1
|
Urrea-Castellanos R, Calderan-Rodrigues MJ, Artins A, Musialak-Lange M, Macharanda-Ganesh A, Fernie AR, Wahl V, Caldana C. The Regulatory-associated protein of target of rapamycin 1B (RAPTOR 1B) interconnects with the photoperiod pathway to promote flowering in Arabidopsis. Proc Natl Acad Sci U S A 2025; 122:e2405536122. [PMID: 39899726 PMCID: PMC11831161 DOI: 10.1073/pnas.2405536122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 12/24/2024] [Indexed: 02/05/2025] Open
Abstract
The transition from vegetative to reproductive growth, or floral transition, is a tightly regulated, energy-demanding process. In Arabidopsis, the interplay of light perception and circadian rhythms detects changes in photoperiod length, accelerating flowering under long days (LD). CONSTANS (CO), a transcription factor, upregulates FLOWERING LOCUS T (FT) in leaves during dusk. The FT protein then moves to the shoot apical meristem, triggering the floral transition. While light and circadian signals control CO protein levels, less is known about how the nutrients/energy sensing regulates the photoperiod pathway for flowering modulation in this process. In our study, we identify the contribution of the Regulatory-associated protein of target of rapamycin 1B (RAPTOR1B), a component of the nutrient-sensing TOR complex (TORC), in the induction of specific flowering genes under CO control. While transcription of CO remains unaffected in raptor1b mutants, a reduction in its protein levels at dusk is observed compared to the wild type. Remarkably, the mutant also exhibits compromised GIGANTEA (GI) protein levels, crucial for CO stabilization during dusk. Our results indicate that the interaction and colocalization of RAPTOR1B with GI in the nucleus might influence GI levels through an unknown posttranscriptional mechanism. Genetic crosses position RAPTOR1B upstream of CO and GI. This is supported by phenotypic and molecular analyses. Our findings demonstrate that RAPTOR1B, likely as part of TORC, contributes to the photoperiod pathway of the flowering network, ensuring the timely initiation of floral transition under LD conditions.
Collapse
Affiliation(s)
| | | | - Anthony Artins
- Max-Planck Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm14476, Germany
| | | | | | - Alisdair R. Fernie
- Max-Planck Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm14476, Germany
| | - Vanessa Wahl
- Max-Planck Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm14476, Germany
- The James Hutton Institute, DundeeDD2 5DA, United Kingdom
| | - Camila Caldana
- Max-Planck Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm14476, Germany
| |
Collapse
|
2
|
Boix M, Garcia-Rodriguez A, Castillo L, Miró B, Hamilton F, Tolak S, Pérez A, Monte-Bello C, Caldana C, Henriques R. 40S Ribosomal protein S6 kinase integrates daylength perception and growth regulation in Arabidopsis thaliana. PLANT PHYSIOLOGY 2024; 195:3039-3052. [PMID: 38701056 PMCID: PMC11288760 DOI: 10.1093/plphys/kiae254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024]
Abstract
Plant growth occurs via the interconnection of cell growth and proliferation in each organ following specific developmental and environmental cues. Therefore, different photoperiods result in distinct growth patterns due to the integration of light and circadian perception with specific Carbon (C) partitioning strategies. In addition, the TARGET OF RAPAMYCIN (TOR) kinase pathway is an ancestral signaling pathway that integrates nutrient information with translational control and growth regulation. Recent findings in Arabidopsis (Arabidopsis thaliana) have shown a mutual connection between the TOR pathway and the circadian clock. However, the mechanistical network underlying this interaction is mostly unknown. Here, we show that the conserved TOR target, the 40S ribosomal protein S6 kinase (S6K) is under circadian and photoperiod regulation both at the transcriptional and post-translational level. Total S6K (S6K1 and S6K2) and TOR-dependent phosphorylated-S6K protein levels were higher during the light period and decreased at dusk especially under short day conditions. Using chemical and genetic approaches, we found that the diel pattern of S6K accumulation results from 26S proteasome-dependent degradation and is altered in mutants lacking the circadian F-box protein ZEITLUPE (ZTL), further strengthening our hypothesis that S6K could incorporate metabolic signals via TOR, which are also under circadian regulation. Moreover, under short days when C/energy levels are limiting, changes in S6K1 protein levels affected starch, sucrose and glucose accumulation and consequently impacted root and rosette growth responses. In summary, we propose that S6K1 constitutes a missing molecular link where day-length perception, nutrient availability and TOR pathway activity converge to coordinate growth responses with environmental conditions.
Collapse
Affiliation(s)
- Marc Boix
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
| | - Alba Garcia-Rodriguez
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
| | - Laia Castillo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
| | - Bernat Miró
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
| | - Ferga Hamilton
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork T23 N73K, Ireland
- Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Sanata Tolak
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork T23 N73K, Ireland
- Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Adrián Pérez
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
| | | | - Camila Caldana
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Rossana Henriques
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork T23 N73K, Ireland
- Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| |
Collapse
|
3
|
Zeng F, Ma Z, Feng Y, Shao M, Li Y, Wang H, Yang S, Mao J, Chen B. Mechanism of the Pulvinus-Driven Leaf Movement: An Overview. Int J Mol Sci 2024; 25:4582. [PMID: 38731801 PMCID: PMC11083266 DOI: 10.3390/ijms25094582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Leaf movement is a manifestation of plant response to the changing internal and external environment, aiming to optimize plant growth and development. Leaf movement is usually driven by a specialized motor organ, the pulvinus, and this movement is associated with different changes in volume and expansion on the two sides of the pulvinus. Blue light, auxin, GA, H+-ATPase, K+, Cl-, Ca2+, actin, and aquaporin collectively influence the changes in water flux in the tissue of the extensor and flexor of the pulvinus to establish a turgor pressure difference, thereby controlling leaf movement. However, how these factors regulate the multicellular motility of the pulvinus tissues in a species remains obscure. In addition, model plants such as Medicago truncatula, Mimosa pudica, and Samanea saman have been used to study pulvinus-driven leaf movement, showing a similarity in their pulvinus movement mechanisms. In this review, we summarize past research findings from the three model plants, and using Medicago truncatula as an example, suggest that genes regulating pulvinus movement are also involved in regulating plant growth and development. We also propose a model in which the variation of ion flux and water flux are critical steps to pulvinus movement and highlight questions for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (F.Z.); (Z.M.); (Y.F.); (M.S.); (Y.L.); (H.W.); (S.Y.); (J.M.)
| |
Collapse
|
4
|
Calderan-Rodrigues MJ, Caldana C. Impact of the TOR pathway on plant growth via cell wall remodeling. JOURNAL OF PLANT PHYSIOLOGY 2024; 294:154202. [PMID: 38422631 DOI: 10.1016/j.jplph.2024.154202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
Plant growth is intimately linked to the availability of carbon and energy status. The Target of rapamycin (TOR) pathway is a highly relevant metabolic sensor and integrator of plant-assimilated C into development and growth. The cell wall accounts for around a third of the cell biomass, and the investment of C into this structure should be finely tuned for optimal growth. The plant C status plays a significant role in controlling the rate of cell wall synthesis. TOR signaling regulates cell growth and expansion, which are fundamental processes for plant development. The availability of nutrients and energy, sensed and integrated by TOR, influences cell division and elongation, ultimately impacting the synthesis and deposition of cell wall components. The plant cell wall is crucial in environmental adaptation and stress responses. TOR senses and internalizes various environmental cues, such as nutrient availability and stresses. These environmental factors influence TOR activity, which modulates cell wall remodeling to cope with changing conditions. Plant hormones, including auxins, gibberellins, and brassinosteroids, also regulate TOR signaling and cell wall-related processes. The connection between nutrients and cell wall pathways modulated by TOR are discussed.
