporins, the iron carrier IRT1 and apoplastic peroxidases. Fungal VCs also increased the levels of enzymes involved in the production of mevalonate (MVA)-derived isoprenoids, nitrogen assimilation and conversion of methionine to ethylene and cyanide. Consistently, fungal VC-treated roots accumulated high levels of hydrogen peroxide (H2 O2 ), MVA-derived cytokinins, ethylene, cyanide and long-distance nitrogen transport amino acids. qRT-PCR analyses showed that many proteins differentially expressed by fungal VCs are encoded by VC non-responsive genes. Expression patterns of hormone reporters and developmental characterisation of mutants provided evidence for the involvement of cyanide scavenging and enhanced auxin, ethylene, cytokinin and H2 O2 signalling in the root architecture changes promoted by fungal VCs. Our findings show that VCs from P. aurantiogriseum modify root metabolism and architecture, and improve nutrient and water use efficiencies through transcriptionally and non-transcriptionally regulated proteome resetting mechanisms. Some of these mechanisms are subject to long-distance regulation by photosynthesis and differ from those triggered by VCs emitted by beneficial microorganisms.
Collapse
Affiliation(s)
- Pablo García-Gómez
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, 31192, Spain
| | - Abdellatif Bahaji
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, 31192, Spain
| | - Samuel Gámez-Arcas
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, 31192, Spain
| | - Francisco José Muñoz
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, 31192, Spain
| | - Ángela María Sánchez-López
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, 31192, Spain
| | - Goizeder Almagro
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, 31192, Spain
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, 31192, Spain
| | - Kinia Ameztoy
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, 31192, Spain
| | - Nuria De Diego
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Lydia Ugena
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Lukáš Spíchal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Karel Doležal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | | | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, 41092, Spain
| | - Irene García
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, 41092, Spain
| | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, 31192, Spain
| |
Collapse
|
41
|
Maurya R, Srivastava D, Singh M, Sawant SV. Envisioning the immune interactome in Arabidopsis. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:486-507. [PMID: 32345431 DOI: 10.1071/fp19188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/13/2020] [Indexed: 06/11/2023]
Abstract
During plant-pathogen interaction, immune targets were regulated by protein-protein interaction events such as ligand-receptor/co-receptor, kinase-substrate, protein sequestration, activation or repression via post-translational modification and homo/oligo/hetro-dimerisation of proteins. A judicious use of molecular machinery requires coordinated protein interaction among defence components. Immune signalling in Arabidopsis can be broadly represented in successive or simultaneous steps; pathogen recognition at cell surface, Ca2+ and reactive oxygen species signalling, MAPK signalling, post-translational modification, transcriptional regulation and phyto-hormone signalling. Proteome wide interaction studies have shown the existence of interaction hubs associated with physiological function. So far, a number of protein interaction events regulating immune targets have been identified, but their understanding in an interactome view is lacking. We focussed specifically on the integration of protein interaction signalling in context to plant-pathogenesis and identified the key targets. The present review focuses towards a comprehensive view of the plant immune interactome including signal perception, progression, integration and physiological response during plant pathogen interaction.
Collapse
Affiliation(s)
- Rashmi Maurya
- Plant Molecular Biology Lab, National Botanical Research Institute, Lucknow. 226001; and Department of Botany, Lucknow University, Lucknow. 226007
| | - Deepti Srivastava
- Integral Institute of Agricultural Science and Technology (IIAST) Integral University, Kursi Road, Dashauli, Uttar Pradesh. 226026
| | - Munna Singh
- Department of Botany, Lucknow University, Lucknow. 226007
| | - Samir V Sawant
- Plant Molecular Biology Lab, National Botanical Research Institute, Lucknow. 226001; and Corresponding author.
