1
|
Shi A, Xiong H, Michaels TE, Chen S. Genome and GWAS analyses for soybean cyst nematode resistance in USDA world-wide common bean ( Phaseolus vulgaris) germplasm. FRONTIERS IN PLANT SCIENCE 2025; 16:1520087. [PMID: 40190663 PMCID: PMC11968425 DOI: 10.3389/fpls.2025.1520087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/26/2025] [Indexed: 04/09/2025]
Abstract
Soybean cyst nematode (SCN), Heterodera glycines, has become a significant threat in common bean (Phaseolus vulgaris) production, particularly in regions like the upper Midwest USA. Host genetic resistance offers an effective and environmentally friendly approach to managing SCN. This study aimed to conduct a genome-wide association study (GWAS) and genomic prediction for resistance to SCN HG Types 7 (race 6), 2.5.7 (race 5), and 1.3.6.7 (race 14) using 0.7 million whole-genome resequencing-generated SNPs in 354 USDA worldwide common bean germplasm accessions. Among these, 26 lines exhibited resistance to all three HG types, with a female index (FI) of less than 10. Four QTL regions on chromosomes (Chr) 2, 3, 6, and 10 were associated with resistance to HG Type 7; four regions on Chrs 2, 6, 9, and 11 were associated with resistance to HG Type 2.5.7; and three regions on Chrs 2, 6, and 10 were associated with resistance to HG Type 1.3.6.7. Cross-prediction revealed high prediction ability (PA) of 75% (r-value) for resistance to each of the three HG types. However, low PA was observed for SCN resistance through across-population prediction between the two domestications, Mesoamerican and Andean common bean accessions. Yet, using a population of mixed Mesoamerican and Andean accessions as a training set showed a high PA to predict either sub-population. This study provides SNP markers for marker-assisted selection and high PA for genomic selection in common bean molecular breeding, enabling the selection of lines and plants with high SCN resistance. Moreover, the study observed high PA for resistance among the three HG types. Interestingly, the most highly associated SNP markers and QTL for SCN resistance varied between the two domestications, and SCN resistance is more associated with the Mesoamerican domestication than the Andean domestication. This result suggests that resistance to SCN in common bean may be related to domestication rather than co-evolution with SCN.
Collapse
Affiliation(s)
- Ainong Shi
- Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
| | - Haizheng Xiong
- Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
| | - Thomas E. Michaels
- Department of Horticultural Science, University of Minnesota, St Paul, MN, United States
| | - Senyu Chen
- Southern Research and Outreach Center, University of Minnesota, Waseca, MN, United States
| |
Collapse
|
2
|
Lakhssassi N, Chhapekar SS, Devkar V, Knizia D, El Baze A, Ye H, Vuong T, Patil GB, Nguyen HT, Meksem K. Discovery of two tightly linked soybean genes at the qSCN10 (O) locus conferring broad-spectrum resistance to soybean cyst nematode. Commun Biol 2025; 8:259. [PMID: 39966671 PMCID: PMC11836386 DOI: 10.1038/s42003-025-07633-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/30/2025] [Indexed: 02/20/2025] Open
Abstract
Soybean cyst nematode (SCN, Heterodera glycine Ichinohe) is a major threat to global soybean yield. Resistance genes at the rhg1 locus from PI 88788 are majorly utilized in 95% of the U.S. breeding programs. Continuous use of this resistance source leads to a shift in the virulence of SCN populations and overcomes host resistance. Therefore, it is necessary to identify alternative SCN resistance sources to combat this ever-changing pest. Previously, we identified an exotic soybean line, PI 567516C, which carries a novel qSCN10 (O) locus for SCN resistance demonstrating different resistance responses compared to the known rhg1 and Rhg4 loci. Here, we narrowed the qSCN10 QTL region to 142-kb (containing 20 genes). Based on gene expression, gene ontology, in-silico analysis, and QTL-based haplotyping, two genes were identified for functional characterization. Overexpression of the transcription factor TGA1-related and Shugoshin C-terminus in the SCN-susceptible Williams 82 reduced the cyst number by 6.4-fold (84.6%) and 5.3-fold (81.2%), respectively. GmTGA1-10 and GmSCT-10 Tilling mutants showed high cyst numbers. The two genes associated with the qSCN10 QTL have significant potential to reduce the SCN population. They also offer an alternative source of durable SCN resistance that is independent of rhg1 and Rhg4.
Collapse
Affiliation(s)
- Naoufal Lakhssassi
- School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
- Department of Biological Sciences, School of Science, Hampton University, Hampton, VA, 23668, USA
| | | | - Vikas Devkar
- Institute of Genomic of for Crop Abiotic Stress Tolerance, Department of Plant and Soil Sciences, Texas Tech University, Lubbock, TX, 79423, USA
| | - Dounya Knizia
- School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Abdelhalim El Baze
- School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Heng Ye
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Tri Vuong
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Gunvant B Patil
- Institute of Genomic of for Crop Abiotic Stress Tolerance, Department of Plant and Soil Sciences, Texas Tech University, Lubbock, TX, 79423, USA
| | - Henry T Nguyen
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA.
| | - Khalid Meksem
- School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, 62901, USA.
| |
Collapse
|
3
|
Samarakoon V, Owuocha LF, Hammond J, Mitchum MG, Beamer LJ. Key structural role of a conserved cis-proline revealed by the P285S variant of soybean serine hydroxymethyltransferase 8. Biochem J 2024; 481:1557-1568. [PMID: 39373197 DOI: 10.1042/bcj20240338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 10/08/2024]
Abstract
The enzyme serine hydroxymethyltransferase (SHMT) plays a key role in folate metabolism and is conserved in all kingdoms of life. SHMT is a pyridoxal 5'-phosphate (PLP) - dependent enzyme that catalyzes the conversion of L-serine and (6S)-tetrahydrofolate to glycine and 5,10-methylene tetrahydrofolate. Crystal structures of multiple members of the SHMT family have shown that the enzyme has a single conserved cis proline, which is located near the active site. Here, we have characterized a Pro to Ser amino acid variant (P285S) that affects this conserved cis proline in soybean SHMT8. P285S was identified as one of a set of mutations that affect the resistance of soybean to the agricultural pathogen soybean cyst nematode. We find that replacement of Pro285 by serine eliminates PLP-mediated catalytic activity of SHMT8, reduces folate binding, decreases enzyme stability, and affects the dimer-tetramer ratio of the enzyme in solution. Crystal structures at 1.9-2.2 Å resolution reveal a local reordering of the polypeptide chain that extends an α-helix and shifts a turn region into the active site. This results in a dramatically perturbed PLP-binding pose, where the ring of the cofactor is flipped by ∼180° with concomitant loss of conserved enzyme-PLP interactions. A nearby region of the polypeptide becomes disordered, evidenced by missing electron density for ∼10 residues. These structural perturbations are consistent with the loss of enzyme activity and folate binding and underscore the important role of the Pro285 cis-peptide in SHMT structure and function.
Collapse
Affiliation(s)
- Vindya Samarakoon
- Department of Chemistry, University of Missouri, Columbia, MO 65211, U.S.A
| | - Luckio F Owuocha
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, U.S.A
| | - Jamie Hammond
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, U.S.A
| | - Melissa G Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, GA 30602, U.S.A
| | - Lesa J Beamer
- Department of Chemistry, University of Missouri, Columbia, MO 65211, U.S.A
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, U.S.A
| |
Collapse
|
4
|
Kwon KM, Masonbrink RE, Maier TR, Gardner MN, Severin AJ, Baum TJ, Mitchum MG. Comparative Transcriptomic Analysis of Soybean Cyst Nematode Inbred Populations Non-adapted or Adapted on Soybean rhg1-a/ Rhg4-Mediated Resistance. PHYTOPATHOLOGY 2024; 114:2341-2350. [PMID: 38976643 DOI: 10.1094/phyto-03-24-0095-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Soybean cyst nematode (SCN, Heterodera glycines) is most effectively managed through planting resistant soybean cultivars, but the repeated use of the same resistance sources has led to a widespread emergence of virulent SCN populations that can overcome soybean resistance. Resistance to SCN HG type 0 (Race 3) in soybean cultivar Forrest is mediated by an epistatic interaction between the soybean resistance genes rhg1-a and Rhg4. We previously developed two SCN inbred populations by mass-selecting SCN HG type 0 (Race 3) on susceptible and resistant recombinant inbred lines, derived from a cross between Forrest and the SCN-susceptible cultivar Essex, which differ for Rhg4. To identify SCN genes potentially involved in overcoming rhg1-a/Rhg4-mediated resistance, we conducted RNA sequencing on early parasitic juveniles of these two SCN inbred populations infecting their respective hosts, only to discover a handful of differentially expressed genes (DEGs). However, in a comparison with early parasitic juveniles of an avirulent SCN inbred population infecting a resistant host, we discovered 59 and 171 DEGs uniquely up- or downregulated in virulent parasitic juveniles adapted on the resistant host. Interestingly, the proteins coded by these 59 DEGs included vitamin B-associated proteins (reduced folate carrier, biotin synthase, and thiamine transporter) and nematode effectors known to play roles in plant defense suppression, suggesting that virulent SCN may exert a heightened transcriptional response to cope with enhanced plant defenses and an altered nutritional status of a resistant soybean host. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Khee Man Kwon
- Department of Plant Pathology and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602
| | - Rick E Masonbrink
- Genome Informatics Facility, Iowa State University, Ames, IA 50011
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011
| | - Thomas R Maier
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011
| | - Michael N Gardner
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211
| | - Andrew J Severin
- Genome Informatics Facility, Iowa State University, Ames, IA 50011
| | - Thomas J Baum
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011
| | - Melissa G Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211
| |
Collapse
|
5
|
Kwon KM, Viana JPG, Walden KKO, Usovsky M, Scaboo AM, Hudson ME, Mitchum MG. Genome scans for selection signatures identify candidate virulence genes for adaptation of the soybean cyst nematode to host resistance. Mol Ecol 2024; 33:e17490. [PMID: 39135406 DOI: 10.1111/mec.17490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
Plant pathogens are constantly under selection pressure for host resistance adaptation. Soybean cyst nematode (SCN, Heterodera glycines) is a major pest of soybean primarily managed through resistant cultivars; however, SCN populations have evolved virulence in response to selection pressures driven by repeated monoculture of the same genetic resistance. Resistance to SCN is mediated by multiple epistatic interactions between Rhg (for resistance to H. glycines) genes. However, the identity of SCN virulence genes that confer the ability to overcome resistance remains unknown. To identify candidate genomic regions showing signatures of selection for increased virulence, we conducted whole genome resequencing of pooled individuals (Pool-Seq) from two pairs of SCN populations adapted on soybeans with Peking-type (rhg1-a, rhg2, and Rhg4) resistance. Population differentiation and principal component analysis-based approaches identified approximately 0.72-0.79 million SNPs, the frequency of which showed potential selection signatures across multiple genomic regions. Chromosomes 3 and 6 between population pairs showed the greatest density of outlier SNPs with high population differentiation. Conducting multiple outlier detection tests to identify overlapping SNPs resulted in a total of 966 significantly differentiated SNPs, of which 285 exon SNPs were mapped to 97 genes. Of these, six genes encoded members of known stylet-secreted effector protein families potentially involved in host defence modulation including venom-allergen-like, annexin, glutathione synthetase, SPRYSEC, chitinase, and CLE effector proteins. Further functional analysis of identified candidate genes will provide new insights into the genetic mechanisms by which SCN overcomes soybean resistance and inform the development of molecular markers for rapidly screening the virulence profile of an SCN-infested field.