Collapse
Affiliation(s)
- Maria Juliana Calderan-Rodrigues
- Max-Planck Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam-Golm, Germany; Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz", 13418-900, Piracicaba, SP, Brazil.
| | - Camila Caldana
- Max-Planck Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam-Golm, Germany
| |
Collapse
|
5
|
Yang Y, He T, Ravindran P, Wen F, Krishnamurthy P, Wang L, Zhang Z, Kumar PP, Chae E, Lee C. All-organic transparent plant e-skin for noninvasive phenotyping. SCIENCE ADVANCES 2024; 10:eadk7488. [PMID: 38363835 PMCID: PMC10871535 DOI: 10.1126/sciadv.adk7488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/16/2024] [Indexed: 02/18/2024]
Abstract
Real-time in situ monitoring of plant physiology is essential for establishing a phenotyping platform for precision agriculture. A key enabler for this monitoring is a device that can be noninvasively attached to plants and transduce their physiological status into digital data. Here, we report an all-organic transparent plant e-skin by micropatterning poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) on polydimethylsiloxane (PDMS) substrate. This plant e-skin is optically and mechanically invisible to plants with no observable adverse effects to plant health. We demonstrate the capabilities of our plant e-skins as strain and temperature sensors, with the application to Brassica rapa leaves for collecting corresponding parameters under normal and abiotic stress conditions. Strains imposed on the leaf surface during growth as well as diurnal fluctuation of surface temperature were captured. We further present a digital-twin interface to visualize real-time plant surface environment, providing an intuitive and vivid platform for plant phenotyping.
Collapse
Affiliation(s)
- Yanqin Yang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Tianyiyi He
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Pratibha Ravindran
- Department of Biological Sciences and Research Center for Sustainable Urban Farming, National University of Singapore, Singapore 117558, Singapore
| | - Feng Wen
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Pannaga Krishnamurthy
- Department of Biological Sciences and Research Center for Sustainable Urban Farming, National University of Singapore, Singapore 117558, Singapore
| | - Luwei Wang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Zixuan Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Prakash P Kumar
- Department of Biological Sciences and Research Center for Sustainable Urban Farming, National University of Singapore, Singapore 117558, Singapore
| | - Eunyoung Chae
- Department of Biological Sciences and Research Center for Sustainable Urban Farming, National University of Singapore, Singapore 117558, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
- NUS Graduate School-Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
6
|
Lima VF, Freire FBS, Cândido-Sobrinho SA, Porto NP, Medeiros DB, Erban A, Kopka J, Schwarzländer M, Fernie AR, Daloso DM. Unveiling the dark side of guard cell metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107862. [PMID: 37413941 DOI: 10.1016/j.plaphy.2023.107862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/02/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023]
Abstract
Evidence suggests that guard cells have higher rate of phosphoenolpyruvate carboxylase (PEPc)-mediated dark CO2 assimilation than mesophyll cells. However, it is unknown which metabolic pathways are activated following dark CO2 assimilation in guard cells. Furthermore, it remains unclear how the metabolic fluxes throughout the tricarboxylic acid (TCA) cycle and associated pathways are regulated in illuminated guard cells. Here we carried out a13C-HCO3 labelling experiment in tobacco guard cells harvested under continuous dark or during the dark-to-light transition to elucidate principles of metabolic dynamics downstream of CO2 assimilation. Most metabolic changes were similar between dark-exposed and illuminated guard cells. However, illumination altered the metabolic network structure of guard cells and increased the 13C-enrichment in sugars and metabolites associated to the TCA cycle. Sucrose was labelled in the dark, but light exposure increased the 13C-labelling and leads to more drastic reductions in the content of this metabolite. Fumarate was strongly labelled under both dark and light conditions, while illumination increased the 13C-enrichment in pyruvate, succinate and glutamate. Only one 13C was incorporated into malate and citrate in either dark or light conditions. Our results indicate that several metabolic pathways are redirected following PEPc-mediated CO2 assimilation in the dark, including gluconeogenesis and the TCA cycle. We further showed that the PEPc-mediated CO2 assimilation provides carbons for gluconeogenesis, the TCA cycle and glutamate synthesis and that previously stored malate and citrate are used to underpin the specific metabolic requirements of illuminated guard cells.
Collapse
Affiliation(s)
- Valéria F Lima
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Francisco Bruno S Freire
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Silvio A Cândido-Sobrinho
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Nicole P Porto
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - David B Medeiros
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Alexander Erban
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, Westfälische-Wilhelms-Universität Münster, D-48143, Münster, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Danilo M Daloso
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil.
| |
Collapse
|
7
|
Pottier D, Roitsch T, Persson S. Cell wall regulation by carbon allocation and sugar signaling. Cell Surf 2023. [DOI: 10.1016/j.tcsw.2023.100096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
8
|
Porto NP, Bret RSC, Souza PVL, Cândido-Sobrinho SA, Medeiros DB, Fernie AR, Daloso DM. Thioredoxins regulate the metabolic fluxes throughout the tricarboxylic acid cycle and associated pathways in a light-independent manner. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 193:36-49. [PMID: 36323196 DOI: 10.1016/j.plaphy.2022.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The metabolic fluxes throughout the tricarboxylic acid cycle (TCAC) are inhibited in the light by the mitochondrial thioredoxin (TRX) system. However, it is unclear how this system orchestrates the fluxes throughout the TCAC and associated pathways in the dark. Here we carried out a13C-HCO3 labelling experiment in Arabidopsis leaves from wild type (WT) and mutants lacking TRX o1 (trxo1), TRX h2 (trxh2), or both NADPH-dependent TRX reductase A and B (ntra ntrb) exposed to 0, 30 and 60 min of dark or light conditions. No 13C-enrichment in TCAC metabolites in illuminated WT leaves was observed. However, increased succinate content was found in parallel to reductions in Ala in the light, suggesting the latter operates as an alternative carbon source for succinate synthesis. By contrast to WT, all mutants showed substantial changes in the content and 13C-enrichment in TCAC metabolites under both dark and light conditions. Increased 13C-enrichment in glutamine in illuminated trxo1 leaves was also observed, strengthening the idea that TRX o1 restricts in vivo carbon fluxes from glycolysis and the TCAC to glutamine. We further demonstrated that both photosynthetic and gluconeogenic fluxes toward glucose are increased in trxo1 and that the phosphoenolpyruvate carboxylase (PEPc)-mediated 13C-incorporation into malate is higher in trxh2 mutants, as compared to WT. Our results collectively provide evidence that TRX h2 and the mitochondrial NTR/TRX system regulate the metabolic fluxes throughout the TCAC and associated pathways, including glycolysis, gluconeogenesis and the synthesis of glutamine in a light-independent manner.