| |
Collapse
|
42
|
García Bossi J, Kumar K, Barberini ML, Domínguez GD, Rondón Guerrero YDC, Marino-Buslje C, Obertello M, Muschietti JP, Estevez JM. The role of P-type IIA and P-type IIB Ca2+-ATPases in plant development and growth. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1239-1248. [PMID: 31740935 DOI: 10.1093/jxb/erz521] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
As sessile organisms, plants have evolved mechanisms to adapt to variable and rapidly fluctuating environmental conditions. Calcium (Ca2+) in plant cells is a versatile intracellular second messenger that is essential for stimulating short- and long-term responses to environmental stresses through changes in its concentration in the cytosol ([Ca2+]cyt). Increases in [Ca2+]cyt direct the strength and length of these stimuli. In order to terminate them, the cells must then remove the cytosolic Ca2+ against a concentration gradient, either taking it away from the cell or storing it in organelles such as the endoplasmic reticulum (ER) and/or vacuoles. Here, we review current knowledge about the biological roles of plant P-type Ca2+-ATPases as potential actors in the regulation of this cytosolic Ca2+ efflux, with a focus the IIA ER-type Ca2+-ATPases (ECAs) and the IIB autoinhibited Ca2+-ATPases (ACAs). While ECAs are analogous proteins to animal sarcoplasmic-endoplasmic reticulum Ca2+-ATPases (SERCAs), ACAs are equivalent to animal plasma membrane-type ATPases (PMCAs). We examine their expression patterns in cells exhibiting polar growth and consider their appearance during the evolution of the plant lineage. Full details of the functions and coordination of ECAs and ACAs during plant growth and development have not yet been elucidated. Our current understanding of the regulation of fluctuations in Ca2+ gradients in the cytoplasm and organelles during growth is in its infancy, but recent technological advances in Ca2+ imaging are expected to shed light on this subject.
Collapse
Affiliation(s)
- Julián García Bossi
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Buenos Aires, Argentina
| | - Krishna Kumar
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina
- Molecular Plant Biology and Biotechnology Laboratory, CSIR-Central Institute of Medicinal and Aromatic Plants Research Centre, GKVK Post, Bengaluru, India
| | - María Laura Barberini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Buenos Aires, Argentina
| | - Gabriela Díaz Domínguez
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina
| | | | - Cristina Marino-Buslje
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina
| | - Mariana Obertello
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Buenos Aires, Argentina
| | - Jorge P Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Int. Güiraldes, Ciudad Universitaria, Pabellón II, Buenos Aires, Argentina
| | - José M Estevez
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina
- Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
43
|
Mapping proteome-wide targets of protein kinases in plant stress responses. Proc Natl Acad Sci U S A 2020; 117:3270-3280. [PMID: 31992638 DOI: 10.1073/pnas.1919901117] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Protein kinases are major regulatory components in almost all cellular processes in eukaryotic cells. By adding phosphate groups, protein kinases regulate the activity, localization, protein-protein interactions, and other features of their target proteins. It is known that protein kinases are central components in plant responses to environmental stresses such as drought, high salinity, cold, and pathogen attack. However, only a few targets of these protein kinases have been identified. Moreover, how these protein kinases regulate downstream biological processes and mediate stress responses is still largely unknown. In this study, we introduce a strategy based on isotope-labeled in vitro phosphorylation reactions using in vivo phosphorylated peptides as substrate pools and apply this strategy to identify putative substrates of nine protein kinases that function in plant abiotic and biotic stress responses. As a result, we identified more than 5,000 putative target sites of osmotic stress-activated SnRK2.4 and SnRK2.6, abscisic acid-activated protein kinases SnRK2.6 and casein kinase 1-like 2 (CKL2), elicitor-activated protein kinase CDPK11 and MPK6, cold-activated protein kinase MPK6, H2O2-activated protein kinase OXI1 and MPK6, and salt-induced protein kinase SOS1 and MPK6, as well as the low-potassium-activated protein kinase CIPK23. These results provide comprehensive information on the role of these protein kinases in the control of cellular activities and could be a valuable resource for further studies on the mechanisms underlying plant responses to environmental stresses.