Collapse
Affiliation(s)
- Khee Man Kwon
- Department of Plant Pathology and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, Georgia, USA
| | - João P G Viana
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kimberly K O Walden
- Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Mariola Usovsky
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | - Andrew M Scaboo
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | - Matthew E Hudson
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Melissa G Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
6
|
Korasick DA, Owuocha LF, Kandoth PK, Tanner JJ, Mitchum MG, Beamer LJ. Structural and functional analysis of two SHMT8 variants associated with soybean cyst nematode resistance. FEBS J 2024; 291:323-337. [PMID: 37811683 DOI: 10.1111/febs.16971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Two amino acid variants in soybean serine hydroxymethyltransferase 8 (SHMT8) are associated with resistance to the soybean cyst nematode (SCN), a devastating agricultural pathogen with worldwide economic impacts on soybean production. SHMT8 is a cytoplasmic enzyme that catalyzes the pyridoxal 5-phosphate-dependent conversion of serine and tetrahydrofolate (THF) to glycine and 5,10-methylenetetrahydrofolate. A previous study of the P130R/N358Y double variant of SHMT8, identified in the SCN-resistant soybean cultivar (cv.) Forrest, showed profound impairment of folate binding affinity and reduced THF-dependent enzyme activity, relative to the highly active SHMT8 in cv. Essex, which is susceptible to SCN. Given the importance of SCN-resistance in soybean agriculture, we report here the biochemical and structural characterization of the P130R and N358Y single variants to elucidate their individual effects on soybean SHMT8. We find that both single variants have reduced THF-dependent catalytic activity relative to Essex SHMT8 (10- to 50-fold decrease in kcat /Km ) but are significantly more active than the P130R/N368Y double variant. The kinetic data also show that the single variants lack THF-substrate inhibition as found in Essex SHMT8, an observation with implications for regulation of the folate cycle. Five crystal structures of the P130R and N358Y variants in complex with various ligands (resolutions from 1.49 to 2.30 Å) reveal distinct structural impacts of the mutations and provide new insights into allosterism. Our results support the notion that the P130R/N358Y double variant in Forrest SHMT8 produces unique and unexpected effects on the enzyme, which cannot be easily predicted from the behavior of the individual variants.
Collapse
Affiliation(s)
- David A Korasick
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Luckio F Owuocha
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Pramod K Kandoth
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - John J Tanner
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Melissa G Mitchum
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Department of Plant Pathology, Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, GA, USA
| | - Lesa J Beamer
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| |
Collapse
|
7
|
Jiang X, Walker BJ, He SY, Hu J. The role of photorespiration in plant immunity. FRONTIERS IN PLANT SCIENCE 2023; 14:1125945. [PMID: 36818872 PMCID: PMC9928950 DOI: 10.3389/fpls.2023.1125945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
To defend themselves in the face of biotic stresses, plants employ a sophisticated immune system that requires the coordination of other biological and metabolic pathways. Photorespiration, a byproduct pathway of oxygenic photosynthesis that spans multiple cellular compartments and links primary metabolisms, plays important roles in defense responses. Hydrogen peroxide, whose homeostasis is strongly impacted by photorespiration, is a crucial signaling molecule in plant immunity. Photorespiratory metabolites, interaction between photorespiration and defense hormone biosynthesis, and other mechanisms, are also implicated. An improved understanding of the relationship between plant immunity and photorespiration may provide a much-needed knowledge basis for crop engineering to maximize photosynthesis without negative tradeoffs in plant immunity, especially because the photorespiratory pathway has become a major target for genetic engineering with the goal to increase photosynthetic efficiency.
Collapse
Affiliation(s)
- Xiaotong Jiang
- Michigan State University-Department of Energy Plant Research Laboratory and Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - Berkley J. Walker
- Michigan State University-Department of Energy Plant Research Laboratory and Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - Sheng Yang He
- Howard Hughes Medical Institute and Department of Biology, Duke University, Durham, NC, United States
| | - Jianping Hu
- Michigan State University-Department of Energy Plant Research Laboratory and Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
8
|
Lin F, Chhapekar SS, Vieira CC, Da Silva MP, Rojas A, Lee D, Liu N, Pardo EM, Lee YC, Dong Z, Pinheiro JB, Ploper LD, Rupe J, Chen P, Wang D, Nguyen HT. Breeding for disease resistance in soybean: a global perspective. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3773-3872. [PMID: 35790543 PMCID: PMC9729162 DOI: 10.1007/s00122-022-04101-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/11/2022] [Indexed: 05/29/2023]
Abstract
KEY MESSAGE This review provides a comprehensive atlas of QTLs, genes, and alleles conferring resistance to 28 important diseases in all major soybean production regions in the world. Breeding disease-resistant soybean [Glycine max (L.) Merr.] varieties is a common goal for soybean breeding programs to ensure the sustainability and growth of soybean production worldwide. However, due to global climate change, soybean breeders are facing strong challenges to defeat diseases. Marker-assisted selection and genomic selection have been demonstrated to be successful methods in quickly integrating vertical resistance or horizontal resistance into improved soybean varieties, where vertical resistance refers to R genes and major effect QTLs, and horizontal resistance is a combination of major and minor effect genes or QTLs. This review summarized more than 800 resistant loci/alleles and their tightly linked markers for 28 soybean diseases worldwide, caused by nematodes, oomycetes, fungi, bacteria, and viruses. The major breakthroughs in the discovery of disease resistance gene atlas of soybean were also emphasized which include: (1) identification and characterization of vertical resistance genes reside rhg1 and Rhg4 for soybean cyst nematode, and exploration of the underlying regulation mechanisms through copy number variation and (2) map-based cloning and characterization of Rps11 conferring resistance to 80% isolates of Phytophthora sojae across the USA. In this review, we also highlight the validated QTLs in overlapping genomic regions from at least two studies and applied a consistent naming nomenclature for these QTLs. Our review provides a comprehensive summary of important resistant genes/QTLs and can be used as a toolbox for soybean improvement. Finally, the summarized genetic knowledge sheds light on future directions of accelerated soybean breeding and translational genomics studies.
Collapse
Affiliation(s)
- Feng Lin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| | - Sushil Satish Chhapekar
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
| | - Caio Canella Vieira
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Marcos Paulo Da Silva
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Alejandro Rojas
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Dongho Lee
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Nianxi Liu
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun,, 130033 Jilin China
| | - Esteban Mariano Pardo
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA) [Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)], Av. William Cross 3150, C.P. T4101XAC, Las Talitas, Tucumán, Argentina
| | - Yi-Chen Lee
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Zhimin Dong
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun,, 130033 Jilin China
| | - Jose Baldin Pinheiro
- Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ/USP), PO Box 9, Piracicaba, SP 13418-900 Brazil
| | - Leonardo Daniel Ploper
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA) [Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)], Av. William Cross 3150, C.P. T4101XAC, Las Talitas, Tucumán, Argentina
| | - John Rupe
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Pengyin Chen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| | - Henry T. Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
| |
Collapse
|
9
|
Proteomic, Transcriptomic, Mutational, and Functional Assays Reveal the Involvement of Both THF and PLP Sites at the GmSHMT08 in Resistance to Soybean Cyst Nematode. Int J Mol Sci 2022; 23:ijms231911278. [PMID: 36232579 PMCID: PMC9570156 DOI: 10.3390/ijms231911278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/27/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
The serine hydroxymethyltransferase (SHMT; E.C. 2.1.2.1) is involved in the interconversion of serine/glycine and tetrahydrofolate (THF)/5,10-methylene THF, playing a key role in one-carbon metabolism, the de novo purine pathway, cellular methylation reactions, redox homeostasis maintenance, and methionine and thymidylate synthesis. GmSHMT08 is the soybean gene underlying soybean cyst nematode (SCN) resistance at the Rhg4 locus. GmSHMT08 protein contains four tetrahydrofolate (THF) cofactor binding sites (L129, L135, F284, N374) and six pyridoxal phosphate (PLP) cofactor binding/catalysis sites (Y59, G106, G107, H134, S190A, H218). In the current study, proteomic analysis of a data set of protein complex immunoprecipitated using GmSHMT08 antibodies under SCN infected soybean roots reveals the presence of enriched pathways that mainly use glycine/serine as a substrate (glyoxylate cycle, redox homeostasis, glycolysis, and heme biosynthesis). Root and leaf transcriptomic analysis of differentially expressed genes under SCN infection supported the proteomic data, pointing directly to the involvement of the interconversion reaction carried out by the serine hydroxymethyltransferase enzyme. Direct site mutagenesis revealed that all mutated THF and PLP sites at the GmSHMT08 resulted in increased SCN resistance. We have shown the involvement of PLP sites in SCN resistance. Specially, the effect of the two Y59 and S190 PLP sites was more drastic than the tested THF sites. This unprecedented finding will help us to identify the biological outcomes of THF and PLP residues at the GmSHMT08 and to understand SCN resistance mechanisms.