Collapse
Affiliation(s)
- Nicole P Porto
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Raissa S C Bret
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Paulo V L Souza
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Silvio A Cândido-Sobrinho
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - David B Medeiros
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Danilo M Daloso
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil.
| |
Collapse
|
9
|
Urrea-Castellanos R, Caldana C, Henriques R. Growing at the right time: interconnecting the TOR pathway with photoperiod and circadian regulation. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7006-7015. [PMID: 35738873 PMCID: PMC9664226 DOI: 10.1093/jxb/erac279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Plants can adjust their growth to specific times of the day and season. Different photoperiods result in distinct growth patterns, which correlate with specific carbon-partitioning strategies in source (leaves) and sink (roots) organs. Therefore, external cues such as light, day length, and temperature need to be integrated with intracellular processes controlling overall carbon availability and anabolism. The target of rapamycin (TOR) pathway is a signalling hub where environmental signals, circadian information, and metabolic processes converge to regulate plant growth. TOR complex mutants display altered patterns of root growth and starch levels. Moreover, depletion of TOR or reduction in cellular energy levels affect the pace of the clock by extending the period length, suggesting that this pathway could participate in circadian metabolic entrainment. However, this seems to be a mutual interaction, since the TOR pathway components are also under circadian regulation. These results strengthen the role of this signalling pathway as a master sensor of metabolic status, integrating day length and circadian cues to control anabolic processes in the cell, thus promoting plant growth and development. Expanding this knowledge from Arabidopsis thaliana to crops will improve our understanding of the molecular links connecting environmental perception and growth regulation under field conditions.
Collapse
Affiliation(s)
| | - Camila Caldana
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | | |
Collapse
|
10
|
Kattenborn T, Richter R, Guimarães‐Steinicke C, Feilhauer H, Wirth C. AngleCam
: Predicting the temporal variation of leaf angle distributions from image series with deep learning. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Teja Kattenborn
- Remote Sensing Centre for Earth System Research (RSC4Earth) Leipzig University Leipzig Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Germany
| | - Ronny Richter
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Germany
- Systematic Botany and Functional Biodiversity Institute of Biology Leipzig University Leipzig Germany
| | - Claudia Guimarães‐Steinicke
- Remote Sensing Centre for Earth System Research (RSC4Earth) Leipzig University Leipzig Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Germany
| | - Hannes Feilhauer
- Remote Sensing Centre for Earth System Research (RSC4Earth) Leipzig University Leipzig Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Germany
| | - Christian Wirth
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Germany
- Systematic Botany and Functional Biodiversity Institute of Biology Leipzig University Leipzig Germany
| |
Collapse
|
11
|
Ralevski A, Apelt F, Olas JJ, Mueller-Roeber B, Rugarli EI, Kragler F, Horvath TL. Plant mitochondrial FMT and its mammalian homolog CLUH controls development and behavior in Arabidopsis and locomotion in mice. Cell Mol Life Sci 2022; 79:334. [PMID: 35652974 PMCID: PMC11071973 DOI: 10.1007/s00018-022-04382-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/26/2022]
Abstract
Mitochondria in animals are associated with development, as well as physiological and pathological behaviors. Several conserved mitochondrial genes exist between plants and higher eukaryotes. Yet, the similarities in mitochondrial function between plant and animal species is poorly understood. Here, we show that FMT (FRIENDLY MITOCHONDRIA) from Arabidopsis thaliana, a highly conserved homolog of the mammalian CLUH (CLUSTERED MITOCHONDRIA) gene family encoding mitochondrial proteins associated with developmental alterations and adult physiological and pathological behaviors, affects whole plant morphology and development under both stressed and normal growth conditions. FMT was found to regulate mitochondrial morphology and dynamics, germination, and flowering time. It also affects leaf expansion growth, salt stress responses and hyponastic behavior, including changes in speed of hyponastic movements. Strikingly, Cluh± heterozygous knockout mice also displayed altered locomotive movements, traveling for shorter distances and had slower average and maximum speeds in the open field test. These observations indicate that homologous mitochondrial genes may play similar roles and affect homologous functions in both plants and animals.
Collapse
Affiliation(s)
- Alexandra Ralevski
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Federico Apelt
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, 14476, Potsdam, Germany
| | - Justyna J Olas
- Department of Molecular Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam, Germany
| | - Bernd Mueller-Roeber
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, 14476, Potsdam, Germany
- Department of Molecular Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam, Germany
| | - Elena I Rugarli
- Department of Biology, Institute for Genetics, University of Cologne, Cologne, Germany
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Friedrich Kragler
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, 14476, Potsdam, Germany
| | - Tamas L Horvath
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
12
|
Lu Z, Hu W, Ye X, Lu J, Gu H, Li X, Cong R, Ren T. Potassium regulates diel leaf growth of Brassica napus by coordinating the rhythmic carbon supply and water balance. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3686-3698. [PMID: 35176159 DOI: 10.1093/jxb/erac060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Carbon and water are two main factors limiting leaf expansion. Restriction of leaf growth by low availability of carbon or water is among the earliest visible effects of potassium (K) deficiency. It is not known how K is involved in regulating the rhythmic supply of these two substrates, which differ remarkably across the day-night cycle, affecting leaf expansion. We investigated the effects of different K regimes on the time courses of leaf expansion, carbon assimilation, carbohydrates, and hydraulic properties of Brassica napus. Potassium supply increased leaf area, predominantly by promoting night-time leaf expansion (>60%), which was mainly associated with increased availability of carbohydrates from photosynthetic carbon fixation and import from old leaves rather than improvement of leaf hydraulics. However, sufficient K improved leaf hydraulic conductance to balance diurnal evaporative water loss and increase the osmotic contribution of water-soluble carbohydrates, thereby maintaining leaf turgor and increasing the daytime expansion rate. The results also indicated an ontogenetic role of K in modifying the amplitude of circadian expansion; almost 80% of the increase in leaf area occurred before the area reached 66.9% of the mature size. Our data provide mechanistic insight into K-mediated diel coordination of rhythmic carbon supply and water balance in leaf expansion.