Collapse
|
44
|
Wang W, Feng B, Zhou JM, Tang D. Plant immune signaling: Advancing on two frontiers. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:2-24. [PMID: 31846204 DOI: 10.1111/jipb.12898] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/16/2019] [Indexed: 05/21/2023]
Abstract
Plants have evolved multiple defense strategies to cope with pathogens, among which plant immune signaling that relies on cell-surface localized and intracellular receptors takes fundamental roles. Exciting breakthroughs were made recently on the signaling mechanisms of pattern recognition receptors (PRRs) and intracellular nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domain receptors (NLRs). This review summarizes the current view of PRRs activation, emphasizing the most recent discoveries about PRRs' dynamic regulation and signaling mechanisms directly leading to downstream molecular events including mitogen-activated protein kinase (MAPK) activation and calcium (Ca2+ ) burst. Plants also have evolved intracellular NLRs to perceive the presence of specific pathogen effectors and trigger more robust immune responses. We also discuss the current understanding of the mechanisms of NLR activation, which has been greatly advanced by recent breakthroughs including structures of the first full-length plant NLR complex, findings of NLR sensor-helper pairs and novel biochemical activity of Toll/interleukin-1 receptor (TIR) domain.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Baomin Feng
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jian-Min Zhou
- The State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
45
|
Shen J, Diao W, Zhang L, Acharya BR, Wang M, Zhao X, Chen D, Zhang W. Secreted Peptide PIP1 Induces Stomatal Closure by Activation of Guard Cell Anion Channels in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:1029. [PMID: 32733520 PMCID: PMC7360795 DOI: 10.3389/fpls.2020.01029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/23/2020] [Indexed: 05/08/2023]
Abstract
Plant stomata which consist of a pair of guard cells, are not only finely controlled to balance water loss as transpiration and CO2 absorption for photosynthesis, but also serve as the major sites to defend against pathogen attack, thus allowing plants to respond appropriately to abiotic and biotic stress conditions. The regulatory signaling network for stomatal movement is complex in nature, and plant peptides have been shown to be involved in signaling processes. Arabidopsis secreted peptide PIP1 was previously identified as an endogenous elicitor, which induced immune response through its receptor, RLK7. PIP1-RLK7 can activate stomatal immunity against the bacterial strain Pst DC3118. However, the molecular mechanism of PIP1 in stomatal regulation is still unclear and additional new factors need to be discovered. In this study, we further clarified that PIP1 could function as an important regulator in the induction of stomatal closure. The results showed that PIP1 could promote stomata to close in a certain range of concentrations and response time. In addition, we uncovered that PIP1-RLK7 signaling regulated stomatal response by activating S-type anion channel SLAC1. PIP1-induced stomatal closure was impaired in bak1, mpk3, and mpk6 mutants, indicating that BAK1 and MPK3/MPK6 were required for PIP1-regulated stomatal movement. Our research further deciphered that OST1 which acts as an essential ABA-signaling component, also played a role in PIP1-induced stomatal closure. In addition, ROS participated in PIP1-induced stomatal closure and PIP1 could activate Ca2+ permeable channels. In conclusion, we reveal the role of peptide PIP1 in triggering stomatal closure and the possible mechanism of PIP1 in the regulation of stomatal apertures. Our findings improve the understanding of the role of PIP1 in stomatal regulation and immune response.