Collapse
|
10
|
Abstract
Resistance to the soybean cyst nematode (SCN) is a topic incorporating multiple mechanisms and multiple types of science. It is also a topic of substantial agricultural importance, as SCN is estimated to cause more yield damage than any other pathogen of soybean, one of the world's main food crops. Both soybean and SCN have experienced jumps in experimental tractability in the past decade, and significant advances have been made. The rhg1-b locus, deployed on millions of farm acres, has been durable and will remain important, but local SCN populations are gradually evolving to overcome rhg1-b. Multiple other SCN resistance quantitative trait loci (QTL) of proven value are now in play with soybean breeders. QTL causal gene discovery and mechanistic insights into SCN resistance are contributing to both basic and applied disciplines. Additional understanding of SCN and other cyst nematodes will also grow in importance and lead to novel disease control strategies.
Collapse
Affiliation(s)
- Andrew F Bent
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| |
Collapse
|
11
|
Wang J, Kong L, Zhang L, Shi X, Yu B, Li J, Zhang B, Gao M, Liu X, Li X, Gao Y, Peng D, Liu S. Breeding a Soybean Cultivar Heinong 531 with Peking-Type Cyst Nematode Resistance, Enhanced Yield, and High Seed-Oil Contents. PHYTOPATHOLOGY 2022; 112:1345-1349. [PMID: 34879718 DOI: 10.1094/phyto-08-21-0347-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Soybean cyst nematode (SCN) is a destructive threat to soybean production. It is economically important to develop a new SCN-resistant soybean cultivar with high yield and other good agronomic traits. In this study, a yellow-seed-coated and yellow-hilum-pigmented cultivar Heinong 531 belonging to maturity group I was developed by a pedigree breeding method through a test-cross between a female parental SCN-resistant soybean cultivar Pengdou 158 and a male parental line F1 (high-yield but SCN-susceptible Hefeng 55 × SCN-resistant Kangxian 12). Heinong 531 was evaluated for SCN resistance in both SCN-infested field and autoclaved soil inoculated with hatched second-stage juveniles of SCN HG Type 0. The results indicated that SCN development at all stages in Heinong 531 was suppressed and the female index was only 1.6 to 5.6%. Heinong 531 as well as Pengdou 158 and Kangxian 12 were identified as carrying the Peking-type resistance with both rhg1-a GmSNAP18 and Rhg4 GmSHMT08 genes. In the 2-year regional trials, the average yield of Heinong 531 reached 2805.0 kg/ha, and the 1-year production trial demonstrated an average yield of 2,751.5 kg/ha with yield increase of >12.0% when compared with the local cultivars. The average seed-fat (oil) contents of Heinong 531 reached up to 22.3%. The Peking-type SCN-resistant Heilong 531 with enhanced yield and high seed-oil contents was released in China in June 2021 with the certified number of 'Heishendou 20210004'. These agronomic traits make Heinong 531 a good prospect in a wide attempt to control SCN in the main soybean-producing areas of Northeast China.
Collapse
Affiliation(s)
- Jiajun Wang
- Institute of Soybean Research, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Lingan Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liuping Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xue Shi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Baishuang Yu
- Institute of Soybean Research, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Jinrong Li
- Institute of Soybean Research, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Bixian Zhang
- Institute of Soybean Research, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Mingjie Gao
- Institute of Soybean Research, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Xiulin Liu
- Institute of Soybean Research, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Xiaobai Li
- Institute of Soybean Research, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Yuan Gao
- Seed Service Center of Heilongjiang Province, Harbin 150008, China
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shiming Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
12
|
Basnet P, Meinhardt CG, Usovsky M, Gillman JD, Joshi T, Song Q, Diers B, Mitchum MG, Scaboo AM. Epistatic interaction between Rhg1-a and Rhg2 in PI 90763 confers resistance to virulent soybean cyst nematode populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2025-2039. [PMID: 35381870 PMCID: PMC9205835 DOI: 10.1007/s00122-022-04091-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/25/2022] [Indexed: 05/19/2023]
Abstract
KEY MESSAGE An epistatic interaction between SCN resistance loci rhg1-a and rhg2 in PI 90763 imparts resistance against virulent SCN populations which can be employed to diversify SCN resistance in soybean cultivars. With more than 95% of the $46.1B soybean market dominated by a single type of genetic resistance, breeding for soybean cyst nematode (SCN)-resistant soybean that can effectively combat the widespread increase in virulent SCN populations presents a significant challenge. Rhg genes (for Resistance to Heterodera glycines) play a key role in resistance to SCN; however, their deployment beyond the use of the rhg1-b allele has been limited. In this study, quantitative trait loci (QTL) were mapped using PI 90763 through two biparental F3:4 recombinant inbred line (RIL) populations segregating for rhg1-a and rhg1-b alleles against a SCN HG type 1.2.5.7 (Race 2) population. QTL located on chromosome 18 (rhg1-a) and chromosome 11 (rhg2) were determined to confer SCN resistance in PI 90763. The rhg2 gene was fine-mapped to a 169-Kbp region pinpointing GmSNAP11 as the strongest candidate gene. We demonstrated a unique epistatic interaction between rhg1-a and rhg2 loci that not only confers resistance to multiple virulent SCN populations. Further, we showed that pyramiding rhg2 with the conventional mode of resistance, rhg1-b, is ineffective against these virulent SCN populations. This highlights the importance of pyramiding rhg1-a and rhg2 to maximize the impact of gene pyramiding strategies toward management of SCN populations virulent on rhg1-b sources of resistance. Our results lay the foundation for the next generation of soybean resistance breeding to combat the number one pathogen of soybean.
Collapse
Affiliation(s)
- Pawan Basnet
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Clinton G Meinhardt
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Mariola Usovsky
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | | | - Trupti Joshi
- Department of Health Management and Informatics, MUIDSI, and Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, USDA-ARS, Beltsville, MD, USA
| | - Brian Diers
- Department of Crop Sciences, University of Illinois, Urbana-Champaign, IL, USA
| | - Melissa G Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA
| | - Andrew M Scaboo
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
13
|
Fu S, Wang K, Ma T, Liang Y, Ma Z, Wu J, Xu Y, Zhou X. An evolutionarily conserved C4HC3-type E3 ligase regulates plant broad-spectrum resistance against pathogens. THE PLANT CELL 2022; 34:1822-1843. [PMID: 35171277 PMCID: PMC9048923 DOI: 10.1093/plcell/koac055] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/11/2022] [Indexed: 05/27/2023]
Abstract
Deployment of broad-spectrum disease resistance against multiple pathogen species is an efficient way to control plant diseases. Here, we identify a Microtubule-associated C4HC3-type E3 Ligase (MEL) in both Nicotiana benthamiana and Oryza sativa, and show that it is able to integrate and initiate a series of host immune signaling, conferring broad-spectrum resistance to viral, fungal, and bacterial pathogens. We demonstrate that MEL forms homodimer through intermolecular disulfide bonds between its cysteine residues in the SWIM domain, and interacts with its substrate serine hydroxymethyltrasferase 1 (SHMT1) through the YφNL motif. Ubiquitin ligase activity, homodimerization and YφNL motif are indispensable for MEL to regulate plant immunity by mediating SHMT1 degradation through the 26S proteasome pathway. Our findings provide a fundamental basis for utilizing the MEL-SHMT1 module to generate broad-spectrum-resistant rice to global destructive pathogens including rice stripe virus, Magnaporthe oryzae, and Xanthomonas oryzae pv. oryzae.