Collapse
Affiliation(s)
- Zhifeng Lu
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Wenshi Hu
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Xiaolei Ye
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Jianwei Lu
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Hehe Gu
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Xiaokun Li
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Rihuan Cong
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Tao Ren
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| |
Collapse
|
13
|
Gall GEC, Pereira TD, Jordan A, Meroz Y. Fast estimation of plant growth dynamics using deep neural networks. PLANT METHODS 2022; 18:21. [PMID: 35184723 PMCID: PMC8858456 DOI: 10.1186/s13007-022-00851-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND In recent years, there has been an increase of interest in plant behaviour as represented by growth-driven responses. These are generally classified into nastic (internally driven) and tropic (environmentally driven) movements. Nastic movements include circumnutations, a circular movement of plant organs commonly associated with search and exploration, while tropisms refer to the directed growth of plant organs toward or away from environmental stimuli, such as light and gravity. Tracking these movements is therefore fundamental for the study of plant behaviour. Convolutional neural networks, as used for human and animal pose estimation, offer an interesting avenue for plant tracking. Here we adopted the Social LEAP Estimates Animal Poses (SLEAP) framework for plant tracking. We evaluated it on time-lapse videos of cases spanning a variety of parameters, such as: (i) organ types and imaging angles (e.g., top-view crown leaves vs. side-view shoots and roots), (ii) lighting conditions (full spectrum vs. IR), (iii) plant morphologies and scales (100 μm-scale Arabidopsis seedlings vs. cm-scale sunflowers and beans), and (iv) movement types (circumnutations, tropisms and twining). RESULTS Overall, we found SLEAP to be accurate in tracking side views of shoots and roots, requiring only a low number of user-labelled frames for training. Top views of plant crowns made up of multiple leaves were found to be more challenging, due to the changing 2D morphology of leaves, and the occlusions of overlapping leaves. This required a larger number of labelled frames, and the choice of labelling "skeleton" had great impact on prediction accuracy, i.e., a more complex skeleton with fewer individuals (tracking individual plants) provided better results than a simpler skeleton with more individuals (tracking individual leaves). CONCLUSIONS In all, these results suggest SLEAP is a robust and versatile tool for high-throughput automated tracking of plants, presenting a new avenue for research focusing on plant dynamics.
Collapse
Affiliation(s)
- Gabriella E C Gall
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel.
- Zukunftskolleg, Department of Biology, University of Konstanz, Konstanz, Germany.
- Centre for the Advanced Study of Collective Behaviour, Konstanz, Germany.
| | - Talmo D Pereira
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computational Neurobiology Lab, Salk Institute for Biological Studies, La Jolla, USA
| | - Alex Jordan
- Centre for the Advanced Study of Collective Behaviour, Konstanz, Germany
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Yasmine Meroz
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
14
|
Kim SJ, Brandizzi F. Advances in Cell Wall Matrix Research with a Focus on Mixed-Linkage Glucan. PLANT & CELL PHYSIOLOGY 2021; 62:1839-1846. [PMID: 34245308 DOI: 10.1093/pcp/pcab106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Mixed β(1,3;1,4)-linkage glucan (MLG) is commonly found in the monocot lineage, at particularly high levels in the Poaceae family, but also in the evolutionally distant genus, Equisetum. MLG has several properties that make it unique from other plant cell wall polysaccharides. It consists of β1,4-linked polymers of glucose interspersed with β1,3-linkages, but the presence of β1,3-linkages provides quite different physical properties compared to its closest form of the cell wall component, cellulose. The mechanisms of MLG biosynthesis have been investigated to understand whether single or multiple enzymes are required to build mixed linkages in the glucan chain. Currently, MLG synthesis by a single enzyme is supported by mutagenesis analyses of cellulose synthase-like F6, the major MLG synthase, but further investigation is needed to gather mechanistic insights. Because of transient accumulation of MLG in elongating cells and vegetative tissues, several hypotheses have been proposed to explain the role of MLG in the plant cell wall. Studies have been carried out to identify gene expression regulators during development and light cycles as well as enzymes involved in MLG organization in the cell wall. A role of MLG as a storage molecule in grains is evident, but the role of MLG in vegetative tissues is still not well understood. Characterization of a cell wall component is difficult due to the complex heterogeneity of the plant cell wall. However, as detailed in this review, recent exciting research has made significant impacts in the understanding of MLG biology in plants.
Collapse
Affiliation(s)
- Sang-Jin Kim
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Federica Brandizzi
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
15
|
Geldhof B, Pattyn J, Eyland D, Carpentier S, Van de Poel B. A digital sensor to measure real-time leaf movements and detect abiotic stress in plants. PLANT PHYSIOLOGY 2021; 187:1131-1148. [PMID: 34618089 PMCID: PMC8566216 DOI: 10.1093/plphys/kiab407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/02/2021] [Indexed: 05/31/2023]
Abstract
Plant and plant organ movements are the result of a complex integration of endogenous growth and developmental responses, partially controlled by the circadian clock, and external environmental cues. Monitoring of plant motion is typically done by image-based phenotyping techniques with the aid of computer vision algorithms. Here we present a method to measure leaf movements using a digital inertial measurement unit (IMU) sensor. The lightweight sensor is easily attachable to a leaf or plant organ and records angular traits in real-time for two dimensions (pitch and roll) with high resolution (measured sensor oscillations of 0.36 ± 0.53° for pitch and 0.50 ± 0.65° for roll). We were able to record simple movements such as petiole bending, as well as complex lamina motions, in several crops, ranging from tomato to banana. We also assessed growth responses in terms of lettuce rosette expansion and maize seedling stem movements. The IMU sensors are capable of detecting small changes of nutations (i.e. bending movements) in leaves of different ages and in different plant species. In addition, the sensor system can also monitor stress-induced leaf movements. We observed that unfavorable environmental conditions evoke certain leaf movements, such as drastic epinastic responses, as well as subtle fading of the amplitude of nutations. In summary, the presented digital sensor system enables continuous detection of a variety of leaf motions with high precision, and is a low-cost tool in the field of plant phenotyping, with potential applications in early stress detection.
Collapse
Affiliation(s)
- Batist Geldhof
- Department of Biosystems, Division of Crop Biotechnics, Molecular Plant Hormone Physiology Lab, University of Leuven, Leuven 3001, Belgium
| | - Jolien Pattyn
- Department of Biosystems, Division of Crop Biotechnics, Molecular Plant Hormone Physiology Lab, University of Leuven, Leuven 3001, Belgium
| | - David Eyland
- Department of Biosystems, Division of Crop Biotechnics, Tropical Crop Improvement Laboratory, University of Leuven, Leuven 3001, Belgium
| | - Sebastien Carpentier
- Department of Biosystems, Division of Crop Biotechnics, Tropical Crop Improvement Laboratory, University of Leuven, Leuven 3001, Belgium
- Bioversity International, Leuven, 3001, Belgium
| | - Bram Van de Poel
- Department of Biosystems, Division of Crop Biotechnics, Molecular Plant Hormone Physiology Lab, University of Leuven, Leuven 3001, Belgium
| |
Collapse
|
16
|
Olas JJ, Apelt F, Annunziata MG, John S, Richard SI, Gupta S, Kragler F, Balazadeh S, Mueller-Roeber B. Primary carbohydrate metabolism genes participate in heat-stress memory at the shoot apical meristem of Arabidopsis thaliana. MOLECULAR PLANT 2021; 14:1508-1524. [PMID: 34052393 DOI: 10.1016/j.molp.2021.05.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/03/2021] [Accepted: 05/24/2021] [Indexed: 05/24/2023]
Abstract
In plants, the shoot apical meristem (SAM) is essential for the growth of aboveground organs. However, little is known about its molecular responses to abiotic stresses. Here, we show that the SAM of Arabidopsis thaliana displays an autonomous heat-stress (HS) memory of a previous non-lethal HS, allowing the SAM to regain growth after exposure to an otherwise lethal HS several days later. Using RNA sequencing, we identified genes participating in establishing the SAM's HS transcriptional memory, including the stem cell (SC) regulators CLAVATA1 (CLV1) and CLV3, HEAT SHOCK PROTEIN 17.6A (HSP17.6A), and the primary carbohydrate metabolism gene FRUCTOSE-BISPHOSPHATE ALDOLASE 6 (FBA6). We demonstrate that sugar availability is essential for survival of plants at high temperature. HEAT SHOCK TRANSCRIPTION FACTOR A2 (HSFA2A) directly regulates the expression of HSP17.6A and FBA6 by binding to the heat-shock elements in their promoters, indicating that HSFA2 is required for transcriptional activation of SAM memory genes. Collectively, these findings indicate that plants have evolved a sophisticated protection mechanism to maintain SCs and, hence, their capacity to re-initiate shoot growth after stress release.