Collapse
Affiliation(s)
- Jianlin Shen
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Wenzhu Diao
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Linfang Zhang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Biswa R. Acharya
- College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA, United States
| | - Mei Wang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Xiangyu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Donghua Chen
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
- *Correspondence: Donghua Chen, ; Wei Zhang,
| | - Wei Zhang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
- *Correspondence: Donghua Chen, ; Wei Zhang,
| |
Collapse
|
46
|
Yan J, Yu H, Li B, Fan A, Melkonian J, Wang X, Zhou T, Hua J. Cell autonomous and non-autonomous functions of plant intracellular immune receptors in stomatal defense and apoplastic defense. PLoS Pathog 2019; 15:e1008094. [PMID: 31652291 PMCID: PMC6834285 DOI: 10.1371/journal.ppat.1008094] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 11/06/2019] [Accepted: 09/18/2019] [Indexed: 11/18/2022] Open
Abstract
Stomatal closure defense and apoplastic defense are two major immunity mechanisms restricting the entry and propagation of microbe pathogens in plants. Surprisingly, activation of plant intracellular immune receptor NLR genes, while enhancing whole plant disease resistance, was sometimes linked to a defective stomatal defense in autoimmune mutants. Here we report the use of high temperature and genetic chimera to investigate the inter-dependence of stomatal and apoplastic defenses in autoimmunity. High temperature inhibits both stomatal and apoplastic defenses in the wild type, suppresses constitutive apoplastic defense responses and rescues the deficiency of stomatal closure response in autoimmune mutants. Chimeric plants have been generated to activate NLR only in guard cells or the non-guard cells. NLR activation in guard cells inhibits stomatal closure defense response in a cell autonomous manner likely through repressing ABA responses. At the same time, it leads to increased whole plant resistance accompanied by a slight increase in apoplastic defense. In addition, NLR activation in both guard and non-guard cells affects stomatal aperture and water potential. This study thus reveals that NLR activation has a differential effect on immunity in a cell type specific matter, which adds another layer of immune regulation with spatial information.
Collapse
Affiliation(s)
- Jiapei Yan
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, United States of America
| | - Huiyun Yu
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, United States of America.,Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bo Li
- School of Applied Physics and Engineering, Cornell University, Ithaca, NY, United States of America
| | - Anqi Fan
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, United States of America.,State Key Lab of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Jeffrey Melkonian
- School of Integrative Plant Science, Crop and Soil Sciences, Cornell University, Ithaca, NY, United States of America
| | - Xiue Wang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Tong Zhou
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jian Hua
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
47
|
Wang X, Zhu B, Jiang Z, Wang S. Calcium-mediation of jasmonate biosynthesis and signaling in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110192. [PMID: 31481228 DOI: 10.1016/j.plantsci.2019.110192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/24/2019] [Accepted: 07/15/2019] [Indexed: 05/22/2023]
Abstract
Jasmonates (JAs) play vital roles in regulating a range of plant growth and development processes including seed germination, seedling development, reproduction, formation and development of storage organs, and senescence. JAs are also involved in the regulation of plant responses to environmental stimuli. The biosynthesis of JAs takes place in three different subcellular compartments, namely, the chloroplast, peroxisome, and cytoplasm. JAs activate the expression of JA-responsive genes by degrading jasmonate zinc-finger-inflorescence meristem (Zim) domain (JAZ) repressors via the E3 ubiquitin-ligase Skp/Cullin/F-box protein CORONATINE INSENSITIVE1 (COI1) complex (SCFCOI1) by using 26S proteasome. Calcium, reactive oxygen species (ROS), mitogen-activated protein kinase (MAPK), and nitric oxide (NO) are involved in the regulation of the biosynthesis and signaling of JAs in plants. Among these signaling molecules, calcium is one of the most important within plant cells. In plants, intracellular calcium levels change in response to JAs, resulting in calcium signatures with temporal and spatial features. Calcium channels are involved in the generation of calcium signatures. Calcium sensors, including calmodulins (CaMs), CaM-like proteins (CMLs), calcineurin B-like proteins (CBLs), and calcium-dependent protein kinases (CDPKs), can act to regulate the biosynthesis and signaling of JAs.