Collapse
Affiliation(s)
| | | | - Tingting Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yan Liang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jianxiang Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yi Xu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | | |
Collapse
|
14
|
Hu P, Song P, Xu J, Wei Q, Tao Y, Ren Y, Yu Y, Li D, Hu H, Li C. Genome-Wide Analysis of Serine Hydroxymethyltransferase Genes in Triticeae Species Reveals That TaSHMT3A-1 Regulates Fusarium Head Blight Resistance in Wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:847087. [PMID: 35222497 PMCID: PMC8866830 DOI: 10.3389/fpls.2022.847087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 01/18/2022] [Indexed: 06/02/2023]
Abstract
Serine hydroxymethyltransferase (SHMT) plays a pivotal role in cellular one-carbon, photorespiration pathways and it influences the resistance to biotic and abiotic stresses. However, the function of SHMT proteins in wheat remains largely unexplored. In the present study, SHMT genes in five Triticeae species, Oryza sativa, and four dicotyledon species were identified based on whole genome information. The origin history of the target gene was traced by micro-collinearity analysis. Gene expression patterns of TaSHMTs in different tissues, various biotic stresses, exogenous hormones, and two biotic stresses were determined by Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). The function of the selected TaSHMT3A-1 was studied by barley stripe mosaic virus-induced gene silencing in common wheat Bainong207. A total of 64 SHMT members were identified and further classified into two main classes based on the structure of SHMT proteins. The gene structure and motif composition analyses revealed that SHMTs kept relatively conserved within the same subclasses. Interestingly, there was a gene, TdSHMT7B-1, on chromosome 7B of Triticum dicoccoides, but there was no SHMT gene on chromosome 7 of other analyzed Triticeae species; TdSHMT7B-1 had fewer exons and conserved motifs than the genes in the same subclass, suggesting that the gene of TdSHMT7B-1 has a notable evolutionary progress. The micro-collinearity relationship showed that no homologs of TaSHMT3A-1 and its two neighboring genes were found in the collinearity region of Triticum urartu, and there were 27 genes inserted into the collinearity region of T. urartu. Furthermore, qRT-PCR results showed that TaSHMT3A-1 was responsive to abiotic stresses (NaCl and cold), abscisic acid, methyl jasmonate, and hydrogen peroxide. Significantly, upon Fusarium graminearum infection, the expression of TaSHMT3A-1 was highly upregulated in resistant cultivar Sumai3. More importantly, silencing of TaSHMT3A-1 compromises Fusarium head blight resistance in common wheat Bainong207. Our new findings suggest that the TaSHMT3A-1 gene in wheat plays an important role in resistance to Fusarium head blight. This provides a valuable reference for further study on the function of this gene family.
Collapse
Affiliation(s)
- Ping Hu
- Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Puwen Song
- Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Jun Xu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| | - Qichao Wei
- Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Ye Tao
- Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
- Department of Plant Protection, Sumy National Agrarian University, Sumy, Ukraine
| | - Yueming Ren
- Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Yongang Yu
- Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Dongxiao Li
- Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Haiyan Hu
- Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Chengwei Li
- Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
15
|
Nissan N, Mimee B, Cober ER, Golshani A, Smith M, Samanfar B. A Broad Review of Soybean Research on the Ongoing Race to Overcome Soybean Cyst Nematode. BIOLOGY 2022; 11:211. [PMID: 35205078 PMCID: PMC8869295 DOI: 10.3390/biology11020211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022]
Abstract
Plant pathogens greatly impact food security of the ever-growing human population. Breeding resistant crops is one of the most sustainable strategies to overcome the negative effects of these biotic stressors. In order to efficiently breed for resistant plants, the specific plant-pathogen interactions should be understood. Soybean is a short-day legume that is a staple in human food and animal feed due to its high nutritional content. Soybean cyst nematode (SCN) is a major soybean stressor infecting soybean worldwide including in China, Brazil, Argentina, USA and Canada. There are many Quantitative Trait Loci (QTLs) conferring resistance to SCN that have been identified; however, only two are widely used: rhg1 and Rhg4. Overuse of cultivars containing these QTLs/genes can lead to SCN resistance breakdown, necessitating the use of additional strategies. In this manuscript, a literature review is conducted on research related to soybean resistance to SCN. The main goal is to provide a current understanding of the mechanisms of SCN resistance and list the areas of research that could be further explored.
Collapse
Affiliation(s)
- Nour Nissan
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1Y 4X2, Canada; (N.N.); (E.R.C.)
- Ottawa Institute of Systems Biology and Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (A.G.); (M.S.)
| | - Benjamin Mimee
- Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu Research and Development Centre, Saint-Jean-sur-Richelieu, QC J3B 7B5, Canada;
| | - Elroy R. Cober
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1Y 4X2, Canada; (N.N.); (E.R.C.)
| | - Ashkan Golshani
- Ottawa Institute of Systems Biology and Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (A.G.); (M.S.)
| | - Myron Smith
- Ottawa Institute of Systems Biology and Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (A.G.); (M.S.)
| | - Bahram Samanfar
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1Y 4X2, Canada; (N.N.); (E.R.C.)
- Ottawa Institute of Systems Biology and Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (A.G.); (M.S.)
| |
Collapse
|
16
|
Zhou Z, Lakhssassi N, Knizia D, Cullen MA, El Baz A, Embaby MG, Liu S, Badad O, Vuong TD, AbuGhazaleh A, Nguyen HT, Meksem K. Genome-wide identification and analysis of soybean acyl-ACP thioesterase gene family reveals the role of GmFAT to improve fatty acid composition in soybean seed. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3611-3623. [PMID: 34319424 DOI: 10.1007/s00122-021-03917-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE Soybean acyl-ACP thioesterase gene family have been characterized; GmFATA1A mutants were discovered to confer high oleic acid, while GmFATB mutants presented low palmitic and high oleic acid seed content. Soybean oil stability and quality are primarily determined by the relative proportions of saturated versus unsaturated fatty acids. Commodity soybean typically contains 11% palmitic acid, as the primary saturated fatty acids. Reducing palmitic acid content is the principal approach to minimize the levels of saturated fatty acids in soybean. Though high palmitic acid enhances oxidative stability of soybean oil, it is negatively correlated with oil and oleic acid content and can cause coronary heart diseases for humans. For plants, acyl-acyl carrier protein (ACP) thioesterases (TEs) are a group of enzymes to hydrolyze acyl group and release free fatty acid from plastid. Among them, GmFATB1A has become the main target to genetically reduce the palmitic acid content in soybean. However, the role of members in soybean acyl-ACP thioesterase gene family is largely unknown. In this study, we characterized two classes of TEs, GmFATA, and GmFATB in soybean. We also denominated two GmFATA members and discovered six additional members that belong to GmFATB gene family through phylogenetic, syntenic, and in silico analysis. Using TILLING-by-Sequencing+, we identified an allelic series of mutations in five soybean acyl-ACP thioesterase genes, including GmFATA1A, GmFATB1A, GmFATB1B, GmFATB2A, and GmFATB2B. Additionally, we discovered mutations at GmFATA1A to confer high oleic acid (up to 34.5%) content, while mutations at GmFATB presented low palmitic acid (as low as 5.6%) and high oleic acid (up to 36.5%) phenotypes. The obtained soybean mutants with altered fatty acid content can be used in soybean breeding program for improving soybean oil composition traits.
Collapse
Affiliation(s)
- Zhou Zhou
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL, 62901, USA
- Plant Science Department, McGill University, Montreal, QC, H9X 3V9, Canada
| | - Naoufal Lakhssassi
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Dounya Knizia
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Mallory A Cullen
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Abdelhalim El Baz
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Mohamed G Embaby
- Department of Animal Science, Food, and Nutrition, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Shiming Liu
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Oussama Badad
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Tri D Vuong
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Amer AbuGhazaleh
- Department of Animal Science, Food, and Nutrition, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Henry T Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Khalid Meksem
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL, 62901, USA.
| |
Collapse
|
17
|
Kambakam S, Ngaki MN, Sahu BB, Kandel DR, Singh P, Sumit R, Swaminathan S, Muliyar-Krishna R, Bhattacharyya MK. Arabidopsis non-host resistance PSS30 gene enhances broad-spectrum disease resistance in the soybean cultivar Williams 82. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1432-1446. [PMID: 34171147 DOI: 10.1111/tpj.15392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 06/03/2021] [Accepted: 06/19/2021] [Indexed: 05/27/2023]
Abstract
Non-host resistance (NHR), which protects all members of a plant species from non-adapted or non-host plant pathogens, is the most common form of plant immunity. NHR provides the most durable and robust form of broad-spectrum immunity against non-adaptive pathogens pathogenic to other crop species. In a mutant screen for loss of Arabidopsis (Arabidopsis thaliana) NHR against the soybean (Glycine max (L.) Merr.) pathogen Phytophthora sojae, the Phytophthora sojae-susceptible 30 (pss30) mutant was identified. The pss30 mutant is also susceptible to the soybean pathogen Fusarium virguliforme. PSS30 encodes a folate transporter, AtFOLT1, which was previously localized to chloroplasts and implicated in the transport of folate from the cytosol to plastids. We show that two Arabidopsis folate biosynthesis mutants with reduced folate levels exhibit a loss of non-host immunity against P. sojae. As compared to the wild-type Col-0 ecotype, the steady-state folate levels are reduced in the pss1, atfolt1 and two folate biosynthesis mutants, suggesting that folate is required for non-host immunity. Overexpression of AtFOLT1 enhances immunity of transgenic soybean lines against two serious soybean pathogens, the fungal pathogen F. virguliforme and the soybean cyst nematode (SCN) Heterodera glycines. Transgenic lines showing enhanced SCN resistance also showed increased levels of folate accumulation. This study thus suggests that folate contributes to non-host plant immunity and that overexpression of a non-host resistance gene could be a suitable strategy for generating broad-spectrum disease resistance in crop plants.