Collapse
Affiliation(s)
- Justyna Jadwiga Olas
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam, Germany.
| | - Federico Apelt
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Maria Grazia Annunziata
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Sheeba John
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam, Germany; Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Sarah Isabel Richard
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam, Germany
| | - Saurabh Gupta
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Friedrich Kragler
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Salma Balazadeh
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Bernd Mueller-Roeber
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam, Germany; Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
17
|
Ageeva-Kieferle A, Georgii E, Winkler B, Ghirardo A, Albert A, Hüther P, Mengel A, Becker C, Schnitzler JP, Durner J, Lindermayr C. Nitric oxide coordinates growth, development, and stress response via histone modification and gene expression. PLANT PHYSIOLOGY 2021; 187:336-360. [PMID: 34003928 PMCID: PMC8418403 DOI: 10.1093/plphys/kiab222] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/18/2021] [Indexed: 05/02/2023]
Abstract
Nitric oxide (NO) is a signaling molecule with multiple regulatory functions in plant physiology and stress response. In addition to direct effects on transcriptional machinery, NO executes its signaling function via epigenetic mechanisms. We report that light intensity-dependent changes in NO correspond to changes in global histone acetylation (H3, H3K9, and H3K9/K14) in Arabidopsis (Arabidopsis thaliana) wild-type leaves, and that this relationship depends on S-nitrosoglutathione reductase and histone deacetylase 6 (HDA6). The activity of HDA6 was sensitive to NO, demonstrating that NO participates in regulation of histone acetylation. Chromatin immunoprecipitation sequencing and RNA-seq analyses revealed that NO participates in the metabolic switch from growth and development to stress response. This coordinating function of NO might be particularly important in plant ability to adapt to a changing environment, and is therefore a promising foundation for mitigating the negative effects of climate change on plant productivity.
Collapse
Affiliation(s)
| | - Elisabeth Georgii
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Andreas Albert
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Patrick Hüther
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna 1030, Austria
| | - Alexander Mengel
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Claude Becker
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna 1030, Austria
- Faculty of Biology, Ludwig-Maximilians-University Munich, LMU Biocenter, Martinsried 82152, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg 85764, Germany
- Chair of Biochemical Plant Pathology, Technische Universität München, Freising 85354, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg 85764, Germany
- Author for communication:
| |
Collapse
|
18
|
Viana AJC, Matiolli CC, Newman DW, Vieira JGP, Duarte GT, Martins MCM, Gilbault E, Hotta CT, Caldana C, Vincentz M. The sugar-responsive circadian clock regulator bZIP63 modulates plant growth. THE NEW PHYTOLOGIST 2021; 231:1875-1889. [PMID: 34053087 PMCID: PMC9292441 DOI: 10.1111/nph.17518] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/18/2021] [Indexed: 05/02/2023]
Abstract
Adjustment to energy starvation is crucial to ensure growth and survival. In Arabidopsis thaliana (Arabidopsis), this process relies in part on the phosphorylation of the circadian clock regulator bZIP63 by SUCROSE non-fermenting RELATED KINASE1 (SnRK1), a key mediator of responses to low energy. We investigated the effects of mutations in bZIP63 on plant carbon (C) metabolism and growth. Results from phenotypic, transcriptomic and metabolomic analysis of bZIP63 mutants prompted us to investigate the starch accumulation pattern and the expression of genes involved in starch degradation and in the circadian oscillator. bZIP63 mutation impairs growth under light-dark cycles, but not under constant light. The reduced growth likely results from the accentuated C depletion towards the end of the night, which is caused by the accelerated starch degradation of bZIP63 mutants. The diel expression pattern of bZIP63 is dictated by both the circadian clock and energy levels, which could determine the changes in the circadian expression of clock and starch metabolic genes observed in bZIP63 mutants. We conclude that bZIP63 composes a regulatory interface between the metabolic and circadian control of starch breakdown to optimize C usage and plant growth.
Collapse
Affiliation(s)
- Américo J. C. Viana
- Centro de Biologia Molecular e Engenharia GenéticaDepartamento de Biologia VegetalInstituto de BiologiaUniversidade Estadual de CampinasCEP 13083‐875, CP 6010CampinasSPBrazil
| | - Cleverson C. Matiolli
- Centro de Biologia Molecular e Engenharia GenéticaDepartamento de Biologia VegetalInstituto de BiologiaUniversidade Estadual de CampinasCEP 13083‐875, CP 6010CampinasSPBrazil
| | - David W. Newman
- Centro de Biologia Molecular e Engenharia GenéticaDepartamento de Biologia VegetalInstituto de BiologiaUniversidade Estadual de CampinasCEP 13083‐875, CP 6010CampinasSPBrazil
| | - João G. P. Vieira
- Centro de Biologia Molecular e Engenharia GenéticaDepartamento de Biologia VegetalInstituto de BiologiaUniversidade Estadual de CampinasCEP 13083‐875, CP 6010CampinasSPBrazil
| | - Gustavo T. Duarte
- Centro de Biologia Molecular e Engenharia GenéticaDepartamento de Biologia VegetalInstituto de BiologiaUniversidade Estadual de CampinasCEP 13083‐875, CP 6010CampinasSPBrazil
| | - Marina C. M. Martins
- Brazilian Bioethanol Science and Technology Laboratory (CTBE/CNPEM)Rua Giuseppe Máximo Scolfaro 10000CampinasSPCEP 13083‐970Brazil
- Max‐Planck Partner GroupBrazilian Bioethanol Science and Technology Laboratory (CTBE/CNPEM)Campinas, SPBrazil
- Laboratory of Plant Physiological EcologyDepartment of BotanyInstitute of BiosciencesUniversity of São PauloSão Paulo, SPCEP 05508‐090Brazil
| | - Elodie Gilbault
- Institut Jean‐Pierre BourginINRAEAgroParisTechUniversité Paris‐SaclayVersailles78000France
| | - Carlos T. Hotta
- Departamento de BioquímicaInstituto de QuímicaUniversidade de São PauloSão Paulo, SPCEP 05508‐000Brazil
| | - Camila Caldana
- Brazilian Bioethanol Science and Technology Laboratory (CTBE/CNPEM)Rua Giuseppe Máximo Scolfaro 10000CampinasSPCEP 13083‐970Brazil
- Max‐Planck Partner GroupBrazilian Bioethanol Science and Technology Laboratory (CTBE/CNPEM)Campinas, SPBrazil
- Max Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 114476 PotsdamGolmGermany
| | - Michel Vincentz
- Centro de Biologia Molecular e Engenharia GenéticaDepartamento de Biologia VegetalInstituto de BiologiaUniversidade Estadual de CampinasCEP 13083‐875, CP 6010CampinasSPBrazil
| |
Collapse
|
19
|
Hallmark AJ, Maurer GE, Pangle RE, Litvak ME. Watching plants’ dance: movements of live and dead branches linked to atmospheric water demand. Ecosphere 2021. [DOI: 10.1002/ecs2.3705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Alesia J. Hallmark
- Department of Biology University of New Mexico Albuquerque New Mexico 87131 USA
- Battelle National Ecological Observatory Network Boulder Colorado 80301 USA
| | - Gregory E. Maurer
- Department of Biology University of New Mexico Albuquerque New Mexico 87131 USA
- Jornada Basin LTER Program New Mexico State University Las Cruces New Mexico 88003 USA
| | - Robert E. Pangle
- Department of Biology University of New Mexico Albuquerque New Mexico 87131 USA
| | - Marcy E. Litvak