Collapse
Affiliation(s)
- Xiaoping Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Biping Zhu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zhonghao Jiang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China; College of Life Science, Linyi University, Linyi, 276000, China.
| |
Collapse
|
48
|
An M, Zhou T, Guo Y, Zhao X, Wu Y. Molecular Regulation of Host Defense Responses Mediated by Biological Anti-TMV Agent Ningnanmycin. Viruses 2019; 11:E815. [PMID: 31484426 PMCID: PMC6784071 DOI: 10.3390/v11090815] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/30/2019] [Accepted: 08/31/2019] [Indexed: 12/28/2022] Open
Abstract
Ningnanmycin (NNM) belongs to microbial pesticides that display comprehensive antiviral activity against plant viruses. NNM treatment has been shown to efficiently delay or suppress the disease symptoms caused by tobacco mosaic virus (TMV) infection in local-inoculated or systemic-uninoculated tobacco leaves, respectively. However, the underlying molecular mechanism of NNM-mediated antiviral activity remains to be further elucidated. In this study, 414 differentially expressed genes (DEGs), including 383 which were up-regulated and 31 down-regulated, caused by NNM treatment in TMV-infected BY-2 protoplasts, were discovered by RNA-seq. In addition, KEGG analysis indicated significant enrichment of DEGs in the plant-pathogen interaction and MAPK signaling pathway. The up-regulated expression of crucial DEGs, including defense-responsive genes, such as the receptor-like kinase FLS2, RLK1, and the mitogen-activated protein kinase kinase kinase MAPKKK, calcium signaling genes, such as the calcium-binding protein CML19, as well as phytohormone responsive genes, such as the WRKY transcription factors WRKY40 and WRKY70, were confirmed by RT-qPCR. These findings provided valuable insights into the antiviral mechanisms of NNM, which indicated that the agent induces tobacco systemic resistance against TMV via activating multiple plant defense signaling pathways.
Collapse
Affiliation(s)
- Mengnan An
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Tao Zhou
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Yi Guo
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Xiuxiang Zhao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| |
Collapse
|
49
|
A cyclic nucleotide-gated channel mediates cytoplasmic calcium elevation and disease resistance in rice. Cell Res 2019; 29:820-831. [PMID: 31444468 DOI: 10.1038/s41422-019-0219-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/01/2019] [Indexed: 01/17/2023] Open
Abstract
The transient elevation of cytoplasmic calcium is essential for pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). However, the calcium channels responsible for this process have remained unknown. Here, we show that rice CDS1 (CELL DEATH and SUSCEPTIBLE to BLAST 1) encoding OsCNGC9, a cyclic nucleotide-gated channel protein, positively regulates the resistance to rice blast disease. We show that OsCNGC9 mediates PAMP-induced Ca2+ influx and that this event is critical for PAMPs-triggered ROS burst and induction of PTI-related defense gene expression. We further show that a PTI-related receptor-like cytoplasmic kinase OsRLCK185 physically interacts with and phosphorylates OsCNGC9 to activate its channel activity. Our results suggest a signaling cascade linking pattern recognition to calcium channel activation, which is required for initiation of PTI and disease resistance in rice.
Collapse
|
50
|
Genome-Wide Identification and Characterization of Long Non-Coding RNAs in Peanut. Genes (Basel) 2019; 10:genes10070536. [PMID: 31311183 PMCID: PMC6679159 DOI: 10.3390/genes10070536] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/29/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in various regulatory processes although they do not encode protein. Presently, there is little information regarding the identification of lncRNAs in peanut (Arachis hypogaea Linn.). In this study, 50,873 lncRNAs of peanut were identified from large-scale published RNA sequencing data that belonged to 124 samples involving 15 different tissues. The average lengths of lncRNA and mRNA were 4335 bp and 954 bp, respectively. Compared to the mRNAs, the lncRNAs were shorter, with fewer exons and lower expression levels. The 4713 co-expression lncRNAs (expressed in all samples) were used to construct co-expression networks by using the weighted correlation network analysis (WGCNA). LncRNAs correlating with the growth and development of different peanut tissues were obtained, and target genes for 386 hub lncRNAs of all lncRNAs co-expressions were predicted. Taken together, these findings can provide a comprehensive identification of lncRNAs in peanut.
Collapse
|