Collapse
Affiliation(s)
- Sekhar Kambakam
- Department of Agronomy, Iowa State University, Ames, 50011, USA
| | | | - Binod B Sahu
- Department of Agronomy, Iowa State University, Ames, 50011, USA
| | - Devi R Kandel
- Department of Agronomy, Iowa State University, Ames, 50011, USA
| | - Prashant Singh
- Department of Agronomy, Iowa State University, Ames, 50011, USA
| | - Rishi Sumit
- Department of Agronomy, Iowa State University, Ames, 50011, USA
| | | | | | | |
Collapse
|
18
|
Lakhssassi N, Zhou Z, Cullen MA, Badad O, El Baze A, Chetto O, Embaby MG, Knizia D, Liu S, Neves LG, Meksem K. TILLING-by-Sequencing + to Decipher Oil Biosynthesis Pathway in Soybeans: A New and Effective Platform for High-Throughput Gene Functional Analysis. Int J Mol Sci 2021; 22:4219. [PMID: 33921707 PMCID: PMC8073088 DOI: 10.3390/ijms22084219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 12/25/2022] Open
Abstract
Reverse genetic approaches have been widely applied to study gene function in crop species; however, these techniques, including gel-based TILLING, present low efficiency to characterize genes in soybeans due to genome complexity, gene duplication, and the presence of multiple gene family members that share high homology in their DNA sequence. Chemical mutagenesis emerges as a genetically modified-free strategy to produce large-scale soybean mutants for economically important traits improvement. The current study uses an optimized high-throughput TILLING by target capture sequencing technology, or TILLING-by-Sequencing+ (TbyS+), coupled with universal bioinformatic tools to identify population-wide mutations in soybeans. Four ethyl methanesulfonate mutagenized populations (4032 mutant families) have been screened for the presence of induced mutations in targeted genes. The mutation types and effects have been characterized for a total of 138 soybean genes involved in soybean seed composition, disease resistance, and many other quality traits. To test the efficiency of TbyS+ in complex genomes, we used soybeans as a model with a focus on three desaturase gene families, GmSACPD, GmFAD2, and GmFAD3, that are involved in the soybean fatty acid biosynthesis pathway. We successfully isolated mutants from all the six gene family members. Unsurprisingly, most of the characterized mutants showed significant changes either in their stearic, oleic, or linolenic acids. By using TbyS+, we discovered novel sources of soybean oil traits, including high saturated and monosaturated fatty acids in addition to low polyunsaturated fatty acid contents. This technology provides an unprecedented platform for highly effective screening of polyploid mutant populations and functional gene analysis. The obtained soybean mutants from this study can be used in subsequent soybean breeding programs for improved oil composition traits.
Collapse
Affiliation(s)
- Naoufal Lakhssassi
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (Z.Z.); (M.A.C.); (O.B.); (A.E.B.); (O.C.); (D.K.); (S.L.)
| | - Zhou Zhou
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (Z.Z.); (M.A.C.); (O.B.); (A.E.B.); (O.C.); (D.K.); (S.L.)
| | - Mallory A. Cullen
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (Z.Z.); (M.A.C.); (O.B.); (A.E.B.); (O.C.); (D.K.); (S.L.)
| | - Oussama Badad
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (Z.Z.); (M.A.C.); (O.B.); (A.E.B.); (O.C.); (D.K.); (S.L.)
| | - Abdelhalim El Baze
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (Z.Z.); (M.A.C.); (O.B.); (A.E.B.); (O.C.); (D.K.); (S.L.)
| | - Oumaima Chetto
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (Z.Z.); (M.A.C.); (O.B.); (A.E.B.); (O.C.); (D.K.); (S.L.)
| | - Mohamed G. Embaby
- Department of Animal Science, Food, and Nutrition, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Dounya Knizia
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (Z.Z.); (M.A.C.); (O.B.); (A.E.B.); (O.C.); (D.K.); (S.L.)
| | - Shiming Liu
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (Z.Z.); (M.A.C.); (O.B.); (A.E.B.); (O.C.); (D.K.); (S.L.)
| | | | - Khalid Meksem
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (Z.Z.); (M.A.C.); (O.B.); (A.E.B.); (O.C.); (D.K.); (S.L.)
| |
Collapse
|
19
|
Zheng Q, Putker V, Goverse A. Molecular and Cellular Mechanisms Involved in Host-Specific Resistance to Cyst Nematodes in Crops. FRONTIERS IN PLANT SCIENCE 2021; 12:641582. [PMID: 33767723 PMCID: PMC7986850 DOI: 10.3389/fpls.2021.641582] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/16/2021] [Indexed: 05/17/2023]
Abstract
Cyst nematodes are able to infect a wide range of crop species and are regarded as a major threat in crop production. In response to invasion of cyst nematodes, plants activate their innate immune system to defend themselves by conferring basal and host-specific defense responses depending on the plant genotype. Basal defense is dependent on the detection of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs), while host-specific defense mainly relies on the activation of canonical and non-canonical resistance (R) genes or quantitative trait loci (QTL). Currently, application of R genes and QTLs in crop species is a major approach to control cyst nematode in crop cultivation. However, emerging virulent cyst nematode field populations are threatening crop production due to host genetic selection by the application of a limited set of resistance genes in current crop cultivars. To counteract this problem, increased knowledge about the mechanisms involved in host-specific resistance mediated by R genes and QTLs to cyst nematodes is indispensable to improve their efficient and sustainable use in field crops. Despite the identification of an increasing number of resistance traits to cyst nematodes in various crops, the underlying genes and defense mechanisms are often unknown. In the last decade, indebt studies on the functioning of a number of cyst nematode R genes and QTLs have revealed novel insights in how plants respond to cyst nematode infection by the activation of host-specific defense responses. This review presents current knowledge of molecular and cellular mechanisms involved in the recognition of cyst nematodes, the activation of defense signaling and resistance response types mediated by R genes or QTLs. Finally, future directions for research are proposed to develop management strategies to better control cyst nematodes in crop cultivation.
Collapse
Affiliation(s)
- Qi Zheng
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Vera Putker
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Aska Goverse
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
20
|
Lakhssassi N, Baharlouei A, Meksem J, Hamilton-Brehm SD, Lightfoot DA, Meksem K, Liang Y. EMS-Induced Mutagenesis of Clostridium carboxidivorans for Increased Atmospheric CO 2 Reduction Efficiency and Solvent Production. Microorganisms 2020; 8:microorganisms8081239. [PMID: 32824093 PMCID: PMC7464951 DOI: 10.3390/microorganisms8081239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 11/16/2022] Open
Abstract
Clostridium carboxidivorans (P7) is one of the most important solvent-producing bacteria capable of fermenting syngas (CO, CO2, and H2) to produce chemical commodities when grown as an autotroph. This study aimed to develop ethyl methanesulfonate (EMS)-induced P7 mutants that were capable of growing in the presence of CO2 as a unique source of carbon with increased solvent formation and atmospheric CO2 reduction to limit global warming. Phenotypic analysis including growth and end product characterization of the P7 wild type (WT) demonstrated that this strain grew better at 25 °C than 37 °C when CO2 served as the only source of carbon. In the current study, 55 mutagenized P7-EMS mutants were developed by using 100 mM and 120 mM EMS. Interestingly, using a forward genetic approach, three out of the 55 P7-EMS mutants showed a significant increase in ethanol, butyrate, and butanol production. The three P7-EMS mutants presented on average a 4.68-fold increase in concentrations of ethanol when compared to the P7-WT. Butyric acid production from 3 P7-EMS mutants contained an average of a 3.85 fold increase over the levels observed in the P7-WT cultures under the same conditions (CO2 only). In addition, one P7-EMS mutant presented butanol production (0.23 ± 0.02 g/L), which was absent from the P7-WT under CO2 conditions. Most of the P7-EMS mutants showed stability of the obtained end product traits after three transfers. Most importantly, the amount of reduced atmospheric CO2 increased up to 8.72 times (0.21 g/Abs) for ethanol production and up to 8.73 times higher (0.16 g/Abs) for butyrate than the levels contained in the P7-WT. Additionally, to produce butanol, the P7-EMSIII-J mutant presented 0.082 g/Abs of CO2 reduction. This study demonstrated the feasibility and effectiveness of employing EMS mutagenesis in generating solvent-producing anaerobic bacteria mutants with improved and novel product formation and increased atmospheric CO2 reduction efficiency.
Collapse
Affiliation(s)
- Naoufal Lakhssassi
- Department of Civil and Environmental Engineering, 1230 Lincoln Drive, Southern Illinois University Carbondale, Carbondale, IL 62901, USA; (N.L.); (A.B.)
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Azam Baharlouei
- Department of Civil and Environmental Engineering, 1230 Lincoln Drive, Southern Illinois University Carbondale, Carbondale, IL 62901, USA; (N.L.); (A.B.)
| | - Jonas Meksem
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27708, USA;
| | | | - David A. Lightfoot
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Khalid Meksem
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA;
- Correspondence: (K.M.); (Y.L.)
| | - Yanna Liang
- Department of Civil and Environmental Engineering, 1230 Lincoln Drive, Southern Illinois University Carbondale, Carbondale, IL 62901, USA; (N.L.); (A.B.)