- Department of Biology University of New Mexico Albuquerque New Mexico 87131 USA
| |
Collapse
|
20
|
Prasetyaningrum P, Mariotti L, Valeri MC, Novi G, Dhondt S, Inzé D, Perata P, van Veen H. Nocturnal gibberellin biosynthesis is carbon dependent and adjusts leaf expansion rates to variable conditions. PLANT PHYSIOLOGY 2021; 185:228-239. [PMID: 33631808 PMCID: PMC8133661 DOI: 10.1093/plphys/kiaa019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/27/2020] [Indexed: 05/02/2023]
Abstract
Optimal plant growth performance requires that the presence and action of growth signals, such as gibberellins (GAs), are coordinated with the availability of photo-assimilates. Here, we studied the links between GA biosynthesis and carbon availability, and the subsequent effects on growth. We established that carbon availability, light and dark cues, and the circadian clock ensure the timing and magnitude of GA biosynthesis and that disruption of these factors results in reduced GA levels and expression of downstream genes. Carbon-dependent nighttime induction of gibberellin 3-beta-dioxygenase 1 (GA3ox1) was severely hampered when preceded by reduced daytime light availability, leading specifically to reduced bioactive GA4 levels, and coinciding with a decline in leaf expansion rate during the night. We attributed this decline in leaf expansion mostly to reduced photo-assimilates. However, plants in which GA limitation was alleviated had significantly improved leaf expansion, demonstrating the relevance of GAs in growth control under varying carbon availability. Carbon-dependent expression of upstream GA biosynthesis genes (Kaurene synthase and gibberellin 20 oxidase 1, GA20ox1) was not translated into metabolite changes within this short timeframe. We propose a model in which the extent of nighttime biosynthesis of bioactive GA4 by GA3ox1 is determined by nighttime consumption of starch reserves, thus providing day-to-day adjustments of GA responses.
Collapse
Affiliation(s)
| | - Lorenzo Mariotti
- Department of Agriculture, Food and Environment, University of Pisa, Pisa 56124, Italy
| | | | - Giacomo Novi
- PLANTLAB, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa 56127, Italy
| | - Stijn Dhondt
- Center for Plant Systems Biology, Ghent University, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Dirk Inzé
- Center for Plant Systems Biology, Ghent University, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Pierdomenico Perata
- PLANTLAB, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa 56127, Italy
| | - Hans van Veen
- PLANTLAB, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa 56127, Italy
- Department of Plantecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, Netherlands
- Author for communication:
| |
Collapse
|
21
|
Olas JJ, Fichtner F, Apelt F. All roads lead to growth: imaging-based and biochemical methods to measure plant growth. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:11-21. [PMID: 31613967 PMCID: PMC6913701 DOI: 10.1093/jxb/erz406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/28/2019] [Indexed: 05/31/2023]
Abstract
Plant growth is a highly complex biological process that involves innumerable interconnected biochemical and signalling pathways. Many different techniques have been developed to measure growth, unravel the various processes that contribute to plant growth, and understand how a complex interaction between genotype and environment determines the growth phenotype. Despite this complexity, the term 'growth' is often simplified by researchers; depending on the method used for quantification, growth is viewed as an increase in plant or organ size, a change in cell architecture, or an increase in structural biomass. In this review, we summarise the cellular and molecular mechanisms underlying plant growth, highlight state-of-the-art imaging and non-imaging-based techniques to quantitatively measure growth, including a discussion of their advantages and drawbacks, and suggest a terminology for growth rates depending on the type of technique used.
Collapse
Affiliation(s)
- Justyna Jadwiga Olas
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße, Haus, Potsdam, Germany
| | - Franziska Fichtner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam, Germany
| | - Federico Apelt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam, Germany
| |
Collapse
|
22
|
Abstract
The circadian oscillator is a complex network of interconnected feedback loops that regulates a wide range of physiological processes. Indeed, variation in clock genes has been implicated in an array of plant environmental adaptations, including growth regulation, photoperiodic control of flowering, and responses to abiotic and biotic stress. Although the clock is buffered against the environment, maintaining roughly 24-h rhythms across a wide range of conditions, it can also be reset by environmental cues such as acute changes in light or temperature. These competing demands may help explain the complexity of the links between the circadian clock network and environmental response pathways. Here, we discuss our current understanding of the clock and its interactions with light and temperature-signaling pathways. We also describe different clock gene alleles that have been implicated in the domestication of important staple crops.
Collapse
Affiliation(s)
- Nicky Creux
- Department of Plant Biology, University of California, Davis, California 95616, USA
| | - Stacey Harmer
- Department of Plant Biology, University of California, Davis, California 95616, USA
| |
Collapse
|
23
|
Bernotas G, Scorza LCT, Hansen MF, Hales IJ, Halliday KJ, Smith LN, Smith ML, McCormick AJ. A photometric stereo-based 3D imaging system using computer vision and deep learning for tracking plant growth. Gigascience 2019; 8:giz056. [PMID: 31127811 PMCID: PMC6534809 DOI: 10.1093/gigascience/giz056] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/25/2019] [Accepted: 04/21/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Tracking and predicting the growth performance of plants in different environments is critical for predicting the impact of global climate change. Automated approaches for image capture and analysis have allowed for substantial increases in the throughput of quantitative growth trait measurements compared with manual assessments. Recent work has focused on adopting computer vision and machine learning approaches to improve the accuracy of automated plant phenotyping. Here we present PS-Plant, a low-cost and portable 3D plant phenotyping platform based on an imaging technique novel to plant phenotyping called photometric stereo (PS). RESULTS We calibrated PS-Plant to track the model plant Arabidopsis thaliana throughout the day-night (diel) cycle and investigated growth architecture under a variety of conditions to illustrate the dramatic effect of the environment on plant phenotype. We developed bespoke computer vision algorithms and assessed available deep neural network architectures to automate the segmentation of rosettes and individual leaves, and extract basic and more advanced traits from PS-derived data, including the tracking of 3D plant growth and diel leaf hyponastic movement. Furthermore, we have produced the first PS training data set, which includes 221 manually annotated Arabidopsis rosettes that were used for training and data analysis (1,768 images in total). A full protocol is provided, including all software components and an additional test data set. CONCLUSIONS PS-Plant is a powerful new phenotyping tool for plant research that provides robust data at high temporal and spatial resolutions. The system is well-suited for small- and large-scale research and will help to accelerate bridging of the phenotype-to-genotype gap.