- Department of Environmental and Sustainable Engineering, 1400 Washington Ave, State University of New York at Albany, Albany, NY 12222, USA
- Correspondence: (K.M.); (Y.L.)
| |
Collapse
|
21
|
Chen S. Dynamics of Population Density and Virulence Phenotype of the Soybean Cyst Nematode as Influenced by Resistance Source Sequence and Tillage. PLANT DISEASE 2020; 104:2111-2122. [PMID: 32539592 DOI: 10.1094/pdis-09-19-1916-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The soybean cyst nematode (SCN), Heterodera glycines, is the most damaging pathogen of soybean. Use of resistant cultivars is an effective strategy to manage SCN, but it also selects for virulent populations over time. A 12-year field experiment was initiated in 2003 to study how tillage and 11 different sequences of four cultivars impact SCN population dynamics and virulence. An SCN-susceptible cultivar and three resistant cultivars (R1, R2, and R3 derived from cultivars PI 88788, Peking, and PI 437654, respectively) were used. Tillage had minimal effect on SCN population density. Compared with no till, conventional tillage resulted in a faster increase of SCN virulence to Peking when the SCN was selected by R2 and virulence to PI 88788 by R3. Among the three SCN-resistant cultivars, R1 supported the greatest population density, R2 supported intermediate population density, and R3 supported the least SCN population density. The SCN populations selected by R1 overcame the resistance in PI 88788 but not in Peking and PI 437654. R2 selected SCN populations that overcame the resistance in Peking but not in PI 88788 and PI 437654. In contrast, R3 selected SCN populations that overcame both PI 88788 and Peking sources of resistance. There was no increase of virulence to PI 437654 in any cultivar sequence. R1 in rotation with R2 or R3 had a negative effect on female index on Peking. Susceptible soybean reduced SCN virulence to Peking, indicating that there was fitness cost of the Peking virulent SCN type. These results suggest that rotation of Peking with PI 88788 is a good strategy for managing the SCN, and susceptible cultivar and no till may reduce SCN virulence selection pressure in some rotations.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Senyu Chen
- Southern Research and Outreach Center, University of Minnesota, Waseca, MN 56093
| |
Collapse
|
22
|
Lakhssassi N, Piya S, Bekal S, Liu S, Zhou Z, Bergounioux C, Miao L, Meksem J, Lakhssassi A, Jones K, Kassem MA, Benhamed M, Bendahmane A, Lambert K, Boualem A, Hewezi T, Meksem K. A pathogenesis-related protein GmPR08-Bet VI promotes a molecular interaction between the GmSHMT08 and GmSNAP18 in resistance to Heterodera glycines. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1810-1829. [PMID: 31960590 PMCID: PMC7336373 DOI: 10.1111/pbi.13343] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/19/2019] [Accepted: 01/03/2020] [Indexed: 05/19/2023]
Abstract
Soybean cyst nematode (SCN, Heterodera glycines) is the most devastating pest affecting soybean production worldwide. SCN resistance requires both the GmSHMT08 and the GmSNAP18 in 'Peking'-type resistance. Here, we describe the molecular interaction between GmSHMT08 and GmSNAP18, which is potentiated by a pathogenesis-related protein GmPR08-Bet VI. Like GmSNAP18 and GmSHMT08, GmPR08-Bet VI expression was induced in response to SCN and its overexpression decreased SCN cysts by 65% in infected transgenic soybean roots. Overexpression of GmPR08-Bet VI did not have an effect on SCN resistance when the two cytokinin-binding sites in GmPR08-Bet VI were mutated, indicating a new role of GmPR08-Bet VI in SCN resistance. GmPR08-Bet VI was mapped to a QTL for resistance to SCN using different mapping populations. GmSHMT08, GmSNAP18 and GmPR08-Bet VI localize to the cytosol and plasma membrane. GmSNAP18 expression and localization hyper-accumulated at the plasma membrane and was specific to the root cells surrounding the nematode in SCN-resistant soybeans. Genes encoding key components of the salicylic acid signalling pathway were induced under SCN infection. GmSNAP18 and GmPR08-Bet VI were also induced under salicylic acid and cytokinin exogenous treatments, while GmSHMT08 was induced only when the resistant GmSNAP18 was present, pointing to the presence of a molecular crosstalk between SCN-resistant genes and defence genes. Expression analysis of GmSHMT08 and GmSNAP18 identified the need of a minimum expression requirement to trigger the SCN resistance reaction. These results provide insight into a new response mechanism towards plant nematode resistance involving haplotype compatibility, gene dosage and hormone signalling.
Collapse
Affiliation(s)
- Naoufal Lakhssassi
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | - Sarbottam Piya
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Sadia Bekal
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | - Shiming Liu
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | - Zhou Zhou
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | - Catherine Bergounioux
- INRAInstitute of Plant Sciences Paris‐Saclay (IPS2)CNRSUniversité Paris‐SudOrsayFrance
| | - Long Miao
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | | | - Aicha Lakhssassi
- Faculty of Sciences and TechnologiesUniversity of LorraineNancyFrance
| | - Karen Jones
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | | | - Moussa Benhamed
- INRAInstitute of Plant Sciences Paris‐Saclay (IPS2)CNRSUniversité Paris‐SudOrsayFrance
| | - Abdelhafid Bendahmane
- INRAInstitute of Plant Sciences Paris‐Saclay (IPS2)CNRSUniversité Paris‐SudOrsayFrance
| | - Kris Lambert
- Department of Crop SciencesUniversity of IllinoisUrbanaILUSA
| | - Adnane Boualem
- INRAInstitute of Plant Sciences Paris‐Saclay (IPS2)CNRSUniversité Paris‐SudOrsayFrance
| | - Tarek Hewezi
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Khalid Meksem
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| |
Collapse
|
23
|
Rambani A, Pantalone V, Yang S, Rice JH, Song Q, Mazarei M, Arelli PR, Meksem K, Stewart CN, Hewezi T. Identification of introduced and stably inherited DNA methylation variants in soybean associated with soybean cyst nematode parasitism. THE NEW PHYTOLOGIST 2020; 227:168-184. [PMID: 32112408 DOI: 10.1111/nph.16511] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
DNA methylation is a widespread epigenetic mark that contributes to transcriptome reprogramming during plant-pathogen interactions. However, the distinct role of DNA methylation in establishing resistant and susceptible responses remains largely unexplored. Here, we developed and used a pair of near-isogenic lines (NILs) to characterize DNA methylome landscapes of soybean roots during the susceptible and resistant interactions with soybean cyst nematode (SCN; Heterodera glycines). We also compared the methylomes of the NILs and their parents to identify introduced and stably inherited methylation variants. The genomes of the NILs were substantially differentially methylated under uninfected conditions. This difference was associated with differential gene expression that may prime the NIL responses to SCN infection. In response to SCN infection, the susceptible line exhibited reduced global methylation levels in both protein-coding genes and transposable elements, whereas the resistant line showed the opposite response, increased global methylation levels. Heritable and novel nonparental differentially methylated regions overlapping with genes associated with soybean response to SCN infection were identified and validated using transgenic hairy root system. Our analyses indicate that DNA methylation patterns associated with the susceptible and resistant interactions are highly specific and that novel and stably inherited methylation variants are of biological significance.
Collapse
Affiliation(s)
- Aditi Rambani
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Vince Pantalone
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Songnan Yang
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - J Hollis Rice
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA
| | - Mitra Mazarei
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | | | - Khalid Meksem
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL, 62901, USA
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
24
|
Lakhssassi N, Piya S, Knizia D, El Baze A, Cullen MA, Meksem J, Lakhssassi A, Hewezi T, Meksem K. Mutations at the Serine Hydroxymethyltransferase Impact its Interaction with a Soluble NSF Attachment Protein and a Pathogenesis-Related Protein in Soybean. Vaccines (Basel) 2020; 8:vaccines8030349. [PMID: 32629961 PMCID: PMC7563484 DOI: 10.3390/vaccines8030349] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/01/2023] Open
Abstract
Resistance to soybean cyst nematodes (SCN) in “Peking-type” resistance is bigenic, requiring Rhg4-a and rhg1-a. Rhg4-a encodes a serine hydroxymethyltransferase (GmSHMT08) and rhg1-a encodes a soluble NSF attachment protein (GmSNAP18). Recently, it has been shown that a pathogenesis-related protein, GmPR08-Bet VI, potentiates the interaction between GmSHMT08 and GmSNAP18. Mutational analysis using spontaneously occurring and ethyl methanesulfonate (EMS)-induced mutations was carried out to increase our knowledge of the interacting GmSHMT08/GmSNAP18/GmPR08-Bet VI multi-protein complex. Mutations affecting the GmSHMT08 protein structure (dimerization and tetramerization) and interaction sites with GmSNAP18 and GmPR08-Bet VI proteins were found to impact the multi-protein complex. Interestingly, mutations affecting the PLP/THF substrate binding and catalysis did not affect the multi-protein complex, although they resulted in increased susceptibility to SCN. Most importantly, GmSHMT08 and GmSNAP18 from PI88788 were shown to interact within the cell, being potentiated in the presence of GmPR08-Bet VI. In addition, we have shown the presence of incompatibility between the GmSNAP18 (rhg1-b) of PI88788 and GmSHMT08 (Rhg4-a) from Peking. Components of the reactive oxygen species (ROS) pathway were shown to be induced in the SCN incompatible reaction and were mapped to QTLs for resistance to SCN using different mapping populations.
Collapse
Affiliation(s)
- Naoufal Lakhssassi
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (D.K.); (A.E.B.); (M.A.C.)
| | - Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA; (S.P.); (T.H.)
| | - Dounya Knizia
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (D.K.); (A.E.B.); (M.A.C.)
| | - Abdelhalim El Baze
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (D.K.); (A.E.B.); (M.A.C.)
| | - Mallory A. Cullen
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (D.K.); (A.E.B.); (M.A.C.)
| | - Jonas Meksem
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27708, USA;
| | - Aicha Lakhssassi
- Faculty of Sciences and Technologies, University of Lorraine, 54000 Nancy, France;
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA; (S.P.); (T.H.)
| | - Khalid Meksem
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (D.K.); (A.E.B.); (M.A.C.)
- Correspondence: ; Tel.: +1-618-453-3103
| |
Collapse
|
25
|
Zhou Z, Lakhssassi N, Cullen MA, El Baz A, Vuong TD, Nguyen HT, Meksem K. Assessment of Phenotypic Variations and Correlation among Seed Composition Traits in Mutagenized Soybean Populations. Genes (Basel) 2019; 10:E975. [PMID: 31783508 PMCID: PMC6947669 DOI: 10.3390/genes10120975] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 01/31/2023] Open
Abstract
Soybean [Glycine max (L.) Merr.] seed is a valuable source of protein and oil worldwide. Traditionally, the natural variations were heavily used in conventional soybean breeding programs to select desired traits. However, traditional plant breeding is encumbered with low frequencies of spontaneous mutations. In mutation breeding, genetic variations from induced mutations provide abundant sources of alterations in important soybean traits; this facilitated the development of soybean germplasm with modified seed composition traits to meet the different needs of end users. In this study, a total of 2366 'Forrest'-derived M2 families were developed for both forward and reverse genetic studies. A subset of 881 M3 families was forward genetically screened to measure the contents of protein, oil, carbohydrates, and fatty acids. A total of 14 mutants were identified to have stable seed composition phenotypes observed in both M3 and M4 generations. Correlation analyses have been conducted among ten seed composition traits and compared to a collection of 103 soybean germplasms. Mainly, ethyl methanesulfonate (EMS) mutagenesis had a strong impact on the seed-composition correlation that was observed among the 103 soybean germplasms, which offers multiple benefits for the soybean farmers and industry to breed for desired multiple seed phenotypes.
Collapse
Affiliation(s)
- Zhou Zhou
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (Z.Z.); (N.L.); (M.A.C.); (A.E.B.)
| | - Naoufal Lakhssassi
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (Z.Z.); (N.L.); (M.A.C.); (A.E.B.)
| | - Mallory A. Cullen
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (Z.Z.); (N.L.); (M.A.C.); (A.E.B.)
| | - Abdelhalim El Baz
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (Z.Z.); (N.L.); (M.A.C.); (A.E.B.)
| | - Tri D. Vuong
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA; (T.D.V.); (H.T.N.)
| | - Henry T. Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA; (T.D.V.); (H.T.N.)
| | - Khalid Meksem
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (Z.Z.); (N.L.); (M.A.C.); (A.E.B.)
| |
Collapse
|
26
|
Neupane S, Purintun JM, Mathew FM, Varenhorst AJ, Nepal MP. Molecular Basis of Soybean Resistance to Soybean Aphids and Soybean Cyst Nematodes. PLANTS 2019; 8:plants8100374. [PMID: 31561499 PMCID: PMC6843664 DOI: 10.3390/plants8100374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 01/25/2023]
Abstract
Soybean aphid (SBA; Aphis glycines Matsumura) and soybean cyst nematode (SCN; Heterodera glycines Ichninohe) are major pests of the soybean (Glycine max [L.] Merr.). Substantial progress has been made in identifying the genetic basis of limiting these pests in both model and non-model plant systems. Classical linkage mapping and genome-wide association studies (GWAS) have identified major and minor quantitative trait loci (QTLs) in soybean. Studies on interactions of SBA and SCN effectors with host proteins have identified molecular cues in various signaling pathways, including those involved in plant disease resistance and phytohormone regulations. In this paper, we review the molecular basis of soybean resistance to SBA and SCN, and we provide a synthesis of recent studies of soybean QTLs/genes that could mitigate the effects of virulent SBA and SCN populations. We also review relevant studies of aphid–nematode interactions, particularly in the soybean–SBA–SCN system.
Collapse
Affiliation(s)
- Surendra Neupane
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Jordan M Purintun
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Febina M Mathew
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA.
| | - Adam J Varenhorst
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA.
| | - Madhav P Nepal
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
27
|
Liu S, Ge F, Huang W, Lightfoot DA, Peng D. Effective identification of soybean candidate genes involved in resistance to soybean cyst nematode via direct whole genome re-sequencing of two segregating mutants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2677-2687. [PMID: 31250041 DOI: 10.1007/s00122-019-03381-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
KEY MESSAGE Three soybean candidate genes involved in resistance to soybean cyst nematode race 4 were identified via direct whole genome re-sequencing of two segregating mutants. The genes conferring resistance to soybean cyst nematode (SCN) race 4 (Hg type 1.2.3.5.7) in soybean (Glycine max L. Merr.) remains unknown. Next generation sequencing-based methods identify a wide range of targets, it is difficult to identify genes underlying traits. Use of the MutMap and QTL-seq methods to identify trait candidate genes needs backcrossing and is very time-consuming. Here we report a simple method to effectively identify candidate genes involved in resistance to SCN race 4. Two ethane methylsulfonate mutagenized mutants of soybean 'PI 437654', whose SCN race 4-infection phenotype altered, were selected. Six relevant whole genomes were re-sequenced, and then calling of genomic variants (SNPs and InDels) was conducted and compared to 'Williams 82'. The comparison eliminated many genomic variants from the mutant lines that overlapped two non-phenotypic but mutant progeny plants, wild-type PI 437654 and 'Zhonghuang 13'. Finally, only 27 mutations were found among 10 genes. Of these 10 genes, 3 genes, Glyma.09g054000, Glyma.16g065700 and Glyma.18g192200 were overlapped between two phenotypic mutant progeny plants. Therefore, the three genes may be the candidate genes involved in resistance of PI 437654 to soybean cyst nematode race 4. This method simplifies the effective identification of candidate genes.
Collapse
Affiliation(s)
- Shiming Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, People's Republic of China.
| | - Fengyong Ge
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Wenkun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - David A Lightfoot
- College of Agricultural Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| |
Collapse
|
28
|
Bayless AM, Zapotocny RW, Han S, Grunwald DJ, Amundson KK, Bent AF. The rhg1-a ( Rhg1 low-copy) nematode resistance source harbors a copia-family retrotransposon within the Rhg1-encoded α-SNAP gene. PLANT DIRECT 2019; 3:e00164. [PMID: 31468029 PMCID: PMC6712407 DOI: 10.1002/pld3.164] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/13/2019] [Accepted: 08/02/2019] [Indexed: 05/14/2023]
Abstract
Soybean growers widely use the Resistance to Heterodera glycines 1 (Rhg1) locus to reduce yield losses caused by soybean cyst nematode (SCN). Rhg1 is a tandemly repeated four gene block. Two classes of SCN resistance-conferring Rhg1 haplotypes are recognized: rhg1-a ("Peking-type," low-copy number, three or fewer Rhg1 repeats) and rhg1-b ("PI 88788-type," high-copy number, four or more Rhg1 repeats). The rhg1-a and rhg1-b haplotypes encode α-SNAP (alpha-Soluble NSF Attachment Protein) variants α-SNAP Rhg1 LC and α-SNAP Rhg1 HC, respectively, with differing atypical C-terminal domains, that contribute to SCN resistance. Here we report that rhg1-a soybean accessions harbor a copia retrotransposon within their Rhg1 Glyma.18G022500 (α-SNAP-encoding) gene. We termed this retrotransposon "RAC," for Rhg1 alpha-SNAP copia. Soybean carries multiple RAC-like retrotransposon sequences. The Rhg1 RAC insertion is in the Glyma.18G022500 genes of all true rhg1-a haplotypes we tested and was not detected in any examined rhg1-b or Rhg1WT (single-copy) soybeans. RAC is an intact element residing within intron 1, anti-sense to the rhg1-a α-SNAP open reading frame. RAC has intrinsic promoter activities, but overt impacts of RAC on transgenic α-SNAP Rhg1 LC mRNA and protein abundance were not detected. From the native rhg1-a RAC+ genomic context, elevated α-SNAP Rhg1 LC protein abundance was observed in syncytium cells, as was previously observed for α-SNAP Rhg1 HC (whose rhg1-b does not carry RAC). Using a SoySNP50K SNP corresponding with RAC presence, just ~42% of USDA accessions bearing previously identified rhg1-a SoySNP50K SNP signatures harbor the RAC insertion. Subsequent analysis of several of these putative rhg1-a accessions lacking RAC revealed that none encoded α-SNAPRhg1LC, and thus, they are not rhg1-a. rhg1-a haplotypes are of rising interest, with Rhg4, for combating SCN populations that exhibit increased virulence against the widely used rhg1-b resistance. The present study reveals another unexpected structural feature of many Rhg1 loci, and a selectable feature that is predictive of rhg1-a haplotypes.
Collapse
Affiliation(s)
- Adam M. Bayless
- Department of Plant PathologyUniversity of Wisconsin – MadisonMadisonWIUSA
| | - Ryan W. Zapotocny
- Department of Plant PathologyUniversity of Wisconsin – MadisonMadisonWIUSA
| | - Shaojie Han
- Department of Plant PathologyUniversity of Wisconsin – MadisonMadisonWIUSA
| | | | - Kaela K. Amundson
- Department of Plant PathologyUniversity of Wisconsin – MadisonMadisonWIUSA
| | - Andrew F. Bent
- Department of Plant PathologyUniversity of Wisconsin – MadisonMadisonWIUSA
| |
Collapse
|
29
|
Patil GB, Lakhssassi N, Wan J, Song L, Zhou Z, Klepadlo M, Vuong TD, Stec AO, Kahil SS, Colantonio V, Valliyodan B, Rice JH, Piya S, Hewezi T, Stupar RM, Meksem K, Nguyen HT. Whole-genome re-sequencing reveals the impact of the interaction of copy number variants of the rhg1 and Rhg4 genes on broad-based resistance to soybean cyst nematode. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1595-1611. [PMID: 30688400 PMCID: PMC6662113 DOI: 10.1111/pbi.13086] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 05/19/2023]
Abstract
Soybean cyst nematode (SCN) is the most devastating plant-parasitic nematode. Most commercial soybean varieties with SCN resistance are derived from PI88788. Resistance derived from PI88788 is breaking down due to narrow genetic background and SCN population shift. PI88788 requires mainly the rhg1-b locus, while 'Peking' requires rhg1-a and Rhg4 for SCN resistance. In the present study, whole genome re-sequencing of 106 soybean lines was used to define the Rhg haplotypes and investigate their responses to the SCN HG-Types. The analysis showed a comprehensive profile of SNPs and copy number variations (CNV) at these loci. CNV of rhg1 (GmSNAP18) only contributed towards resistance in lines derived from PI88788 and 'Cloud'. At least 5.6 copies of the PI88788-type rhg1 were required to confer SCN resistance, regardless of the Rhg4 (GmSHMT08) haplotype. However, when the GmSNAP18 copies dropped below 5.6, a 'Peking'-type GmSHMT08 haplotype was required to ensure SCN resistance. This points to a novel mechanism of epistasis between GmSNAP18 and GmSHMT08 involving minimum requirements for copy number. The presence of more Rhg4 copies confers resistance to multiple SCN races. Moreover, transcript abundance of the GmSHMT08 in root tissue correlates with more copies of the Rhg4 locus, reinforcing SCN resistance. Finally, haplotype analysis of the GmSHMT08 and GmSNAP18 promoters inferred additional levels of the resistance mechanism. This is the first report revealing the genetic basis of broad-based resistance to SCN and providing new insight into epistasis, haplotype-compatibility, CNV, promoter variation and its impact on broad-based disease resistance in plants.