Collapse
Affiliation(s)
- Gytis Bernotas
- Centre for Machine Vision, Bristol Robotics Laboratory, University of the West of England, T block, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Livia C T Scorza
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Mark F Hansen
- Centre for Machine Vision, Bristol Robotics Laboratory, University of the West of England, T block, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Ian J Hales
- Centre for Machine Vision, Bristol Robotics Laboratory, University of the West of England, T block, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Karen J Halliday
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Lyndon N Smith
- Centre for Machine Vision, Bristol Robotics Laboratory, University of the West of England, T block, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Melvyn L Smith
- Centre for Machine Vision, Bristol Robotics Laboratory, University of the West of England, T block, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Alistair J McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, The King's Buildings, Edinburgh EH9 3BF, UK
| |
Collapse
|
24
|
Caldana C, Martins MCM, Mubeen U, Urrea-Castellanos R. The magic 'hammer' of TOR: the multiple faces of a single pathway in the metabolic regulation of plant growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2217-2225. [PMID: 30722050 DOI: 10.1093/jxb/ery459] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
The target of rapamycin (TOR) pathway has emerged as a central hub synchronizing plant growth according to the nutrient/energy status and environmental inputs. Molecular mechanisms through which TOR promotes plant growth involve the positive regulation of transcription of cell proliferation-associated genes, mRNA translation initiation and ribosome biogenesis, to cite a few examples. Phytohormones, light, sugars, and sulfur have been found to broadly regulate TOR activity. TOR operates as a metabolic homeostat to fine-tune anabolic processes and efficiently enable plant growth under different circumstances. However, little is known about the multiple effectors that act up- and downstream of TOR. Here, we mainly discuss recent findings related to the TOR pathway in the context of plant metabolism and highlight areas of interest that need to be addressed to keep unravelling the intricate networks governing the regulation of TOR and its function in controlling biosynthetic growth.
Collapse
Affiliation(s)
- Camila Caldana
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | | | - Umarah Mubeen
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | | |
Collapse
|
25
|
Fricke W. Night-Time Transpiration - Favouring Growth? TRENDS IN PLANT SCIENCE 2019; 24:311-317. [PMID: 30770287 DOI: 10.1016/j.tplants.2019.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 05/16/2023]
Abstract
Plants grow and transpire water during the day and night. Recent work highlights the idea that night-time transpirational water loss is a consequence of allowing respiratory CO2 to escape at sufficiently high rates through stomata. Respiration fuels night-time leaf expansion and requires carbohydrates produced during the day. As carbohydrate availability and growth are under the control of the plants' internal clock, so is night-time transpiration. The cost of night-time transpiration is that water is lost without carbon being gained, the benefit is a higher efficiency of taken up water for use in leaf expansion. This could provide a stress acclimation process.
Collapse
Affiliation(s)
- Wieland Fricke
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland; https://people.ucd.ie/wieland.fricke.
| |
Collapse
|
26
|
Hilty J, Pook C, Leuzinger S. Water relations determine short time leaf growth patterns in the mangrove Avicennia marina (Forssk.) Vierh. PLANT, CELL & ENVIRONMENT 2019; 42:527-535. [PMID: 30171613 DOI: 10.1111/pce.13435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
High-resolution leaf growth is rarely studied despite its importance as a metric for plant performance and resource use efficiency. This is in part due to methodological challenges. Here, we present a method for in situ leaf growth measurements in a natural environment. We measured instantaneous leaf growth on a mature Avicennia marina subsp. australasica tree over several weeks. We measured leaf expansion by taking time-lapse images and analysing them using marker tracking software. A custom-made instrument was designed to enable long-term field studies. We detected a distinct diel growth pattern with leaf area shrinkage in the morning and leaf expansion in the afternoon and at night. On average, the observed daily shrinkage was 37% of the net growth. Most of the net growth occurred at night. Diel leaf area shrinkage and recovery continued after growth cessation. The amount of daily growth was negatively correlated with shrinkage, and instantaneous leaf growth and shrinkage were correlated with changes in leaf turgor. We conclude that, at least in this tree species, instantaneous leaf growth patterns are very strongly linked to, and most likely driven by, leaf water relations, suggesting decoupling of short-term growth patterns from carbon assimilation.
Collapse
Affiliation(s)
- Jonas Hilty
- Institute for Applied Ecology New Zealand, School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Chris Pook
- Institute for Applied Ecology New Zealand, School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Sebastian Leuzinger
- Institute for Applied Ecology New Zealand, School of Science, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
27
|
Flis A, Mengin V, Ivakov AA, Mugford ST, Hubberten HM, Encke B, Krohn N, Höhne M, Feil R, Hoefgen R, Lunn JE, Millar AJ, Smith AM, Sulpice R, Stitt M. Multiple circadian clock outputs regulate diel turnover of carbon and nitrogen reserves. PLANT, CELL & ENVIRONMENT 2019; 42:549-573. [PMID: 30184255 DOI: 10.1111/pce.13440] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 08/27/2018] [Accepted: 08/31/2018] [Indexed: 05/09/2023]
Abstract
Plants accumulate reserves in the daytime to support growth at night. Circadian regulation of diel reserve turnover was investigated by profiling starch, sugars, glucose 6-phosphate, organic acids, and amino acids during a light-dark cycle and after transfer to continuous light in Arabidopsis wild types and in mutants lacking dawn (lhy cca1), morning (prr7 prr9), dusk (toc1, gi), or evening (elf3) clock components. The metabolite time series were integrated with published time series for circadian clock transcripts to identify circadian outputs that regulate central metabolism. (a) Starch accumulation was slower in elf3 and prr7 prr9. It is proposed that ELF3 positively regulates starch accumulation. (b) Reducing sugars were high early in the T-cycle in elf3, revealing that ELF3 negatively regulates sucrose recycling. (c) The pattern of starch mobilization was modified in all five mutants. A model is proposed in which dawn and dusk/evening components interact to pace degradation to anticipated dawn. (d) An endogenous oscillation of glucose 6-phosphate revealed that the clock buffers metabolism against the large influx of carbon from photosynthesis. (e) Low levels of organic and amino acids in lhy cca1 and high levels in prr7 prr9 provide evidence that the dawn components positively regulate the accumulation of amino acid reserves.