Collapse
Affiliation(s)
- Gunvant B. Patil
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
- Department Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMNUSA
| | - Naoufal Lakhssassi
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | - Jinrong Wan
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| | - Li Song
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| | - Zhou Zhou
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | | | - Tri D. Vuong
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| | - Adrian O. Stec
- Department Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMNUSA
| | - Sondus S. Kahil
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | - Vincent Colantonio
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | - Babu Valliyodan
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| | - J. Hollis Rice
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Sarbottam Piya
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Tarek Hewezi
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Robert M. Stupar
- Department Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMNUSA
| | - Khalid Meksem
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | - Henry T. Nguyen
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| |
Collapse
|
30
|
Million CR, Wijeratne S, Cassone BJ, Lee S, Rouf Mian MA, McHale LK, Dorrance AE. Hybrid Genome Assembly of a Major Quantitative Disease Resistance Locus in Soybean Toward Fusarium graminearum. THE PLANT GENOME 2019; 12. [PMID: 31290916 DOI: 10.3835/plantgenome2018.12.0102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/11/2019] [Indexed: 05/27/2023]
Abstract
Schwabe [teleomorph: Gibberella zeae (Schweintiz) Petch] has been identified as a pathogen of soybean [ (L.) Merr.] causing seed, seedling damping-off and root rot in North America. A major quantitative disease resistance locus (QDRL) that contributed 38.5% of the phenotypic variance toward in soybean was previously identified through mapping of a recombinant inbred line (RIL) population derived from a cross between 'Wyandot' and PI 567301B. This major QDRL mapped to chromosome 8 to a predicted 305 kb region harboring 36 genes. This locus maps near the locus for soybean cyst nematode (SCN) and the locus contributing to seed coat color. Long-read sequencing of the region was completed and variations in gene sequence and gene order compared with the 'Williams 82' reference were identified. Molecular markers were developed for genes within this region and mapped in the original population, slightly narrowing the region of interest. Analyses of the hybrid genome reassembly using three previously published bacterial artificial chromosome (BAC) sequences (BAC56G2, BAC104J7, and BAC77G7-a) combined with RNA-sequencing narrowed the region making candidate gene identification possible. The markers within this region may be used for marker-assisted selection (MAS). There were 10 differentially expressed genes between resistant and susceptible lines, with four of these candidates also located within the genomic interval defined by the flanking markers. These genes included an actin-related protein 2/3 complex subunit, an unknown protein, a hypothetical protein, and a chalcone synthase 3.
Collapse
|
31
|
Lakhssassi N, Patil G, Piya S, Zhou Z, Baharlouei A, Kassem MA, Lightfoot DA, Hewezi T, Barakat A, Nguyen HT, Meksem K. Genome reorganization of the GmSHMT gene family in soybean showed a lack of functional redundancy in resistance to soybean cyst nematode. Sci Rep 2019; 9:1506. [PMID: 30728404 PMCID: PMC6365578 DOI: 10.1038/s41598-018-37815-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022] Open
Abstract
In soybeans, eighteen members constitute the serine hydroxymethyltransferase (GmSHMT) gene family, of which the cytosolic-targeted GmSHMT08c member has been reported to mediate resistance to soybean cyst nematode (SCN). This work presents a comprehensive study of the SHMT gene family members, including synteny, phylogeny, subcellular localizations, haplotypes, protein homology modeling, mutational, and expression analyses. Phylogenetic analysis showed that SHMT genes are divided into four classes reflecting their subcellular distribution (cytosol, nucleus, mitochondrion, and chloroplast). Subcellular localization of selected GmSHMT members supports their in-silico predictions and phylogenetic distribution. Expression and functional analyses showed that GmSHMT genes display many overlapping, but some divergent responses during SCN infection. Furthermore, mutational analysis reveals that all isolated EMS mutants that lose their resistance to SCN carry missense and nonsense mutations at the GmSHMT08c, but none of the Gmshmt08c mutants carried mutations in the other GmSHMT genes. Haplotype clustering analysis using the whole genome resequencing data from a collection of 106 diverse soybean germplams (15X) was performed to identify allelic variants and haplotypes within the GmSHMT gene family. Interestingly, only the cytosolic-localized GmSHMT08c presented SNP clusters that were associated with SCN resistance, supporting our mutational analysis. Although eight GmSHMT members respond to the nematode infestation, functional and mutational analysis has shown the absence of functional redundancy in resistance to SCN. Structural analysis and protein homology modeling showed the presence of spontaneous mutations at important residues within the GmSHMT proteins, suggesting the presence of altered enzyme activities based on substrate affinities. Due to the accumulation of mutations during the evolution of the soybean genome, the other GmSHMT members have undergone neofunctionalization and subfunctionalization events.
Collapse
Affiliation(s)
- Naoufal Lakhssassi
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Gunvant Patil
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65201, USA
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Zhou Zhou
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Azam Baharlouei
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, 62901, USA
| | - My Abdelmajid Kassem
- Department of Biological Sciences, Fayetteville State University, Fayetteville, NC, 28301, USA
| | - David A Lightfoot
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Abdelali Barakat
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA
| | - Henry T Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65201, USA
| | - Khalid Meksem
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, 62901, USA.
| |
Collapse
|
32
|
Mishra P, Jain A, Takabe T, Tanaka Y, Negi M, Singh N, Jain N, Mishra V, Maniraj R, Krishnamurthy SL, Sreevathsa R, Singh NK, Rai V. Heterologous Expression of Serine Hydroxymethyltransferase-3 From Rice Confers Tolerance to Salinity Stress in E. coli and Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:217. [PMID: 30941150 PMCID: PMC6433796 DOI: 10.3389/fpls.2019.00217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 02/08/2019] [Indexed: 05/17/2023]
Abstract
UNLABELLED Among abiotic stresses, salt stress adversely affects growth and development in rice. Contrasting salt tolerant (CSR27), and salt sensitive (MI48) rice varieties provided information on an array of genes that may contribute for salt tolerance of rice. Earlier studies on transcriptome and proteome profiling led to the identification of salt stress-induced serine hydroxymethyltransferase-3 (SHMT3) gene. In the present study, the SHMT3 gene was isolated from salt-tolerant (CSR27) rice. OsSHMT3 exhibited salinity-stress induced accentuated and differential expression levels in different tissues of rice. OsSHMT3 was overexpressed in Escherichia coli and assayed for enzymatic activity and modeling protein structure. Further, Arabidopsis transgenic plants overexpressing OsSHMT3 exhibited tolerance toward salt stress. Comparative analyses of OsSHMT3 vis a vis wild type by ionomic, transcriptomic, and metabolic profiling, protein expression and analysis of various traits revealed a pivotal role of OsSHMT3 in conferring tolerance toward salt stress. The gene can further be used in developing gene-based markers for salt stress to be employed in marker assisted breeding programs. HIGHLIGHTS - The study provides information on mechanistic details of serine hydroxymethyl transferase gene for its salt tolerance in rice.
Collapse
Affiliation(s)
- Pragya Mishra
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
- Banasthali Vidyapith, Jaipur, India
| | - Ajay Jain
- Amity Institute of Biotechnology, Amity University, Jaipur, India
| | - Teruhiro Takabe
- Plant Biotechnology Research Centre, Meijo University, Nagoya, Japan
| | - Yoshito Tanaka
- Plant Biotechnology Research Centre, Meijo University, Nagoya, Japan
| | - Manisha Negi
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Nisha Singh
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Neha Jain
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Vagish Mishra
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - R. Maniraj
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | | | - Rohini Sreevathsa
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Nagendra K. Singh
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Vandna Rai
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
- *Correspondence: Vandna Rai,
| |
Collapse
|
33
|
Anderson J, Lakhssassi N, Kantartzi SK, Meksem K. Nonhypothesis Analysis of a Mutagenic Soybean ( Glycine max[L.]) Population for Protein and Fatty-Acid Composition. J AM OIL CHEM SOC 2018. [DOI: 10.1002/aocs.12063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- James Anderson
- Department of Plant Soil and Agricultural Systems; Southern Illinois University, 1205 Lincoln Drive, Mail Code 4415; Carbondale IL 62901 USA
| | - Naoufal Lakhssassi
- Department of Plant Soil and Agricultural Systems; Southern Illinois University, 1205 Lincoln Drive, Mail Code 4415; Carbondale IL 62901 USA
| | - Stella K. Kantartzi
- Department of Plant Soil and Agricultural Systems; Southern Illinois University, 1205 Lincoln Drive, Mail Code 4415; Carbondale IL 62901 USA
| | - Khalid Meksem
- Department of Plant Soil and Agricultural Systems; Southern Illinois University, 1205 Lincoln Drive, Mail Code 4415; Carbondale IL 62901 USA
| |
Collapse
|