Collapse
Affiliation(s)
- Anna Flis
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Virginie Mengin
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Alexander A Ivakov
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Sam T Mugford
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | - Beatrice Encke
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Nicole Krohn
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Melanie Höhne
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Andrew J Millar
- SynthSys and School of Biological Sciences, C.H. Waddington Building, University of Edinburgh, Edinburgh, UK
| | | | - Ronan Sulpice
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| |
Collapse
|
28
|
Amthor JS, Bar-Even A, Hanson AD, Millar AH, Stitt M, Sweetlove LJ, Tyerman SD. Engineering Strategies to Boost Crop Productivity by Cutting Respiratory Carbon Loss. THE PLANT CELL 2019; 31:297-314. [PMID: 30670486 PMCID: PMC6447004 DOI: 10.1105/tpc.18.00743] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/04/2018] [Accepted: 01/09/2019] [Indexed: 05/03/2023]
Abstract
Roughly half the carbon that crop plants fix by photosynthesis is subsequently lost by respiration. Nonessential respiratory activity leading to unnecessary CO2 release is unlikely to have been minimized by natural selection or crop breeding, and cutting this large loss could complement and reinforce the currently dominant yield-enhancement strategy of increasing carbon fixation. Until now, however, respiratory carbon losses have generally been overlooked by metabolic engineers and synthetic biologists because specific target genes have been elusive. We argue that recent advances are at last pinpointing individual enzyme and transporter genes that can be engineered to (1) slow unnecessary protein turnover, (2) replace, relocate, or reschedule metabolic activities, (3) suppress futile cycles, and (4) make ion transport more efficient, all of which can reduce respiratory costs. We identify a set of engineering strategies to reduce respiratory carbon loss that are now feasible and model how implementing these strategies singly or in tandem could lead to substantial gains in crop productivity.
Collapse
Affiliation(s)
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley 6009 WA, Australia
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Stephen D Tyerman
- ARC Centre of Excellence in Plant Energy Biology, Department of Plant Science, School of Agriculture, Food, and Wine, Waite Research Institute, University of Adelaide, Glen Osmond SA 5064, Australia
| |
Collapse
|
29
|
Matsubara S. Growing plants in fluctuating environments: why bother? JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4651-4654. [PMID: 30307518 PMCID: PMC6137991 DOI: 10.1093/jxb/ery312] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Shizue Matsubara
- IBG-2: Plant Sciences, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
30
|
Annunziata MG, Apelt F, Carillo P, Krause U, Feil R, Koehl K, Lunn JE, Stitt M. Response of Arabidopsis primary metabolism and circadian clock to low night temperature in a natural light environment. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4881-4895. [PMID: 30053131 PMCID: PMC6137998 DOI: 10.1093/jxb/ery276] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/09/2018] [Indexed: 05/18/2023]
Abstract
Plants are exposed to varying irradiance and temperature within a day and from day to day. We previously investigated metabolism in a temperature-controlled greenhouse at the spring equinox on both a cloudy and a sunny day [daily light integral (DLI) of 7 mol m-2 d-1 and 12 mol m-2 d-1]. Diel metabolite profiles were largely captured in sinusoidal simulations at similar DLIs in controlled-environment chambers, except that amino acids were lower in natural light regimes. We now extend the DLI12 study by investigating metabolism in a natural light regime with variable temperature including cool nights. Starch was not completely turned over, anthocyanins and proline accumulated, and protein content rose. Instead of decreasing, amino acid content rose. Connectivity in central metabolism, which decreased in variable light, was not further weakened by variable temperature. We propose that diel metabolism operates better when light and temperature are co-varying. We also compared transcript abundance of 10 circadian clock genes in this temperature-variable regime with the temperature-controlled natural and sinusoidal light regimes. Despite temperature compensation, peak timing and abundance for dawn- and day-phased genes and GIGANTEA were slightly modified in the variable temperature treatment. This may delay dawn clock activity until the temperature rises enough to support rapid metabolism and photosynthesis.
Collapse
Affiliation(s)
| | - Federico Apelt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Petronia Carillo
- University of Campania ‘Luigi Vanvitelli’, Via Vivaldi, Caserta, Italy
| | - Ursula Krause
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Karin Koehl
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| |
Collapse
|
31
|
Verbančič J, Lunn JE, Stitt M, Persson S. Carbon Supply and the Regulation of Cell Wall Synthesis. MOLECULAR PLANT 2018; 11:75-94. [PMID: 29054565 DOI: 10.1016/j.molp.2017.10.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 05/23/2023]
Abstract
All plant cells are surrounded by a cell wall that determines the directionality of cell growth and protects the cell against its environment. Plant cell walls are comprised primarily of polysaccharides and represent the largest sink for photosynthetically fixed carbon, both for individual plants and in the terrestrial biosphere as a whole. Cell wall synthesis is a highly sophisticated process, involving multiple enzymes and metabolic intermediates, intracellular trafficking of proteins and cell wall precursors, assembly of cell wall polymers into the extracellular matrix, remodeling of polymers and their interactions, and recycling of cell wall sugars. In this review we discuss how newly fixed carbon, in the form of UDP-glucose and other nucleotide sugars, contributes to the synthesis of cell wall polysaccharides, and how cell wall synthesis is influenced by the carbon status of the plant, with a focus on the model species Arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
- Jana Verbančič
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - John Edward Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
32
|
Dobrescu A, Scorza LCT, Tsaftaris SA, McCormick AJ. A "Do-It-Yourself" phenotyping system: measuring growth and morphology throughout the diel cycle in rosette shaped plants. PLANT METHODS 2017; 13:95. [PMID: 29151842 PMCID: PMC5678596 DOI: 10.1186/s13007-017-0247-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/26/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND Improvements in high-throughput phenotyping technologies are rapidly expanding the scope and capacity of plant biology studies to measure growth traits. Nevertheless, the costs of commercial phenotyping equipment and infrastructure remain prohibitively expensive for wide-scale uptake, while academic solutions can require significant local expertise. Here we present a low-cost methodology for plant biologists to build their own phenotyping system for quantifying growth rates and phenotypic characteristics of Arabidopsis thaliana rosettes throughout the diel cycle. RESULTS We constructed an image capture system consisting of a near infra-red (NIR, 940 nm) LED panel with a mounted Raspberry Pi NoIR camera and developed a MatLab-based software module (iDIEL Plant) to characterise rosette expansion. Our software was able to accurately segment and characterise multiple rosettes within an image, regardless of plant arrangement or genotype, and batch process image sets. To further validate our system, wild-type Arabidopsis plants (Col-0) and two mutant lines with reduced Rubisco contents, pale leaves and slow growth phenotypes (1a3b and 1a2b) were grown on a single plant tray. Plants were imaged from 9 to 24 days after germination every 20 min throughout the 24 h light-dark growth cycle (i.e. the diel cycle). The resulting dataset provided a dynamic and uninterrupted characterisation of differences in rosette growth and expansion rates over time for the three lines tested. CONCLUSION Our methodology offers a straightforward solution for setting up automated, scalable and low-cost phenotyping facilities in a wide range of lab environments that could greatly increase the processing power and scalability of Arabidopsis soil growth experiments.
Collapse
Affiliation(s)
- Andrei Dobrescu
- Institute of Digital Communications, School of Engineering, University of Edinburgh, Edinburgh, EH9 3FB UK
- Daniel Rutherford Building, SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3BF UK
| | - Livia C. T. Scorza
- Daniel Rutherford Building, SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3BF UK
| | - Sotirios A. Tsaftaris
- Institute of Digital Communications, School of Engineering, University of Edinburgh, Edinburgh, EH9 3FB UK
| | - Alistair J. McCormick
- Daniel Rutherford Building, SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3BF UK
| |
Collapse
|